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Abstract
This report documents the talks and discussions of Dagstuhl Seminar 13271 “Theory of Evol-
utionary Algorithms”. This seminar, now in its 7th edition, is the main meeting point of the
highly active theory of randomized search heuristics subcommunities in Australia, Asia, North
America and Europe. Topics intensively discussed include a complexity theory for randomized
search heuristics, evolutionary computation in noisy settings, the drift analysis technique, and
parallel evolutionary computation.
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Evolutionary algorithms (EAs) are stochastic optimization methods that are based on
principles derived from natural evolution. Mutation, recombination, and selection are
iterated with the goal of driving a population of candidate solutions toward better and better
regions of the search space.

In recent years, new methods have been developed at a rapid pace. Some of the ad-
vancements for continuous optimization methods have been enabled by focusing on how
evolutionary algorithms can be compared and contrasted to more traditional gradient based
methods. Arguably, evolutionary algorithms are one of the best methods now available for
derivative-free optimization (DFO) on higher dimensional problems.

Another area of rapid recent advancement is in the area of run-time analysis for evolution-
ary algorithms applied to discrete optimization problems. Here, some techniques could be
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successfully borrowed from traditional algorithm analysis, but many new techniques were ne-
cessary to understand the more complicated stochastic processes arising from nature-inspired
algorithms.

EA theory has gained much momentum over the last few years and has made numerous
valuable contributions to the field of evolutionary computation. Much of this momentum is
due to the Dagstuhl seminars on “Theory of Evolutionary Algorithms”, which has become
the leading meeting for EA theorists in the world.

Specific Topics
This year, the following topics had the particular attention of organizers, speakers both of
overview and specialized talks, and participants of the breakout sessions (also called “working
parties” or “working groups” in other Dagstuhl seminars). A brief summary of the breakout
sessions can be found in Section 4.

Advanced Runtime Analysis Methods. One difficulty common to the analysis of most
randomized search heuristics is that, while in principle these are nothing more than ran-
domized algorithms, their particular nature disallows the use of many methods used in the
classical analysis of the randomized algorithms community. The particular difficulties include
dealing with populations (instead of a single search point as in other local optimizers) or
recombination (instead of mutation only, which creates a search point close to the parent).
Both the fitness level method and various variants of the drift analysis method were greatly
improved in the last three years to cope with these difficulties. Also, the fixed budget view
on runtime analysis was recognized as an alternative way of analyzing the performance
of randomized search heuristics, and may better reflect performance indicators used by
practitioners.

Complexity Theory for Randomized Search Heuristics. Complexity theory is one of the
corner stones of classical computer science. Informally speaking, the black-box complexity of
a problem is the number of fitness evaluations needed to find its solution. Unfortunately,
it turns out that some notoriously hard problems like the clique problem in graphs have a
ridiculously small black-box complexity. In their 2010 GECCO award winning paper, Lehre
and Witt presented a promising way out of this dilemma. They introduced a restricted version
of black-box complexity that on the one hand still covers most known evolutionary approaches,
but on the other hand forbids the counter-intuitive tricks that led to the undesired results in
the first approach. Following up on this work, several variants of black-box complexity have
been suggested. During the seminar, in particular during the breakout session on this topic,
these were intensively discussed, new variations have been proposed, both from the theory
perspective and from practitioners, and a new approach was presented explaining how to
gain new and better evolutionary algorithms from black-box complexity results.

Theory of Natural Evolutionary Algorithms. Recently, the idea of conducting a natural
gradient descent in the space of sampling probability distributions has been introduced in
evolution strategies. The idea offers a very principled design technique for search algorithms
that sample from a parameterized distribution. Comparable to classical deterministic
optimization, an iterated gradient descent is performed on the distribution parameters. The
remarkable difference is that the curvature information on this space is known a priori. A
natural descent that is based on the inner product from the Fisher information matrix uses
this curvature and is comparable to a Newton method. This new and promising idea is
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lesser-known and largely unexploited for evolutionary computation. This is a completely
new topic for this seminar series, but it is related to previous work on Covariance Matrix
Adaptation.

Theory for Multi-Objective Optimization. One of the most explosive areas of growth
both within evolutionary algorithms and in derivative-free optimization is multi-objective
optimization. This is because good evolutionary algorithms now exist that can cover complex
Pareto fronts for 2 to 12 objectives. This gives practitioners a much more informative view
of the trade-offs that are possible when facing a multi-objective decision, and can also reveal
trade-offs that otherwise would never be seen: for example if we are wishing to minimize cost
and maximize quality, there can be “knees” at specific locations on the Pareto front where
one might dramatically improve quality while incurring only a slight increase in cost. This is
why multi-objective optimization methods that “map” the Pareto front are exciting. Yet,
there is not a great deal of work on the theory of multi-objective optimization. Evolutionary
algorithms are the method of choice for derivative-free multi-objective optimization and there
is a great need to bring together theoreticians who are interested in evolutionary algorithms
and those practitioners who are developing multi-objective optimization methods. This was
another new topic for this seminar series.

Landscape Analysis. Landscape Analysis is an old idea: one should be able to compute
features of a search space that can be used to guide search. One of the problems is that
the kinds of metrics that one might wish to know about usually take exponential time to
compute exactly. However, recent work has shown that some NP-hard problems (TSP, Graph
Coloring, MAXSAT) can be decomposed to the point that Fourier methods can be used to
exactly compute statistic moments of the search space (and subspaces of the search space) in
polynomial time; these computation normally require exponential time for arbitrary problems.
How can this information be used to guide the search, and to potentially replace heuristics
with more exact information? New results in this area open new opportunities for exploration
at this seminar series.
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3 Overview of Talks

3.1 Linear Convergence of the Isotropic ES via a Continuous Time
Approximation

Youhei Akimoto (Shinshu University, JP)

License Creative Commons BY 3.0 Unported license
© Youhei Akimoto

An evolution strategy with isotropic Gaussian distribution derived from the information-
geometric optimization (IGO) framework is studied on a composite of any strictly increasing
function and a convex quadratic function and on a composite of any strictly increasing
function and a twice continuously differentiable function. By extending the so-called ordinary
differential equation (ODE) method, which is usually employed in the theory of stochastic
approximation, we prove the linear convergence of the evolution strategy toward the global
or local optimum.

3.2 The Dynamical Systems Approach Applied to the Analysis of
Evolution Strategies for Constrained Oprimization

Dirk V. Arnold (Dalhousie University, CA)

License Creative Commons BY 3.0 Unported license
© Dirk V. Arnold

We present a concise review of the dynamical systems approach to the analysis of adaptive
optimization algorithms. We then discuss results obtained using that approach to study
the behaviour of evolution strategies for constrained optimization. As test problem classes
we consider a linear problem with a single linear constraint as well as a linear problem
with a conically constrained feasible region for which the optimal solution lies at the cone’s
apex. The interaction of cumulative step size adaptation with two simple constraint handling
techniques is examined, and significant differences in the results obtained are analyzed.

3.3 Sampling from Discrete Distributions
Karl Bringmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Karl Bringmann

In a classic sampling problem we are given probabilities p1, . . . , pn(summing up to 1) and want
to sample from the input distribution. This problem comes up in evolutionary algorithms
when we want to select random parents for crossover proportional to their fitness or rank.
We review a classic solution by Walker [1] building in linear time a data structure that allows
to sample in constant time. Moreover, we give an overview of recent improvements and
generalizations.

References
1 A. J. Walker. New fast method for generating discrete random numbers with arbitrary

distributions. Electronic Letters, volume 10, pages 127–128, 1974.
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3.4 What Information Can We Obtain Using Landscape Theory?
Francisco Chicano (University of Malaga, ES)

License Creative Commons BY 3.0 Unported license
© Francisco Chicano

Joint work of Chicano, Francisco; Sutton, Andrew M.; Whitley, L. Darrell; Alba, Enrique

Landscape Theory is a mathematical framework with the purpose of getting some insight
of Combinatorial Optimization Problems. Using Landscape Theory we can compute the
Fitness-Distance Correlation [2], the expected value of the fitness function after a bit-flip
mutation [4, 1] and the expected fitness after a uniform crossover [3]. In this talk we provide
details on these expressions and present a new result: the computation of the probability
distribution of the fitness after mutation. With this result we are able to compute the
expected first hitting time of a (1+lambda) EA, which is probably the first connection
between Landscape Theory and Runtime Analysis.

References
1 Francisco Chicano and Enrique Alba. Exact computation of the expectation curves of

the bit-flip mutation using landscapes theory. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2011), pages 2027–2034, 2011.

2 Francisco Chicano and Enrique Alba. Exact computation of the fitness-distance correlation
for pseudoboolean functions with one global optimum. In Proceedings of EvoCOP, volume
7245 of LNCS, pages 111–123. Springer, 2012.

3 Francisco Chicano, Darrell Whitley, and Enrique Alba. Exact computation of the expecta-
tion curves for uniform crossover. In Proceedings of Genetic and Evolutionary Computation
Conference (GECCO 2011), pages 1301–1308, 2012.

4 Andrew M. Sutton, Darrell Whitley, and Adele E. Howe. Mutation rates of the (1+1)-EA on
pseudo-boolean functions of bounded epistasis. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2011), pages 973–980, 2011.

3.5 Updates from the Black-Box
Carola Doerr (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Doerr, Benjamin; Doerr, Carola; Ebel, Franziska
Main reference B. Doerr, C. Doerr, F. Ebel, “Lessons From the Black-Box: Fast Crossover-Based Genetic

Algorithms,” in Proc. of 15th Annual Conf. on Genetic and Evolutionary Computation
(GECCO’13), pp. 781–788, ACM, 2013.

URL http://dx.doi.org/10.1145/2463372.2463480

Black-box complexity aims at establishing a complexity theory for evolutionary algorithms
and other randomized search heuristics. We often observe that black-box optimal algorithms
have a smaller runtime than the search heuristics that we regard. In contrast to those
algorithms, evolutionary algorithms typically do not benefit from search points that are
inferior to the current-best solution (“best-so-far solution”). In this talk we present a class
of new genetic algorithms that are inspired by this paradigm. We prove that, for suitable
parameter choices, the expected runtime of these algorithms is o(n logn) on OneMax. This
is the first time that an asymptotic improvement for OneMax can be achieved by using
crossover operators. The talk is based on joint work with Benjamin Doerr and Franziska
Ebel.
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3.6 Non-Elitist Genetic Algorithm as a Local Search Method
Anton V. Eremeev (Sobolev Institute of Mathematics – Omsk, RU)

License Creative Commons BY 3.0 Unported license
© Anton V. Eremeev

Main reference A.V. Eremeev, “Non-elitist genetic algorithm as a local search method,” arXiv:1307.3463v2 [cs.NE],
2013.

URL http://arxiv.org/abs/1307.3463v2

In this paper, the non-elitist genetic algorithms with tournament selection (denoted by GA in
what follows) are compared to the local search methods on the class of the NP optimization
problems [1]. It is assumed that the fitness function of a GA is identical to the objective
function on the set of feasible solutions and the infeasible solutions are penalized. The
operators of crossover and mutation are supposed to be efficiently computable randomized
routines. The population size and the tournament size may depend on problem instance. In
many well-known NP optimization problems the set of feasible solutions is the whole search
space. We show that the GA with suitable parameters tuning first reaches a local optimum to
such problems in O(1) iterations on average. The population size and the tournament size are
assumed to grow linearly in 1/s and log(m), where s is a lower bound on the probability to
transform any given solution x into any given solution in the neighborhood of x, and m is the
number of non-optimal levels of objective function. Often some termination condition is used
to stop a GA when a solution of sufficient quality is obtained or because the population is
trapped in some unpromising area. To incorporate the possibility of restarting the search, we
also consider an Iterated GA, where the basic GA is terminated and independently initialized
every time after a given number of iterations. It is shown that if the NP optimization
problem and the value 1/s are polynomially bounded and the initial population always
contains a feasible solution, then the Iterated GA with suitable choice of parameters first
visits a local optimum on average in polynomially bounded time. Besides that, it is proven
that any problem from the class of problems with guaranteed local optima (GLO) [1] may
be approximated within a constant ratio by means of the Iterated GA with bitwise mutation
operator in polynomial time on average.

References
1 G. Ausiello, M. Protasi. Local search, reducibility and approximability of NP-optimization

problems.Information Processing Letters, volume 64, pages 73–79, 1995.

3.7 Parameterized Average-Case Complexity of the Hypervolume
Indicator

Tobias Friedrich (Universität Jena, DE)

License Creative Commons BY 3.0 Unported license
© Tobias Friedrich

Joint work of Bringmann, Karl; Friedrich, Tobias;
Main reference K. Bringmann, T. Friedrich, “Parameterized Average-Case Complexity of the Hypervolume

Indicator,” in Proceedings of 15th Annual Conf. on Genetic and Evolutionary Computation
(GECCO’13), pp. 575–582, ACM, 2013.

URL http://dx.doi.org/10.1145/2463372.2463450

The hypervolume indicator (HYP) is a popular measure for the quality of a set of n solutions
in Rd.We discuss its asymptotic worst-case runtimes and several lower bounds depending on
different complexity-theoretic assumptions. Assuming that P 6= NP, there is no algorithm
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with runtime poly(n, d). Assuming the exponential time hypothesis, there is no algorithm
with runtime no(d).In contrast to these worst-case lower bounds, we study the average-case
complexity of HYP for points distributed i.i.d. at random on a d-dimensional simplex. We
present a general framework which translates any algorithm for HYP with worst-case runtime
nf(d) to an algorithm with worst-case runtime nf(d)+1 and fixed-parameter-tractable (FPT)
average-case runtime. This can be used to show that HYP can be solved in expected time
O(dd2/2 n+ dn2),which implies that HYP is FPT on average while it is W[1]-hard in the
worst-case. For constant dimension d this gives an algorithm for HYP with runtime O(n2)
on average. This is the first result proving that HYP is asymptotically easier in the average
case. It gives a theoretical explanation why most HYP algorithms perform much better on
average than their theoretical worst-case runtime predicts.

3.8 Clustering as a Benchmark Optimization Problem
Marcus Gallagher (The University of Queensland, AU)

License Creative Commons BY 3.0 Unported license
© Marcus Gallagher

In recent years there has been increasing focus on improving the quality of experimental
evaluations and comparisons of continuous evolutionary algorithms and metaheuristics. A
good example of this is the Black-Box Optimization Benchmarking (BBOB) test problem suite
and workshops. However, there is still alack of benchmark problems that are representative of
real-world optimization problems. In this presentation, I discussed the data clustering problem
in the 2-D Euclidean plane as potentially a very useful source of benchmark continuous
optimization problems. Clustering is a fundamental problem in data mining and is also closely
related to location-allocation problems from operations research. From a theoretical point of
view clustering is an NP-hard problem and problem instances in practice are expected to
present challenging features for algorithms. From a benchmarking point of view, clustering
problems are unconstrained, simple to generate and have many properties that are desirable
in benchmark functions. Random instances can be generated by generating datasets from
a specified probability distribution. As an example, results were presented for clustering
problems based on uniformly random data in the unit square. Using the standard k-means
clustering algorithm, results confirm that problem instances have a large number of local
optima and are challenging for black-box algorithms to solve. In addition,there appears to
be a regime for the number of data points (n) and the number of cluster centers (k) where
generated problems where k-means takes much longer to converge. An explanation of this
observation is an open problem.

3.9 On the Analysis Approach of CSA on the General Ellipsoid Model
Michael Hellwig (Fachhochschule Vorarlberg, AT)

License Creative Commons BY 3.0 Unported license
© Michael Hellwig

Joint work of Hellwig, Michael; Hans-Georg Beyer

The optimization behavior of evolution strategies (ES) applying cumulative step size adapt-
ation (CSA) on convex-quadratic functions (referred to as ellipsoid model) is investigated.
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The analysis considers (µ/µI , λ)-CSA-ES using intermediate recombination and isotropic
mutations. Introducing the asymptotically exact quadratic progress rate the talk gives
insight into a new analysis approach for the dynamical ES system. The dynamical system
is modelled by a set of non-linear difference equations which describe the component-wise
progress towards the optimizer, the mutation strength control as well as the change in the
search path vector within the CSA. In the steady state the system can be transformed into an
eigenvalue problem. Solving the eigenvalue problem allows for predictions of the ES systems
behavior in the vicinity of the steady state. While the analysis is not yet complete the
approach is validated by the good agreement of first theoretical predictions with experimental
results.

3.10 Fixed Budget Computations: Why, How and What?
Thomas Jansen (Aberystwyth University, GB)

License Creative Commons BY 3.0 Unported license
© Thomas Jansen

Run time analysis of evolutionary algorithms (EAs) is currently a dominating topic in
the theory of EAs. It can be traced back 20 years, the last 15 years have seen a large
number of publications that jointly have developed a wealth of analytical methods, surprising
insights, and a better understanding of many aspects of EAs. However, these results are
hardly appreciated outside the theory community. We argue that one reason is the lacking
connection to the way EAs are applied in practice. Run time analysis is about the time
needed to find an optimal or approximately optimal solution, something that is often not
achieved in practice. In applications, evolutionary algorithms are more often stopped after
some time. The assessment of the performance of EAs based on the expected function value
after a fixed budget of function evaluations is closer to this way of applying EAs. We suggest
this method as an alternative, discuss why we believe it offers a more useful perspective, how
results in this framework can be obtained, and what the current state of the art is. The talk
is mainly an open invitation to join us in the development of this novel research direction.
This talks presents joint work with Benjamin Doerr, Carsten Witt, and Christine Zarges.

3.11 Some Runtime Analyses on the (1+λ) EA
Marvin Künnemann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Marvin Künnemann

Joint work of Doerr, Benjamin; Künnemann, Marvin;
Main reference B. Doerr, M. Künnemann, “Royal road functions and the (1 + λ) evolutionary algorithm: Almost

no speed-up from larger offspring populations,” in Proc. of the 2013 IEEE Congress on
Evolutionary Computation (CEC’1313), pp. 424–431, IEEE, 2013.

URL http://dx.doi.org/10.1109/CEC.2013.6557600

We study properties of Evolutionary Algorithms (EAs) with non-trivial offspring populations
in the context of the (1+λ) EA. Already on linear functions, we observe that there are choices
for the population size λ that yield, surprisingly, different asymptotic runtimes for the (1+λ)
EA, more precisely for the prominent functions OneMax and BinVal. On the natural test
function class of Royal Road functions, we show that a polynomial-sized offspring population
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has a very restricted speed-up effect. We give some ideas of how to prove upper and lower
bounds for the (1+λ) EA on these function classes. This talk summarizes joint work with
Benjamin Doerr.

References
1 B. Doerr and M. Künnemann. How the (1 + λ) Evolutionary Algorithm optimizes linear

functions. In Proceedings of Genetic and Evolutionary Computation Conference (GECCO
2013), pages 1589–1596. ACM, 2013.

2 B. Doerr and M. Künnemann.Royal road functions and the (1+λ) Evolutionary Algorithm:
Almost no speed-up from larger offspring populations. In IEEE Congress on Evolutionary
Computation (CEC 2013), pages 424–431. IEEE, 2013.

3.12 Optimising Existing Software with Genetic Programming
William B. Langdon (University College London, GB)

License Creative Commons BY 3.0 Unported license
© William B. Langdon

Main reference W.B. Langdon, M. Harman, “Optimising Existing Software with Genetic Programming,” accepted
for publication in IEEE Trans. of Evolutionary Computation; authors’ submitted version available.

URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2013_ieeeTEC.pdf

We show genetic improvement of programs (GIP) can scale by evolving increased performance
in a widely-used and highly complex 50000 line system. GISMOE found code that is 70
times faster (on average) and yet is at least as good functionally. Indeed it even gives a small
semantic gain.

References
1 William B. Langdon and Mark Harman. Optimising existing software with genetic pro-

gramming. IEEE Transactions on Evolutionary Computation. Accepted.

3.13 Random Declines and Drift Analysis
Johannes Lengler (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Johannes Lengler

Drift analysis has been a major tool for runtime analysis of Evolutionary Algorithms. For
finite search spaces, they often come in pairs of matching upper and lower bounds. While
the upper bounds hold in general, I present in my talk a class of Random Walks for which
the standard lower bounds fail as the search space becomes infinite. In particular, the lower
bounds known as “Variable Drift Theorems” fail although drift analysis still gives the correct
runtime after a suitable transformation of the search space. Hence, the known Variable Drift
Theorems need further improvement.
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3.14 Runtime Analysis of Ant Colony Optimization on Dynamic
Shortest Path Problems

Andrei Lissovoi (Technical University of Denmark, DK)

License Creative Commons BY 3.0 Unported license
© Andrei Lissovoi

Joint work of Lissovoi, Andrei; Witt, Carsten;
Main reference A. Lissovoi, C. Witt, “Runtime analysis of ant colony optimization on dynamic shortest path

problems,” in Proc. of the 15th Annual Conf. on Genetic and Evolutionary Computation
(GECCO’13), pp. 1605–1612, ACM, 2013.

URL http://dx.doi.org/10.1145/2463372.2463567

We consider the behaviour of a simple ACO algorithm called λ-MMAS on instances of
dynamic shortest path problems where the optimum rapidly oscillates between two similar
solutions. It is shown that reducing the evaporation rate ρ slows, but does not prevent,
pheromone freezing when a single ant is started at each vertex. Starting a constant number
of ants with a not-too-high evaporation rate allows the optimum solution to be constructed
with constant probability in each of any polynomial number of iterations of certain easy
problem instances. Additionally, the limitations of pheromone memory are demonstrated
by considering an oscillation between two optimums that are not similar: while uncertainty
about a specific choice can be represented in pheromone values, the memory cannot store
distinct solutions.

3.15 Quantifying Optimization Problem Similarity Using Information
Distance

Rachael Morgan (The University of Queensland, AU)

License Creative Commons BY 3.0 Unported license
© Rachael Morgan

Quantifying the similarity between black-box optimization problems is important but non-
trivial. In practice, there are two general methodologies employed: 1) problems are compared
via measurements of particular problem properties/features (e.g. correlation length) and
2) problems are compared via the performance of algorithm instances. Ideally, a problem
similarity measure should be a metric, estimated easily from data (with minimal loss of
information) and able to compare problems of varying size and dimensionality. In addition,
in the context of black-box optimization, such a measure is restricted to using only the
information available in the black-box setting.

This talk proposed using the information distance – a universal distance – to measure the
(dis)similarity between continuous optimization problems. While mainly a theoretical notion,
the information distance can be approximated via the Normalised Compression Distance
(NCD). NCD utilises standard compression algorithms to compute an approximation of the
information distance between objects. Hence, by simply sampling the solutions and their
respective objective function values of two optimization problems, the NCD between the
samples can be used as a measure of distance between the problems.

To illustrate the proposed methodology, the NCD between circle packing problems and
problems within the Black-Box Optimization Benchmark (BBOB) set were presented. The
results showed that the similarity of the structures known to be within these problems is
preserved by NCD. The results also demonstrated the use of Multi-Dimensional Scaling as
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a technique to visualise the resulting NCD between problems, and hence, visualise where
problems are located within the ‘problem space’.

3.16 How to Bridge Theory and Practice in Supply Chain Management
Frank Neumann (The University of Adelaide, AU)

License Creative Commons BY 3.0 Unported license
© Frank Neumann

Joint work of Bonyadi, Mohammad Reza; Michalewicz, Zbigniew; Barone, Luigi; Ghandar, Adam; Neumann,
Frank

We discuss the current gap in the area of evolutionary computation methods for large
scale optimization problems arising in the area of supply chain management. Evolutionary
algorithms have been widely applied to a wide range of classical combinatorial optimization
problems such as the traveling salesman problem or the knapsack problem. We argue that
real world problems differ from these classical NP-hard optimization problems significantly in
complexity as real-world problems are composed of different (NP-hard) sub-problems and the
increase in complexity is due to the combination of these problems. Hence, it is important to
understand how different problems that interact can be solved by evolutionary computing
methods. We argue that there is a strong need for new benchmarks addressing this current
gap and point out by an example problem, based on the classical traveling salesperson
problem and the knapsack problem, how such interactions look like. For theoretical research
on evolutionary algorithms, we pose it as an open challenge to understand the interactions
of problems by means of theoretical investigations. We point out open topics for research
in the areas of runtime analysis and fitness landscape analysis. In the case of rigorous
runtime analysis it would be desirable to have results that show how the runtime behaviour
changes when combining sub-problems. Investigations in the area of fitness landscape analysis
could reveal on how the fitness landscape changes when combining subproblems such as the
traveling salesperson problem and the knapsack problem.

3.17 Parameterized Complexity Analysis and More Effective
Construction Methods for ACO Algorithms and the Euclidean
Travelling Salesperson Problem

Samadhi Nallaperuma (The University of Adelaide, AU)

License Creative Commons BY 3.0 Unported license
© Samadhi Nallaperuma

Joint work of Nallaperuma, Samadhi; Sutton, Andrew M.; Neumann, Frank

We propose a new construction procedure for ant colony optimization (ACO) algorithms
working on the Euclidean traveling salesperson problem (TSP) that preserves the ordering on
the convex hull of the points in the instance. The procedure is inspired by theoretical analyses
for simple evolutionary algorithms that are provably more efficient on instances where the
number of inner points of the instance is not too large. We integrate the construction
procedure into the well-known Max-Min Ant System (MMAS) and empirically show that it
leads to more efficient optimization on instances where the number of inner points is not too
high.
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3.18 Run-time Analysis to Elucidate the Benefits of Crossover
Adam Prugel-Bennett (University of Southampton, GB)

License Creative Commons BY 3.0 Unported license
© Adam Prugel-Bennett

Joint work of Prugel-Bennett, Adam; Rowe, Jonathan; Shapiro, Jonathan

In this talk we describe current work on obtaining run time bounds on a set of problems which
demonstrate the benefit of crossover. We start by showing that an EA using a population of
size P = Ω(n) can solve onemax in no more than

√
n log(n) generations with overwhelming

probability. The EA works by pairing the parents and producing two complementary children
using uniform crossover. The fitter of the two children is chosen. The pairing is done so
that each parent is chosen twice, and paired with a different partner. We show that at
each site there is a sufficient drift towards increasing the number of ones that fixation is
exponentially unlikely and the expected run time is no more than

√
n log(n) generations.

We then consider four problems to illustrate the different benefits of the use of a population
with crossover. The first of these examines the ability to put together building blocks. We
consider a concatenated trap function consisting of m traps of size k (so that n = m× k).
The trap functions have a fitness function which is a symmetric V-shaped function of the
number of ones in each trap except for the all ones state which has an additional fitness of
one. To ease the analysis we assume k is odd, We consider the EA hybridised with a local
hill-climber. The hill-climber is always run until completion so the traps are either in the all
ones or all zeros state. We run the hill-climber on the two children produced by crossover
and choose the fitter of the two children after the hill-climber. The children therefore have
strings where each trap is either in the local or global optimum. Uniform crossover does not
change the traps value if the two parents are in the same local optimum. If one parent is in
the all 1’s optimum and the other in the all 0’s for a particular trap, then after crossover
one child will have more than half 1’s and the other less than half 1’s. After hill-climbing
one child will be in the all 0’s state and the other in the all 1’s state for that trap function.
This means the problem is identical to the onemax except the state of the trap plays the
role of the binary variable. We can thus reuse the analysis for onemax. If we choose the
traps sufficiently large (e.g. k = Θ(

√
n)) then a (1+1)-EA would take super-polynomial time

while our algorithm solves this problem in O(n7/4 log(n)). The second mechanism we study
is the concentration of search by crossover. We consider a modified onemax with a plateau
of size g

√
n when there is an ones in a binary string (a > 1/2). We show that because it is

quite likely for two children to differ in the number of ones by Ω(
√
n), then with reasonable

frequency the two children will span the gap and there will be a drift towards increasing
the total number of ones. The drift is sufficient to ensure that the population will rapidly
cross the gap. Once again we show that a (1+1)-EA will take super-polynomial time to cross
the gap. The third mechanism we consider is the tolerance to noise of a population based
EA using crossover. To illustrate this we consider onemax, but with a noise at each fitness
evaluation drawn from a normal distribution, N(0, n). We show that despite this noise the
EA still has a significant positive drift towards increasing the number of ones, thus, with a
very small modification we show that we can solve onemax with noisy fitness in O(n log(n)).
In contrast a (1+1)-EA will take super-polynomial time. The final mechanism (somewhat
related to the previous), is the tolerance of our EA to local randomness. Here, we consider
an objective function which is the sum of the onemax problem and a random function. The
random function at each configuration is just chosen form a normal distribution, N(0, n).
The difference to the problem discussed above is that the noise is static or quenched in this
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model rather than varying at each fitness evaluation. The objective is to find a solution with
(1− ε)n ones (note that we have no guarantee as to where the actual global optimum is). We
have no proof for our EA, however, we make the observation that if the minimum Hamming
distance between strings were above δn for some δ > 0, then as the number of potential
children at each crossover is Ω(2δn), it is exponentially unlikely that a child will visit a
configuration we have already visited (given that we have run for a polynomial number of
generations). Thus with overwhelming probability this case will be identical to the dynamic
noise case and we can solve it in O(

√
n) generations (we no longer need the log(n) as we

only require to get within ε of the optimum). For a hill-climber and (1+1)-EA we can show
that the expected run time is super-exponential. The log(n) in the bound can be dropped if
the fitnesses were concentrated. We show this is highly plausible. For the case of quenched
noise, we need to show that the Hamming distances are concentrated away from zero. The
concentration is complicated, due to incest (children that share parents, grandparents, etc.
will be more concentrated that those that don’t). On the other hand, crossover rapidly mixes
the members of the population, making it unlikely that the Hamming distances become very
small. It remains an open problem to prove these concentration results.

3.19 Mathematical Landscape Theory
Peter F. Stadler (Universität Leipzig, DE)

License Creative Commons BY 3.0 Unported license
© Peter F. Stadler

Combinatorial landscapes are investigated with a focus on at least three different types of
features: correlation measures, systems of adaptive or gradient walks, and the distribution
of local optima. While all three approaches eventually provide insights into landscape
ruggedness, their interconnections remain poorly understood. A connection between local
optima and path systems is provided by coarse grained abstractions of the landscape, in
particular its barrier trees representing local optima and their connecting saddle points [1, 2].

Typically, landscapes are viewed over a graph or metric space. This captures well search
by mutation operators. Generalized closure operators allow to describe the topology of the
search space induced by crossover-based search and may provide a meaningful way to study
differences in landscape geometry arising from differences in search operators. An interesting
variation on the idea of varying landscape geometry in algorithm design is to find biased
embeddings in larger search spaces that are constructed in such a way that good solutions
are enriched in the redundant representation [3].

References
1 B. M. R. Stadler and P. F. Stadler. Combinatorial Vector Fields and the Valley Structure

of Fitness Landscapes. J. Math. Biol., volume 61, pages 877-898. Springer, 2010.
2 K. Klemm, J. Qin and P. F. Stadler. Geometry and coarse-grained representations of

landscapes. Emergence, Complexity, and Computation, Springer, 2012. In Press.
3 K. Klemm, A. Mehta and P. F. Stadler. Landscape Encodings Enhance Optimization. PLoS

ONE, volume 7, pages e34780. 2012.
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3.20 Analysis of Parallel Evolutionary Algorithms for Combinatorial
Optimization

Dirk Sudholt (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
© Dirk Sudholt

Joint work of Sudholt, Dirk; Lässig, Jörg; Neumann, Frank; Oliveto, Pietro; Rudolph, Günter; Mambrini,
Andrea; Yao, Xin

We consider the speedup gained by island models in terms of the parallel running time
for problems from combinatorial optimization: sorting (as maximization of sortedness),
shortest paths and Eulerian cycles. The results show in which settings and up to what degree
evolutionary algorithms can be parallelized efficiently. Potential speedups depend on many
design choices such as the search operators, representations and fitness functions used on the
islands, and also the parameters of the island model. In particular, we show that a natural
instance for Eulerian cycles leads to exponential vs. logarithmic speedups, depending on the
frequency of migration. We also discuss the use of crossover in island models for an instance
of the VertexCover problem.
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3.21 Noisy Optimization in Continuous Domains
Olivier Teytaud (University of Paris South XI, FR)

License Creative Commons BY 3.0 Unported license
© Olivier Teytaud

Black-box noisy optimization is a great useful research area. Simple regret, cumulative regret,
uniform rates, are various relevant criteria. We show that using second order information
can improve the convergence rate of simple regret when noise is moderate; that sampling
only around the optimum reduces the optimal convergence rates [1]; that ES are reasonably
good in the case of cumulative regret [2].
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4 Breakout Sessions

After having successfully experimented with breakout sessions during the last edition of this
Dagstuhl seminar, this time we made breakouts a substantial part of the seminar. After
a public vote, both collecting preferences and scheduling conflicts, we decided to have the
following breakout sessions, each lasting for around two hours, partially scheduled in parallel.
The breakouts differed greatly in style and size, ranging from semi-plenary open problem
sessions to half-a-dozen people discussing in-depth a specialized topic. The following notes,
collected by session organizers or participants, try to collect the main points of each session.

4.1 Evolutionary Multiobjective Optimization
Dimo Brockhoff (INRIA Nord Europe – Lille, FR, dimo.brockhoff@inria.fr)
Joshua D. Knowles (University of Manchester, GB, j.knowles@manchester.ac.uk)
William B. Langdon (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Dimo Brockhoff, Joshua D. Knowles, William B. Langdon

The breakout session on EMO during the Dagstuhl seminar 13271 “Theory of Evolutionary
Algorithms” brought together people familiar with EMO and researchers who have not yet
worked on multiobjective optimization. The main discussion topics included: open problems,
Information Geometric Optimisation (IGO), interactive evolution (IE) in a Pareto optimal
context, especially the practical role of not necessarily rational human decision makers subject
to fatigue and business pressures. We also discuss the role of: external finite archives and
elitism, crossover and mutation particularly in fixed binary and non-binary representations,
drift analysis, reducing run time, LOTZ, two-sphere and other benchmarks and the SEMO
algorithm. Our goal is to provide the basis from which concrete theoretical studies can
rapidly emerge.

4.1.1 Introduction

Multiobjective optimization deals with optimization problems where two or more objective
functions are to be optimized simultaneously and for which, typically, no single solution
results in optimal values for all objectives. Instead, the search space exhibits a natural partial
order (“Pareto dominance relation”) with the so-called set of Pareto-optimal solutions as
its minima. For tackling multiobjective optimization problems with the use of evolutionary
computation approaches, the term Evolutionary Multiobjective Optimization (EMO) has
been coined. Although several theoretical studies in the field of EMO have emerged in recent
years, fundamental questions are still open.

4.1.2 Overview

The EMO breakout session took place in the afternoon (4pm–6pm) of the second day of the
Dagstuhl seminar (July 2, 2013) and was attended by Karl Bringmann, Dimo Brockhoff,
Ken De Jong, Benjamin Doerr, Carola Doerr, Josephine Doerr, Joshua D. Knowles, Marvin
Künnemann, W. B. Langdon, Jörg Lässig, Samadhi Nethmini Nallaperuma, Günter Rudolph,
Manuel Schmitt and Lothar Thiele.

Most of the topics discussed during the breakout session originated from theoretical studies
by some of the participants or from plenary presentations given during the first two days
of the Dagstuhl seminar. The discussions related to Information Geometric Optimization,
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interactive EMO, and runtime analyses were the longest and most lively and so will be
described in detail particularly focusing on the open questions which were identified.

4.1.3 Information Geometric Optimization and Multiobjective Optimization

Information Geometric Optimization (IGO) [12] is a recently proposed canonical and sys-
tematic way of looking at single-objective black-box optimization problems. The so-called
IGO flow, a general continuous-time model of a black-box optimization algorithm, thereby
optimizes the parameters of a given family of probability distributions by following the
direction of the natural gradient of a joint optimization criterion posed on the manifold
of probability distributions. It inherently possesses several invariance properties such as
“invariance under reparametrization of the search space, under a change of parameters of the
probability distribution, and under increasing transformation of the function to be optimized”
(see [12]). Discretizations of the IGO flow for specific families of probability distributions
result in known algorithms such as the CMA-ES [13], xNES [4] and PBIL [1].

As the IGO flow formulation is very general, the natural question is whether and how
this would be formulated for multiobjective optimization problems and most importantly,
which algorithms would emerge by the discretization of the (multiobjective) IGO flow.

One first step towards an answer, discussed during the breakout session, was to start
with the simplest possible probability distribution for sampling sets of solutions: define µ
linked probability distributions, one per member of the EMO algorithm’s population, with µ
the population size. In order to transform the set problem back to the IGO framework, one
could use for example the hypervolume indicator of the set as the scalar objective function.
As underlying family of probability distributions, we should probably start with the simplest
ones (either Gaussian distributions in the case of continuous search spaces or Bernoulli
distributions in case of pseudo-Boolean search spaces). It was suggested that it might help to
start with a concrete problem as this might help gain intuition into possible future algorithms,
e.g. the double sphere (f1(x) = |x|2, f2(x) = |x− a|2 with x, a ∈ Rn). In this problem, the
goal is to minimise both f1 and f2. This naturally leads to the need to trade off f1 and f2
when a 6= ~0.

4.1.4 Analyses of Interactive EMO Algorithms

Evolutionary multiobjective optimization algorithms typically aim at finding a set of solutions
that approximates the set of Pareto-optimal solutions. However, in the real world not all of
the Pareto-optimal solutions are equally interesting. Often, where there is a single customer, a
single solution has to be picked eventually by a human decision maker (or a group of decision
makers)—corresponding to the most preferred alternative. Even where there are many
customers, they may not pick solutions from the whole range of Pareto-optimal solutions.
Since there is no information about the acceptable trade-offs between the objectives the
definition of the preferred solution before the search is often too difficult. Similarly after the
search, and making one final choice within an overwhelmingly large number of solutions can
be equally difficult. Interactive EMO algorithms have been recently proposed to reduce the
user load inherent in EMO algorithms presenting many potential Pareto-optimal solutions to
the users (see for example [7] for an overview). These interactive EMO algorithms ask the
decision maker during the optimization to provide certain information about their preferences,
e.g., to say which of two solutions is preferred. The algorithm tries to focus the search on
search space regions “preferred” by the decision maker instead of finding an approximation
of the entire Pareto front.
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The first theoretical analysis of such an interactive EMO algorithm appeared last year in
[3] in which not only the runtime of simple interactive EMO algorithms on pseudo-Boolean
test functions have been investigated but also the expected number of times, the decision
maker is required to interact until the most preferred solution is found. After a brief informal
presentation of the paper’s content, the discussion centered on how to extend this preliminary
study towards more realistic algorithms and decision making scenarios.

One line of suggestions focused on the decision maker who typically is not always deciding
rationally. To investigate more realistic cases, analysis of the decision maker behavior might
involve noisy decisions, additional (hidden) objective functions, current decisions that depend
on previous ones (i.e., a “learning” decision maker), or the unavailability of the decision maker
at certain times. Another interesting aspect that came up in the discussion was to allow
the decision maker to also say “I don’t know” or “I don’t care” for certain questions asked.
(NB. these are not identical replies.) Developing algorithmic strategies for dealing with such
scenarios and analyzing their impact on the search abilities theoretically is definitely an
interesting open problem for the near future.

Another suggestion was to analyse interactive EMO algorithms on more complicated
problems. A possible next step is the bi-objective spanning tree problem [14].

4.1.5 Runtime Analyses of EMO Algorithms

Though theoretical runtime analyses of single-objective optimization algorithms is now
established, runtime analyses of multiobjective algorithms remain comparatively sparse.
Therefore, more basic questions remain open than in the single-objective case. Open
questions collected and topics discussed during the session include:

the fundamental question of when crossover is helpful before reaching the Pareto front,
whether drift analysis has been used for multiobjective optimization (yes, for example in
[5]),
whether problems exist where the known lower bounds on the expected runtime match the
upper bounds when global mutations are allowed (so far no, to the best of our knowledge),
or
which other algorithms could “improve” the runtime on the LOTZ problem [9] when
compared to the SEMO algorithm [8].

4.1.6 Archiving and Non-Standard Search Spaces

Finally, two other aspects of EMO were discussed during the breakout session: archiving and
non-standard search spaces.

In terms of archiving and performance guarantees, the question came up of how non-elitist
and comma-strategies can be analysed in the multiobjective case. For example, in terms of
the quality of an external archive of pair wise non-dominated solutions. Similarly what is the
impact of a finite limit versus allowing the archive to grow indefinitely? The general question
of how to deal with finite size archives was discussed briefly and it was acknowledged that
although there is work on convergence and quality [2, 10, 6], there is no consensus model or
framework for analysis as yet.

In terms of non-standard search spaces (e.g. discrete, but not bit string {0, 1}n), the
general question came up which properties of mutation operators are desired (cf. for example
[11] ), which is especially open for mutation operators on solution sets. Also theoretical
studies comparing different mutation operators might be interesting to practitioners.
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4.1.7 Conclusion

Several theoretical studies of evolutionary multiobjective optimization (EMO) algorithms
and techniques have been published recently, but various fundamental questions remain
open. The breakout session on EMO during the Dagstuhl seminar “Theory of Evolutionary
Algorithms” (July 2013) brought together researchers interested in theory and multiobjective
optimization and provided a good opportunity to collect several of those open questions
and start a discussion about how to tackle them. The brief description of those discussions,
provided here, can be used as a basis for future (joint) theoretical research in the growing
field of Evolutionary Multiobjective Optimization.

4.1.8 Acknowledgements

Special thanks go to the organizers of the Dagstuhl seminar and the entire Dagstuhl team
for providing such a stimulating and welcoming atmosphere.
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4.2 Black-Box Complexity
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The breakout session on black-box complexity brought together researchers with much
different interest in this topic. We discussed in the first 30 minutes our motivation for
studying black-box complexity. While black-box complexity is mainly interesting as a tool
to derive fairly general lower bounds for the optimization time of evolutionary algorithms
and other randomized search heuristics for some, its main benefit is seen to be a source for
inspiration in algorithmic design for others.

The participants in the discussion agreed that it would be nice to see as a future
development black-box complexity results that go beyond the studies of the OneMax test
functions. While the latter is an interesting source for inspiration and has imposed several
beautiful questions and results in the last 50 years, it is important also to explore the
black-box complexities of more intricate test beds, e.g., combinatorial optimization problems.

Johannes Lengler presented a new black-box algorithm that is built on the idea that
offspring should be sampled not too far from the optimum. He explains that many optimal
black-box algorithms gather a lot of knowledge about the problem at hand by consciously
sampling non-optimal search points. This raises the question whether or not the black-box
complexity necessarily increases when algorithms are allowed to sample only in a suitably
chosen neighborhood of the search points that have been evaluated so far. While very
restrictive neighborhood definitions will clearly lead to an increase in black-box complexity,
recent progresses in algorithmic design seem to suggest that this is not the case for a more
relaxed neighborhood structure. Johannes presented a new algorithm that has running time
o(n logn) on the OneMax test functions. Also the algorithm by Benjamin Doerr, Carola
Doerr, and Franziska Ebel [1] that was presented in a talk preceding this session achieves
this. Benefits and drawbacks of both algorithms were discussed.

The participants agreed that transferring results from optimal black-box algorithms to
the design of new evolutionary algorithms is a promising research direction. At the same
time, the quest for a suitable black-box model continues. Several recent attempts, including
memory-restricted, ranking-based, and unbiased versions of the black-box model seem to be
a step in the right direction. However, in particular for algorithms using operators of arity
strictly larger than one, a suitable black-box model is still missing. One potential model that
was discussed during this breakout session is a “blind” version, where algorithms are given
the fitness of the search points but no hint whatsoever about the search point itself. This
version is related but not identical to the unbiased black-box model of Lehre and Witt [2].
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4.3 Natural Gradient
Nikolaus Hansen (INRIA Saclay – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Nikolaus Hansen

An evolutionary search and optimization process can be described by an iterative update of
a probability distribution over the space of candidate solutions. The fact that search and
adaptation is accordingly conducted in the space of distributions is often not considered,
and the algorithms and their analysis do not usually exploit the properties of this rather
well-defined space. They use, for example, strategies rooted in standard Euclidean geometry,
however, the space of probability distribution calls for a different mathematical treatment,
which is investigated in the research field of information geometry. Information geometry is a
rather young mathematical research field pioneered by S.-I. Amari. It has been successfully
applied to computational learning problems. In particular, this way of thinking suggests
replacing the gradient in Euclidean space by the gradient defined in the space of probability
distributions – the so called natural gradient.

Independently from the work in the learning community, information geometric ran-
domized search algorithms have been developed just recently. First, the natural evolution
strategy was proposed. Then it was shown that the popular covariance matrix evolution
strategy (CMA-ES) can be derived from an information geometric perspective. These new
developments open the door to new theoretical insights into randomized search in general.

In the breakout session, different types of evolutionary algorithms using information
geometric concepts were discussed. Similarities and differences between the approaches
were outlined, ideas between people specialized in discrete and continuous search spaces,
respectively, were exchanged. The open questions and next steps in this new research
direction were discussed. Important problems were identified: first, the observation that
actual behavior of the iterative algorithms often differs from the behavior predicted by the
analysis of the corresponding time-continuous flow (along the natural gradient). Second, the
fact that the algorithms most successful in practice update their parameters describing the
probability distribution in a non-uniform way in the sense that, for example, the CMA-ES has
different leaning rates for the mean and the covariance – although the information theoretic
interpretation (in terms of following the natural gradient) suggests that all parameters should
be updated in the same way. Furthermore, the question of how to extend the existing
theoretical frameworks to multi-objective optimization was discussed.

4.4 Fixed Budget Computations
Thomas Jansen (Aberystwyth University, GB)
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The breakout session about fixed budget computations was a well attended and lively session
that turned out to concentrate mostly on collecting open problems and questions that we
would like to see answered. Participants in the discussion were Dimo Brockhoff, Kenneth A.
De Jong, Benjamin Doerr, Carola Doerr, Thomas Jansen, Daniel Johannsen, Timo Kötzing,
Joshua D. Knowles, Johannes Lengler, Frank Neumann, Jonathan E. Rowe, Dirk Sudholt
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and Christine Zarges. Notes have been taken by Dimo Brockhoff and Dirk Sudholt. These
notes are the basis of this summary.

Currently, fixed budget results concentrate on very simple algorithms like random local
search and the (1+1) EA [1, 2]. However, there is consensus that a wide range of algorithms
should be analysable and be analysed. It is remarked that hybrid algorithms (e. g., memetic
algorithms) may be of particular interest.

There is a wide range of different results that are desirable. Among them are results for
large ranges of budgets; average case results; relative results for the comparison of algorithms;
results for algorithms with high variance in performance (a kind of algorithms for which
currently there are no good methods to deal with them analytically); results that highlight
the influence of the selection pressure for a fixed budget; results on optimal algorithms
(in the terms of black-box complexity); results for multiple runs, in particular for parallel
runs; results for NP- hard combinatorial optimisation problems (similar to optimisation
time results for PARTITION [3]) where results about structural properties of the problem
instances would be of particular interest; results for FPT problems with fixed n depending
on k; precise results for fixed n in general; results for dynamic fitness functions; and results
for functions defined over continuous domains. It is pointed out that one should concentrate
on proving lower bounds and that it is probably advisable to be more generous with respect
to changes of the budget.

There is an open debate if making statements about the expected function values is
actually the most useful thing to do. It may be more interesting to make statements about
the median or quantiles instead of the expectation. Also rank-based results may be more
meaningful than statements about the function value. An important aspect is the robustness
(or brittleness) of results with respect to changes of the considered algorithm or problem.

For future analyses it is desirable to develop more analytical tools. Coming up with a
method based on fitness levels appears to be a reasonable first step. It is open how fixed
budget results can be obtained in general without revisiting optimisation time results. It is
also open if and how results from landscape theory can help.

Another more general aspect that was also discussed was concerned with the goal of
this kind of research, about the things that we want to see achieved. One obvious positive
outcome would be novel insights that lead to the design of better search heuristics. Specific
aspects are the design of stopping or restart criteria and the question of resampling when
dealing with noisy fitness functions. A perhaps obvious application would be in algorithm
portfolios where algorithms could be combined based on the relative strength in different
epochs of the search. Less concrete but still useful would be a better understanding of the
balance of exploitation and exploration in heuristic search. Another fruitful goal would be to
address contradictory results between theory (in the sense of optimisation time) and practice,
hopefully leading to more meaningful theoretical results. It can also be hoped that more
useful notions of when one algorithm is better than another can be obtained.
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4.5 Theory and Practice and Co-Evolution
William B. Langdon (University College London, GB)
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Present: Christine Zarges, Manuel Schmitt, Rachael Morgan, Samadhi Nethmini Nallaperuma,
Frank Neumann (FN), Ken de Jong (KDJ), Thomas Jansen, Jon Shapiro, Lothar Thiele,
W B Langdon (WBL), Joshua D Knowles, Marcus Gallagher, Darrell Whitley (DW), Tom
Schaul, Francisco Chicano.

The session was held outside with Frank Neumann interested in how theory helps with
applications, particularly with respect to the Travelling Thief Problem TTP proposed at
CEC 2013 by Zbigniew Michalewicz. KDJ suggests Michalewicz should provide abstraction
of his real world problem that theory community can deal with.

FN described Travelling Thief Problem and KDJ suggested it be posed (and solved?) as
a coevolutionary problem in which Travelling Salesman Problem (TSP) be viewed as one
problem to be dealt with by one population and a cooperative population deal with second
part. The second part being treated as knapsack problem. The two populations would each
solve their part with the cooperation of members of the other population.

FN discussion of whether TTP is multi-objective problem or single objective. FN might
propose a variant of TTP as a competition at GECCO or CEC.

Thomas Jansen said exact theorems are available for 1+1 coevolutionary algorithms
There was a general discussion of how (if at all) two known problems can be combined in

such away that knowledge helps solution of new problems.
Jon Shapiro provided a counter example: two polynomial problems on graphs (one

uniform colouring the other majority? colouring) can be combined to create an NP hard
problem.

KDJ suggested what was needed was way of combining two NP hard problems to get a
polynomial problem.

KDJ said Elena Popovici’s work on coevolutionary landscapes suggests combining two
problems can lead to vary different behaviour depending upon details of parameter settings.
In coevolution very important to retain diversity. A good strategy is to retain memory of
trial solutions off to the side, ie, in addition to the evolving populations.

Lothar Thiele suggested coal supply sub-problems interact via shared variables.
Bill Langdon (WBL) suggested that by taking the coevolutionary route we were mandating

the two sub-problems be represented by sticking their two representations side by side. This
may work, it may be easy, but by doing so we rule out all other possibilities.

Joshua D Knowles suggested reconsidering Richard Watson’s HIFF problems. And also
the biological literature on symbiotic evolutions.

Marcus Gallagher asked whether solving first instance give you an instance of the second
problem. FN suggested if we fix a picking list (ie contents of the knapsack) it determines the
TSP to be solved.

WBL said the picking list changes to the TTP “velocity” can be thought of as increasing
the distance between cities in the TSP. Redrawing the TSP map. Darrell Whitley said
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also equivalent to needing more petrol between cities when have place heavy items in the
knapsack.

DW said if we look at OR community, first rate results are obtained only by domain
experts with say 20 years experience. These guys are not doing black-box optimisation, they
are using their domain knowledge.

KDJ mentioned Christine Mumford’s (http://users.cs.cf.ac.uk/C.L.Mumford/) work on
collecting time tabling examples for use as useful benchmarks.

KDJ wondered if a useful problem might be to consider a direct graph (DAG) where the
nodes were labelled with (randomly generated) problem instances. Solutions of each node’s
problem become inputs to the problems located at the node’s children nodes.

DW recounted problem with academic job shop scheduling (JSS) benchmarks. Industry
disregards these (and hence academic research) because they are tailored uniform randomly
generated, whereas industrial problems are not uniform. DW said these benchmarks are
worse than useless. If replaced by non-random problems the techniques that do best now do
the worst. Introduction of tailored benchmarks has harmed the field.

WBL described his experiments on getting genetic programming to create benchmarks
(IEEE TEC doi:10.1109/TEVC.2006.886448) in which a state of the art EA was defeated by
a no-frills particle swarm optimiser (PSO). Also GP generated a search problem where the
EA beat the PSO.

Lothar Thiele was interested in what theoretical analysis tells us.
KDJ recalled Toby Walsh’s keynote at FOGA 2013: http://www.sigevo.org/foga-2013/

keynote.html.
DW talked about “backbone” of solutions to SAT like problems and said TSP does not

have such a backbone. DW then briefly described his Walsh analysis of k-SAT and how if
leads in O(n) time to the problem’s backbone and hence rapidly to solutions. WBL this is
an instance of theory driving algorithm design (rather than the reverse).

Francisco Chicano spoke in favour of theory helping to design algorithms. DW says
applies to all pseudo Boolean problems (pretty big class).

4.6 Landscape Analysis
Adam Prugel-Bennett (University of Southampton, GB)
L. Darrell Whitley (Colorado State University, US)
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The session discussed new methods for characterising problem hardness. Over the last 20
years one focus of landscape analysis has centred on elementary landscapes. However, these
properties, such as the autocorrelation function, are identical for the same problem class for
easy instances and instances which are found in practice to be very hard to solve. Thus,
there is a need to find new measures. There is some promise in looking at the “superposition”
of elementary landscapes. This works from domains such as pseudo-Boolean functions, and
provides new statistic information about subregions of the search space. But there is still
a challenge to leverage this information in useful ways. For k-bounded pseudo-Boolean
functions, Walsh analysis still holds promise as a means of tracking the nonlinear interactions
between variables; understanding these nonlinear interactions is key to understanding how
to exploit improving moves on neighborhood structures.
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It is possible that landscapes are so varied that finding a single property which captures
problem hardness is a fruitless exercise, nevertheless there are many regularities found in
a large class of problems when viewed at a large scales. In particular they tend to show
similar distribution of local optima weakly correlated with a global optimum. Often there
were regularities which were not immediately obvious. One new line of possible research is
to use parameterised complexity and possibly some approximation to that idea to isolate the
true complexity. Another idea is to search for structure in the distribution of local optima
using principal component analysis to capture the major directions in which the local optima
vary. Early investigations show that there is a lot of regularity which is easily missed. This
raised the question of how these regularities could be exploited. In this regards we discussed
the great success of crossover on many classic optimisation problems and tried to understand
how this could be understood in terms of the landscape structure. We also discussed some
recent ideas on modelling problems in terms of Gaussian Process models with the same mean
fitness and two point correlation function as a real world problem.

4.7 General Drift Analysis with Tail Bounds
Jonathan E. Rowe (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Jonathan E. Rowe

The discussion centred around two open questions in drift analysis. Firstly, the recently
discovered flaw in the “negative drift” theorem. Secondly, whether or not tail bounds could
be derived in the general variable drift case.

For the first part, it was noted that a fix for the problem has been proposed – namely
disallowing large moves even away from the target. While this works (i.e. we get a proof), in
some ways it seems not necessarily helpful, since there may be situations where there are
large moves away from the target in which we would like to apply the theorem. A range of
potential alternative conditions were suggested, and it was left for further work to pursue
these for those interested.

For the second part, we looked at the problem of how tail bounds in the constant or
multiplicative drift scenario might be transformed with the change of variable given by the
variable drift theorem. It seemed that some progress could be made along these lines. Per
Kristian Lehre told the group that indeed this could be done and some new results were
shortly to be published on arxiv.

4.8 Parallel Evolutionary Algorithms
Dirk Sudholt (University of Sheffield, GB)
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The aim of this breakout session was to discuss the theory of parallel variants of evolutionary
algorithms. A previous talk by Dirk Sudholt (Section 3.20) about the analysis of parallel
EAs for combinatorial optimization served as a primer.

At first, Bill Langdon gave a short introduction to parallel hardware: from multiple CPU
cores with shared memory to parallel implementations on GPUs using CUDA and clusters

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Benjamin Doerr, Nikolaus Hansen, Jonathan L. Shapiro, and L. Darrell Whitley 27

of machines using MPI and message passing for communication. This led into a discussion
about what is the right performance measure regarding the communication costs between
parallel populations in island models – a question that arose during the previous talk. The
importance of this criterion varies strongly between architectures, but it was generally agreed
that the number of packets sent between islands was a sensible measure, and that typically
migrants sent out would fit into one packet. Kenneth De Jong pointed out that in some
architectures setting up the parallel system can be very costly.

In the remainder of the session the participants engaged in an open, inspiring, and
sometimes controversial discussion around various aspects in the design and theoretical
understanding of parallel EAs. Questions discussed include the following.

When do island models behave differently from panmictic populations? (Kenneth De
Jong made the point that with frequent migrations island models take on characteristics
of panmictic populations. Bill Langdon contributed a rule of thumb saying that there is
a threshold behaviour at sending one individual per generation on average. Dirk Sudholt
explained a theoretical result [2] on a problem where island models with migration outperform
panmictic populations as well as independent runs.)

What is the right way of comparing a panmictic EA (e.g. a (100+100)EA) against a
parallel EA with several subpopulations (e.g. 10 islands reach running a (10+10)EA)? (One
conclusion was to keep the number of function evaluations the same for both settings.)

During migration, should individuals be removed from their original population, or should
copies thereof be sent? How to choose migrants to be sent?

Should islands send migrants to all neighbouring islands probabilistically, or pick one
island chosen uniformly at random? (The following discussion showed that the analysis
method from [1] is applicable to various such settings.)

How can we deal with settings where nodes might fail and not respond, or have random
response times?

Can we derive fixed-budget results for parallel evolutionary algorithms to show that
parallelisation can lead to better solution quality?

How can diversity in parallel EAs be increased?
A final question was what theoretical results everyone would like to see in the future.

Frank Neumann’s answer was theoretical results that are closer to practice.
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