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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13372 “Integration
of Tools for Rigorous Software Construction and Analysis”. The 32 participants came from
10 countries: Australia, Austria, Brazil, Canada, Denmark, France, Germany, Great Britain,
Italy, Norway. The aim of the seminar was to bring together researchers and tool developers
from different state- and machine-based formal methods communities in order to share expertise
and promote the joint use of modelling tool technologies. Indeed, each of these communities
– from Abstract State Machines, to B, TLA, VDM, Z – has valuable tools and technologies
which would be beneficial also for the other formal approaches. Understanding and clarifying
their commonalities and differences is a key factor to achieve a possible integration or integrated
use of these related approaches for accomplishing, in a rigorous way, the various modelling and
analysis tasks to construct reliable high quality software systems.

The working group formula offered by the Dagstuhl seminar was a fruitful way to share know-
ledge of the various techniques and tools – such as simulators, animators, model checkers, theorem
proves – developed for the individual methods, and to constructively experiment the combined
use of different approaches by means of a series of well known case studies. Participants did not
arrive with well-prepared solutions, but all the modelling and integration work was directly done
in Dagstuhl in a very exciting and competitive atmosphere. Some related presentations were also
given on recent advances on methodologies and tools.

The seminar posed the basis for a series of future research collaborations between different,
and until now closed, formal method communities. An LNCS volume will be prepared from
the contributions of the participants to give the common vision of future methodology and tool
integration.
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1 Executive Summary

Uwe Glässer
Stefan Hallerstede
Michael Leuschel
Elvinia Riccobene
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Motivation
Dagstuhl Seminar 06191 had been a success in establishing the “ABZ” joint conference
for the different state-based modelling communities (e.g., ASM, B, VDM, Z, TLA+) with
venues in London (2008), Orford, CA (2010), Pisa (2012) and Toulouse (2014). It was
a first step toward bringing these communities closer together. However, the conference,
although being a place where the researchers meet, does not produce in itself a significant
number of collaborations across the communities. The organisers of this seminar consider
such collaborations vital in order to achieve a larger impact academically and industrially.

Aims of the seminar
The seminar aims to
1. Inspire exchange and joint use of formal modelling tool technologies
2. Establish long-term cross-community collaboration
3. Work towards a common vision on formal modelling
Points 2 and 3 are particularly important for future tool developments, a common methodical
foundation, and more economic use of the necessary and available resources.

Preparation
At first the organisers intended to give the participants of the seminar case studies in advance
that the participants could work on prior to the seminar to showcase their methods and tools.
However, a downside of this common organisational practice is that most attendees arrive
at the seminar with well-prepared, polished formal models and presentations. This would
have resulted in conference-style presentations, not leaving much room for cross-community
group work on problems with mixed-method approaches. Thus, no substantial gain above
and beyond what the “ABZ” conferences already accomplish would have been achieved.
Hence, the organisers decided to take the risk not to ask for advance preparation but have
all the work done collaboratively during the seminar. This was thought to create a more
open atmosphere and leave room for discussion. The organisers chose candidates for case
studies to be carried out during the seminar and asked the participants to explore solutions
with diverse methods in small, often mixed, groups formed dynamically based on interests.
A tentative schedule for the week was published prior to the seminar. It was adapted by
the organisers every night, taking into account the actual progress by the work groups and
feedback received in plenum discussions held every day in the late afternoon or evening.

Execution
On Sunday evening the organisers held a three hour meeting to prepare day 1 of the seminar.
It was decided that, in general, evenings should be left for the participants to socialise. The

13372

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


76 13372 – Integration of Tools for Rigorous Software Construction and Analysis

case study for day 1 needed to be well-chosen to engage the participants in the seminar. It
was required that

a single problem should be treated to minimise presentation overhead necessary for
explaining the model
the problem to be solved should not be trivial but solvable within 3 hours
the problem should not leave too much room for interpretation so that the models,
methods and tools used are more readily comparable
the problem to be solved should come with a sketch of a solution so that focus would be
on the modelling activity itself and not on finding the smartest solution.

The decision was made to use the problem of “Derivation of a termination detection algorithm
for distributed computations” (EWD840) by E. W. Dijkstra.

On day 1, all but one group succeeded in producing a formal model. (That group produced
their model on day 2 in the after-lunch session.) At the end of day 1, the organisers felt
that not enough discussion across community boundaries was taking place. This would have
to be addressed in the following days. The planning for day 2, payed specific attention to
this aspect. In the evening of day 1, a two-hour planning meeting among the organisers
was held. It was decided that a good way of getting the different communities involved in
discussions would be to reshuffle the groups of day 1 somewhat. To carry out a comparison
between the methods and tools, each group would have some members that produced the
original model and some “envoys” of a group that had modelled the problem in a different
notation. (This turned out to work well. By lunchtime on day 2, live discussions across
the community boundaries had effectively started.) On suggestion of the participants, an
originally planned plenum discussion on tool integration was carried out in three groups
dealing with methodology, abstract syntax and low-level integration. (The actual number
of groups was decided together with all participants in the beginning of the corresponding
session. Even though it may have appeared frustrating at times for some participants, the
organisers thought involving all participants in some of the decision making would also
improve everyone’s commitment.) The organisers also started incorporating talks. This was
also considered useful for breaking the routine of the seminar.

In the evening of day 2, a one hour meeting among the organisers was held to plan day 3.
It was thought that the participants could be involved closer by forming new groups that
should each address a problem using two different approaches and tools. The comparison
would then be possible while modelling. The modelling problem chosen was the FM’99 ATM
modelling challenge. Two more talks followed on day 3 and some planning for integration
meetings that should be held in smaller groups on day 4. The latter were considered to be
fruitful by many with a lot of common interests being announced. In the afternoon of day 3,
a shorter hike provided a welcome break, as the weather did not invite for larger excursions.

On day 3 in the evening, a 30 minute meeting of the organisers was held. The plan for
day 4 was mostly to tie up the open threads from the preceding days. A short wrap up of
the case studies followed by presentations giving a comparison between two methods. In the
evening, a first discussion of post-seminar work was held, discussing the Dagstuhl report and
a joint book on “comprehensive modelling and modelling tools”. In the evening of day 4, a
30 minute meeting by the organisers was held. It was decided that the morning of day 5
should be spent discussing the joint book. Uwe Glässer presented an alternative case for use
in the book to start a discussion about the writing approach that should be taken. (On day
5, it was decided to keep the ATM study but improve its description.)
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Outcomes and Outlook
The main outcomes of the seminar are (a) various new collaborations across community
boundaries to achieve a possible integrated use of different methods and tools, and (b) concrete
plans for a book on “comprehensive modelling”, a step towards a common vision of the
research field. An agreement has been reached with Springer Verlag to publish the post
proceedings of the seminar in the State-Of-The-Art series of Lecture Notes in Computer
Science. This should improve visibility of the effort started at the seminar.

The organisers seek to get funding, e.g., by way of a network of excellence, to continue
the integration work and keep up the momentum achieved during the seminar. The aim will
be to develop a common vision and a more coordinated research agenda where, in particular,
resources for tool development could be used more efficiently in future.
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3 Overview of Talks

3.1 Defining Communication for Abstract State Machines
Egon Börger (University of Pisa, IT)

License Creative Commons BY 3.0 Unported license
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Traditional ASMs come with the following classification of locations resp. functions (for
executing agents a) [1, Ch.2.2.3]:

controlled: readable and writable by a,
monitored: only readable (not writable) by a,
output: only writable (not readable) by a,
shared: readable and writable by a and some other agent(s) subject to some conflict
preventing protocol.

This classification turned out to be rather useful for numerous modelling endeavours, but
it comes at the price of a rather abstract (synchronous global) way to deal with communication
between agents: either via output (‘send’) and monitored (‘receive’) locations or via shared
(‘send/receive’) locations. In particular the environment steps are supposed to happen only
between two (discrete global) steps of an agent.

Our goal is to define a conservative extension of ASMs (to be compatible with previous
ASM modelling work) by a model of interaction between agents which a) is helpful for
practical modelling where communication between agents is an issue, b) is truly concurrent
(not global synchronous) and c) offers an abstract explicit Send/Receive mechanism between
ASMs with only private local locations. The definition should not be bound (but adaptable)
to any concrete message passing system or transmission protocol, reflect in a uniform way
synchronous and asynchronous communication and be implementable by an appropriate
plugin for CoreAsm.

We propose for further experimentation concrete definitions for abstract synchronous and
asynchronous versions of Send/Receive communication actions as update instructions, i.e.
instructions generating updates à la CoreAsm [2]. We base these definitions on an abstraction
of the input pool concept in S-BPM [3]. The details can be retrieved from the slides of the
talk (and hopefully later from a paper we intend to write).

References
1 E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level System

Design and Analysis. Springer, 2003.
2 R. Farahbod et al. The CoreASM Project. http://www.coreasm.org.
3 A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, and E. Börger. Subject-Oriented Busi-

ness Process Management. Springer Open Access Book, Heidelberg, 2012. www.springer.
com/978-3-642-32391-1.

3.2 Describing the ATM in a Domain Specific Language
Albert Fleischmann (Metasonic AG – Pfaffenhofen, DE)
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ASM and Event B are general methods for creating models and from practitioner’s point
of view not easy to understand. If requirements are defined by people belonging to the
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application domain then it is very helpful to use an appropriate specification language.
Therefore it seems useful to create domain specific languages based on formal languages like
event B or ASM. An example of such a language is S-BPM. S-BPM allows describing business
processes. The semantics of S-BPM is defined as an ASM. The worked out example shows a
S-BPM description of the automatic teller machine which is used as a use case. Behind that
model there is a corresponding ASM and therefore the model is executable which means
domain people can test a specification whether it meets their intentions.

3.3 Formal Modelling Problem: Distributed Termination Detection
Uwe Glässer (Simon Fraser University – B.C., CA)

License Creative Commons BY 3.0 Unported license
© Uwe Glässer

Aiming at a simple requirements description that is concise and yet meaningful as an
introductory illustrative example for comparing different state-oriented formalisation methods
along with methodical aspects, we have chosen the termination detection algorithm for
distributed computations proposed by Dijkstra et al. in 1983 [1]. This termination detection
algorithm runs on a computer network with N machines, assuming a common network
topology and reliable communication mechanisms. The original description derives the
algorithm in several steps, together with an invariant that demonstrates that the algorithm
works as expected. We presented the problem to the seminar participants in terms of an
informal description of the basic requirements for the algorithm. A question and answer
session provided further clarification. Additionally, a copy of the original paper by Dijkstra
et al. was made available.

Interesting challenges in formal modelling dynamic properties of this algorithm are the
inherently distributed nature of the problem and the quest for finding concise and yet
appropriate abstract representations of interfaces between the algorithm and its operational
environment. This environment refers to the distributed computations and the communication
network. After working for several hours in small groups, a number of different solutions
using diverse formalisation approaches emerged and were presented and discussed in a plenary
session at the end of Day 1. Despite the relative simplicity of the problem, the comparison
of the various solutions revealed interesting insights into strengths and weaknesses of the
underlying formal methods.

This exercise provided a good starting point for a broader discussion about comparing
and combining different methods and supporting tools for software and system analysis,
validation and verification in order to complement their strengths. A central question is
whether one should generally aim at tight integration methods based on common semantic
frameworks or rather limit to loose integration based on transformations between formal
models. While tight integration may be considered ideal, greatly simplifying the combined
use of several methods, the cost of integrating continuously evolving tools appears to be
prohibitive, severely limiting the practicability of any such approach. These open research
questions need more scientific discussion to be answered comprehensively.

References
1 E.W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren. Information Processing Letters

16: 217-219, 1983.
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3.4 System Modelling and Analysis using ASMETA
Paolo Arcaini (University of Bergamo, IT), Angelo Gargantini (University of Bergamo, IT),
and Elvinia Riccobene (University of Milan, IT)
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The ASMETA (ASM mETAmodeling) framework [1] is a set of tools around the Abstract
State Machines (ASMs). It supports different activities of the system development process,
from specification to analysis. ASMETA has been developed [2, 3] by exploiting concepts
and technologies of Model-Driven Engineering (MDE). The starting point of the development
has been the Abstract State Machine Metamodel (AsmM) [4], an abstract syntax description
of a language for ASMs. AsmetaL is a platform-independent concrete syntax, and AsmetaLc
a text-to-model compiler that parses AsmetaL models.

Simple model validation can be performed by simulating ASM models with the simulator
AsmetaS [5] that supports invariant checking, consistent updates checking for revealing
inconsistent updates, and random and interactive simulation. A more powerful validation
approach is scenario-based validation by the ASM validator AsmetaV [6] that permits to
express (through the Avalla modeling language) execution scenarios in an algorithmic way
as interaction sequences of actions committed by the user.

Model review is a validation technique aimed at determining if a model is of sufficient
quality; it allows to identify defects early in the system development, reducing the cost of
fixing them. The AsmetaMA tool [7] permits to perform automatic review of ASMs; it looks
for typical vulnerabilities and defects a developer can introduce during the modelling activity
using the ASMs.

Formal verification of ASM models is supported by the AsmetaSMV tool [8] that maps
AsmetaL models into specifications for the model checker NuSMV. It supports the declaration
of both Computation Tree Logic (CTL) and Linear Temporal Logic (LTL) formulas.

Runtime verification is a technique that allows checking whether a run of a system under
scrutiny satisfies or violates a given correctness property. CoMA (Conformance Monitoring
by Abstract State Machines) [9] is a specification-based approach (and a supporting tool)
for runtime monitoring of Java software: the conformance of a Java program is checked at
runtime with respect to its formal specification given in terms of ASMs.

Model-based testing aims to use models for software testing. One of its main applications
consists in test case generation where test suites are automatically generated from abstract
models of the system under test. The ATGT tool [10] is available for testing of ASM models;
it implements a set of adequacy criteria defined for the ASMs [11] to measure the coverage
achieved by a test set and determine whether sufficient testing has been performed.

References
1 The ASMETA website. http://asmeta.sourceforge.net/, 2013.
2 P. Arcaini, A. Gargantini, E. Riccobene, and P. Scandurra. A model-driven process for
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2011.

3 A. Gargantini, E. Riccobene, and P. Scandurra. Combining formal methods and mde
techniques for model-driven system design and analysis. International Journal on Advances
in Software, 3(1,2):1–18, 2010.

4 A. Gargantini, E. Riccobene, and P. Scandurra. Ten Reasons to Metamodel ASMs. In J.-R.
Abrial and U. Glässer, editors, Rigorous Methods for Software Construction and Analysis,
volume LNCS 5115, pages 33–49. Springer Verlag, 2009.
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3.5 Next-preserving Branching Bisimulation
Kirsten Winter (The University of Queensland, AU)
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Bisimulations are in general equivalence relations between transition systems which assure
that certain aspects of the behaviour of the systems are the same in a related pair. For
many applications it is not possible to maintain such an equivalence unless non-observable
(stuttering) behaviour is ignored. However, existing bisimulation relations which permit
the removal of non-observable behaviour are unable to preserve temporal logic formulas
referring to the next step operator. In this paper we propose a novel bisimulation relation,
called next-preserving branching bisimulation, which accomplishes this, maintaining the
validity of formulas with the next step, while still allowing non-observable behaviour to
be reduced. Based on van Glabbeek and Weijland’s notion of branching bisimulation with
explicit divergence, we define the novel relation for which we prove the preservation of full
CTL∗.

As an example for its application we show how this definition gives rise to an advanced
slicing procedure for temporal logics, a technique in which a system model is reduced to a
slice which can be used as a substitute in verification and debugging. The result is a novel
procedure for generating a slice that is next-preserving branching bisimilar to the original
model. Hence, we can assure that all temporal logic properties are preserved in the slice and
consequently the verification on the slice is sound.
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3.6 Tooling Support for Formal Specification Languages
Alexander Raschke (Universität Ulm, DE) and Marcel Dausend (Universität Ulm, DE)
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In our talk, we emphasised the creation of specifications. There are plenty of tools processing
formal specifications, e.g. theorem provers, model checkers, simulators, but most specification
languages are poorly supported during the modelling process itself. As opposed to this,
programming languages provide modern IDEs which significantly improve the performance
of creating, changing and understanding code. Especially features like e.g. autocompletion,
debugging facilities, and refactoring support can help inexperienced users to write their
requirements in a formal way. Also, the performance of expert users writing complex
specifications can be improved. The purpose of the specification determines the set of
possible supporting functions offered to the user. We identified at least three (possibly
overlapping) purposes: execution, safety and security analysis, and rapid prototyping. For
each purpose, different utilities that probably depend on each other can be offered. For any
specification language, typical functions for writing assistance (e.g. auto- completion, quick-
fixes), comfortable navigation (e.g. cross-reference, hypertext comments), static analysis
(e.g. dead code and unused parameter detection), and graphical representation of the overall
text structure are helpful. Users who execute specifications, can be supported by stepwise
execution with logging, saving and resuming of system states, and interactive visualisation of
executions. For safety and security analysis, existing tools for model checking and theorem
proving can be integrated into the development environment. Rapid prototyping based
on specifications can be supported by simple yet powerful GUI integration and execution
statistics for profiling. The talk concluded with a presentation of the CoreASM tool that
focuses on the execution of abstract state machines and already supports some of the
presented features for enhancing the creation of specifications. Finally, we suggest to step up
the common effort towards integrated tools for specification languages, especially taking into
account abstractions, refinement, and integration of verification tools, like model checkers or
theorem provers. The main goal of this effort should be to ease the overall process of formal
methods application.

4 Working Groups: Distributed Termination Detection (DTD)

4.1 An Executable CoreASM Model of the Termination Detection
Protocol

Marcel Dausend, Vincenzo Gervasi, Alexander Raschke, and Hamed Yaghoubi Shahir
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Based on a literal translation of the English text into an ASM specification [1], we developed
an executable specification in CoreASM. In order to achieve this goal, we have had to tackle
the problems mentioned in [1]. We do not repeat the complete ASM model in this abstract.
Instead, we focus on the details which have to be changed to make the ASM model executable
and invite the reader to read [1] in advance.

The execution of the original translated specification resulted after a few steps in an
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inconsistent update set (as predicted in [1], Sect. 3), because of a simultaneous update of the
current state of a machine to active and passive.

This happens, when a machine decides spontaneously to become passive although it
received a message resulting in an activation. This issue was fixed determining that a machine
is only allowed to become (spontaneously) passive if it does not receive a message in the
same step. The first and the fourth mentioned problems in [1] can be solved by a special
treatment of the master machine m0. The colour of the master machine does not influence
the colour of the token, but the master machine always sends a white token at the beginning
of a new probe. For this different behaviour it is necessary to adapt the rule PassToken
such that the colorT is possibly set to black, only if the current owner of the token is not
the master machine itself. Additionally, the changed translation of Rule0 considers that
PassToken is only called if the current machine is not the master. With these changes, it is
no more possible, that an inconsistent update set occurs for colorT.

The problem with the location colorM can be solved by introducing a new constraint in
Rule3+4 that the master can start a new probe by passing a token only if it is passive.

The inconsistent update set mentioned in problem two can be solved adding one new
condition that prohibits sending messages to oneself. This solution also exploits a special
property of asynchronous multi-agent ASMs, mentioned in [2, page 209]: “Let X be a finite
initial segment of a run of an async ASM. All linearizations of X yield runs with the same
final state.” This means, all linearizations of runs that would result in an inconsistent update
set are discarded. Thus, the execution of an async ASM will automatically avoid all cases,
where hasMessage(..) is set and cleared simultaneously from different agents. Therefore, it
is sufficient to avoid the case, when an inconsistent update set is generated within one agent.

In summary, four of the six mentioned problems could be solved by introducing some
conditions and a special treatment of the master machine. Problem 5 could be solved by
using queues, a background data structure which is provided by CoreASM, but this approach
was – as well as problem 6 – not further examined. The (stepwise) execution of the model
helped us identifying the problems and finding solutions for them.
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4.2 From English to ASM: On the process of deriving a formal
specification from a natural language one
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In this presentation, we traced the model synthesis of an ASM model, starting literally from
Dijkstra et al.’s text describing an algorithm for distributed protocol termination [2].

In particular, we showed how the description from Dijkstra’s paper, if taken at face value,
would lead to an inconsistent implementation. We reflect on how a person producing a
formal model might be tempted to “correct” the requirements, at times without realising it,
in the process of building the model. The net result in such cases is a model which passes
verification, but is not validated: thus proving that the wrong system is correct.
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4.2.1 Introduction

The first task set by the organisers of Dagstuhl Seminar 13372 on the participants was to
build a formal model of a distributed termination algorithm proposed in [2], where it is
described in rigorous, but plain English, and try to prove certain desirable properties, such
as deadlock-freeness, convergence, etc.

As a first contribution, we decided to focus on the translation process (from natural
language to a formal model, in this case using the Abstract State Machines formalism), rather
than on the resulting model. Our aim was to surface instances of reader fill-in, i.e. when
the specifier, rather than faithfully translating the author’s description to a more precise
language, tends to fill in missing details, or make assumptions that are not explicitly stated
in the source text, or force his or her particular interpretation on the author’s words.

Often, this phenomenon is desirable: in that a competent specifier, knowing that the
author’s intention must have been to specify a correct algorithm, is justified in establishing
any missing assumption or in choosing that particular interpretation which makes the formal
model of the system correct. However, in many other cases there is a huge risk associated to
this behaviour, in particular where the subject matter is not “pure” computer science (about
which a specifier will probably know much), but some other domain (about which a specifier
might well know little).

Our method has thus been to translate as faithfully as possible Dijkstra’s English to
Abstract State Machines rules, and then reflect on the shortcomings and problems with such
a model.

4.2.2 Building a model

In our presentation, selected excerpts from [2] are presented side-by-side their ASM coun-
terpart. We will consider the relevant bits of information in textual order, based on their
occurrence in the paper, and later use the composition features of ASMs to collate all the
rules in a single coherent model.

We start with the definition of machines and their state

We consider N machines, each of
which is either active or passive.

Machines ≡ {m0, ..., mN−1}
state : Machines→ {active, passive}

The next fragment tells us that message transmission is instantaneous: that is, as soon
as a machine sends a message (which we define as a macro), the message is available for the
recipient to process. Notice we need not formalise the restriction that only active machines
send messages (we could, for example, use an if clause) as we interpret this as a property that
has to be verified (namely, that a non-active machine will not attempt to SendMessage).
Only active machines send mes-
sages to other machines; mes-
sage transmission is considered
instantaneous.

SendMessage(dest) ≡
hasMessage(dest) := true

Machines switch from active to passive state and vice versa according to the following
two rules:
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After having received a message,
a machine is active. The receipt
of a message is the only mech-
anism that triggers for a passive
machine its transition to activity.

Machine ≡
. . .

if hasMessage(self)
state(self) := active

. . .

For each machine, the transition
from the active to the passive
state may occur “spontaneously”.

Machine ≡
. . .

choose spontaneous in {true, false} do
if state(self) = active and spontaneous

state(self) := passive

. . .

Again we have above a negative clause, that we can verify by inspecting our machine to
check that no other assignment state(.) := active occurs beyond the one above. Notice that
it is not clear from the text whether being passive is a prerequisite for reception of a message
(probably not); this might potentially be a property for verification. On the contrary, the
spontaneous transition from active to passive can only happen if a machine is in the active
state.

The text continues by making it explicit what a stable state is in such a system; we model
the same concept with a derived function stable.
From the above it follows that
the state in which all machines
are passive is stable.

stable ≡ forall m in machines, state(m) = passive

The main property for the correctness of the algorithm (namely: that it does indeed
detect termination) is stated as follows, and does not correspond to explicit ASM rules (but
rather, to a condition that has to be proved):
The purpose of the algorithm to
be designed is to enable one of
the machines, machine nr. 0 say,
to detect that this stable state
has been reached.

How a machine can “detect” termination will be defined
later.

The paper proceeds by stating initial conditions, both in terms of initial states of the
various machines, and of topology (of which, we consider only the token ring scheme that is
used afterwards in the paper).

It is furthermore required that
the detection algorithm can cope
with any distribution of the activ-
ity at the moment machine nr. 0
initiates the detection algorithm.

Init ≡
master = m0

forall m in Machines do
state(m) :=choose in {active, passive}

Two orderly configurations
present themselves [. . . ] the N
machines arranged in a ring.

pred, succ : Machines→Machines

pred(mi) ≡ m(i−1) mod N

succ(mi) ≡ m(i+1) mod N

Finally, the paper introduces the token that is passed, according to the ring topology,
from machine to machine – and which will be a determining factor in detecting termination.
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We assume the availability of
communication facilities such
that [. . . ]

PassToken ≡
hasT oken(self) := false

hasT oken(pred(self)) := true

The token being returned to ma-
chine nr. 0 will be an essen-
tial component of the justification
that all machines are passive.

Machine ≡
. . .

if (self = master) and tokenIndicatesF inished

done := true

We must thus prove, done =⇒ stable. Notice that stable could hold even if the master

(that is, machine nr. 0) hasn’t noticed it yet, so stable =⇒ done is not needed, nor
requested.

Finally, the paper describes various “rules”, that are in effect the algorithm itself. Rule 0
describes the circumstances under which the token is passed around.

Rule 0. When active, machine
nr. i+1 keeps the token; when
passive, it hands over the token
to machine nr. i

Rule0 ≡
if hasT oken(self)

if state(self) = active

skip
else

PassToken

Next to be taken into account is
the possibility of messages being
sent: [...]

Machine ≡
. . .

choose spontaneous in {true, false} do
if state(self) = active and spontaneous

choose dest in machines do
SendMessage(dest)

To this end each machine is postu-
lated to be either black or white.

colorM : Machines→ {black, white}

Notice that in the first fragment, the condition if hasToken(self) is implied by the use
of the verb “keeps” in the original (but it would be wise, in a real case, to inquire with the
author of the original text).

The next rule details how machines change their colour, and introduce the token’s colour:

Rule 1. A machine sending
a message to a recipient with
a number higher than its own
makes itself black.

SendMessage(dest) ≡
. . .

if (dest >M self) /* relaxed in Rule 1’ */
colorM (self) := black

To this end the token is postu-
lated to be either black or white.

colorT :→ {black, white}

Coloring of the token is the subject of rule 3, where the concept of a probe is also
introduced.
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Rule 2. When machine nr. i+1
propagates the probe, it hands
over a black token to machine nr.
i if it is black itself, whereas while
being white it leaves the colour
of the token unchanged.

PassToken ≡
. . .

if colorM (self) = black

colorT := black

[. . . ] unsuccessful probe: when
a black token is returned to ma-
chine nr. 0 or the token is re-
turned to a black machine nr. 0,
the conclusion of termination can-
not be drawn.

unsuccessful ≡
self = master ∧ hasT oken(self) ∧ (colorT = black ∨
colorM (self) = black)

We will model rules 3 and 4 together, as they jointly describe how a probe is initiated.
Rule 3. After the completion of
an unsuccessful probe, machine
nr. 0 initiates the next probe.
Rule 4. Machine nr. 0 initiates
the probe by making itself white
and sending a white token to ma-
chine nr. N-1

Rule3+4 ≡
if (self = master) and unsuccessful

colorM (self) := white

colorT := white

PassToken

The last rule details how passing the token changes the colour of a machine:
Rule 5. Upon transmission of
the token to machine nr. i, ma-
chine nr. i+1 becomes white.
(Note that its original colour may
have influenced the colour of the
token).

PassToken ≡
. . .

colorM (self) := white

The final specification was obtained by collating all the fragments we have described
above, and adding some additional initialisation to assign initial colours to the various
machines and the token, to create ASM agents and assign their programs so that each would
execute (in a truly distributed, concurrent fashion) the behaviour specified for the algorithm’s
machines. Space considerations prevent us from listing here the final specification, and its
CoreASM [4] executable equivalent (which, anyway, differs only in minor syntactic ways from
what we have shown above).

4.2.3 Problems with the model

We purposely ignored many problems in the direct translation, adhering thus to the position
advocated by Berry in [?] than an “ignorant” mindset facilitates exposing errors in translating
from requirements to formal models.

In fact, our directly translated model has exposed several problems and assumptions1,
that we can only briefly list here:

1. Rule2 and Rule3+4 might be executed in parallel, causing a conflicting update to colorT .
2. The paper does not explicitly specify when or if a message is consumed. We can

infer that it will be consumed upon the machine transitioning to active, by adding

1 Some of these have been revealed by direct inspection of the model, others have been exposed in
simulating the execution in CoreASM.
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hasMessage(self) = false after state(self) := active, but that might cause addi-
tional problems (namely, if in the same step a machine m transitions to active and
another machine m′ sends a message to m, we would have an inconsistent update to
hasMessage(m)).

3. The “spontaneous” transition from active to passive needs to be restricted by additional
conditions, not mentioned in the paper. Namely, if in a step a machine that is already
active receives a new message and spontaneously transitions to passive, we would have
again an inconsistent update.

4. Our macros SendMessage and PassToken may cause an inconsistent update to
colorM (m) if m “spontaneously” decides to send a message to any other machine m′ in
the same step in which it is passing the token to the next machine in the loop.

5. Multiple agents could send messages to the same machine in the same step (true concur-
rency). We do not know if multiple messages gets collapsed into a single activation, or
enqueued and then slowly consumed in subsequent steps, etc.

6. Messages in transit: while message passing is instantaneous, activation of machines
might be not. In other words, it may happen that a message is delivered to a machine
immediately (i.e.: in the next immediate step) after being sent, but the agent executing
that machine will react to the message with a certain delay. The algorithm is correct if
activation is also instantaneous, but while the text explicitly states that message delivery
is instantaneous, it does not specify that machines are infinitely fast2.

It will be apparent that many of these problematic issues are exposed by the fully parallel
and concurrent nature of distributed ASMs. Any purely sequential or interleaving model
would not reveal many of these problems, and would not be faithful to the kind of distributed
system imagined by the authors of the original text.

4.2.4 Conclusions

Our intention for the first session of the Seminar was to focus on using ASMs for validation
purposes, rather than for verification. Indeed, our attempt at direct translation of the
English text from [2] has exposed a number of issues which, if only it were still possible, we
would have liked to discuss with the author of our requirements, in a typical instance of the
virtuous circle where difficulties with the formal specification prompt further elicitation of
the requirements.

After the Seminar we became aware that an ASM model for the same algorithm, completed
with a formal verification, had already been published well over a decade ago [3]. In that
work, the authors stress mathematical verification, relying on an informal justification for
the validation part. We intend to compare and contrast our approach to validation with the
models built for verification in [3] as part of future work.
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We present the modelling and validation of the case study Derivation of a termination
detection algorithm for distributed computations by Dijkstra [1], through the ASMETA
framework [2]. We have implemented in AsmetaL [3], a concrete syntax for ASMs, the high-
level model of the case study presented in the abstract of Gervasi-Riccobene and reflecting
“literally” the requirements of the algorithm. By simulation and model review [7] of the
AsmetaL model, we have highlighted some ambiguities of the requirements. Model review,
in particular, has proved to be an affective push-button validation technique. The aim of
model review is to determine if a model is of sufficient quality; it allows to identify defects
early in the system development, reducing the cost of fixing them. The AsmetaMA tool [4]
permits to perform automatic review of ASMs; it looks for typical vulnerabilities and defects
a developer can introduce during the modelling activity using the ASMs.

The application of model review to the AsmetaL model has permitted to identify several
inconsistent updates that could rise during simulation. Such inconsistent updates derived
from simultaneous behaviours that were not properly guarded in the model.
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4.4 A VDM model of the Termination Detection Protocol
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It was tried to model the system in two ways. In a first attempt a functional specification
style was attempted. This did not produce a satisfactory result due to the non-determinism
in the protocol that lead to a too complex model. In a second attempt a state-based
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approach was followed which produced a satisfactory model, in particular, dealing well with
the non-determinism of the protocol.

4.5 B and Event-B Models for Distributed Termination
David Deharbe, Marc Frappier, Thierry Lecomte, Michael Leuschel, and Laurent Voisin
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In the talk we presented the results of our working group on developing B and Event-B
versions of Dijkstra’s distributed termination algorithm. In the working group, we first
decided upon the global system view and the events of the systems, and then gradually
defined the events and introduced variables as needed. Refinement and invariants were added
later. Then an Event-B model in Rodin and a classical B model were developed in parallel.
In the end, we managed to prove the invariants of the Event-B model using Rodin and the
invariants of the classical B model using Atelier-B. We used ProB to validate the absence of
deadlocks and various LTL properties. The proper functioning of the models was checked by
graphical animation using BMotionStudio. Various errors were uncovered by both model
checking and animation.

4.6 Modeling Dijkstra’s Termination Detection Algorithm in TLA+

Leo Freitas, Stefan Hallerstede, Dominik Hansen, Markus A. Kuppe, Fernando Mejia, Stephan
Merz, Hernán Vanzetto, and Kirsten Winter
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TLA+ [4] is a formal specification language that is mainly intended for distributed algorithms.
It is based on untyped Zermelo-Frankel set theory for modelling the data structures and
on the Temporal Logic of Actions for specifying the possible executions. Typically, TLA+

specifications define transition systems, represented by a state predicate defining the initial
states, a transition predicate delimiting the next-state relation, and fairness conditions.

On the first day of the seminar, we modelled Dijkstra’s termination detection algorithm [2]
in TLA+. We started by determining the representation of the system state by two variables
indicating the state of every node (its status can be active or passive, its colour can be
white or black) and of the token (its current position and its colour). The definitions of the
initial condition and of the next-state relation follow quite directly Dijkstra’s description.
Having specified the state we formalised the behaviour of the system in terms of a predicative
transition relation. We found that a discussion of the formal specification of the algorithm
helped us clarify our understanding of it and solve problems in a first version without even
resorting to formal verification. Interesting properties of the protocol were then specified in
temporal logic.

We also noted a distinction in modelling style: some group members prefer directly giving
definitions of algorithm operations (represented as TLA+ actions), whereas others first think
about state invariants. Arguably, the former is more dynamic and enables for testing the
model using automated tools, whereas the latter builds a solid understanding of the reasons
for the algorithm being correct. In practice, it is hard to clearly differentiate this question of
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style from a (perhaps unconscious) bias towards the functioning of the tools associated with
the method.

Tool support for TLA+ comes through the TLA+ Toolbox, an IDE for developing and
analysing TLA+ specifications. In particular, the model checker TLC confirmed that the
previously defined correctness properties hold for fixed finite instances of the algorithm. In
particular, all nodes are indeed inactive when the algorithm detects termination, and the
algorithm will eventually detect termination when all nodes are inactive.

The TLA+ proof system TLAPS [?] provides assistance for carrying out interactive proofs
and verifying properties of TLA+ specifications. TLA+ contains a hierarchical language for
writing proofs that TLAPS checks with the help of different back-end provers, including the
tableau prover Zenon, an encoding of TLA+ in the logical framework Isabelle, and a generic
interface to SMT solvers. We first used TLAPS to prove a simple invariant that expresses
type correctness. Dijkstra’s paper also states an invariant that should be satisfied by the
algorithm. To our surprise we were at first unable to prove that invariant, and in fact it
did not hold: we had developed a variant of Dijkstra’s algorithm. We were able to restate
the invariant and achieve a correctness proof of the algorithm with the help of the modified
invariant. Liveness of the algorithm cannot currently be proved with the help of TLAPS, as
it does not yet support proofs in temporal logic.

The TLA+ model of the algorithm can be translated to B [?], and this enables the
analysis and visualization of the model using ProB [5]. It would be beneficial to integrate
this translation and ProB in the TLA+ Toolbox.
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5 Working Groups: Automated Teller Machine (ATM)

5.1 The Integrated Use of Event-B and ASM via UML-B
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In this talk, we discussed the possibility to integrate the use of Event-B and ASMs (Abstract
State Machines) for model development and analysis. The two methods provide different
models of computation and methods of analysis, so they can be applied for different verification
and validation purposes. The “Cash-point Service” case study was used to show the feasibility
of the integrated use of the two formal methods. We discussed the validity of the UML-B
representation as a common basis for both target notations, and an UML-B model of the
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case study was developed in terms of class diagrams and hierarchical state machines. Then
parallel Event-B and ASM models were derived, even if not in a complete way, from the
UML-B model for different analysis purposes: correct refinement proofs could be achieved
by exploiting the Rodin tool support [1] for proving Event-B models; model simulation,
model review and model checking could be performed by using the ASMETA toolset [2] for
ASM models. The future intention is to automatise the derivation of ASM and Event-B
models from UML-B, and to ensure that the Event-B and ASM models are equivalent despite
differences in the semantics of the notations. We also want to experiment further advantages
coming from the integrated use of the analysis techniques of the two methods.
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5.2 Specification of the Cash Dispenser in Parallel using ASM and
VDM
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5.2.1 On the VDM model

The purpose of our first model is to make a quick analysis of the main functional requirements,
essentially ignoring concurrency issues. Thus, this model describes aspects of the central
resource and only one till. Once the basic functionality is better understood we start to
consider multiple tills. The model is described in VDM-SL as a short, flat specification. This
enables abstraction from design considerations and ensures maximum focus on high-level,
precise and systematic analysis.

We develop an abstract model in VDM-SL in order to clarify and analyse requirements.
This model is validated using a testing approach. The purpose of our models is to analyse the
main functional aspects of the system, including security aspects related to misuse of cards.
For example, the models treat the daily limit policy, the validation of PIN codes, limits on
PIN code attacks, and reports of illegal (e.g. stolen) cards. However, we abstract away from,
for example, the choice of concrete databases, communication protocols and encoding of PIN
codes.

5.2.2 Comparison

Some “correspondences” are easy to spot:

VDM ASM
state definition explicit implied/extracted
state components “controlled functions”
invariants tool dependant
pre written as if statements
post condition (not used in this case) only explicit
records via (selector) functions
not applicable; records are values record creation is bound to be a step
pattern match on records not available
other “sophisticated” data types sets/sequences
doesn’t have a global let “derived” functions

http://www.event-b.org/
http://asmeta.sourceforge.net/
http://creativecommons.org/licenses/by/3.0/
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ASM and VDM have very different concurrency principles

In VDM++
explicit synchronization
Using mutex and permission predicates
Closer to implementation language
Interleaving concurrency

In ASM
More high-level “magic”
Potential problem that implementer “forgets” synchronisation
Convenient abstraction for design
True concurrency

5.3 Specification of the Cash Dispenser in Parallel using Z and TLA+

Leo Freitas
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TLA+focuses on operations, Z on state. Concerning the use of TLA+actions and Z schemas
modelling styles are similar.

5.3.1 Differences

Outputs are handled differently. TLA+uses “state” variables. Z uses schema variables
marked with a “!”.
Z preconditions aren’t guards.
Z has complex types yet has untyped logic. TLA+is untyped.
Updates in Z via promotion, that is local and global. Updates in TLA+are global.
Z schema calculus
Verification methods: TLA+uses model checking and proof whereas Z uses proof only
(ZEves)

5.4 Specification of the Cash Dispenser in Parallel using ASM and
TLA+

Egon Börger, Ian J. Hayes, Fernando Mejia, Stephan Merz, Klaus-Dieter Schewe, and
Kirsten Winter

License Creative Commons BY 3.0 Unported license
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5.4.1 Desiderata

The produced models had to satisfy the following desiderata:
component-based modelling
replicate independent ATM components
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focus on observable ATM behaviour
obtain as similar models as possible
don’t aim for complete specification

5.4.2 Observations

We have made the following observations concerning the two modelling approaches:
non-interleaving, compositional specifications not supported by TLA+tools
behaviour specifications are very similar (control ASMs, state machines in TLA+)
properties stated outside the ASM language (but supported by ASM tools)
translation from ASM to TLA+should be straightforward

5.5 Specification of the Cash Dispenser in Parallel using ASM and B
Marcel Dausend, Marc Frappier, and Angelo Gargantini
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We have modelled the “Cash-point” Service proposed by the organisers in collaboration and
in parallel using both methods, Abstract State Machines (the tool Asmeta) and classical B
with Atelier B and ProB.

The goal has been twofold. One objective has been to create two models of the case
study as a basis for comparison. The subsequent objective was to compare the models’
notations and the process of developing those models. For this reason, we have decided to
proceed incrementally, keeping the names of variables, events and rules as close as possible
in the two models. In order to guarantee that both models capture the same behaviour, we
systematically performed simulation and comparison of the two models. In this way the
ASM people could learn some details of the syntax and semantics of B and vice-versa.

We were able to identify some shared characteristics between ASM and B constructs. B
sets and their properties are mapped to ASM (abstract) domains and their initial elements.
B states correspond to (dynamic controlled) functions and variables of ASMs. Constants can
be easily represented in both notations. Refinement has been used in the initialisation in B to
guide ProB for the simulation of the nondeterministic abstract initialisation. In ASMs it has
been done by function definition and state initialisation. ASM rules and B operations specify
how the state evolves. We could map every B operation to one ASM rule. Preconditions of
B operations are mapped in ASMs to guards of conditional rules, while B substitutions are
mapped to ASM function updates. Both formalisms allow explicit use of variables set by the
environment. These variables are normally user inputs during simulation. In B user inputs
are parameters in operations, while in ASM they are modelled as monitored functions. In B
all the operations are enabled (if their preconditions are true), while in ASM (at least in the
used tool) the user has to write a main rule that explicitly runs all the rules in parallel.
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6 Working Groups: Comparison of Methods and Tools

6.1 Summary of Meeting of Workgroup on Methodology
Albert Fleischmann, Uwe Glässer, Ian J. Hayes, Stefan Hallerstede, Dominik Hansen, Laurent
Voisin, and Kirsten Winter
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The discussion in the meeting proceeded in two stages. In the first stage we tried to delineate
our understanding of modelling and its purpose as it would be understood by the different
communities present at the seminar.

6.1.1 Stage 1

The purpose of modelling is System Engineering rather than (pure) Software Engineering.
This position has consequences on the scope of problems to which modelling is applied
ranging from (1) system requirements analysis to (2) system specification and verification to
(3) concrete systems and software exploitation.

The 3 problem domains have different techniques associate with them. Usually tools
do not focus on more than one domain. The focus on different domains may explain some
differences in notation. (But often notations seem to evolve haphazard driven by the problems
they were first applied to.)

Concerning (1) common techniques are
(partial) model building
traceability to requirements, needs and objectives
animation
simulation
integrity analysis (details vary)

Concerning (2) common techniques are
safety/liveness analysis
traceability to requirements and statements in the formal model
model checking, theorem proving, refinement, abstraction
simulation

Concerning (3) common techniques are
(program) execution
model-based texting
runtime verification
traceability to requirements and statements in the formal model

Given the variation in the application domains of the different methods and tools it does
not appear reasonable to attempt to unify them. But it would be useful to find ways to
achieve tight collaboration in order to address problems that span several of the domains.

6.1.2 Stage 2

In the second stage we formulated some recommendations that could help achieving such
collaborations.
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6.1.2.1 Recommendation A

“Compatible” specification notation dialects shall be used that permit switching between
methods and tools during development. The meaning of “compatible” is not well-understood.
A possible meaning could be “only requires simple translation”. This would coincide with the
finding of the working group on abstract syntax. The different methods should co-operate in
particular with respect to important modelling concepts such as concurrency and distribution.

6.1.2.2 Recommendation B

Transfer of concepts between methods should be encouraged, e.g.,
modules from ASM to Event-B
refinement from Event-B to ASM

6.1.2.3 Recommendation C

Challenges could be put forward resulting from the transfer, e.g.,
use ASM for composing Event-B modules
use Event-B to prove certain ASM refinements

6.2 Comparison of Methods
Peter Gorm Larsen, Andreas Prinz, Colin F. Snook, and Hamed Yaghoubi Shahir
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In the discussion, we agreed that all the methods are state-based and have a semantically
similar idea of state. The same is true for the initial state. Moreover, all the methods use some
kind of state transitions. There is not much alignment related to the notation of concepts
and the (detailed) semantics of concepts. This leads to problems with different semantics for
visually the same concepts and the same semantics for visually different concepts. The main
difference is often the development process used, and the example we had showed this clearly.
In our group, we worked with functional formulation first, which did not work out too well.
Afterwards, a more relational approach was followed making our solution more similar to the
other solutions.

6.3 Defining ASMs as Event-B Machines
Egon Börger and Laurent Voisin

License Creative Commons BY 3.0 Unported license
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6.3.1 Abstract State Machines

A (sequential) ASM M is a set of rules of form

if cond then Updates

where cond is a first-order (typically set theory) formula and Updates is a set of function
updates f(t1, . . . , tn) := t with parameterised locations (array variables) (f, (val1, . . . , valn))
and terms t1, . . . , tn, t. It is allowed to choose among or to generalise forall elements of a
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set in a rule. Also other usual notations like if then else, let, etc. and calling (recursive)
sub-machines are allowed.

The states of an ASM are (Tarski) structures with static and dynamic part. In each step
M executes all its rules, performing simultaneously all the updates of each of its rules whose
cond in this state is true.

Input is taken as part of the initialisation of a machine M and after each machine step by
a step of the environment which updates the so-called monitored locations of the machine
state. For shared locations a protocol is required to avoid conflicting updates.

An (async) ASM is a set of agents each equipped with a sequential ASM.

6.3.2 Event-B Machines

Except for notational differences Event-B machines have the same states as ASMs, to be
precise structures of a given signature with a static part (called ‘context’) of sets s (‘universes’),
constants c, properties(c, s) (‘axioms’ and ‘theorems’ to be proved within the context) and a
dynamic part of (pairwise distinct) variables v, invariants (predicates the variables must be
proved to satisfy in every state that is reachable from an initial state) and the environment
which is part of the model (closed system).

Inputting is done by non-determinacy. The initialisation is described via a special event
with guard true.

Events are without loss of generality instances of the following general form (stated in
ASM notation):

if forsome p P (p, v) then
choose p with P (p, v) in action(p, v)

where
action(p, v) = choose v′ with Q(v, v′, p)

v := v′ // NB.v, v′ generally are vectors

A step of an Event-B machine with a finite number of events eventi (1 ≤ i ≤ n) can be
described in ASM terms as follows:

choose i with guardi in eventi // interleaving view
where

eventi = if guardi then rulei

A constraint requires that no parallel update is allowed for the same variable.

6.3.3 Sequential ASMs encoded as Event-B Machines

To simplify the exposition of the coding idea assume that each choose construct is replaced
by an explicit selection function.

A brute force transformation of (sequential) ASMs rewrites the set of parallel rules in
such a way that all truth-functional combinations of rule conditions are listed explicitly and
guard the respective function updates. This comes up to rewrite the given ASM into a flat
ASM with only rules of form if cond then Updates where all guards are pairwise disjoint.
As a consequence, one can interpret the resulting ASM semantically as an Event-B machine
where in each state only one ‘event’ can be selected. All non-determinism is hidden in the
selection functions.
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replace

if cond1 then Updates1
if cond2 then Updates2

by the equivalent machine

if cond1 and cond2 then
Updates1
Updates2

if cond1 and not cond2 then Updates1
if cond2 and not cond1 then Updates2

A more economical encoding goes as follows:

if c1 then f(s1) := t1
if c2 then f(s2) := t2

is encoded by

when c1 or c2 then
f := f ⊕
{(a, v) | c1 and (a, v) = (s1, t1)

or c2 and (a, v) = (s2, t2)}

To prove: f is a (partial) function.
Similarly the forall construct can be encoded via a set update.
We still have to clarify whether and how to deal with recursive sub-machines and with

the undef concept in ASMs.

6.3.4 Where the differences are

The main difference is in the refinement notions (see [1] and [2, Ch.3.2.1]). The Event-B
concept is tailored to provide as much as possible interaction-free refinement correctness
verifications. The ASM refinement concept is driven first of all by modelling concerns
to describe design ideas in an accurate and as smooth as possible manner, delegating
mathematical verification (where considered to be needed) to a second step.

References
1 J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University
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6.4 Closing the Gap between Business Process Models and their
Implementation: Towards Certified BPMs

Albert Fleischmann and Egon Börger
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The gap between on the one side the users’ understanding of Business Process Models
(BPMs), even if described using standardised languages like BPMN, and on the other side
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the run behaviour of model implementations is still with us. We explain how Abstract State
Machines (ASMs), tailored as a domain specific (to a large extent diagrammatic) modelling
language, allow the BP experts to design BPMs with the help of a graphical editor in such a
way that the underlying ASM models constitute a reliable precise contract – a contract which
guarantees to the BP domain experts that the application-domain focussed understanding of
the BPMs they design is also a correct understanding of the code behaviour provided by the
implementation of the models by software experts. This opens the way to the development
of certifiably correct BPMs and their implementations. We instantiate the claim by ASM
models for the behavioural meaning of the graphical notations used in Metasonic’s industrial
BPM tool suite.

6.5 Comparison of Methods and Tools: the Report of the ASM Group
Elvinia Riccobene, Paolo Arcaini, Marcel Dausend, Albert Fleischmann, Angelo Gargantini,
Vincenzo Gervasi, Uwe Glässer, Alexander Raschke, Gerhard Schellhorn, Klaus-Dieter
Schewe, Qing Wang, and Hamed Yaghoubi Shahir
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This report presents the results of the ASM group discussion, held at the second day of the
seminar, regarding the comparison of methods and tools on specific questions and reflection
points.

The following questions were arguments of the discussion:
Why were there variations of the models? Why did you go for one model rather than
another? Which modelling process did you use?
Compare with other models you have seen: Commonalities and Differences.
List weak points of your method, tools, models.
How far is the model style pre-determined by the tool or adapted to the tool?
Wish list for new features, tools, etc.; especially those you have seen from other groups.
Brainstorm: Ideas and suggestions for Integrating tools and methods; make more concrete
suggestions, how they would profit, refer to other tools and methods.

For the Dijkstra et al.’s case study, three ASM models were presented. They all share
the common operational semantics of the ASMs, but present some variations due to the
different goals which they were developed for. (i) For requirement elicitation, an ASM model
was developed simply translating the text of the Dijkstra description in terms of transition
rules capturing the behaviour of the system at a very high level of abstraction. This model
is not “correct” and “complete”. Rather, it tries on purpose to expose errors, ambiguities, or
incompleteness in the original text. Correctness and completeness can be reached through
an iterative process reasoning on requirements. This high level model capturing the informal
requirements is usually called “ground model”. The ASM ground model of the Dijkstra et al.’s
case study results into an asynchronous multi-agent ASM. (ii) For model validation, two ASM
models were developed and encoded in the languages of the two simulation engines available
for ASMs: the CoreASM and the AsmetaS simulator of the ASMETA framework. These two
models can be obtained from the ground model by refinement into the tool languages. They
present distributed solutions with the same transition rules, they almost use the same syntax
(untyped for CoreASM, typed for Asmeta), but they present different ways to refine rules in
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order to make the model executable. (iii) For verification purposes, a specification in KIV
was developed using a global model to facilitate the proof of invariants.

Regarding the modelling process usually followed when developing an ASM model, the
user starts from the textual description of the informal requirements and tries to develop a
Ground Model capturing the intended behaviour of the algorithm or system at a high level
of abstraction. Then (s)he refines predicates and macros and makes signature precise and
complete. The model can be then validated by the use of simulation engines, and other tools,
as the model advisor, can be used to discover inconsistencies, redundancy, etc., helping to
fix problems. More complex properties can be later proved by using theorem provers (KIV,
PVS) or model checkers (AsmetaSMV, CoreASM2SMV).

Discussing commonalities and differences of the ASM method with respect to the other
formal methods presented at the seminar, the group agreed on the following commonalities:
state-based nature of the approach, operational models suitable for animation and verification;
and differences (commonly intended as advantages of the method): ability to formalise ALL
behaviour requirements, and requirements traceability. Both these qualities, not completely
present in the other methods, are fundamental to communicate with stakeholders. Among
the differences, the necessity was recognised to improve the way to perform model animation
that is not supported by the ASM tools at the moment.

As other weak aspects of the ASM method and its supporting tools, the group agreed
on (i) the absence of a way to express temporal properties (only expressions in CTL/LTL
with finite sets are supported); (ii) the lack of integration between different tools for model
simulation (CoreASM and Asmeta); (iii) the different ways of data encoding; (iv) the lack of
interoperability among encoding into different verification languages (KIV, Promela/SPIN,
SMV, PVS).

Regarding the question if the model style is pre-determined by the tool or adapted to the
tool, the group agreed that modelling style is not constrained by the tools, but a certain
adaptation is required to move from the ground model to an executable model, and more
effort is required to use verification tools.

On the wish list for new features, tools, and other issues seen from other groups, the
ASM community agreed on having (i) a higher level notation to facilitate tool integration,
and (ii) a way to express temporal features.

On the last question regarding ideas and suggestions for integrating tools and methods,
all people agreed that is more reasonable and feasible trying to achieve an integrated use of
different methods and tools, instead of going towards tool integration.

7 Post-Seminar Collaboration Activities

In the sessions on day 3 and day 4 many concrete collaborations and integration efforts have
been started. In particular,

Visualisation & Integration: Jens, Peter, Vincenzo
UML-B to ASM: Elvinia, Paolo, Colin
Constraints Solver Integration into VDM: Jens, Peter
Pro-B Integration into TLA Toolbox and TLC Tool: Dominik, Stephan, Hernan
CZT to Pro-B (Pro-Z + TLA+): Leo
Proof GUI: Laurent, Peter
Destecs Integration: Peter, Jens
Comparison of Model Checking between ASM and B: Paolo, Michael
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Comparison of Model Development between ASM and B: Marc, Angelo
Common Language for ASM: Marcel, Alex, Vincenzo, Elvinia, Angelo, Andreas
Case Study: Uwe, Hamed
Modelling and Validation of Distributed Situation Analysis (ASM and Event-B): Uwe,
Narek, Hamed
ASM to Event-B Translation: Laurent, Egon

8 Plenum Discussions

The organisers had planned several plenary discussions in a first draft. They had been
replaced by plenum discussions by the time the seminar started. The main reason for this
was to avoid turning too many participants into “spectators”. We believe, this worked well
for a small seminar. Plenum discussions may be less effective in large seminars.

In this seminar a plenum discussion was held each time after the groups reunited to present
their results. If the time planned for the discussion was not sufficient, the corresponding slot
was extended and the programme adapted.

9 Final Programme

Day 1
09:00–09:30 Opening
09:30–10:30 Short presentation of participants (3 slides per presentations, all presenta-

tions in 1 hour!)
10:30–12:00 Modelling case study in groups
12:15–13:30 Lunch
13:30–15:30 Modelling case study in groups
15:30–16:00 Coffee break
16:00–18:00 Presentation of the models to illustrate the different methods and tools
Day 2
09:00–10:30 Comparison of methods and tools based on the models of day 1
11:00–12:00 Presentation of results of comparison
12:15–13:30 Lunch
13:30–15:30 Discussion continued (45 min) & 3 working groups on integration (∼ 60

min): Methodology, Abstract Syntax, Low-level integration
15:30–16:00 Coffee break
16:00–17:30 Discussion of working group results
17:30–18:00 Talk: Egon Börger: A proposal for including communication into Abstract

State Machines
Day 3
09:00–10:30 Modelling in two formalisms: The FM’99 ATM modelling challenge
11:00–11:45 Talks: Paolo Arcaini & Kirsten Winter
11:45–12:15 Planning of integration sessions for next day
12:15–13:30 Lunch
13:30–17:30 Excursion: A rainy walk
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Day 4
09:00–10:00 Wrap up ATM case study of day 3
10:00–12:00 Presentation of solutions of the ATM case study
12:00–12:15 ASM to B: transformation (Egon Börger)
12:15–13:30 Lunch
13:30–15:00 Research and tool talks on various topics (by Kirsten Winter, Laurent

Voisin, Marcel Dausend, Leo Freitas)
15:30–17:30 Technical interchange meetings and discussion about architectures between

individual groups
17:30–18:00 Talk: Flash File System Verification (Gerhard Schellhorn)
19:30–21:00 Plenum discussion on joint book and other project outcomes (report for

Seminar 13372)
Day 5
9:00–11:00 Closing: Conclusions, Proceedings, Book

The rest of the day was left unplanned because many participants left early due to travel
arrangements.
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