
Report from Dagstuhl Seminar 13411

Deduction and Arithmetic
Edited by
Nikolaj Bjørner1, Reiner Hähnle2, Tobias Nipkow3, and
Christoph Weidenbach4

1 Microsoft Research, Redmond, US, nbjorner@microsoft.com
2 Technische Universität Darmstadt, DE, haehnle@cs.tu-darmstadt.de
3 Technische Universität München, DE, nipkow@in.tum.de
4 Max-Planck-Institut für Informatik, Saarbrücken, DE, weidenbach@mpii.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13411 “Deduction and
Arithmetic”. The aim of this seminar was to bring together researchers working in deduction and
fields related to arithmetic constraint solving. Current research in deduction can be categorized in
three main strands: SMT solvers, automated first-order provers, and interactive provers. Although
dealing with arithmetic has been in focus of all three for some years, there is still need of much
better support of arithmetic. Reasong about arithmetic will stay at the center of attention in all
three main approaches to automated deduction during the coming five to ten years. The seminar
was an important event for the subcommunities involved that made it possible to communicate
with each other so as to avoid duplicate effort and to exploit synergies. It succeeded also in
identifying a number of important trends and open problems.

Seminar 6.–11. October, 2013 – www.dagstuhl.de/13411
1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and

Verifying and Reasoning about Programs, F.4.1 Mathematical Logic, G.1.2 Approximation,
G.1.3 Numerical Linear Algebra, G.1.6 Optimization, I.2.3 Deduction and Theorem Proving

Keywords and phrases Automated Deduction, Program Verification, Arithmetic Constraint Solv-
ing

Digital Object Identifier 10.4230/DagRep.3.10.1
Edited in cooperation with Jasmin Christian Blanchette

1 Executive Summary

Nikolaj Bjørner
Reiner Hähnle
Tobias Nipkow
Christoph Weidenbach

License Creative Commons BY 3.0 Unported license
© Nikolaj Bjørner, Reiner Hähnle, Tobias Nipkow, and Christoph Weidenbach

Arithmetic plays a fundamental role in deduction. Logical constraints over arithmetical
properties occur frequently in classical theorems in mathematics, as well as in program
analysis and verification. The first automatic theorem prover was an implementation of
Presburger Arithmetic in 1954. With the availability of powerful predicate calculus proof
procedures some years later, arithmetic would be relegated to the sidelines. Interest in
arithmetic revived in the 1980s with the advent of powerful interactive theorem provers
that needed and supported arithmetic for their applications. The need for efficient computer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Deduction and Arithmetic, Dagstuhl Reports, Vol. 3, Issue 10, pp. 1–24
Editors: Nikolaj Bjørner, Reiner Hähnle, Tobias Nipkow, and Christoph Weidenbach

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13411
http://dx.doi.org/10.4230/DagRep.3.10.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 13411 – Deduction and Arithmetic

aided deduction with support for arithmetic in the area of program analysis and verification
recently gave birth to a new technology, so called SMT solvers.

Thus we have three strands of automated deduction: SMT solvers, automated first-order
provers, and interactive provers in need of (more) arithmetic.

SMT SMT (satisfiability modulo theories) solvers distinguish themselves by integrating
built-in support for a combination of theories, including prominently the theory of arith-
metic. Most often handling arithmetic formulas in isolation is not sufficient. Applications
typically use a non-disjoint combination of arithmetic and other theory reasoning. SMT
solvers nowadays handle quantifier-free arithmetic well, but are not directly equipped to
solve arithmetical formulas with quantifiers. Recent progress on building in quantifier-
elimination procedures for linear and non-linear arithmetic have made practical integration
of such richer arithmetic deduction viable.

ATP Research in first-order logic theorem proving used to concentrate on efficient calculi in
general and the integration of equational theories in particular. It is obvious that further
integration of “richer” arithmetic theories into first-order logic should be done by rather
a combination approach than an integration approach. One major challenge of combining
first-order logic calculi with arithmetic procedures is that of compactness/completeness and
termination. While Boolean combinations of ground atoms, as they are considered by SMT
solvers typically do not cause trouble with respect to those challenges, combining first-order
clauses with an arithmetic theory can never result in a compact/complete/terminating
calculus, in general. The actual combination typically requires the solution of purely
arithmetic problems in order to establish valid inferences and simplifications. These
problems are of a specific nature in that the form of the arithmetic formulas and the way
they need to be tested require specific variants of the known arithmetic procedures.

ITP Interactive theorem provers initially came with built-in decision procedures for quantifier-
free linear arithmetic. More foundational systems then developed new techniques to
implement these decision procedures by reducing them to pure logic, trading efficiency for
guaranteed correctness. Aspects of arithmetic reasoning are present in deductive software
verification systems: interactive systems combine a number of automatic arithmetic
reasoning methods and control them with heuristics that are specific for verification. A
challenging application of interactive proof and arithmetic is the Flyspeck project, an
effort to formalize Hales’s proof of the Kepler conjecture in an interactive theorem prover.

The Dagstuhl seminar was a timely event that brought together experts in the above
subareas of deduction, and in reasoning about arithmetic, to exchange experiences and
insights. The research questions pursued and answered included:

Which arithmetic problems are best solved with which approach?
How to handle very complex numeric representations such as the IEEE floating-point
standard with a high degree of automation?
Arithmetic in combination with other theories results easily in languages with a very
complex decision problem—how can a high degree of automation be obtained nevertheless?
How can SMT-based reasoning be combined with model-based reasoning?
What is the best way to incorporate arithmetic simplification available in computer
algebra systems into deductive frameworks?
How can the specific structure of arithmetic problems generated by deduction systems be
exploited?

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 3

In addition to the technical contributions, the seminar participants attempted in an open
discussion session to identify the major trends and open questions around Deduction and
Arithmetic. The outcome of this discussion is summarized in section 3.

13411

4 13411 – Deduction and Arithmetic

2 Table of Contents

Executive Summary
Nikolaj Bjørner, Reiner Hähnle, Tobias Nipkow, and Christoph Weidenbach 1

Trends and Open Questions in Deduction and Arithmetic
All seminar participants . 6

Overview of Talks . 6

Approximate decidability and verification of hybrid systems
Jeremy Avigad . 6

Hierarchic superposition with weak abstraction and the Beagle theorem prover
Peter Baumgartner . 7

Basic Hilbert basis
Nikolaj Bjørner . 8

Arithmetic in Sledgehammer
Jasmin Christian Blanchette . 8

Sound compilation of reals
Eva Darulova . 8

Making invariants inductive
Stephan Falke . 9

The poor man’s way to integrate non-linear real arithmetic reasoning capabilities
within SMT
Pascal Fontaine . 9

Deduction and arithmetic – a functional marriage: iSAT, odeSAT, and related
procedures
Martin Fränzle . 9

Cooperation for better termination proving
Carsten Fuhs . 10

Alternating runtime and size complexity analysis of integer programs
Jürgen Giesl . 10

Simple interpolation for floating-point arithmetic with abstract CDCL
Alberto Griggio . 11

Model-constructing satisfiability calculus
Dejan Jovanović . 11

Practical exploitation of mixed integer programming solvers by SMT solvers
Tim A. King . 11

Solving linear arithmetic by bound propagation
Konstantin Korovin . 12

An SMT-based approach to memory access optimization problem
Marek Košta . 12

Acceleration for Petri nets
Jérôme Leroux . 13

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 5

Automated (formal) proofs of summation identities
Assia Mahboubi . 13

From ordinal interpretations to elementary interpretations
Aart Middeldorp . 14

Death by a thousand cuts (worst-case execution time by bounded model checking)
David Monniaux . 14

Non-numerical permissions for concurrent reasoning
Wojciech Mostowski . 15

Quantifier elimination for dense and discrete linear orders
Tobias Nipkow . 15

Exact global optimization on demand
Grant Olney Passmore . 16

Automating separation logic using SMT
Ruzica Piskac . 16

Logic of hybrid games
André Platzer . 17

Proving unsatisfiability in non-linear arithmetic by duality
Enric Rodríguez-Carbonell . 17

Exploring interpolants
Philipp Rümmer . 18

Some challenges in applied software bounded model checking
Carsten Sinz . 18

Hierarchical reasoning and model generation in the verification of hybrid systems
Viorica Sofronie-Stokkermans . 18

Certified abstract completion
Christian Sternagel . 19

Partial certification for termination proofs and more
Rene Thiemann . 19

Integrating SAT, QBF and SMT solvers with interactive theorem provers
Tjark Weber . 20

Program . 21

Participants . 24

13411

6 13411 – Deduction and Arithmetic

3 Trends and Open Questions in Deduction and Arithmetic

All seminar participants; notes taken by Tjark Weber, edited and completed by Reiner Hähnle

License Creative Commons BY 3.0 Unported license
© All seminar participants

A major trend is the growing interest in and partial support of non-linear arithmetic, including
not only multiplication, but even transcendental functions, and ranging over floating-point
data types.

Support for non-linear arithmetic and floating-point data types is particularly important
for verification of embedded systems and hybrid systems.

Current tool support for non-linear arithmetic and floating-point data types is immature
for the time being, but the community expects considerable progress and activity in this
area.

At the same time, the problems around linear arithmetic with quantifiers are far from
being solved satisfactorily either and work on this front continues as well.

Model-based and model-guided approaches are prominent and are perceived as crucial
for progress, in particular, to help tackling the partially open problem of how to handle
quantifiers.

Formal specification of code that uses floating-point types is essentially an unsolved
problem. At the moment, generic precision assertions using intervals or deltas are employed,
but how to come up with functional specifications is unclear. It was widely agreed that is
in general infeasible to write specifications completely by hand, they should be generated
at least semi-automatically. The specification problem is compounded by the lack the of
semantic abstractions that would make specifications interchangeable.

It was agreed that currently there is a certification gap in the tool chain when SMT
solvers are involved due to the lack of a common proof format for them. It is desirable to
continue work on a common proof framework for SMT solvers, such as the Logical Framework
with Side Conditions (LFSC).

4 Overview of Talks

4.1 Approximate decidability and verification of hybrid systems
Jeremy Avigad (Carnegie Mellon University, US)

License Creative Commons BY 3.0 Unported license
© Jeremy Avigad

Joint work of Sicun Gao; Avigad, Jeremy; Clarke, Edmund
Main reference S. Gao, J. Avigad, E.M. Clarke, “Delta-complete decision procedures for satisfiability over the

reals,” in Proc. of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS’12),
pp. 305–314, IEEE, 2012.

URL http://dx.doi.org/10.1109/LICS.2012.41

Control systems that combine analog and discrete components are now ubiquitous. Methods
of verifying discrete components are by now well understood, but the task of modeling
an analog component, whose evolution over time is often described as the solution to a
system of differential equations, poses new challenges. In particular, issues of decidability and
complexity limit the reach of what can be done purely symbolically. I will discuss a general
framework, based on the methods of computable analysis, for reasoning about specifications

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/LICS.2012.41
http://dx.doi.org/10.1109/LICS.2012.41
http://dx.doi.org/10.1109/LICS.2012.41
http://dx.doi.org/10.1109/LICS.2012.41

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 7

using numerical approximations. I will discuss the notion of a “δ-decision procedure”, which
can be used to evaluate a verification claim. A positive answer provides a guarantee that the
system description meets its specification. A negative answer indicates that either the system
is unsafe, or that a small perturbation would render it so. I will show that the set of first-order
bounded sentences involving computable functions on the real numbers is delta-decidable. I
will also briefly discuss complexity considerations, and an implementation, “dreal”, due to
Gao, Soonho Kong, and Clarke.

References
1 Sicun Gao, Jeremy Avigad, and Edmund Clarke.,“Delta-decidability over the reals.” In Logic

in Computer Science (LICS), 305–314, 2012.
2 Sicun Gao, Jeremy Avigad, and Edmund Clarke, “Delta-complete decision procedures for

satisfiability over the reals.” In Bernard Gramlich et al., eds., International Joint Conference
on Automated Reasoning (IJCAR), 286–300, 2012.

3 Sicun Gao, Soonho Kong, and Edmund Clarke, “dReal: An SMT Solver for Nonlinear
Theories of Reals.” In International Conference on Automated Deduction (CADE), 2013.

4.2 Hierarchic superposition with weak abstraction and the Beagle
theorem prover

Peter Baumgartner (NICTA, Canberra, AU)

License Creative Commons BY 3.0 Unported license
© Peter Baumgartner

Joint work of Baumgartner, Peter; Waldmann, Uwe
Main reference P. Baumgartner, U. Waldmann, “Hierarchic superposition with weak abstraction,” in Proc. of the

24th Int’l Conf. on Automated Deduction (CADE’13), LNCS, Vol. 7898, pp. 39–57, Springer, 2013.
URL http://dx.doi.org/10.1007/978-3-642-38574-2_3

Many applications of automated deduction require reasoning in first-order logic modulo
background theories, in particular some form of integer arithmetic. A major unsolved research
challenge is to design theorem provers that are “reasonably complete” even in the presence
of free function symbols ranging into a background theory sort. The earlier hierarchic
superposition calculus of Bachmair, Ganzinger, and Waldmann [1] already supports such
symbols, but, not optimally. We have devised a new calculus, hierarchic superposition
with weak abstraction, which rectifies this situation by introducing a novel form of clause
abstraction, a core component in the hierarchic superposition calculus for transforming
clauses into a form needed for internal operation [2]. Additionally, it includes a definition rule
that is generally useful to find refutations more often, and, specifically, gives completeness
for the clause logic fragment where all background-sorted terms are ground.

The talk provides an overview of the calculus, its implementation in the Beagle theorem
prover and experiments with it.

References
1 Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem proving for

hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193–212, 1994.
2 Peter Baumgartner and Uwe Waldmann. Hierarchic superposition with weak abstrac-

tion. In Maria Paola Bonacina, editor, CADE-24 – The 24th International Conference
on Automated Deduction, volume 7898 of Lecture Notes in Artificial Intelligence, pages
39–57. Springer, 2013.

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38574-2_3
http://dx.doi.org/10.1007/978-3-642-38574-2_3
http://dx.doi.org/10.1007/978-3-642-38574-2_3

8 13411 – Deduction and Arithmetic

4.3 Basic Hilbert basis
Nikolaj Bjørner (Microsoft Research, Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolaj Bjørner

Joint work of Bjørner, Nikolaj; Voronkov, Andrei

We present a new algorithm for computing Hilbert bases and present an efficient implement-
ation using tailored data-structures. A profound feature of the algorithm is that it is also a
constructive proof that every basis vector of a Hilbert Basis requires at a polynomial number
of bits to represent. This re-establishes that Integer Linear Programming is in NP, and it
shows that all minimal basis solutions are small.

4.4 Arithmetic in Sledgehammer
Jasmin Christian Blanchette (Technische Universität München, DE)

License Creative Commons BY 3.0 Unported license
© Jasmin Christian Blanchette

Joint work of Blanchette, Jasmin Christian; Böhme, Sascha; Paulson, Lawrence C.
Main reference J.C. Blanchette, S. Böhme, L.C. Paulson, “Extending Sledgehammer with SMT Solvers”,

J. Autom. Reasoning 51(1):109–128, 2013.
URL http://dx.doi.org/10.1007/s10817-013-9278-5

Sledgehammer is a subsystem of Isabelle/HOL that integrates automatic theorem provers
(ATPs). It uses, among others, the first-order resolution provers E, SPASS, Vampire and the
SMT solvers CVC3, Yices, and Z3 as backends. Interpreted arithmetic is used for the SMT
solvers, but the impact is not as great as one might have expected. This talk attempted to
give a few explanations and suggested directions for future research.

4.5 Sound compilation of reals
Eva Darulova (EPFL, Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Eva Darulova

Joint work of Darulova, Eva; Kuncak, Viktor
Main reference E. Darulova, V. Kuncak, “Sound Compilation of Reals,” in Proc. of the 41st Annual ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’14), pp. 235–248,
ACM, 2014.

URL http://dx.doi.org/10.1145/2535838.2535874

Writing accurate numerical software is hard because of many sources of unavoidable uncer-
tainties, including finite numerical precision of implementations. We present a programming
model where the user writes a program in a real-valued implementation and specification
language that explicitly includes different types of uncertainties. We then present a compila-
tion algorithm that generates a conventional implementation that is guaranteed to meet the
desired precision with respect to real numbers. Our verification step generates verification
conditions that treat different uncertainties in a unified way and encode reasoning about
floating-point roundoff errors into reasoning about real numbers. We show that current
state-of-the art SMT solvers do not scale well to solving such verification conditions. We
propose a new procedure that combines exact SMT solving over reals with approximate
and sound affine and interval arithmetic. We report on results from our initial prototype
implementation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10817-013-9278-5
http://dx.doi.org/10.1007/s10817-013-9278-5
http://dx.doi.org/10.1007/s10817-013-9278-5
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2535838.2535874
http://dx.doi.org/10.1145/2535838.2535874
http://dx.doi.org/10.1145/2535838.2535874
http://dx.doi.org/10.1145/2535838.2535874

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 9

4.6 Making invariants inductive
Stephan Falke (Karlsruhe Institute of Technology, DE)

License Creative Commons BY 3.0 Unported license
© Stephan Falke

Joint work of Falke, Stephan; Kapur, Deepak

While non-inductive invariants might be easier to write, inductive invariants are easier to
prove. In this talk, I will present an algorithm that aims at strengthening a given potential
invariant so it becomes inductive. I will discuss properties of the algorithm and pose open
questions.

4.7 The poor man’s way to integrate non-linear real arithmetic
reasoning capabilities within SMT

Pascal Fontaine (LORIA, Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Pascal Fontaine

Joint work of Déharbe, David; Fontaine, Pascal; Sturm, Thomas

In this talk, we report some very preliminary results on a cooperation between the veriT
SMT solver and Redlog. Thanks to this cooperation, the language handled by veriT now
accepts non-linear real arithmetic expressions. The technique is based on a model-based
combination. The linear arithmetic and congruence closure decision procedures are used as
simplifiers for the set of constraints given to Redlog.

4.8 Deduction and arithmetic – a functional marriage: iSAT, odeSAT,
and related procedures

Martin Fränzle (Universität Oldenburg, DE)

License Creative Commons BY 3.0 Unported license
© Martin Fränzle

Joint work of Fränzle, Martin; Eggers, Andreas; Herde, Christian; Teige, Tino; Becker, Bernd; Kupferschmid,
Stefan; Scheibler, Karsten; Schubert, Tobias; Ratschan, Stefan; Ramdani, Nacim; Nedialkov,
Nedlialko

Over the last decade, arithmetic SAT modulo theory (SMT) solving has found wide-spread
application within diverse analysis tasks for hybrid discrete-continuous systems, cyber-
physical systems, or software systems involving numerical computations. Traditional SMT
approaches are, however, confined to decidable theories, i.e. small fragments of arithmetic.
Combining ideas from abstract interpretation, namely to manipulate lattices of subsets of
the value domain, with ideas from verified computer arithmetic, namely to use safe numeric
interval enclosures, and with techniques from SMT solving, namely conflict-driven clause
learning, this restriction can be relaxed in practice. While the resulting procedures, which
represent a “functional marriage” between automated deduction and computer arithmetic,
are necessarily incomplete, they can solve many intricate problems in practice: For complex-
structured Boolean combinations of arithmetic constraints involving transcendental functions
and thousands of variables, or for combinations of arithmetic constraints involving first-
order relations defined by ordinary differential equations, they are able to rigorously prove

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

10 13411 – Deduction and Arithmetic

unsatisfiability, do provide strong hints (and sometimes even proofs) for satisfiability, and
can compute Craig interpolants.

References
1 Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert, and Tino Teige. Ef-

ficient solving of large non-linear arithmetic constraint systems with complex boolean
structure. Journal on Satisfiability, Boolean Modeling and Computation – Special Issue
on SAT/CP Integration, 1:209- -236, 2007.

2 Andreas Eggers, Martin Fränzle, and Christian Herde. SAT modulo ODE: A direct SAT ap-
proach to hybrid systems. In Sungdeok (Steve) Cha, Jin-Young Choi, Moonzoo Kim, Insup
Lee, and Mahesh Viswanathan, editors, Proceedings of the 6th International Symposium on
Automated Technology for Verification and Analysis (ATVA’08), volume 5311 of Lecture
Notes in Computer Science (LNCS), pages 171–185. Springer-Verlag, 2008.

4.9 Cooperation for better termination proving
Carsten Fuhs (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Carsten Fuhs

Joint work of Brockschmidt, Marc; Cook, Byron; Fuhs, Carsten
Main reference M. Brockschmidt, B. Cook, C. Fuhs, “Better termination proving through cooperation,” in Proc. of

25th Int’l Conf. on Computer Aided Verification (CAV’13), LNCS, Vol. 8044, pp. 413–429,
Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-39799-8_28

One of the difficulties of proving program termination is managing the subtle interplay
between the finding of a termination argument and the finding of the argument’s supporting
invariant. We propose a new mechanism that facilitates better cooperation between these
two types of reasoning. In an experimental evaluation we find that our new method leads to
dramatic performance improvements.

References
1 Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving through

cooperation. In Proc. CAV ’13, volume 8044 of LNCS, pages 413–429, 2013.

4.10 Alternating runtime and size complexity analysis of integer
programs

Jürgen Giesl (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Jürgen Giesl

We present a new modular approach to automatic complexity analysis. Based on a novel
alternation between finding symbolic time bounds for program parts and using these to
infer size bounds on program variables, we can restrict each analysis step to a small part
of the program while maintaining a high level of precision. Extensive experiments with the
implementation of our method demonstrate its performance and power in comparison with
other tools. In particular, our method finds bounds for many programs whose complexity
could not be analyzed by automatic tools before.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39799-8_28
http://dx.doi.org/10.1007/978-3-642-39799-8_28
http://dx.doi.org/10.1007/978-3-642-39799-8_28
http://dx.doi.org/10.1007/978-3-642-39799-8_28
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 11

4.11 Simple interpolation for floating-point arithmetic with abstract
CDCL

Alberto Griggio (Bruno Kessler Foundation, Trento, IT)

License Creative Commons BY 3.0 Unported license
© Alberto Griggio

Joint work of Brain, Martin; D’Silva, Vijay; Griggio, Alberto; Haller, Leopold; Kroening, Daniel
Main reference M. Brain, V. D’Silva, A. Griggio, L. Haller, D. Kroening, “Interpolation-Based Verification of

Floating-Point Programs with Abstract CDCL,” in Proc. of the 20th Int’l Symp. on Static Analysis
(SAS’13), LNCS, Vol. 7935, pp. 412–432, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38856-9_22

One approach for SMT solvers to improve efficiency is to delegate reasoning to abstract
domains. Solvers using abstract domains do not support interpolation and cannot be used
for interpolation-based verification. We extend Abstract Conflict Driven Clause Learning
(ACDCL) solvers with proof generation and interpolation. Our results lead to the first
interpolation procedure for floating-point logic and subsequently, the first interpolation-based
verifiers for programs with floating-point variables. We demonstrate the potential of this
approach by verifying a number of programs which are challenging for current verification
tools.

4.12 Model-constructing satisfiability calculus
Dejan Jovanović (SRI, Menlo Park, US)

License Creative Commons BY 3.0 Unported license
© Dejan Jovanović

Joint work of Jovanović, Dejan; Barrett, Clark; de Moura, Leonardo
Main reference D. Jovanović, C. Barrett, L. De Moura, “Design and implementation of the model-constructing

satisfiability calculus.” Presentation at 2013 Formal Methods in Computer-Aided Design
Conference (FMCAD’13).

URL http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/71-Model-Construction-SAT-
Calculus.pdf

We present the Model Constructing Satisfiability (MCSat) calculus. MCSat calculus general-
izes ideas found in CDCL-style propositional SAT solvers to SMT solvers, and provides a
common framework where recent model-based procedures and techniques can be justified and
combined. We describe how to incorporate support for linear real arithmetic and uninterpreted
function symbols in the calculus. We report encouraging experimental results, where MCSat
performs competitive with the state-of-the art SMT solvers without using pre-processing
techniques and ad-hoc optimizations. The implementation is flexible, additional plugins can
be easily added, and the code is freely available.

4.13 Practical exploitation of mixed integer programming solvers by
SMT solvers

Tim A. King (New York University, US)

License Creative Commons BY 3.0 Unported license
© Tim A. King

Simplex based methods used within SMT solvers become overwhelmed by problems that
are efficiently solved by the Simplex solvers used within Mixed Integer Programming solvers.

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38856-9_22
http://dx.doi.org/10.1007/978-3-642-38856-9_22
http://dx.doi.org/10.1007/978-3-642-38856-9_22
http://dx.doi.org/10.1007/978-3-642-38856-9_22
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/71-Model-Construction-SAT-Calculus.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/71-Model-Construction-SAT-Calculus.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/71-Model-Construction-SAT-Calculus.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/71-Model-Construction-SAT-Calculus.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/papers/71-Model-Construction-SAT-Calculus.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 13411 – Deduction and Arithmetic

This talk will describe practical usage of MIP solvers from within SMT solvers to extend
SMT solvers to be able to handle such benchmarks. A preliminary implementation of this
technique solves the more SMTLIB QFLRA benchmarks then other state-of-art SMT solvers.

4.14 Solving linear arithmetic by bound propagation
Konstantin Korovin (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Konstantin Korovin

Joint work of Korovin, Konstantin; Voronkov, Andrei
Main reference K. Korovin, A. Voronkov, “Solving Systems of Linear Inequalities by Bound Propagation,” in Proc.

of the 23rd Int’l Conf. on Automated Deduction, LNCS, Vol. 6803, pp. 369–383, Springer, 2011.
URL http://dx.doi.org/10.1007/978-3-642-22438-6_28

Bound propagation is a method for solving systems of linear inequalities using DPLL-style
reasoning, shown to be complete in our previous work ([1], extending conflict resolution [2]).
The bound propagation method adapts constraint propagation, dynamic variable ordering,
lemma learning and backjumping. In this talk I overview the bound propagation method,
discuss non-trivial issues such as termination, and present recent implementation and experi-
mental results [3, 4]. Joint work with Ioan Dragan, Laura Kovács, Nestan Tsiskaridze and
Andrei Voronkov.

References
1 K. Korovin and A. Voronkov Solving Systems of Linear Inequalities by Bound Propagation.

Proc. of the 23rd International Conference on Automated Deduction, (CADE 2011), 369–
383, LNAI, vol 6803, Springer, 2011.

2 K. Korovin, N. Tsiskaridze and A. Voronkov. Conflict Resolution. Proc. of the 15th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP’09), 509–523,
Lecture Notes in Computer Science, vol 5732, Springer, 2009.

3 K. Korovin, N. Tsiskaridze and A. Voronkov. Implementing Conflict Resolution. Proc. of
the 8th International Conference on Perspectives of Systems Informatics (PSI’2011), LNCS,
vol 7162, Springer, 2012.

4 I. Dragan, K. Korovin, L. Kovacs and A. Voronkov. Bound Propagation for Arithmetic
Reasoning in Vampire. Proc. of SYNASC’13, IEEE, 2013.

4.15 An SMT-based approach to memory access optimization problem
Marek Košta (Max-Planck-Institut für Informatik, Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Marek Košta

Joint work of Košta, Marek; Karrenberg, Ralf; Sturm, Thomas
Main reference R. Karrenberg, M. Košta, T. Sturm, “Presburger Arithmetic in Memory Access Optimization for

Data-Parallel Languages,” in Proc. of the 9th Int’l Symp. on Frontiers of Combining Systems
(FroCoS’13), LNCS, Vol. 8152, pp. 56–70, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-40885-4_5

To exploit capabilities of modern SIMD capable CPUs, state-of-the-art compilers use vec-
torization techniques. One of the main drawbacks of these techniques is that they serialize
memory access operations. We begin with memory access optimization problem definition
and describe how its solution can help to generate vectorized, i.e. more efficient code in
presence of memory accesses. Then we will refer about our previous work, which uses SMT

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-22438-6_28
http://dx.doi.org/10.1007/978-3-642-22438-6_28
http://dx.doi.org/10.1007/978-3-642-22438-6_28
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-40885-4_5
http://dx.doi.org/10.1007/978-3-642-40885-4_5
http://dx.doi.org/10.1007/978-3-642-40885-4_5
http://dx.doi.org/10.1007/978-3-642-40885-4_5

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 13

solving to solve the memory access optimization problem. Next, we will describe our current
work: Development of a system using Z3 library capable of fully-automatic solution of the
memory access optimization problem. We will conclude with a few theoretical and practical
questions motivated by our current work.

4.16 Acceleration for Petri nets
Jérôme Leroux (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Jérôme Leroux

Main reference J. Leroux, “Acceleration for Petri Nets,” in Proc. of the 11th Int’l Symp. on Automated Technology
for Verification and Analysis (ATVA’13), LNCS, Vol. 8172, pp. 1–4, Spinger, 2013.

URL http://dx.doi.org/10.1007/978-3-319-02444-8_1

The reachability problem for Petri nets is a central problem of net theory. The problem
is known to be decidable by inductive invariants definable in the Presburger arithmetic.
When the reachability set is definable in the Presburger arithmetic, the existence of such
an inductive invariant is immediate. However, in this case, the computation of a Presburger
formula denoting the reachability set is an open problem. Recently this problem got closed
by proving that if the reachability set of a Petri net is definable in the Presburger arithmetic,
then the Petri net is flatable, i.e. its reachability set can be obtained by runs labeled
by words in a bounded language. As a direct consequence, classical algorithms based on
acceleration techniques effectively compute a formula in the Presburger arithmetic denoting
the reachability set. In this presentation, the framework of verification of infinite-state systems
based on acceleration techniques is recalled. We also explain the completeness of this method
on the computation of Presburger formulas denoting the reachability sets of Petri nets.

4.17 Automated (formal) proofs of summation identities
Assia Mahboubi (INRIA Saclay–Île-de-France–Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Assia Mahboubi

Joint work of Mahboubi, Assia; Chyzak, Frédéric; Sibut-Pinote, Thomas; Tassi, Enrico

Among the most cited references in the mathematical literature are the handbooks of
properties of special functions or sequences. These dictionaries consist of tables of results
about functions arising naturally in applications like physics, number theory, economy etc.
It happens that a large subset of these functions belongs to a well-behaved class of objects,
which benefits from the theory of so-called holonomic systems. In particular, it is possible to
increase dramatically the confidence in the results displayed in the handbooks by relying on
algorithmic proofs and computer algebra systems. In this talk I will discuss the issues raised
by the certification of these theorems by a proof assistant.

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-02444-8_1
http://dx.doi.org/10.1007/978-3-319-02444-8_1
http://dx.doi.org/10.1007/978-3-319-02444-8_1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 13411 – Deduction and Arithmetic

4.18 From ordinal interpretations to elementary interpretations
Aart Middeldorp (Universität Innsbruck, AT)

License Creative Commons BY 3.0 Unported license
© Aart Middeldorp

Joint work of Winkler, Sarah; Zankl, Harald; Middeldorp, Aart
Main reference S. Winkler, H. Zankl, A. Middeldorp, “Beyond Peano Arithmetic – Automatically Proving

Termination of the Goodstein Sequence,” in Proc. of the 24th Int’l Conf. on Rewriting Techniques
and Applications (RTA’13), LIPIcs, Vol. 21, pp. 335–351, Dagstuhl Publishing, 2013.

URL http://dx.doi.org/10.4230/LIPIcs.RTA.2013.335

Kirby and Paris (1982) proved in a celebrated paper that a theorem of Goodstein (1944)
cannot be established in Peano (1889) arithmetic. In a recent paper we presented an encoding
of Goodstein’s theorem as a termination problem of a finite rewrite system. Using a novel
implementation of ordinal interpretations, we were able to automatically prove termination of
this system, resulting in the first automatic termination proof for a system whose derivational
complexity is not multiply recursive. After recapitulating this work, we discuss the challenges
when trying to implement the elementary interpretations of Lescanne (1995).

4.19 Death by a thousand cuts (worst-case execution time by bounded
model checking)

David Monniaux (VERIMAG, Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© David Monniaux

Joint work of Monniaux, David; Henry, Julien; Maïza, Claire; Caminha, Diego

The trace semantics of programs (with finite loop unrolling) can be compiled into first-order
logic formulas, and thus bounded model checking maps to satisfiability testing for such
formulas. Modern satisfiability modulo theory (SMT) solvers currently solve many large
instances. Unfortunately, if certain non-functional properties such as timing and energy are
naively encoded into the formula, the SMT problems become intractable since they contain
“diamond formulas”. We propose a general redundant encoding scheme for such properties,
resulting in tractable SMT problems: we conjoin to the original problem some “cuts”, which
do not change the solution set but kill the complexity of the solving.

We illustrate this encoding with worst-case execution time (WCET) of loop-free programs.
In real-time systems, it is often necessary to bound the WCET of program fragments; for
instance, in safety-critical control systems, this time should be less than the period of the
control loop. The conventional approach is to first run special static analyses which give for
each basic block an upper bound for its WCET, taking into account information from the
history of the computation (e.g. possible pipeline and cache states), then reassemble these
local WCET into a global WCET through a path analysis. Unfortunately, this path analysis
may take into account paths that are infeasible due to the semantics of the instructions,
resulting in over-estimation of the WCET. We replace this path analysis by optimization
modulo theory.

We experimented our analysis on benchmark and industrial programs, gaining as much
as 53% improvement on the bound on WCET for a fly-by-wire program. On most of these
programs, a naive encoding results in timeout, but with our encoding the analysis terminates
within minutes.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.335
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.335
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.335
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.335
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 15

4.20 Non-numerical permissions for concurrent reasoning
Wojciech Mostowski (University of Twente, NL)

License Creative Commons BY 3.0 Unported license
© Wojciech Mostowski

We present a new, symbolic system for permission accounting that can be easily used with
first-order logic based reasoning systems typically used in program verification. Permission
accounting is a core building block in approaches to modular, thread-local reasoning about
concurrent programs. Our permission system differs from the existing ones in that it provides
a symbolic and global view of permissions, rather than value-based and thread-local one.
That in turn enables (a) better understanding of permission tracking from the point of
the view of the specifier, (b) specification of complex permission transfer scenarios, and (c)
more efficient reasoning for the verification tools (in particular, no reasoning about rational
numbers is required). Our system is based on the idea of “I-owe-you” chains of permission
owners to track the history of permission transfers, and the idea of symbolic permission
slicing to divide permissions between multiple owners/threads. Underneath, special lists with
dedicated operations are used. We axiomatised our permission system and its vital properties
in the KeY verifier as well as in PVS. KeY is a verification tool for Java programs based
on first-order dynamic logic and our primary target to employ our permission system for
reasoning about multi-threaded Java programs. Initial results with the verification of actual
Java programs using our permission system and KeY are also discussed.

4.21 Quantifier elimination for dense and discrete linear orders
Tobias Nipkow (Technische Universität München, DE)

License Creative Commons BY 3.0 Unported license
© Tobias Nipkow

In earlier work I verified a number of quantifier elimination procedures for dense linear orders
without endpoints in Isabelle [1]. In ongoing work I have extend these quantifier elimination
procedures to discrete orderings and to orderings with endpoints (typically plus and minus
infinity). It is known from the literature that these theories admit quantifier elimination, but
my focus is on efficient procedures. It turns out that the method of interior points (some
arbitrary point between a lower and upper bound, e.g. (l + u)/2) and of infinitesimals (due
to Loos and Weispfenning) can be extended to endpoints and to discrete orders.

References
1 Tobias Nipkow. Linear Quantifier Elimination. In A. Armando, P. Baumgartner, and G.

Dowek (eds.), International Joint Conference on Automated Reasoning (IJCAR), LNCS
5195, pages 18–33, Springer, 2008.

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

16 13411 – Deduction and Arithmetic

4.22 Exact global optimization on demand
Grant Olney Passmore (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Grant Olney Passmore

Joint work of Passmore, Grant Olney; de Moura, Leonardo

We present a method for exact global nonlinear optimization based on a real algebraic
adaptation of the conflict-driven clause learning (CDCL) approach of modern SAT solving.
This method allows polynomial objective functions to be constrained by real algebraic
constraint systems with arbitrary boolean structure. Moreover, it can correctly determine
when an objective function is unbounded, and can compute exact infima and suprema when
they exist. The method requires computations over real closed fields containing infinitesimals
(cf. [1]).

References
1 Leonardo de Moura and Grant Olney Passmore. Computation in Real Closed Infinitesimal

and Transcendental Extensions of the Rationals. In Proceedings of the 24th International
Conference on Automated Deduction (CADE) (2013)

4.23 Automating separation logic using SMT
Ruzica Piskac (Yale University, US)

License Creative Commons BY 3.0 Unported license
© Ruzica Piskac

Joint work of Piskac, Ruzica; Wies, Thomas; Zufferey, Damien
Main reference R. Piskac, T. Wies, D. Zufferey, “Automating Separation Logic Using SMT,” in Proc. of the . 25th

Int’l Conf. on Computer Aided Verification (CAV’13), LNCS, Vol. 8044, pp. 773–789, Springer,
2013.

URL http://dx.doi.org/10.1007/978-3-642-39799-8_54

Separation logic (SL) has gained widespread popularity because of its ability to succinctly
express complex invariants of a program’s heap configurations. Several specialized provers have
been developed for decidable SL fragments. However, these provers cannot be easily extended
or combined with solvers for other theories that are important in program verification, e.g.,
linear arithmetic. In this talk, we present a reduction of decidable SL fragments to a decidable
first-order theory that fits well into the satisfiability modulo theories (SMT) framework. We
show how to use this reduction to automate satisfiability, entailment, frame inference, and
abduction problems for separation logic using SMT solvers. Our approach provides a simple
method of integrating separation logic into existing verification tools that provide SMT
backends, and an elegant way of combining SL fragments with other decidable first-order
theories.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-642-39799-8_54

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 17

4.24 Logic of hybrid games
André Platzer (Carnegie Mellon University, US)

License Creative Commons BY 3.0 Unported license
© André Platzer

Main reference A. Platzer, “A Complete Axiomatization of Differential Game Logic for Hybrid Games,” School of
Computer Science, Carnegie Mellon University, CMU-CS-13-100R, January 2013, extended in
revised version from July 2013.

URL http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-100R.pdf

Hybrid systems model cyber-physical systems as dynamical systems with interacting discrete
transitions and continuous evolutions along differential equations. They arise frequently
in many application domains, including aviation, automotive, railway, and robotics. This
talk studies hybrid games, i.e. games on hybrid systems combining discrete and continuous
dynamics. Unlike hybrid systems, hybrid games allow choices in the system dynamics to be
resolved adversarially by different players with different objectives.

This talk describes how logic and formal verification can be lifted to hybrid games [2, 1].
The talk describes a logic for hybrid systems called differential game logic dGL. The logic
dGL can be used to study the existence of winning strategies for hybrid games, i.e. ways of
resolving the player’s choices in some way so that he wins by achieving his objective for all
choices of the opponent. Hybrid games are determined, i.e. one player has a winning strategy
from each state, yet their winning regions may require transfinite closure ordinals. The logic
dGL, nevertheless, has a sound and complete axiomatization relative to any expressive logic.
Separating axioms are identified that distinguish hybrid games from hybrid systems. Finally,
dGL is proved to be strictly more expressive than the corresponding logic of hybrid systems.

References
1 André Platzer. A Complete Axiomatization of Differential Game Logic for Hybrid Games.

School of Computer Science, Carnegie Mellon University, CMU-CS-13-100, January 2013,
extended in revised version from July 2013.

2 André Platzer. Differential Game Logic for Hybrid Games. School of Computer Science,
Carnegie Mellon University, CMU-CS-12-105, March 2012.

4.25 Proving unsatisfiability in non-linear arithmetic by duality
Enric Rodríguez-Carbonell (UPC, BarcelonaTech, ES)

License Creative Commons BY 3.0 Unported license
© Enric Rodríguez-Carbonell

Joint work of Larraz, Daniel; Oliveras, Albert; Rodríguez-Carbonell, Enric; Rubio, Albert

Non-linear problems arise in many contexts, for instance, in the generation of invariants and
ranking functions following the constraint-based program analysis approach. Solvers based
on linearization by case analysis efficiently find solutions for satisfiable instances. On the
other hand, unsatisfiability is difficult to prove with this method. In this talk we propose to
prove a conjunction of non-linear atoms to be unsatisfiable by finding a Positivstellensatz
refutation certificate, which is more amenable to satisfiability-goaled non-linear solvers.

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-100R.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-100R.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-100R.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-100R.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 13411 – Deduction and Arithmetic

4.26 Exploring interpolants
Philipp Rümmer (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Philipp Rümmer

Joint work of Rümmer, Philipp; Subotić, Pavle
Main reference Philipp Rümmer, Pavle Subotić. Exploring Interpolants. FMCAD 2013.

Craig Interpolation is a standard method to construct and refine abstractions in model
checking. To obtain abstractions that are suitable for the verification of software programs or
hardware designs, model checkers rely on theorem provers to find the right interpolants, or
interpolants containing the right predicates, in a generally infinite lattice of interpolants for
any given interpolation problem. We present a semantic and solver-independent framework for
systematically exploring interpolant lattices, based on the notion of interpolation abstraction
[1]. We discuss how interpolation abstractions can be constructed for a variety of logics, and
how they can be exploited in the context of software model checking.

References
1 Philipp Rümmer, Pavle Subotić. Exploring Interpolants. Formal Methods in Computer-

Aided Design (FMCAD). Portland, USA, 2013.

4.27 Some challenges in applied software bounded model checking
Carsten Sinz (Karlsruhe Institute of Technology, DE)

License Creative Commons BY 3.0 Unported license
© Carsten Sinz

Joint work of Sinz, Carsten; Falke, Stephan; Merz, Florian

In this talk I will give a personal view on what challenges software analysis tools (like bounded
model checkers) are currently facing, especially when applied to low-level system and control
software. The intention of the talk is not so much to present finished work, but to discuss
ideas for future research directions.

4.28 Hierarchical reasoning and model generation in the verification of
hybrid systems

Viorica Sofronie-Stokkermans (Universität Koblenz-Landau, DE)

License Creative Commons BY 3.0 Unported license
© Viorica Sofronie-Stokkermans

Main reference V. Sofronie-Stokkermans, “Hierarchical Reasoning and Model Generation for the Verification of
Parametric Hybrid Systems,” in Proc. of the 24th Int’l Conf. on Automated Deduction (CADE’13),
LNCS, Vol. 7898, pp. 360–376, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-38574-2_25

We study possibilities of using hierarchical reasoning, quantifier elimination and model
generation for the verification of parametric hybrid systems, where the parameters can be
constants or functions. Our goal is to automatically provide guarantees that such systems
satisfy certain safety or invariance conditions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Philipp R�mmer, Pavle Suboti�. Exploring Interpolants. FMCAD 2013.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-38574-2_25
http://dx.doi.org/10.1007/978-3-642-38574-2_25
http://dx.doi.org/10.1007/978-3-642-38574-2_25
http://dx.doi.org/10.1007/978-3-642-38574-2_25

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 19

We first analyze the possibility of automatically generating such guarantees in the form
of constraints on parameters, then show that we can also synthesise so-called criticality
functions, typically used for proving stability and/or safety of hybrid systems.

We illustrate our methods on several examples. The results are presented in detail in [1].

References
1 Viorica Sofronie-Stokkermans. Hierarchical Reasoning and Model Generation for the Veri-

fication of Parametric Hybrid Systems. In Maria Paola Bonacida (ed.) Automated Deduc-
tion – CADE-24 – 24th International Conference on Automated Deduction, LNCS 7898,
pages 360–376, Springer 2013.

4.29 Certified abstract completion
Christian Sternagel (JAIST, Nomi, JP)

License Creative Commons BY 3.0 Unported license
© Christian Sternagel

Joint work of Hirokawa, Nao; Middeldorp, Aart; Sternagel, Christian

The textbook proof of soundness of the Knuth-Bendix completion procedure is rather involved.
To make this important result more accessible, especially in a classroom situation, Hirokawa
and Middeldorp recently found an alternative proof via peak-decreasingness (which is a weaker
but also simpler variant of the decreasing diagrams method). I present an Isabelle/HOL
formalization of this new proof and compare it to a formalization of the traditional proof
which is part of IsaFoR (a library of formalized results about rewriting).

4.30 Partial certification for termination proofs and more
Rene Thiemann (Universität Innsbruck, AT)

License Creative Commons BY 3.0 Unported license
© Rene Thiemann

Joint work of Thiemann, Rene; Kuknat, Christian; Sternagel, Christian

Since untrusted termination tools will always use techniques that have not been formally
verified in some proof assistant, it is hard to fully certify the generated proofs. We present
an approach which still allows to certify large parts of the proof, where we support both an
online and an offline modus for certification.

We further report on initial steps towards the certification of complexity proofs where we
focus on problems with respect to arithmetic.

13411

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 13411 – Deduction and Arithmetic

4.31 Integrating SAT, QBF and SMT solvers with interactive theorem
provers

Tjark Weber (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Tjark Weber

This talk describes integrations of various automated solvers (for SAT, QBF and SMT) with
the interactive theorem provers Isabelle/HOL and HOL4. Our integrations demonstrate
that LCF-style proof checking is feasible for those solvers. We thereby increase not only
automation in interactive theorem proving, but also confidence in the correctness of solver
results.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 21

5 Program

Monday, 7 October 2013
09:00–09:30 Organizers

Welcome, Announcements, Introduction of Participants
09:30–10:00 Jürgen Giesl

Analyzing Runtime and Size Complexity of Integer Programs
10:00–10:30 André Platzer

Logic of Hybrid Games

11:00–11:30 Peter Baumgartner
Hierarchic Superposition With Weak Abstraction and the Beagle Theorem
Prover

11:30–12:00 Wojciech Mostowski
Non-numerical Permissions for Concurrent Reasoning

14:00–14:30 Enric Rodríguez-Carbonell
Proving Unsatisfiability in Non-Linear Arithmetic by Duality

14:30–15:00 Wolfgang Ahrendt
Verifying (In)stability in Floating-point Programs by Increasing Precision, using
SMT Solving

15:00–15:30 Carsten Fuhs
Cooperation for Better Termination Proving

16:00–16:30 Marek Košta
An SMT-Based Approach To Memory Access Optimization Problems

16:30–17:00 Christian Sternagel
Certified Abstract Completion

17:00–17:30 David Monniaux
Death by a Thousand Cuts

13411

22 13411 – Deduction and Arithmetic

Tuesday, 8 October 2013
09:00–09:30 Aart Middeldorp

From Ordinal Interpretations to Elementary Interpretations
09:30–10:00 Pascal Fontaine

The Poor Man’s Way to Integrate Non-Linear Real Arithmetic Reasoning
Capabilities within SMT

10:00–10:30 Jeremy Avigad
Approximate Decidability and the Verification of Hybrid Systems

11:00–11:30 Viorica Sofronie-Stokkermans
Hierarchical Reasoning and Model Generation in Verification

11:30–12:00 Eva Darulova
Sound Compilation of Reals

14:00–14:30 Assia Mahboubi
Automated (Formal) Proofs of Summation Identities

14:30–15:00 Konstantin Korovin
Solving Linear Arithmetic by Bound Propagation

15:00–15:30 Arie Gurfinkel
Exploring Interpolants

16:00–16:30 Bernhard Beckert
On the Specification and Verification of Voting Schemes

16:30–17:00 Jérôme Leroux
Computing Vector Addition System Reachability Sets

17:00–17:30 Philipp Rümmer
Interpolation for Software Verification

Wednesday, 9 October 2013
09:00–09:30 Christoph Weidenbach

Hierarchic Superposition – Current Status and Future Steps
09:30–10:00 Dejan Jovanović

Model-Constructing Satisfiability Calculus
10:00–10:30 Nikolaj Bjørner

Basic Hilbert Basis

11:00–11:30 Tjark Weber
Integrating SAT, QBF and SMT Solvers with Interactive Theorem Provers

11:30–12:00 Jasmin Christian Blanchette
Arithmetic in Sledgehammer

N. Bjørner, R. Hähnle, T. Nipkow, and C. Weidenbach 23

Thursday, 10 October 2013
09:00–09:30 Leonardo de Moura

Arithmetic Procedures in the Model-Constructing Satisfiability Calculus
09:30–10:00 Tobias Nipkow

Linear Quantifier Elimination for Linear Orderings with Endpoints
10:00–10:30 Thomas Sturm

Satisfiability Checking for the Sciences

11:00–11:30 Stephan Falke
Making Invariants Inductive

11:30–12:00 Grant Passmore
Exact Global Optimization on Demand

14:00–14:30 Ruzica Piskac
Automating Separation Logic Using SMT

14:30–15:00 Carsten Sinz
Some Challenges in Applied Software Bounded Model Checking

16:00–16:30 Tim King
Floating Point Simplex Solvers for SMT

16:30–17:00 Alberto Griggio
Simple Interpolation for Floating-Point Arithmetic with Abstract CDCL

Friday, 10 October 2013
09:00–09:30 Martin Fränzle

Deduction and Arithmetic – a Functional Marriage (iSAT, odeSAT,
and Related Procedures)

09:30–10:00 René Thiemann
Partial Certification for Termination Proofs and More

10:00–10:30 James J. Hunn
Realtime Java and Formal Methods: Use and Open Issues

11:00–12:00 Organizers
Wrap-Up Session

13411

24 13411 – Deduction and Arithmetic

Participants

Wolfgang Ahrendt
Chalmers UT – Göteborg, SE

Jeremy Avigad
Carnegie Mellon University, US

Peter Baumgartner
NICTA – Canberra, AU

Bernhard Beckert
KIT – Karlsruhe Institute of
Technology, DE

Nikolaj Bjørner
Microsoft Res. – Redmond, US

Jasmin Christian Blanchette
TU München, DE

Richard Bubel
TU Darmstadt, DE

Eva Darulova
EPFL – Lausanne, CH

Leonardo de Moura
Microsoft Res. – Redmond, US

Stephan Falke
KIT – Karlsruhe Institute of
Technology, DE

Pascal Fontaine
LORIA – Nancy, FR

Martin Fränzle
Universität Oldenburg, DE

Carsten Fuhs
University College London, GB

Jürgen Giesl
RWTH Aachen, DE

Alberto Griggio
Bruno Kessler Foundation –
Trento, IT

Arie Gurfinkel
Carnegie Mellon University, US

Reiner Hähnle
TU Darmstadt, DE

James J. Hunt
aicas GmbH – Karlsruhe, DE

Dejan Jovanovic
SRI – Menlo Park, US

Tim A. King
New York University, US

Konstantin Korovin
University of Manchester, GB

Marek Kosta
MPI für Informatik –
Saarbrücken, DE

Jerome Leroux
University of Bordeaux, FR

Assia Mahboubi
INRIA Saclay – Île-de-France –
Orsay, FR

Aart Middeldorp
Universität Innsbruck, AT

David Monniaux
VERIMAG – Grenoble, FR

Wojciech Mostowski
University of Twente, NL

Tobias Nipkow
TU München, DE

Grant Olney Passmore
University of Cambridge &
University of Edinburgh, GB

Ruzica Piskac
Yale University, US

André Platzer
Carnegie Mellon University, US

Enric Rodríguez-Carbonell
UPC – BarcelonaTech, ES

Philipp Rümmer
Uppsala University, SE

Peter H. Schmitt
KIT – Karlsruhe Institute of
Technology, DE

Carsten Sinz
KIT – Karlsruhe Institute of
Technology, DE

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau, DE

Christian Sternagel
JAIST – Nomi, JP

Thomas Sturm
MPI für Informatik –
Saarbrücken, DE

René Thiemann
Universität Innsbruck, AT

Cesare Tinelli
Univ. of Iowa – Iowa City, US

Tjark Weber
Uppsala University, SE

Christoph Weidenbach
MPI für Informatik –
Saarbrücken, DE

	Executive Summary Nikolaj Bjørner, Reiner Hähnle, Tobias Nipkow, and Christoph Weidenbach
	Table of Contents
	Trends and Open Questions in Deduction and Arithmetic All seminar participants
	Overview of Talks
	Approximate decidability and verification of hybrid systems Jeremy Avigad
	Hierarchic superposition with weak abstraction and the Beagle theorem prover Peter Baumgartner
	Basic Hilbert basis Nikolaj Bjørner
	Arithmetic in Sledgehammer Jasmin Christian Blanchette
	Sound compilation of reals Eva Darulova
	Making invariants inductive Stephan Falke
	The poor man's way to integrate non-linear real arithmetic reasoning capabilities within SMT Pascal Fontaine
	Deduction and arithmetic – a functional marriage: iSAT, odeSAT, and related procedures Martin Fränzle
	Cooperation for better termination proving Carsten Fuhs
	Alternating runtime and size complexity analysis of integer programs Jürgen Giesl
	Simple interpolation for floating-point arithmetic with abstract CDCL Alberto Griggio
	Model-constructing satisfiability calculus Dejan Jovanovic
	Practical exploitation of mixed integer programming solvers by SMT solvers Tim A. King
	Solving linear arithmetic by bound propagation Konstantin Korovin
	An SMT-based approach to memory access optimization problem Marek Košta
	Acceleration for Petri nets Jérôme Leroux
	Automated (formal) proofs of summation identities Assia Mahboubi
	From ordinal interpretations to elementary interpretations Aart Middeldorp
	Death by a thousand cuts (worst-case execution time by bounded model checking) David Monniaux
	Non-numerical permissions for concurrent reasoning Wojciech Mostowski
	Quantifier elimination for dense and discrete linear orders Tobias Nipkow
	Exact global optimization on demand Grant Olney Passmore
	Automating separation logic using SMT Ruzica Piskac
	Logic of hybrid games André Platzer
	Proving unsatisfiability in non-linear arithmetic by duality Enric Rodríguez-Carbonell
	Exploring interpolants Philipp Rümmer
	Some challenges in applied software bounded model checking Carsten Sinz
	Hierarchical reasoning and model generation in the verification of hybrid systems Viorica Sofronie-Stokkermans
	Certified abstract completion Christian Sternagel
	Partial certification for termination proofs and more Rene Thiemann
	Integrating SAT, QBF and SMT solvers with interactive theorem provers Tjark Weber

	Program
	Participants

