
Report from Dagstuhl Seminar 13471

Synchronous Programming
Edited by
Stephen A. Edwards1, Alain Girault2, and Klaus Schneider3

1 Columbia University, US, sedwards@cs.columbia.edu
2 INRIA, FR, alain.girault@inria.fr
3 TU Kaiserslautern, DE, klaus.schneider@informatik.uni-kl.de

Abstract
Synchronous programming languages are programming languages with an abstract (logical) no-
tion of time: The execution of such programs is divided into discrete reaction steps, and in each
of these reactions steps, the program reads new inputs and reacts by computing corresponding
outputs of the considered reaction step. The programs are called synchronous because all outputs
are computed together in zero time within a step and because parallel components synchronize
their reaction steps by the semantics of the languages. For this reason, the synchronous compos-
ition is deterministic, which is a great advantage concerning predictability, verification of system
design, and embedded code generation. Starting with the definition of the classic synchronous
languages Esterel, Lustre and Signal in the late 1980’s, the research during the past 20 years was
very fruitful and lead to new languages, compilation techniques, software and hardware architec-
tures, as well as extensions, transformations, and interfaces to other models of computations, in
particular to asynchronous and hybrid systems.

This report is a summary of the Dagstuhl Seminar 13471 “Synchronous Programming”, which
took place during November 18-22, 2013, and which was the 20th edition of the yearly workshop of
the synchronous programming community. The report contains the abstracts of the presentations
given during the seminar in addition to the documents provided by the participants on the web
pages of the seminar1.

Seminar 18.–22. November, 2013 – www.dagstuhl.de/13471
1998 ACM Subject Classification C.4 Performance of Systems, D.1.3 Concurrent Programming,

D.2.2 Design Tools and Techniques, D.2.4 Software/Program Verification, D.3.3 Language
Constructs and Features, D.4.7 Organization and Design, F.3.1 Specifying and Verifying and
Reasoning about Programs, F.3.2 Semantics of Programming Languages

Keywords and phrases Synchronous Languages, Hybrid Systems, Formal Verification, Models
of Computation, WCET Analysis, Embedded Systems

Digital Object Identifier 10.4230/DagRep.3.11.117
Edited in cooperation with Manuel Gesell

1 See http://www.dagstuhl.de/13471 for more information.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Synchronous Programming, Dagstuhl Reports, Vol. 3, Issue 11, pp. 117–143
Editors: Stephen A. Edwards, Alain Girault, and Klaus Schneider

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13471
http://dx.doi.org/10.4230/DagRep.3.11.117
http://www.dagstuhl.de/13471
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


118 13471 – Synchronous Programming

1 Executive Summary

Stephen A. Edwards
Alain Girault
Klaus Schneider

License Creative Commons BY 3.0 Unported license
© Stephen A. Edwards, Alain Girault, and Klaus Schneider

Model-based Design of Embedded Systems
In general, the development of embedded systems is a challenging task: Concerning the
hardware platforms, developers have to cope with tight resource constraints, heterogeneous
and application-specific hardware architectures, virtual prototypes, and many other difficulties
during the design phases. Concerning the software side, several concurrent tasks are executed
on the available hardware, either with or without the help of special operating systems,
sometimes statically or dynamically scheduled to the available hardware platforms, and
sometimes tightly coupled with the hardware platforms themselves (implementing memory
barriers etc). Finally, many non-functional aspects have to be considered as well like the
energy consumption, the reliability, and most important the prediction of the worst-case
computation times. As many embedded systems are real-time systems, it is not sufficient
to perform the right computations; in addition, the results have to be available at the right
point of time to achieve the desired functionality. Besides, the direct interaction with other
systems that often have a continuous behavior requires to consider cyber-physical systems.
Since many embedded systems are used in safety-critical applications, incorrect or delayed
behaviors are unacceptable, so that formal verification is often applied. Since, moreover, the
development costs have to be minimized, new design flows that allow the development of
safe and flexible embedded systems are of high interest.

For these reasons, model-based design flows became popular where one starts with an
abstract model of the embedded system. Many languages are discussed for such model-based
approaches, but most of them are based on only a few models of computation. A model of
computation thereby defines which, when and why an action of the system takes place taking
into account the timeliness, the causality, and the concurrency of the computations. Classic
models of computation are dataflow process networks, where computations can take place as
soon as sufficient input data is available, synchronous systems, which are triggered by clocks,
discrete-event based systems, where each process is sensitive to the occurrence of a set of
certain events, and cyber-physical systems whose behavior consists of discrete and continuous
transitions (the latter are determined by differential equations).

It is not surprising that all models of computation have their advantages and disadvantages.
For example, dataflow process networks can be naturally mapped to distributed systems
and have a robust form of asynchronous concurrency provided that the nodes implement
continuous functions (as required for Kahn networks). Synchronous systems are the perfect
choice for implementing deterministic systems with predictable real-time behaviors on
platforms having a local control (like clocks in digital hardware circuits). Discrete-event
based systems are ideal for efficiently simulating systems, since the events directly trigger
the next actions.

Many years of research were necessary to understand the above mentioned models of
computation in depth to be able to develop corresponding programming languages, compilers
and verification techniques. The synchronous programming community made substantial
progress in this area: Today, the synchronous programming languages have precise formal

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Stephen A. Edwards, Alain Girault, and Klaus Schneider 119

semantics which are supported by efficient compiler techniques. Moreover, synchronous
languages provide high-level descriptions of real-time embedded systems so that all relevant
requirements for a model-based design flow are fulfilled. There are also graphical versions of
these textual languages, notably Safe State Machines (developed from Argos and SyncCharts),
and there are commercial versions like SCADE. The SCADE tool provides a code generator
certified against DO 178-B, which makes it particularly attractive for the aircraft sector.

Quoting Benveniste et al.: Today, synchronous languages have been established as a
technology of choice for modeling, specifying, validating, and implementing real-time embedded
applications. The paradigm of synchrony has emerged as an engineer-friendly design method
based on mathematically sound tools [Proceedings of the IEEE, January 2003].

Open Problems
Despite the incredible progress made in the past, even the combination of the classic
synchronous languages Esterel, Lustre, and Signal is not yet fully understood. All these
languages are based on the abstraction of physical time to a logical time, where each logical
step of time may consist of finitely many executions of actions that are – at least in the
programming model – executed in zero time. Such a logical step of the computation matches
naturally with an interaction of a reactive system with its environment. However, looking
at the details, one can observe that the semantics differ: for example, Lustre and Signal
are not based on a single clock like Esterel, and while Esterel’s and Lustre’s semantics are
operational and can therefore be defined by least fixpoints, Signal is rather declarative and
requires a more complicated analysis before code generation.

Since different models of computation have different advantages and disadvantages, their
combination becomes more and more important. This does also imply the translation and
communication between models of computations. For example, so-called globally asynchronous,
locally synchronous (GALS) systems have been developed, mixing both asynchronous and
synchronous computations. For model-based designs starting from synchronous languages,
special forms of synchronous systems have been defined in terms of the (weakly) endochronous
systems. Intuitively, endochronous systems are synchronous systems that can determine from
which input ports the values are expected for the next reaction step (and therefore they can
derive the absence of other inputs, and they do not need the explicit knowledge of absence).
For this reason, one can integrate endochronous systems in an asynchronous environment
without destroying their synchronous behaviors.

Similar techniques are used for generating distributed systems from high-level descriptions
(like synchronous programs) which lead, e.g., also to first approaches to multithreaded code
generation from synchronous languages, which becomes more important due to the advent of
multicore processors in embedded system design. More progress is needed and will likely
be available in the near future in combining these different forms of discrete models of
computations.

The combination of synchronous, endochronous, or asynchronous discrete systems with
continuous behaviors to describe cyber-physical systems is still in its infancies. Of course,
there are many languages for modeling, simulating, and even formally verifying these systems,
but most of these languages lack of a formal semantics, and essentially none of them lends
itself for a model-based design like synchronous languages. The generalization of the concepts
of synchronous systems to polychronous systems, and even further to cyber-physical systems
will be a challenge for future research.

13471



120 13471 – Synchronous Programming

Results of the Seminar
The major goal of the seminar was therefore to allow researchers and practitioners in the
field of models of computation and model-based design to discuss their different approaches.
Desired results are new combinations of these techniques to form new language concepts
and design flows that are able to choose the best suited language for particular components
and that allow engineers the sound integration of synchronous and asynchronous, discrete
and continuous, or event- and time-triggered systems. Besides this, still more research is
required for further developing compilation techniques for future manycore processors, and
even to develop special processors like the PRET architectures to obtain better estimated
time bounds for the execution of programs.

The seminar proposed here aims ar addressing all of these questions, building on a
strong and active community and expanding its scope into relevant related fields, by inviting
researchers prominent in model-based design, embedded real-time systems, mixed system
modeling, models of computation, and distributed systems. The seminar was held in the
tradition of the Synchronous Programming (SYNCHRON) workshops that are used as the
yearly meeting place for the community in this exciting field. The SYNCHRON workshops
started in 1994 at Schloss Dagstuhl, and we were proud to celebrate the 20th edition of the
workshop from November 18–22, 2013 again in Schloss Dagstuhl. Previous editions of the
SYNCHRON workshop were organized at the following locations:
2012: Le Croisic, France – http://synchron2012.inria.fr
2011: Dammarie-les-Lys – http://synchron2011.di.ens.fr
2010: Fréjus, France – http://www.artist-embedded.org/artist/Synchron-2010,2206.html
2009: Dagstuhl, Germany – http://www.dagstuhl.de/09481
2008: Aussois, France – http://synchron2008.lri.fr
2007: Bamberg, Germany
2006: L’Alpe d’Huez, France – http://www.inrialpes.fr/Synchron06/
2005: Qwara, Malta – http://www.cs.um.edu.mt/~synchrone05/
2004: Dagstuhl, Germany – http://www.dagstuhl.de/04491
2003: Luminy, France – http://www-verimag.imag.fr/PEOPLE/Nicolas.Halbwachs/

SYNCHRON03/
2002: La Londe les Maures, France – http://www-sop.inria.fr/tick/Synchron2002.html
2001: Dagstuhl, Germany – http://www.dagstuhl.de/01491
2000: Saint-Nazaire, France
1999: Hyères, France – http://www-sop.inria.fr/meije/synchron99/location.htm
1998: Gandia, Spain
1997: Roscoff, France
1996: Dagstuhl, Germany – http://www.dagstuhl.de/9650
1995: Luminy, France
1994: Dagstuhl, Germany – http://www.dagstuhl.de/9448

During its 20 years of existence, the workshop has significantly evolved: its scope has grown to
expand to many languages and techniques that are not classically synchronous, but have been
substantially influenced by the synchronous languages’ attention to timing, mathematical
rigor, and parallelism. Also, while many of the most senior synchronous language researchers
are still active, many younger researchers have also entered the fray and have taken the field
in new directions. We carefully selected the potential persons to be invited in that senior and
junior researchers of the different branches mentioned above will participate the seminar.

http://synchron2012.inria.fr
http://synchron2011.di.ens.fr
http://www.artist-embedded.org/artist/Synchron-2010,2206.html
http://www.dagstuhl.de/09481
http://synchron2008.lri.fr
http://www.inrialpes.fr/Synchron06/
http://www.cs.um.edu.mt/~synchrone05/
http://www.dagstuhl.de/04491
http://www-verimag.imag.fr/PEOPLE/Nicolas.Halbwachs/SYNCHRON03/
http://www-verimag.imag.fr/PEOPLE/Nicolas.Halbwachs/SYNCHRON03/
http://www-sop.inria.fr/tick/Synchron2002.html
http://www.dagstuhl.de/01491
http://www-sop.inria.fr/meije/synchron99/location.htm
http://www.dagstuhl.de/9650
http://www.dagstuhl.de/9448


Stephen A. Edwards, Alain Girault, and Klaus Schneider 121

This year, we had 44 participants where 23 came from France, 10 from Germany, 5 from
the USA, 2 from Sweden, 2 from UK, one from Portugal and one even from Australia. The
seminar had 33 presentations of about 45 minutes length with very active discussions2. The
presentations can be clustered in typical research areas around synchronous languages like

synchronous and asynchronous models of computation
hybrid systems
causality and other program analyses
compilation techniques
predictable software and hardware architectures

It was a pleasure to see that the synchronous programming community is still very active
in these research fields and that even after 20 years of research, there are still more and
more interesting and fruitful results to be discovered. The following sections contains short
abstracts of the presentations of the seminar, and further documents were provided by many
participants on the seminar’s webpage.

February 2014, Albert Benveniste, Stephen A. Edwards, Alain Girault, and Klaus Schneider

2 See http://www.dagstuhl.de/schedules/13471.pdf for the schedule.

13471

http://www.dagstuhl.de/schedules/13471.pdf


122 13471 – Synchronous Programming

2 Table of Contents

Executive Summary
Stephen A. Edwards, Alain Girault, and Klaus Schneider . . . . . . . . . . . . . . . 118

Overview of Talks
Desynchronization of Synchronous Systems
Yu Bai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Representing Spatially Moving Entities using Time-Variant Topologies
Fernando Barros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

From Quasi-Synchrony to LTTA
Guillaume Baudart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

BPDF: A Statically Analyzable DataFlow Model with Integer and Boolean Para-
meters
Vagelis Bebelis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Towards Discrete Controller Synthesis for the Reactive Adaptation of Autonomic
Systems
Nicolas Berthier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A slow afternoon chez PARKAS and a very fast fly (a fun talk)
Timothy Bourke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Modelyze: Embedding Equation-Based DSLs
David Broman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Index theory for Hybrid DAE Systems
Benoit Caillaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Functioning Hardware from Functional Specifications
Stephen A. Edwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Debugging and Compiler Bootstrapping with an Equation-Based Language Compiler
Peter A. Fritzson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Interactive Verification of Cyber-physical Systems
Manuel Gesell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Behavioral Equivalence of Transducers under a Fixed Protocol
Dan R. Ghica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Timing Through Types
Dan R. Ghica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Precise Timing Analysis for Direct-Mapped Caches
Alain Girault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

When the decreasing sequence fails... Improving fixpoint approximation in program
analysis
Nicolas Halbwachs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Modal Interface Automata
Gerald Luettgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Safety Issues in MARTE/CCSL Specifications
Frederic Mallet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Stephen A. Edwards, Alain Girault, and Klaus Schneider 123

In Search of a Physical Semantics of Boussinot’s Reactive Model
Louis Mandel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

From Synchronous to Timed Programming
Eleftherios Matsikoudis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Berry-Constructive Programs are Sequentially Constructive, or: Synchronous Pro-
gramming from a Scheduling Perspective
Michael Mendler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

SCCharts – Sequentially Constructive Charts
Christian Motika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Tale of Two Semantics: Clocked Dimensions in a Multidimensional Language
John Plaice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Integrated WCET estimation of multicore applications
Dumitru Potop-Butucaru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Causality Analysis for Hybrid Modelers
Marc Pouzet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Timing Analysis Enhancement for Synchronous Program
Pascal Raymond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Towards a Formal Software Design Methodology for Predictable Embedded Multi-
processor Applications
Ingo Sander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

AstraKahn: Coordination programming by extension and refinement of the Kahn
model
Alex Shafarenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

The Coroutine Model of Computation
Chris Shaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

libDGALS: A Library-based Approach to Design Dynamic GALS Systems
Wei-Tsun Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Compiling SCCharts (and other Sequentially Constructive Programs) to Hardware
and Software
Reinhard von Hanxleden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

13471



124 13471 – Synchronous Programming

3 Overview of Talks

3.1 Desynchronization of Synchronous Systems
Yu Bai (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Yu Bai

Main reference Y. Bai, K. Schneider, “Isochronous Networks by Construction Design,” to appear in Proc. of the
Design, Automation and Test in Europe Conf. (DATE’14).

In this presentation, the main threads of methodologies in desynchronization of synchronous
systems are discussed.

In the introduction, the three methods: latency-insensitive design, elastic circuits and
desynchronization of synchronous programs are covered briefly, followed by their pros and
cons. Finally a model-based approach is proposed in order to cover different design properties.

The second part of the talk introduced the simulation of synchronous elastic circuits in
SystemC as an application of the proposed model-based approach, where synthesis of elastic
modules and elastic channels are presented.

The last part discussed the endo / isochronous systems. Related concepts are compared
with examples. Finally a general theorem of correct desynchronization is introduced: if
the synchronous system P = P1‖ . . . ‖Pn (the synchronous composition of n processes) is
constructive and clock-consistent, and each process Pi is patient, then the process P can be
correctly desynchronized to a GALS system.

3.2 Representing Spatially Moving Entities using Time-Variant
Topologies

Fernando Barros (University of Coimbra, PT)

License Creative Commons BY 3.0 Unported license
© Fernando Barros

The representation of spatially moving systems is a complex task since communication is
unstructured, making it difficult to assess what are the entities currently communicating.
Given that interaction is mainly governed by the physical location of the entities, the
communication pattern changes over time requiring a dynamic topology. To solve this
problem we use the Heterogeneous Flow Systems Specification (HFSS), a modular modeling
formalism designed to represent hybrid systems with time-variant topologies. We exploit
the ability to represent dynamic topologies as an alternative to a representation using
publish/subscribe (pub/sub) communication. Additionally, we show that HFSS dynamic
topologies can support a large variety of representations taking advantage of the characteristics
of the application domains, enabling more expressive and more efficient descriptions of moving
entities.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Y. Bai, K. Schneider, ``Isochronous Networks by Construction Design,'' to appear in Proc. of the Design, Automation and Test in Europe Conf. (DATE'14).
Y. Bai, K. Schneider, ``Isochronous Networks by Construction Design,'' to appear in Proc. of the Design, Automation and Test in Europe Conf. (DATE'14).
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Stephen A. Edwards, Alain Girault, and Klaus Schneider 125

3.3 From Quasi-Synchrony to LTTA
Guillaume Baudart (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Guillaume Baudart

Joint work of Baudart, Guillaume; Bourke, Timothy; Pouzet, Marc

A Quasi-periodic System is one where every process P is periodic with a nominal period
and a jitter. The time between two ticks may thus vary between ’small margins’ during an
execution:

Signal values are sent across a bus to one-place buffers at a receiver, whence they are
sampled periodically.

In his ‘cooking book’, Paul Caspi showed how to build abstractions for implementing
discrete systems on top of this architecture. In later work, with Albert Benveniste and others,
he proposed communication protocols for preserving the discrete semantics of signal flows.

We present a brief survey of this work. In particular, we explain the simple relations
between the periods and jitters of real-time tasks, and overwriting and oversamplings of
values between writers and readers (it’s all a matter of fence posts). We generalize (slightly)
the idea of quasi-synchronous traces. We also clarify one of the communication protocols by
modelling it in the hybrid synchronous language Zelus.

3.4 BPDF: A Statically Analyzable DataFlow Model with Integer and
Boolean Parameters

Vagelis Bebelis (INRIA Grenoble – Rhône-Alpes, FR)

License Creative Commons BY 3.0 Unported license
© Vagelis Bebelis

Joint work of Bebelis, Vagelis; Fradet, Pascal; Girault, Alain; Lavigueur, Bruno
Main reference V. Bebelis, P. Fradet, A. Girault, B. Lavigueur, “BPDF: A statically analyzable dataflow model

with integer and boolean parameters,” in Proc. of the Int’l Conf. on Embedded Software
(EMSOFT’13), pp. 1–10, IEEE, 2013.

URL http://dx.doi.org/10.1109/EMSOFT.2013.6658581

Dataflow programming models are well-suited to program many-core streaming applications.
However, many streaming applications have a dynamic behavior. To capture this behavior,
parametric dataflow models have been introduced over the years. Still, such models do not
allow the topology of the dataflow graph to change at runtime, a feature that is also required
to program modern streaming applications. To overcome these restrictions, we propose
a new model of computation, the Boolean Parametric Data Flow (BPDF) model which
combines integer parameters (to express dynamic rates) and boolean parameters (to express
the activation and deactivation of communication channels). High dynamicity is provided by
integer parameters which can change at each basic iteration and boolean parameters which
can even change within the iteration.

The major challenge with such dynamic models is to guarantee liveness and boundedness.
We present static analyses which ensure statically the liveness and the boundedness of BDPF
graphs. We also introduce a scheduling methodology to implement our model on highly
parallel platforms and demonstrate our approach using a video decoder case study.

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/EMSOFT.2013.6658581
http://dx.doi.org/10.1109/EMSOFT.2013.6658581
http://dx.doi.org/10.1109/EMSOFT.2013.6658581
http://dx.doi.org/10.1109/EMSOFT.2013.6658581


126 13471 – Synchronous Programming

3.5 Towards Discrete Controller Synthesis for the Reactive Adaptation
of Autonomic Systems

Nicolas Berthier (INRIA Rennes – Bretagne Atlantique, FR)

License Creative Commons BY 3.0 Unported license
© Nicolas Berthier

About a decade ago, and due to the ever growing complexity of computer systems, a trend
appeared putting forward the automation of the difficult tasks of software systems admin-
istration. The software assigned to this work is usually called an Autonomic Management
System (AMS). It is composed of software components that evaluate the dynamics of the
system under management through measurements (e.g., workload, memory usage), take
decisions, and act upon it so that it stays in a set of acceptable states. Some components
ensure performance and availability of the system, while others manage the redundancy of
its hardware constituents to deal with errors. However, the actual design of such software
leads to inconsistencies in the taken decisions, and coordination issues.

First, to tackle this problem, we take a global view and underscore the reactive nature
of AMSs. This point of view allows us to suggest a new approach for the design of AMS
software, based on synchronous programming and discrete controller synthesis techniques
(DCS). They provide us with high-level languages for the specification of the system to
manage, as well as means for statically dealing with inconsistencies and coordination issues.
We illustrate our approach by applying our design to a realistic multi-tier application, and
present an evaluation of its practicality by using a prototype implementation.

We also exploit the preceding modeling use case to identify the needs for extending DCS
algorithms to handle quantitative properties. Over a second phase, we introduce ReaX, a new
tool currently under development allowing the synthesis of controllers for logico-numerical
reactive programs.

3.6 A slow afternoon chez PARKAS and a very fast fly (a fun talk)
Timothy Bourke (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Timothy Bourke

Joint work of Bourke, Timothy; Pouzet, Marc

We briefly present a problem posed to use by Rafel Cases and Jordi Cortadella during a lunch
organised by Gerard Berry. We propose solutions in the Simulink tool3 and our language
Zélus4.

Imagine two cars. One starts at Barcelona and travels at 50 km/hr toward Girona—a
distance of 100 km. The other starts at Girona and travels at 50 km/hr toward Barcelona.
Between the two is a fly travelling at 80 km/hr, initially from Barcelona toward Girona, and
changing direction instantaneously whenever it meets either car. There are two questions.
1. How many zig-zags does the fly do during the two hours of travel?
2. Where will the fly be when the two cars reach their destinations?

3 http://www.mathworks.com/products/simulink/
4 http://zelus.di.ens.fr

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.mathworks.com/products/simulink/
http://zelus.di.ens.fr


Stephen A. Edwards, Alain Girault, and Klaus Schneider 127

We first modelled this problem in Simulink. The number of zig-zags, to our great surprise
and pleasure, was 42! [1] (Using R2012a with the ODE45 solver and a relative tolerance of
1× 10−3.)

We then modelled the problem in Zélus. This gave an answer of 48. (Using the Sundials
CVODE solver and a custom implementation of the Illinois algorithm.)

Obviously neither answer is correct since the system is not well defined at the instant the
cars pass each other. The important questions are whether we should, or even can, statically
detect and reject such cases? or stop with an error at runtime?

References
1 D. Adams. The Hitchhiker’s Guide to the Galaxy. Pan Books, 1979.

3.7 Modelyze: Embedding Equation-Based DSLs
David Broman (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© David Broman

Joint work of Broman, David; Siek, Jeremy
Main reference D. Broman, J.G. Siek, “Modelyze: a Gradually Typed Host Language for Embedding

Equation-Based Modeling Languages,” Technical report, EECS Department, University of
California, Berkeley, UCB/EECS-2012-173, June, 2012.

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-173.html

Cyber-physical systems combine computations, networks, and physical processes. Modeling
and analysis of such systems are vital engineering techniques to mange complexity and
enable rapid prototyping. In particular, complex cyber-physical systems are heterogenous,
requiring various model of computations. A key challenge is to provide both expressive
modeling capabilities and mechanisms for analyzing these heterogenous systems. This talk
explores a solution to this challenge based on domain-specific embedded languages. We
introduce a host language, named Modelyze, in which various domain-specific modeling
languages may be embedded. The key features of Modelyze are first-class functions, which
provide a mechanism to abstract components of a model, and typed symbolic expressions,
to represent and manipulate equations and expressions. The type system for symbolic
expressions supports model-level static error checking and provides an automatic lifting
translation to provide seamless integration between the host language and the equations
represented by symbolic expressions. The type system is based on gradual typing, enabling
early static checking for model engineers while providing expressiveness for domain experts.

3.8 Index theory for Hybrid DAE Systems
Benoit Caillaud (INRIA Rennes – Bretagne Atlantique, FR)

License Creative Commons BY 3.0 Unported license
© Benoit Caillaud

Hybrid systems modelers exhibit a number of difficulties related to the mix of continuous
and discrete dynamics and sensitivity to the discretization scheme. Modular modeling, where
subsystems models can be simply assembled with no rework, calls for using Differential
Algebraic Equations (DAE). In turn, DAE are strictly more difficult than ODE. They require
sophisticated pre-processing using various notions of index before they can be submitted

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-173.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-173.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-173.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-173.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


128 13471 – Synchronous Programming

to a solver. In this talk we discussed some fundamental issues raised by the modeling and
simulation of hybrid systems involving DAEs. We focused on the following questions:

What is the proper notion of index for a hybrid DAE system?
What are the primitive statements needed for a DAE hybrid systems modeler?

The differentiation index for DAE explicitly relies on everything being differentiable.
Therefore, generalizations to hybrid systems must be done with caution. We proposed relying
on non-standard analysis for this. Non-standard analysis formalizes differential equations as
discrete step transition systems with infinitesimal time basis. We could thus bring hybrid
DAE systems to their non-standard form, where the notion of difference index can be firmly
used.

3.9 Functioning Hardware from Functional Specifications
Stephen A. Edwards (Columbia University – New York, US)

License Creative Commons BY 3.0 Unported license
© Stephen A. Edwards

URL http://www.cs.columbia.edu/~sedwards

For performance at low power, tomorrow’s chips will be mostly application-specific logic
only powered when needed. I propose synthesizing it from the functional language Haskell.
My approach – rewriting to a simple dialect that enables a syntax-directed translation –
enables parallelization and distributed memory systems. Transformations include scheduling
arithmetic operations, replacing recursion with iteration, and improving data locality by
inlining recursive types. I am developing a compiler based on these principles.

3.10 Debugging and Compiler Bootstrapping with an Equation-Based
Language Compiler

Peter A. Fritzson (Linköping University, SE)

License Creative Commons BY 3.0 Unported license
© Peter A. Fritzson

Joint work of Fritzson, Peter A.; Pop, Adrian; Sjoelund, Martin; Asghar, Adeel; Casella, Francesco
Main reference A. Pop, M. Sjölund, A. Asghar, P. Fritzson, F. Casella, “Static and Dynamic Debugging of

Modelica Models,” in Proc. of the 9th Int’l Modelica Conference (Modelica’12), pp. 443–454,
Linköping Electronic Conference Proceedings, Linköping University Electronic Press, 2012.

URL http://dx.doi.org/10.3384/ecp12076443

The high abstraction level of equation-based object-oriented languages (EOO) such as
Modelica has the drawback that programming andmodeling errors are often hard to find.
In this paper we present static andd ynamic debugging methods for Modelica models and
a debugger prototype that addresses several of those problems. The goal is an integrated
debugging framework that combines classical debugging techniques with special techniques
for equation-based languages partly based on graph visualization and interaction. The
static transformational debugging functionality addresses the problem that model compilers
are optimized so heavily that it is hard to tell the origin of an equation during runtime.
This work proposes and implements a prototype of a method that is efficient with less
than one percent overhead, yet manages to keep track of all the transformations/operations
that th ecompiler performs on the model. Modelica models often contain functions and

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.cs.columbia.edu/~sedwards
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.3384/ecp12076443
http://dx.doi.org/10.3384/ecp12076443
http://dx.doi.org/10.3384/ecp12076443
http://dx.doi.org/10.3384/ecp12076443


Stephen A. Edwards, Alain Girault, and Klaus Schneider 129

algorithm sections with algorithmic code. The fraction of algorithmic code is increasing since
Modelica, in addition to equation-based modeling, is also used for embedded system control
code as well as symbolic model transformations in applications using the MetaModelica
language extension. Our earlier work in debuggers for the algorithmic subset of Modeli
caused instrumentation-based techniques which are portable but turned out to have too
much overhead for large applications. The new debugger is the first Modelica debugger that
can operate without run-time information from instrumented code. Instead it communicates
with a low-level C-language symbolic debugger to directly extract information from a running
executable, set and remove break-points, etc. This is made possible by the new bootstrapped
OpenModelica compiler which keeps track of a detailed mapping from the high level Modelica
code down to the generated C code compiled to machine code. The debugger is operational,
supports both standard Modelica data structures and tree/list data structures, and operates
efficiently on large applications such as the OpenModelica compiler with more than 100
000 lines of code. Moreover, an integrated debugging approach is proposed that combines
static and dynamic debugging. To our knowledge, this is the first Modelica debugger that
supports transformational debugging and algorithmic code debugging. This presentation
also reports on the first bootstrapping (i.e., a compiler can compile itself) of a full-scale
EOO (Equation-based Object-Oriented) modeling language such as Modelica. The Modelica
language has been modeled/implemented in the OpenModelica compiler (OMC) using an
extended version of Modelica called MetaModelica. OMC models the MetaModelica language
and is now compiling itself with good performance. Benefits include a more extensible
maintainable compiler, also making it easier to add functionality such as the above mentioned
debugging support.

References
1 Martin Sjölund and Peter Fritzson. Debugging Symbolic Transformations in Equation Sys-

tems. In Proceedings of the 4th International Workshop on Equation-Based Object- Ori-
ented Modeling Languages and Tools, (EOOLT’2011), Zürich, Switzerland, Sept 5, 2011.
Published by Linköping University Electronic Press, http://www.ep.liu.se/ecp_home/
index.en.aspx?issue=056, Sept 2011.

2 Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson, Francesco Casella. Static and
Dynamic Debugging of Modelica Models. In Proceedings of the 9th International Modelica
Conference (Modelica’2012), Munich, Germany, Sept. 3–5, 2012.

3 Martin Sjölund, Peter Fritzson, and Adrian Pop. Bootstrapping a Modelica Compiler aim-
ing at Modelica 4. In Proceedings of the 8th International Modelica Conference (Model-
ica’2011), Dresden, Germany, March. 20–22, 2011.

3.11 Interactive Verification of Cyber-physical Systems
Manuel Gesell (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Manuel Gesell

Joint work of Gesell, Manuel; Li, Xian; Schneider, Klaus;

Cyber-physical systems (CPS) are widely used in safety-critical applications, there is a
crucial need for modeling, simulation, and verification. Numerous approaches and tools
for CPS verification have already been proposed in the past. Most of them concentrate on
model-checking of finite abstractions of restricted classes of CPS. Interactive verification is

13471

http://www.ep.liu.se/ecp_home/index.en.aspx?issue=056
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=056
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


130 13471 – Synchronous Programming

an alternative approach that does not suffer from the high complexity of decision procedures,
which is well-suited for CPS verification.

Recently, the synchronous Quartz language has been extended for modeling cyber-
physical systems, and a corresponding interactive theorem prover AIFProver is currently in
development. It combines both model checking and theorem proving ideas, and supports
compositional verification. The prototypical version has already been proved to be applicable
to large discrete systems and a well-known benchmark of cyber-physical systems. Here, we
will demonstrate the capability of the interactive verification approach and tool worked out
so far, together with the key techniques remain to be solved in the near future.

3.12 Behavioral Equivalence of Transducers under a Fixed Protocol
Dan R. Ghica (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Dan R. Ghica

Joint work of Ghica, Dan R.; Fredriksson, Olle; Al-Zobaidi, Zaid

This talk gives an overview of the “Geometry of Synthesis” programme of research, concerning
the synthesis of hardware descriptions from specifications written in higher-order, imperative,
recursive, concurrent programming languages. In the context of hardware synthesis we
present a new5 technique for aggressive minimisation of state machines taking into account
constrained environments, which we call “coherent optimisation”. The main properties of the
technique (soundness and compositionality) are proved formally using the proof assistant
Agda.

3.13 Timing Through Types
Dan R. Ghica (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Dan R. Ghica

Joint work of Ghica, Dan R.; Smith, Alex

We introduce a new general notion of resource based on Bounded Linear Logic (BLL) which
has the algebraic structure of a semiring. For timing we use a semiring of schedules which
are multisets of contractive linear affine transformation. In order to prove the coherence of
the type system we describe a categorical model framework. We present, in the concrete
case of timing, a simple type inference algorithm based on generating systems of constraints
solvable by an SMT such as Zr.

5 As far as we know.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Stephen A. Edwards, Alain Girault, and Klaus Schneider 131

3.14 Precise Timing Analysis for Direct-Mapped Caches
Alain Girault (INRIA Grenoble – Rhône-Alpes, FR)

License Creative Commons BY 3.0 Unported license
© Alain Girault

Joint work of Andalam, Sidharta; Sinha, Roopak; Roop, Partha; Girault, Alain; Reineke, Jan
Main reference S. Andalam, R. Sinha, P. S. Roop, A. Girault, J. Reineke, “Precise timing analysis for

direct-mapped caches,” in Proc. of the 50th Annual Design Automation Conf. (DAC’13),
pp. 148:1–148:10, ACM, 2013; available as pre-print at HAL.

URL http://dx.doi.org/10.1145/2463209.2488917
URL http://hal.archives-ouvertes.fr/hal-00842368

Safety-critical systems require guarantees on their worst-case execution times. This requires
modelling of speculative hardware features such as caches that are tailored to improve the
average-case performance, while ignoring the worst case, which complicates the Worst Case
Execution Time (WCET) analysis problem. Existing approaches that precisely compute
WCET suffer from state-space explosion. In this paper, we present a novel cache analysis
technique for direct-mapped instruction caches with the same precision as the most precise
techniques, while improving analysis time by up to 240 times. This improvement is achieved
by analysing individual control points separately, and carrying out optimisations that are
not possible with existing techniques.

3.15 When the decreasing sequence fails... Improving fixpoint
approximation in program analysis

Nicolas Halbwachs (VERIMAG – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Nicolas Halbwachs

Joint work of Halbwachs, Nicolas; Henry, Julien
Main reference N. Halbwachs, J. Henry, “When the decreasing sequence fails,” in Proc. of the 19th Int’l Symp. on

Static Analysis (SAS’12), LNCS, Vol. 7460, pp. 198–213, Springer, 2012; available as pre-print at
HAL.

URL http://dx.doi.org/10.1007/978-3-642-33125-1_15
URL http://hal.archives-ouvertes.fr/hal-00734340

The classical method for program analysis by abstract interpretation consists in computing
a increasing sequence with widening, which converges towards a correct solution, then
computing a decreasing sequence of correct solutions without widening. It is generally
admitted that, when the decreasing sequence reaches a fixpoint, it cannot be improved
further. As a consequence, all efforts for improving the precision of an analysis have been
devoted to improving the limit of the increasing sequence. In this paper, we propose a
method to improve a fixpoint after its computation. The method consists in projecting the
solution onto well-chosen components and to start again increasing and decreasing sequences
from the result of the projection.

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2463209.2488917
http://dx.doi.org/10.1145/2463209.2488917
http://dx.doi.org/10.1145/2463209.2488917
http://dx.doi.org/10.1145/2463209.2488917
http://hal.archives-ouvertes.fr/hal-00842368
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33125-1_15
http://dx.doi.org/10.1007/978-3-642-33125-1_15
http://dx.doi.org/10.1007/978-3-642-33125-1_15
http://dx.doi.org/10.1007/978-3-642-33125-1_15
http://hal.archives-ouvertes.fr/hal-00734340


132 13471 – Synchronous Programming

3.16 Modal Interface Automata
Gerald Luettgen (Universität Bamberg, DE)

License Creative Commons BY 3.0 Unported license
© Gerald Luettgen

Joint work of Luettgen, Gerald; Vogler, Walter

Several modern interface theories for formally modelling and reasoning about component-
based, concurrent systems have been built at the crossroads of de Alfaro and Henzinger’s
Interface Automata (IA) and Larsen’s Modal Transition Systems (MTS). Two established
examples are Nyman et al.s IOMTS and Bauer et al.s MIO, which differ in their view of
component compatibility: IOMTS adopts an optimistic view leading to a more permissive
parallel composition operator than MIO’s, but has technical shortcomings regarding (non-
)monotonicity of refinement and the treatment of internal computation. In addition, both
approaches neither consider conjunction on interfaces nor do they allow extending alphabets
when refining system components, which are practically desired properties that enable one
to specify and design systems incrementally.

This talk presents the novel interface theory Modal Interface Automata (MIA), which
addresses the above shortcomings, and discusses MIA’s design decisions, trade-offs and
limitations. The reported research is joint work with Walter Vogler of the University of
Augsburg, Germany.

3.17 Safety Issues in MARTE/CCSL Specifications
Frederic Mallet (INRIA Sophia Antipolis – Méditerranée, FR)

License Creative Commons BY 3.0 Unported license
© Frederic Mallet

Joint work of Mallet, Frederic; Millo, Jean-Vivien

The Clock Constraint Specification Language (CCSL) proposes a rich polychronous time
model dedicated to the specification of constraints on logical clocks: i.e., sequences of event
occurrences. A priori independent clocks are progressively constrained through a set of clock
operators that define when an event may occur or not. These operators can be described as
labeled transition systems that can potentially have an infinite number of states. A CCSL
specification can be scheduled by performing the synchronized product of the transition
systems for each operator. Even when some of the composed transition systems are infinite,
the number of reachable states in the product may still be finite: the specification is safe.
The purpose of this paper is to propose a sufficient condition to detect that the product is
actually safe. This is done by abstracting each CCSL constraint (relation and expression) as
a marked graph. Detecting that some specific places, called counters, in the resulting marked
graph are safe is sufficient to guarantee that the composition is safe.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Stephen A. Edwards, Alain Girault, and Klaus Schneider 133

3.18 In Search of a Physical Semantics of Boussinot’s Reactive Model
Louis Mandel (College de France, Paris, FR)

License Creative Commons BY 3.0 Unported license
© Louis Mandel

Joint work of Aguado, Joaquin; Barros, Fernando; Baudart, Guillaume; Berry, Gérard; Bourke, Timothy;
Boussinot, Frédéric; Caillaud, Benoit; de Simone, Robert; Delaval, Gwenaël; Edwards, Stephen;
Ghica, Dan; Girault, Alain; Guatto, Adrien; Caillaud, Benoit; Lüttgen, Gerald; Maraninchi,
Florence; Mendler, Michael; Pasteur, Cédric; Potop-Butucaru, Dumitru; Pouzet, Marc; Schneider,
Klaus; Vuillemin, Jean

Gerard Berry showed earlier in the morning that the semantics of Esterel is given by electricity
in circuits. This talk describes the search for a physical semantics of Boussinot’s Reactive
Model.

The first part of the talk presents the reactive model through the implementation in
ReactiveML of the artwork “Carres Noir et Blanc” of Roger Vilder6.

The second part presents the five points of the reactive model which guarantee that all
programs are causal by construction:
1. add a delay to the reaction to absence,
2. no strong abort,
3. handler of a weak preemption is executed with a delay,
4. add a delay to read the value of a signal,
5. always favour absence of signals.
The last point shows that the reactive model is not a subset of Esterel. For example the
following program is not causal in Esterel but is correct in the reactive model: signal s in
present s then emit s else ()

Therefore, electrical circuits do not provide a physical implementation of the reactive
model. The assumption presented in this talk is that the reactive model can be implemented
with circuits running with water instead of electricity.

Finally, a simulator of this kind of circuit implemented in ReactiveML is presented.

3.19 From Synchronous to Timed Programming
Eleftherios Matsikoudis (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Eleftherios Matsikoudis

High-level programming languages have allowed the programmer to ignore the specifics of
the underlying execution platform, and focus just on the logic of the intended computational
process, effectively decoupling programs from systems. Programs have become models of
the systems that execute them. And conditioned on the absence of faults, any two systems
executing the same program will have the same behaviour. This is true for sequential
programs, and to some extent, for concurrent programs as well. But what about real-time
programs?

In a real-time program, the programmer will typically specify the intended timing
properties by direct access to the hardware, or use of available drivers specific to the targeted
execution platform. The program becomes part of the system, and different programs

6 http://www.rogervilder.com/projets/carre_16.html

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.rogervilder.com/projets/carre_16.html


134 13471 – Synchronous Programming

actor Watchdog {
interface {

initialize : input channel (& channel unit)
reset : output channel unit

}

clear : & channel unit

thread () {
wait initialize ? in [time , ...)

clear = initialize

wait *clear? in (time , time + 1.0)
skip

else
reset = {}

}
}

Figure 1 The definition of a trivial watchdog actor in act.

are required to specify the same behaviour on different execution platforms. Real-time
programming is still today low-level programming.

Our goal is a high-level programming language for timed systems. We use the term
“timed” quite liberally to refer to any system that will determinately order its events relative
to some physical or logical clock. We are interested in timed systems that are determinate
and causal (see [2], [3]).

We present the basic features of a programming language that we call act. act is an
actor-oriented timed programming language. An act program starts with the execution
of the actor main. main can create other actors to form a dynamically evolving network
of conceptually concurrent, memory isolated components that communicate solely through
message passing. All actors in a program share a global notion of logical time, directly
accessible in a program via the keyword time. The language allows for polymorphism in the
type of time. Logical time advances through the use of temporal statements, such as wait.
Non-temporal statements execute in zero logical time.

Figure 1 shows the definition of an actor that implements the functionality of a rather
trivial watchdog in act. The actor consists of
1. a block of channel definitions, making up the interface of the actor,
2. an uninitialized variable definition local to the actor, representing the state of the actor,

and
3. the actor’s thread of control, specifying the behaviour of the actor.
Once created, the Watchdog actor will wait until there is an event at the “initialize” channel,
including the time instance at which the actor was created. It will then wait until there is an
event at the channel whose address the actor was initialized with, and send a reset signal if
there is no such event within 1.0 units of time from the time of initialization.

The watchdog example is interesting because it represents a determinate, causal component
that does not preserve the prefix relation on discrete-event signals, and thus, cannot be



Stephen A. Edwards, Alain Girault, and Klaus Schneider 135

implemented as a data flow actor.
The theoretical basis for the design of act, and specifically, the choice of the temporal

statement wait, is its completeness over all synchronous causal functions on discrete-event
signals.

act adopts the zero-execution-time hypothesis common to all synchronous programming
languages, and many of its constructs are inspired by Esterel. But it allows for time to be
dense, and unlike Esterel, treats conditionals as sequential statements in the resolution of
causal loops.

By relating logical to physical time, according to the PTIDES paradigm (see [5], [1]), act
can be used to program real-time systems. The algorithmic approach presented in [4] can be
extended to suitably chosen fragments of the language to perform the schedulability analysis
necessary for hard real-time applications.

References
1 John C. Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and Jia Zou. Distrib-

uted real-time software for cyber-physical systems. Proceedings of the IEEE, 100(1):45–59,
January 2012.

2 Eleftherios Matsikoudis and Edward A. Lee. The fixed-point theory of strictly causal func-
tions. Technical Report UCB/EECS-2013-122, EECS Department, University of California,
Berkeley, Jun 2013.

3 Eleftherios Matsikoudis and Edward A. Lee. On fixed points of strictly causal functions.
Víctor Braberman and Laurent Fribourg, editors, Formal Modeling and Analysis of Timed
Systems, volume 8053 of Lecture Notes in Computer Science, pages 183–197. Springer Berlin
Heidelberg, 2013.

4 Eleftherios Matsikoudis, Christos Stergiou, and Edward A. Lee. On the schedulability of
real-time discrete-event systems. In Embedded Software (EMSOFT), 2013 Proceedings of
the International Conference on, pages 1–15, 2013.

5 Yang Zhao, Jie Liu, and Edward A. Lee. A programming model for time-synchronized
distributed real-time systems. In Real Time and Embedded Technology and Applications
Symposium, 2007. RTAS ’07. 13th IEEE, pages 259–268, April 2007.

3.20 Berry-Constructive Programs are Sequentially Constructive, or:
Synchronous Programming from a Scheduling Perspective

Michael Mendler (Universität Bamberg, DE)

License Creative Commons BY 3.0 Unported license
© Michael Mendler

Joint work of Aguado, Joaquín; von Hanxleden, Reinhard; Fuhrmann, Insa
Main reference J. Aguado, M. Mendler, R. von Hanxleden, I. Fuhrmann, “Grounding Synchronous Deterministic

Concurrency in Sequential Programming,” to appear in Proc. of European Symposium on
Programming (ESOP’14), Grenoble, April 2014.

We introduce an abstract value domain I(D) and associated fixed point semantics for reasoning
about concurrent and sequential variable valuations within a synchronous cycle-based model
of computation. We use this domain for a new behavioural definition of Berry’s causality
analysis for Esterel in terms of approximation intervals. This gives a compact and more
uniform understanding of causality and generalises to other data-types. We also prove
that Esterel’s ternary domain and its semantics is conservatively extended by the recently
proposed sequentially constructive (SC) model of computation. This opens the door to a
direct mapping of Esterel’s signal mechanism into boolean variables that can be set and reset

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
J. Aguado, M. Mendler, R. von Hanxleden, I. Fuhrmann, ``Grounding Synchronous Deterministic Concurrency in Sequential Programming,'' to appear in Proc. of European Symposium on Programming (ESOP'14), Grenoble, April 2014.
J. Aguado, M. Mendler, R. von Hanxleden, I. Fuhrmann, ``Grounding Synchronous Deterministic Concurrency in Sequential Programming,'' to appear in Proc. of European Symposium on Programming (ESOP'14), Grenoble, April 2014.
J. Aguado, M. Mendler, R. von Hanxleden, I. Fuhrmann, ``Grounding Synchronous Deterministic Concurrency in Sequential Programming,'' to appear in Proc. of European Symposium on Programming (ESOP'14), Grenoble, April 2014.


136 13471 – Synchronous Programming

arbitrarily within a tick. We illustrate the practical usefulness of this mapping by discussing
how signal reincarnation is handled efficiently by this transformation, which is of complexity
that is linear in program size, in contrast to earlier techniques that had, at best, potentially
quadratic overhead.

3.21 SCCharts – Sequentially Constructive Charts
Christian Motika (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Christian Motika

Joint work of von Hanxleden, Reinhard; Duderstadt, Bjoern; Motika, Christian; Smyth, Steven; Mendler,
Michael; Aguado, Joaquin; Mercer, Stephen; O’Brien, Owen

Main reference R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mercer, O.
O’Brien, “SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications,”
Technical Report 1311, Christian-Albrechts-Universitaet zu Kiel, Department of Computer Science,
Dec. 2013.

URL http://www.informatik.uni-kiel.de/uploads/tx_publication/tr-1311-bericht.pdf

We present a new visual language, SCCharts, designed for specifying safety-critical reactive
systems. SCCharts uses a new statechart notation similar to Harel Statecharts [3] and
provides deterministic concurrency based on a synchronous model of computation (MoC),
without restrictions common to previous synchronous MoCs like the Esterel constructive
semantics [2]. Specifically, we lift earlier limitations on sequential accesses to shared variables,
by leveraging the sequentially constructive MoC [4]. Thus SCCharts in short are SyncCharts
[1] syntax plus Sequentially Constructive semantics.

The key features of SCCharts are defined by a very small set of elements, the Core
SCCharts, consisting of state machines plus fork/join concurrency.

Conversely, Extended SCCharts contain a rich set of advanced features, such as different
abort types, signals, history transitions, etc., all of which can be reduced via semantics
preserving model-to-model (M2M) transformations into Core SCCharts. Extended SCCharts
features are syntactic sugar because they can be expressed by a combination of Core SCCharts
features.

On the one hand this eases the compilation and makes it more robust because it reduces
its complexity. On the other hand, using Extended SCCharts features, a modeler is able
to abstract away complexity of his or her SCCharts model which increases robustness and
readability of a model. This approach enables a simple yet efficient compilation strategy and
aids verification and certification.

References
1 C. Andre. Semantics of SyncCharts. Technical Report ISRN I3S/RR-2003-24-FR, I3S

Laboratory, Sophia-Antipolis, France, April 2003.
2 G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,

Language, and Interaction: Essays in Honour of Robin Milner, pages 425-454, Cambridge,
MA, USA, 2000.

3 D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming, 8(3):231-274, June 1987.

4 R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S.
Mercer, and O. O’Brien. Sequentially Constructive Concurrency – A conservative extension
of the synchronous model of computation. In Proc. Design, Automation and Test in Europe
Conference (DATE’13), Grenoble, France, March 2013.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://d-nb.info/1047415542
http://d-nb.info/1047415542
http://d-nb.info/1047415542
http://d-nb.info/1047415542
http://www.informatik.uni-kiel.de/uploads/tx_publication/tr-1311-bericht.pdf


Stephen A. Edwards, Alain Girault, and Klaus Schneider 137

3.22 A Tale of Two Semantics: Clocked Dimensions in a
Multidimensional Language

John Plaice (The University of New South Wales, AU)

License Creative Commons BY 3.0 Unported license
© John Plaice

Joint work of Plaice, John; Beck, Jarryd; Mancilla, Blanca; Wadge, William

In 1975, William W. Wadge and Edward A. Ashcroft introduced the language Lucid, in
which the value of a variable was a stream. The successors to Lucid took two paths.

The first path, taken by Lustre, was to restrict the language so that a stream could be
provided with a timed semantics, where the i-th element of a stream appeared with the i-th
tick of the stream’s clock, itself a Boolean stream. Today, Lustre is at the core of the Scade
software suite, the reference tool for avionics worldwide.

The second path was to generalize the language to include multidimensional streams and
higher-order functions. The latest language along this path is TransLucid, a higher-order
functional language in which variables define arbitrary-dimensional arrays, where any atomic
value may be used as a dimension, and a multidimensional runtime context is used to index
the variables.

This talk will show how the two paths are being brought back together, with the
introduction of clocked dimensions to TransLucid, thereby allowing for synchronous, reactive
programming to take place within the context of a full-fledged higher-order declarative
language.

3.23 Integrated WCET estimation of multicore applications
Dumitru Potop-Butucaru (INRIA – Siège, FR)

License Creative Commons BY 3.0 Unported license
© Dumitru Potop-Butucaru

Joint work of Potop-Butucaru, Dumitru; Puaut, Isabelle
Main reference D. Potop-Butucaru, I. Puaut, “Integrated Worst-Case Execution Time Estimation of Multicore

Applications,” in Proc. of the 13th Int’l Workshop on Worst-Case Execution Time Analysis,
OASIcs, Vol. 30, pp. 21–31, Schloss Dagstuhl/Dagstuhl Publishing, 2013.

URL http://dx.doi.org/10.4230/OASIcs.WCET.2013.21

Worst-case execution time (WCET) analysis has reached a high level of precision in the
analysis of sequential programs executing on single-cores. In this paper we extend a state-of-
the-art WCET analysis technique to compute tight WCETs estimates of parallel applications
running on multi-cores. The proposed technique is termed integrated because it considers
jointly the sequential code regions running on the cores and the communications between
them. This allows to capture the hardware effects across code regions assigned to the same
core, which significantly improves analysis precision. We demonstrate that our analysis
produces tighter execution time bounds than classical techniques which first determine the
WCET of sequential code regions and then compute the global response time by integrating
communication costs. Comparison is done on two embedded control applications, where the
gain is of 21% on average.

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/OASIcs.WCET.2013.21
http://dx.doi.org/10.4230/OASIcs.WCET.2013.21
http://dx.doi.org/10.4230/OASIcs.WCET.2013.21
http://dx.doi.org/10.4230/OASIcs.WCET.2013.21


138 13471 – Synchronous Programming

3.24 A Causality Analysis for Hybrid Modelers
Marc Pouzet (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Marc Pouzet

Joint work of Pouzet, Marc; Benveniste, Albert; Bourke, Timothy; Caillaud, Benoit; Pagano, Bruno

Explicit hybrid systems modelers like Simulink/Stateflow allow for programming both discrete-
and continuous-time behaviors with complex interactions between them. A key issue in their
compilation is the static detection of algebraic or causality loops. Such loops can cause
simulations to deadlock, are a source of compilation bugs and prevent the generation of
statically scheduled code.

This paper addresses this issue for a hybrid modeling language that combines synchronous
Lustre-like data-flow equations with Ordinary Differential Equations (ODEs). We introduce
the operator last(x) for the left-limit of a signal x. This operator is used to break causality
loops and permits a uniform treatment of discrete and continuous state variables. The
semantics relies on non-standard analysis, defining an execution as a sequence of infinitesimally
small steps. A signal is deemed causally correct when it can be computed sequentially and
only progresses by infinitesimal steps outside of discrete events. The causality analysis takes
the form of a simple type system. In well-typed programs, signals are proved continuous
during integration and can be translated into sequential code for integration with off-the-shelf
ODE solvers.

The effectiveness of this system is illustrated with several examples written in Zelus, a
Lustre-like synchronous language extended with hierarchical automata and ODEs.

3.25 Timing Analysis Enhancement for Synchronous Program
Pascal Raymond (VERIMAG – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Pascal Raymond

Joint work of Raymond, Pascal; Maiza, Claire

In real-time systems, an upper-bound on the execution time is mandatory to guarantee
all timing constraints: a bound on the Worst-Case Execution Time (WCET). High-level
synchronous approaches are usually used to design hard real-time systems and specifically
critical ones. Timing analysis used for WCET estimates are based on the executable binary
program. Thus, a large part of semantic information, known at the design level, is lost due
to the compilation scheme (typically organized in two stages, from high-level model to C,
and then binary code). In this paper, we aim at improving the estimated WCET by taking
benefit from high-level information. We integrate an existing verification tool to check the
feasibility of the worst-case path. Based on a realistic example, we show that there is a large
possible improvement for a reasonable analysis time overhead.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Stephen A. Edwards, Alain Girault, and Klaus Schneider 139

3.26 Towards a Formal Software Design Methodology for Predictable
Embedded Multiprocessor Applications

Ingo Sander (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
© Ingo Sander

The presentation addresses the increasing complexity of software design for multiprocessor
embedded systems by proposing a design methodology that combines a formal foundation
based on the theory of models of computation (MoCs) and the industrial system design
language SystemC. In particular a software synthesis flow is presented that starts with an
executable system model and yields an implementation on a multiprocessor system-on-chip.

The ForSyDe (Formal System Design) methodology provides the designer with SystemC
modeling libraries that lead to executable system models from which abstract analyzable
models can be extracted. Using these abstract models, the design space exploration, mapping
and synthesis process can make use of the rich set of existing MoC theory by for instance
incorporating scheduling and buffer optimization techniques to yield an efficient implementa-
tion on a multiprocessor system-on-chip. The presentation will also discuss to what extent
performance guarantees can be given provided a predictable architecture is used as target
architecture.

3.27 AstraKahn: Coordination programming by extension and
refinement of the Kahn model

Alex Shafarenko (University of Hertfordshire, GB)

License Creative Commons BY 3.0 Unported license
© Alex Shafarenko

This talk introduces some concepts of the coordination language AstraKahn which can be
used for programming synchronous and asynchronous systems within the same framework.
The talk dwells primarily on the bottom layer of the AstraKhan stack, which is called the
Topology and Progress Layer. The concept of pressure-based progress control is explained
and the coordination of pressure via state-machine based synchronisers is discussed. This is
work in progress. The current definition is available in the form of Arxiv preprint [1].

References
1 Alex Shafarenko AstraKahn: A Coordination Language for Streaming Networks. arXiv.org

arXiv:1306.6029v3 [cs.PL], 2013

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1306.6029


140 13471 – Synchronous Programming

3.28 The Coroutine Model of Computation
Chris Shaver (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Chris Shaver

Joint work of Shaver, Chris; Lee, Edward A.
Main reference C. Shaver, E.A. Lee. “The coroutine model of computation,” in R.B. France et al. (eds.) “Model

Driven Engineering Languages and Systems”, LNCS, Vol. 7590, pp. 319–334, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33666-9_21

The Coroutine Model of Computation, defined by Shaver and Lee [5], is a formalism
that generalizes other control-oriented models such as state machines, modal models, and
imperative programs into a denotational language. Specifically, this denotational language
is expressed in terms of the Modular Actor Interfaces of Tripakis et al. [6]. The semantics
of this model defines a general interface for Continuation Actors, Actors that in addition
to the usual inputs, outputs, and state have control-oriented features: control entry points,
control exit locations, and the ability to suspend, terminate, or resume in the context of their
containing model. These Continuation Actors can be assembled into a transition system,
forming a Coroutine Model.

As opposed to conventional formalisms for state machines, the decision whether or how to
transition control, typically codified in a transition guard language, is instead formally part
of the interface of each individual Continuation Actor, called its ’enter’ function. This idea is
derived from Andre’s semantics for SyncCharts[1, 2], where he makes a similar association of
control decisions with Reactive Cells. Consequently, a simple denotational semantics is given
for a Coroutine Model that traverses a sequence of Coroutine Actors, firing each to produce
outputs, and deciding how to proceed, whether to suspend, or whether to terminate after
executing each Coroutine Actor by using the ’enter’ function in its interface.

The semantics of the Coroutine Model are additionally extended to accommodate a
non-strict form of operation. Given partial information about inputs, in the form of a domain
representation, the domain of the power set with inverse inclusion is used to the represent
partial information about the finite set of possible control decisions for each Continuation
Actor. With this definition of partial control decisions at each Continuation Actor, non-strict
operation can be defined on the level of the whole Coroutine Model. A simple denotational
definition is given for this behavior, and it is proven under this definition that if each contained
Continuation Actor defines its outputs and control decisions as monotonic functions of its
inputs (in the domain-theoretic sense), the semantics of the whole model will define its
outputs and its ultimate control decision as monotonic functions of its inputs.

This monotonicity property is important in the context of hierarchical and heterogeneous
models as a form of compositionality. In particular, a collection of such monotonic Coroutine
Models can be put together in a mutual constructive fixed-point computation over their
connected inputs and outputs, such as that of the Synchronous Reactive model defined
by Edwards [3]. This property allows the Coroutine Model of computation to give the
semantic quotient of control-oriented synchronous languages over fixed-point computations,
providing a theoretical framework for expressing models such as SyncCharts [1] as hierarchical
compositions of Coroutine Models and Synchronous Reactive Models, as is done with the
KlePto translation of Motika [4].

References
1 C. Andre. SyncCharts: A visual representation of reactive behaviors. Rapport de recherche

tr95-52, Universite de Nice-Sophia Antipolis, France, 1995.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-33666-9_21
http://dx.doi.org/10.1007/978-3-642-33666-9_21
http://dx.doi.org/10.1007/978-3-642-33666-9_21


Stephen A. Edwards, Alain Girault, and Klaus Schneider 141

2 C. Andre. Computing synccharts reactions. Electronic Notes in Theoretical Computer Sci-
ence, 88(33):3–19, 2004.

3 S.A. Edwards. The Specification and Execution of Heterogeneous Synchronous Reactive
Systems. Technical report, University of California Berkeley, 1997.

4 C. Motika. Semantics and Execution of Domain Specific Models—KlePto and an Execu-
tion Framework. Diploma thesis, Christian-Albrechts-Universitat zu Kiel, Department of
Computer Science, December 2009.

5 C. Shaver, and E. A. Lee. The coroutine model of computation. Model Driven Engineering
Languages and Systems. Springer Berlin Heidelberg, 2012. 319-334.

6 S. Tripakis, C. Stergiou, C. Shaver, and E.A. Lee. A modular formal se-
mantics for Ptolemy. Mathematical Structures in Computer Science, 23, pp 834-881.
doi:10.1017/S0960129512000278.

3.29 libDGALS: A Library-based Approach to Design Dynamic GALS
Systems

Wei-Tsun Sun (INRIA Grenoble – Rhône-Alpes, FR)

License Creative Commons BY 3.0 Unported license
© Wei-Tsun Sun

We tackle the problem of designing and programming dynamic and reactive systems with
four objectives: being based on a formal model of computation, using different types of
concurrency, being efficient, and tolerating failures. The challenge lies in the fact that
good formal models with very high level of abstraction generally result in non-efficient
implementations. We propose a C based library approach following the formal Dynamic
Globally Asynchronous Locally Synchronous (DGALS) model of computation. We show how
a DGALS system can be dynamically constructed from concurrent behaviors on distributed
platforms thanks to the DGALS paradigm. Finally, our experimental results clearly indicate
the large execution time and memory footprint gains compared to the current state of the
art approaches.

3.30 Compiling SCCharts (and other Sequentially Constructive
Programs) to Hardware and Software

Reinhard von Hanxleden (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Reinhard von Hanxleden

SCCharts [3] extend SyncCharts [1] with sequential constructiveness (SC) [2] and other
features. We developed a compilation chain that first, in a high-level compilation phase,
performs a sequence of model-to-model transformations at the SCCharts-level [3] such that
they can be mapped directly to SC Graphs (SCGs). Then two alternative low-level compilation
approaches allow mapping to hardware and software; the circuit approach generates a netlist,
the priority approach simulates concurrency with interleaved threads.

13471

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


142 13471 – Synchronous Programming

References
1 C. Andre. Semantics of SyncCharts. Technical Report ISRN I3S/RR-2003-24-FR, I3S

Laboratory, Sophia-Antipolis, France, April 2003.
2 R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S.

Mercer, and O. O’Brien. Sequentially Constructive Concurrency – A conservative extension
of the synchronous model of computation. In Proc. Design, Automation and Test in Europe
Conference (DATE’13), Grenoble, France, March 2013.

3 R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mercer,
and O. O’Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Ap-
plications. Technical Report 1311, Christian-Albrechts-Universitaet zu Kiel, Department of
Computer Science, Dec 2013.

4 Conclusions

The seminar had many high-quality presentations and even more important, many fruitful
discussions afterwards until the late evening hours. During the seminar, several research
groups discussed their work, and it is not surprising that, as in previous years, some common
research has been initiated. For example, Reinhard von Hanxleden and Michael Mendler are
currently working on a shared DFG project where they explore new forms of causality that is
called sequential causality, which is closer to the traditional sequential programming languages.
As another example, Klaus Schneider, Jean-Pierre Talpin and Sandeep Shukla have published
several papers about the combination of polychronous and synchronous languages including
aspects like clock consistency and causality which cross fertilized both areas. Many other
projects benefited from contributions of experts in the area, and therefore we are sure that
the Synchronous Programming workshop will celebrate also other anniversaries in the future.



Stephen A. Edwards, Alain Girault, and Klaus Schneider 143

Participants
Joaquin Aguado

Universität Bamberg, DE
Mihail Asavoae

VERIMAG – Grenoble, FR
Yu Bai

TU Kaiserslautern, DE
Fernando Barros

University of Coimbra, PT
Sanjoy K. Baruah

University of North Carolina –
Chapel Hill, US

Guillaume Baudart
ENS – Paris, FR

Vagelis Bebelis
INRIA Grenoble –
Rhône-Alpes, FR

Gérard Berry
INRIA Sophia Antipolis –
Méditerranée, FR

Nicolas Berthier
INRIA Rennes – Bretagne
Atlantique, FR

Timothy Bourke
ENS – Paris, FR

David Broman
University of California –
Berkeley, US

Benoit Caillaud
INRIA Rennes – Bretagne
Atlantique, FR

Albert Cohen
ENS – Paris, FR

Willem-Paul de Roever
Universität Kiel, DE

Robert de Simone
INRIA Sophia Antipolis –
Méditerranée, FR

Gwenaël Delaval
University of Grenoble – LIG, FR

Stephen A. Edwards
Columbia Univ. – New York, US

Peter A. Fritzson
Linköping University, SE

Manuel Gesell
TU Kaiserslautern, DE

Dan R. Ghica
University of Birmingham, GB

Alain Girault
INRIA Grenoble –
Rhône-Alpes, FR

Adrien Guatto
ENS – Paris, FR

Nicolas Halbwachs
VERIMAG – Grenoble, FR

Jun Inoue
ENS – Paris, FR

Xian Li
TU Kaiserslautern, DE

Gerald Lüttgen
Universität Bamberg, DE

Antoine Madet
ENS – Paris, FR

Frédéric Mallet
INRIA Sophia Antipolis –
Méditerranée, FR

Louis Mandel
College de France, Paris, FR

Florence Maraninchi
VERIMAG – Grenoble, FR

Eleftherios Matsikoudis
University of California –
Berkeley, US

Michael Mendler
Universität Bamberg, DE

Christian Motika
Universität Kiel, DE

Valentin Perrelle
IRT SystemX, FR

John Plaice
The University of New South
Wales, AU

Dumitru Potop-Butucaru
INRIA – Paris, FR

Marc Pouzet
ENS – Paris, FR

Pascal Raymond
VERIMAG – Grenoble, FR

Ingo Sander
KTH Royal Institute of
Technology, SE

Klaus Schneider
TU Kaiserslautern, DE

Alex Shafarenko
University of Hertfordshire, GB

Chris Shaver
University of California –
Berkeley, US

Wei-Tsun Sun
INRIA Grenoble –
Rhône-Alpes, FR

Reinhard von Hanxleden
Universität Kiel, DE

13471


	Executive Summary Stephen A. Edwards, Alain Girault, and Klaus Schneider
	Table of Contents
	Overview of Talks
	Desynchronization of Synchronous Systems Yu Bai
	Representing Spatially Moving Entities using Time-Variant Topologies Fernando Barros
	From Quasi-Synchrony to LTTA Guillaume Baudart
	BPDF: A Statically Analyzable DataFlow Model with Integer and Boolean Parameters Vagelis Bebelis
	Towards Discrete Controller Synthesis for the Reactive Adaptation of Autonomic Systems Nicolas Berthier
	A slow afternoon chez PARKAS and a very fast fly (a fun talk) Timothy Bourke
	Modelyze: Embedding Equation-Based DSLs David Broman
	Index theory for Hybrid DAE Systems Benoit Caillaud
	Functioning Hardware from Functional Specifications Stephen A. Edwards
	Debugging and Compiler Bootstrapping with an Equation-Based Language Compiler Peter A. Fritzson
	Interactive Verification of Cyber-physical Systems Manuel Gesell
	Behavioral Equivalence of Transducers under a Fixed Protocol Dan R. Ghica
	Timing Through Types Dan R. Ghica
	Precise Timing Analysis for Direct-Mapped Caches Alain Girault
	When the decreasing sequence fails... Improving fixpoint approximation in program analysis Nicolas Halbwachs
	Modal Interface Automata Gerald Luettgen
	Safety Issues in MARTE/CCSL Specifications Frederic Mallet
	In Search of a Physical Semantics of Boussinot's Reactive Model Louis Mandel
	From Synchronous to Timed Programming Eleftherios Matsikoudis
	Berry-Constructive Programs are Sequentially Constructive, or: Synchronous Programming from a Scheduling Perspective Michael Mendler
	SCCharts – Sequentially Constructive Charts Christian Motika
	A Tale of Two Semantics: Clocked Dimensions in a Multidimensional Language John Plaice
	Integrated WCET estimation of multicore applications Dumitru Potop-Butucaru
	A Causality Analysis for Hybrid Modelers Marc Pouzet
	Timing Analysis Enhancement for Synchronous Program Pascal Raymond
	Towards a Formal Software Design Methodology for Predictable Embedded Multiprocessor Applications Ingo Sander
	AstraKahn: Coordination programming by extension and refinement of the Kahn model Alex Shafarenko
	The Coroutine Model of Computation Chris Shaver
	libDGALS: A Library-based Approach to Design Dynamic GALS Systems Wei-Tsun Sun
	Compiling SCCharts (and other Sequentially Constructive Programs) to Hardware and Software Reinhard von Hanxleden

	Conclusions
	Participants

