
Report from Dagstuhl Seminar 13511

Software Engineering for Self-Adaptive Systems:
Assurances
Edited by
Rogerio de Lemos1, David Garlan2, Carlo Ghezzi3, and
Holger Giese4

1 University of Kent, GB, R.Delemos@kent.ac.uk
2 Carnegie Mellon University – Pittsburgh, US, garlan@cs.cmu.edu
3 Politecnico di Milano, IT, carlo.ghezzi@polimi.it
4 Hasso-Plattner-Institut – Potsdam, DE, holger.giese@hpi.uni-potsdam.de

Abstract
The important concern for modern software systems is to become more cost-effective, while
being versatile, flexible, resilient, dependable, energy-efficient, customisable, configurable and
self-optimising when reacting to run-time changes that may occur within the system itself, its
environment or requirements. One of the most promising approaches to achieving such properties
is to equip software systems with self-managing capabilities using self-adaptation mechanisms.
Despite recent advances in this area, one key aspect of self-adaptive systems that remains to
be tackled in depth is assurances, i.e., the provision of evidence that the system satisfies its
stated functional and non-functional requirements during its operation in the presence of self-
adaptation. The provision of assurances for self-adaptive systems is challenging since run-time
changes introduce a high degree of uncertainty during their operation. In this seminar, we
discussed the problem of assurances for self-adaptive systems from four different views: criteria
for assurances, composition and decomposition of assurances, feedback loop and assurances, and
perpetual provisioning of assurances.

Seminar 15.–19. December, 2013 – www.dagstuhl.de/13511
1998 ACM Subject Classification D.2.10 [Software Engineering] Design, D.2.11 [Software En-

gineering] Software Architectures
Keywords and phrases software engineering, self-adaptive systems, assurances, criteria, feedback

loop, decentralization
Digital Object Identifier 10.4230/DagRep.3.12.67

1 Executive Summary

Rogerio de Lemos
David Garlan
Carlo Ghezzi
Holger Giese

License Creative Commons BY 3.0 Unported license
© Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese

Repairing faults, or performing upgrades on different kinds of software systems have been tasks
traditionally performed as a maintenance activity conducted off-line. However, as software
systems become central to support everyday activities and face increasing dependability
requirements, even as they have increased levels of complexity and uncertainty in their

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Software Engineering for Self-Adaptive Systems: Assurances, Dagstuhl Reports, Vol. 3, Issue 12, pp. 67–96
Editors: Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13511
http://dx.doi.org/10.4230/DagRep.3.12.67
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

68 13511 – Software Engineering for Self-Adaptive Systems: Assurances

operational environments, there is a critical need to improve their resilience, optimize
their performance, and at the same time, reduce their development and operational costs.
This situation has led to the development of systems able to reconfigure their structure
and modify their behaviour at run-time in order to improve their operation, recover from
failures, and adapt to changes with little or no human intervention. These kinds of systems
typically operate using an explicit representation of their own structure, behaviour and goals,
and appear in the literature under different designations (e.g., self-adaptive, self-healing,
self-managed, self-*, autonomic, etc.).

In spite of recent and important advances in the area, one key aspect of self-adaptive
systems that poses important challenges yet to be tackled in depth is assurances: that is,
providing evidence that systems satisfy their functional and non-functional requirements
during operation. Specifically, assurances involve not only system dependability, but also
resilience with respect to changes that may occur in the system, its environment, or its goals.
The provision of assurances for self-adaptive systems, which should be done tandem with
their development, operation and evolution, is difficult since run-time changes (e.g., resource
variability) introduce a high degree of uncertainty that is atypical in more conventional
systems.

This Dagstuhl Seminar has focused on the topic of obtaining assurances for self-adaptive
software systems. Self-adaptive systems has been studied independently within different
research areas of software engineering, including requirements engineering, modelling, ar-
chitecture and middleware, event-based, component-based and knowledge-based systems,
testing, verification and validation, as well as software maintenance and evolution [1, 2].
On the other hand, the topic of assurances for software-based systems has been widely
investigated by the dependability community, in particular when considered in the context
of safety-critical systems. For these types of systems there is the need to build coherent
arguments showing that the system is able to comply with strict functional and non-functional
requirements, which are often dictated by safety standards and general safety guidelines.
The major challenge when combining self-adaptability and dependability is how to obtain
assurances regarding the uncertainty of changes that may affect the system, its environment
or its goals.

References
1 B. H. Cheng, H. Giese, P. Inverardi, J. Magee, and R. de Lemos. 08031 Abstracts Collec-

tion – Software Engineering for Self-Adaptive Systems. In B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee, editors, Software Engineering for Self-Adaptive Sys-
tems, number 08031 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2008. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany.

2 R. de Lemos, H. Giese, H. Müller, and M. Shaw. 10431 Report – Software Engineering for
Self-Adaptive Systems. In R. de Lemos, H. Giese, H. Müller, and M. Shaw, editors, Software
Engineering for Self-Adaptive Systems, number 10431 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2011. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, Germany.

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 69

2 Table of Contents

Executive Summary
Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 67

Key Topics on Assurances
Composition and Decomposition of Assurances . 72

Feedback Loop and Assurances . 74

Perpetual Provisioning of Assurances . 77

Outcomes . 78

Overview of Talks . 78

Self-Adaptive Authorisation Infrastructures: Managing malicious behaviour
Chris Bailey . 78

A Fine-grained Autonomic Management Solution for Multi- layered Systems
Luciano Baresi . 78

Artificial software diversity: automatic synthesis of program sosies
Benoit Baudry . 79

Bayesian Artificial Intelligence for Tackling Uncertainty in Self-Adaptive Systems:
The Case of Dynamic Decision Networks
Nelly Bencomo . 80

Inferring models for verification
Yuriy Brun . 80

Self-Adaptive Software Assurance through Continual Verification of Non-Functional
Properties
Radu Calinescu . 80

Failure Avoidance using Feature Locality
Myra B. Cohen . 81

Applying Model Differences to Automate Performance-Driven Refactoring of Soft-
ware Models
Vittorio Cortellessa . 81

Assurance of Autonomous Adaptive Systems: (Some) Lessons Learned
Bojan Cukic . 82

Software engineering for self-adaptive software: motivational talk
Carlo Ghezzi . 82

Assurance for Self-Adaptive Software and Models
Holger Giese . 83

Fully Decentralized Service Assembly under Non Functional Requirements
Vincenzo Grassi . 83

Runtime Quality Problem Detection Techniques with Statistical Techniques: Theory
and Practical Applications
Lars Grunske . 83

13511

70 13511 – Software Engineering for Self-Adaptive Systems: Assurances

Pluggable Verification for Models at Runtime
Jean-Marc Jezequel . 84

Can RE Contribute to SAS Assurance?
Zhi Jin . 85

Self-adaptivity vs. Latent Software Defects: Software Health Management
Gabor Karsai . 85

Challenges in Autonomous Vehicle Validation
Philip Koopman . 86

Control-theoretical computing system design
Alberto Leva . 86

Adaptation in Software Defined Infrastructures
Marin Litoiu . 87

Toward the Making of Software that Learns to Manage Itself
Sam Malek . 87

On the uncertainties in the modeling of self-adaptive systems
Raffaela Mirandola . 88

A Software Lifecycle Process For Data-intensive Self-adaptive Systems
Marco Mori . 88

Managing Viability Zone Dynamics for the Assurance of Self-Adaptive Systems
Hausi A. Mueller . 89

Self-Adaptive Cloud Controllers
Mauro Pezze . 89

Feedbacks Control Loops as 1st Class Entities – The SALTY Experiment
Romain Rouvoy . 90

Model-driven infrastructure for reliable service compositions using dynamic software
product lines
Cecilia Mary Fischer Rubira . 90

Modular Discrete Control for Adaptive Software Systems
Eric Rutten . 91

Managing Non-Functional Uncertainty via Model-Driven Adaptivity
Giordano Tamburrelli . 91

Managing Viability Zone Dynamics for the Assurance of Self-Adaptive Systems
Gabriel Tamura . 91

Managing Viability Zone Dynamics for the Assurance of Self-Adaptive Systems
Norha Milena Villegas Machado . 92

Modeling Self-Adaptive Software
Thomas Vogel . 93

ActivFORMS: Active FORmal Model for Self-adaptation
Danny Weyns . 93

Reconciling self-adaptation and self-organization towards effective assurances
Franco Zambonelli . 93

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 71

Runtime Testing of Self-Adaptive Systems
Carlos Eduardo da Silva . 94

Architecting Resilience: Handling Malicious and Accidental Threats
Rogerio de Lemos . 94

Participants . 96

13511

72 13511 – Software Engineering for Self-Adaptive Systems: Assurances

3 Key Topics on Assurances

The aim of the seminar was not so much to be comprehensive concerning the topics associated
with assurances for self-adaptive software systems, but to be focused on key and challenging
topics.

3.1 Composition and Decomposition of Assurances
Contributors: J. Andersson, B. Schmerl, L. Baresi, Y. Brun, M.B. Cohen, A. Gorla,
C.M. F. Rubira, T. Vogel, F. Zambonelli

In software development, system goals are often provided assurances. An assurance is “a
reasoned and compelling argument, supported by a body of evidence, that a system, service or
organisation will operate as intended for a defined application in a defined environment” [1].
Examples of goals include enforcing certain system properties, such as safety, security,
and reliability. The most widely accepted approaches for assuring suchgoals are based on
producing evidence, and then arguing that a system meets its specification based on that
evidence. An assurance case [2] is composed of subgoals, strategies, contexts, and evidence,
tied together into an argument justifying that the goal will be met. For example, safety cases
are “a documented body of evidence that provides a convincing and valid argument that a
system is adequately safe for a given application in a given environment” [3, p. 8].

We are interested in assurances for engineering a particular kind of software system: self-
adaptive systems. In such systems, self-adaptation may be used as a mechanism for achieving
a particular goal, or may be a mechanism in spite of which a goal must be satisfied. We are
particularly interested in the process of building self-adaptive systems out of self-adaptive
components (and further, recursively building larger self-adaptive systems from self-adaptive
subsystems). Thus, we aim to understand (1) how assurances of self-adaptive components
compose to form an assurance of a system composed of those components, and (2) how
an assurance of a system can be decomposed into assurances its components must satisfy.
While the challenges of composition and decomposition are neither unique to assurances
within self-adaptive systems engineering [4, 5], nor to self-adaptive systems, composing and
decomposing assurances within such systems poses special challenges, on which we focus
here.

1. How to accommodate a changing environment? In traditional software development,
assurance cases often make assumptions about fixed goals and environments. By contrast,
self-adaptive systems often relax these assumptions. This creates a challenge for com-
position and decomposition of assurances cases of self-adaptive components and systems.
For example, for composition, it is often insufficient to consider the assurance case solely
within the scope of the component, and must instead be considered within the larger scope
of the system. Unfortunately, this breaks the component abstraction and complicates
reasoning about assurances.

2. What are potential sources of evidence? As some self-adaptive components can be
made up of a separate managed part and managing part [6], understanding how assurances
on one part affect or can result in assurances on the whole poses a challenge. At the
very least, these pose multiple sources of evidence, the combination of which must be
understood.
Furthermore, what kinds of evidence can be provided by the different activities of self-
adaptation. For example, what kinds of evidence can monitoring provide? Is this type

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 73

of evidence different to the type that analysis can provide? What kinds of assurances
can emerge from more biological forms of self-adaptation? Evidence may also come from
other engineering activities, e.g., design decisions, validation and verification, or the
engineering process. These all impact how assurances can be composed and decomposed.
For example, design decisions such as the choice of architectural style may provide some
evidence for assurance cases.

3. What strategies can be used to combine assurances when self-adaptive systems are
composed? To address this challenge, we must answer further questions such as “How to
design assurances so that they can be composed with one another?”, “Which properties
of assurances lend themselves to composition, and which do not?”, “How can assurance
composition strategies be reused?”, “How can evidence from assurance cases be shared and
reused among products or components?”, and “How do composition and decomposition
of assurance cases affect the amounts of evidence needed to support those cases?”

To begin to address these challenges, we plan to use a well-known method for constructing
assurance cases known as the Goal Structuring Notation (GSN) [1, 7]. This notation allows
engineers to codify an assurance case as a set of strategies, contexts, assumptions, justifications,
and solutions. This structure serves as the argument for the assurance of a specific goal. It is
likely that this notation will need to be adjusted to apply to address the first two challenges.

To address the third challenge, Bate and Kelly [8] outline a strategy for composing
assurance arguments. However, this technique imposes constraints on the underlying system
architecture. No comprehensive techniques exist today for composing assurances in a more
general system-of-systems scenario, but this work may form a basis to build upon.

References
1 Goal Structuring Notation (GSN) community standard version 1, November 2011. Available

at http://goalstructingnotation.info.
2 Peter Bishop, Robin Bloomfield, and Sofia Guerra. The future of goal-based assurance

cases. In Proc. Workshop on Assurance Cases, pages 390–395, 2004.
3 Robin Bloomfield, Bishop Peter, Claire Jones, and P. Froome. ASCAD — Adelard Safety

Case Development Manual. Adelard, 3 Coborn Road, London E3 2DA, UK, 1998.
4 Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,

Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-adaptive
systems through feedback loops. In Betty H.C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems,
volume 5525 of Lecture Notes in Computer Science (LNCS), pages 48–70. Springer-Verlag,
2009. doi:10.1007/978-3-642-02161-9_3.

5 Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Chris-
tian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M. Göschka. On
patterns for decentralized control in self-adaptive systems. In Rogério de Lemos, Holger
Giese, Hausi A. Müller, and Mary Shaw, editors, Software Engineering for Self-Adaptive
Systems II, volume 7475 of Lecture Notes in Computer Science (LNCS), pages 76–107.
Springer-Verlag, 2013. doi:10.1007/978-3-642-35813-5_4.

6 Danny Weyns, Sam Malek, and Jesper Andersson. FORMS: Unifying reference model for
formal specification of distributed self-adaptive systems. ACM Transactions on Autonom-
ous and Adaptive Systems, 7(1):8:1–8:61, May 2012. doi:10.1145/2168260.2168268.

7 T. P. Kelly and J. A. McDermid. Safety case construction and reuse using patterns. In
Peter Daniel, editor, Safe Comp, pages 55–69. Springer, London, 1997. URL: http://dx.
doi.org/10.1007/978-1-4471-0997-6_5, doi:10.1007/978-1-4471-0997-6_5.

13511

http://goalstructingnotation.info
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://dx.doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1145/2168260.2168268
http://dx.doi.org/10.1007/978-1-4471-0997-6_5
http://dx.doi.org/10.1007/978-1-4471-0997-6_5
http://dx.doi.org/10.1007/978-1-4471-0997-6_5

74 13511 – Software Engineering for Self-Adaptive Systems: Assurances

8 Iain Bate and Tim Kelly. Architectural considerations in the certification of modular
systems. Reliability Engineering & System Safety, 81(3):303 – 324, 2003. doi:10.1016/
S0951-8320(03)00094-2.

3.2 Feedback Loop and Assurances
Contributors: H.A. Müller, N.M. Villegas, V. Cortellessa, A. Filieri, H. Giese, G. Karsai,
A. Leva, M. Pezzè, R. Rouvoy, E. Rutten, M. Shaw, G. Tamura

Feedback loops are cornerstones of software-intensive self-adaptive systems (SASs). In this
chapter, we study the relationships existing between feedback loops and the types of assurance
SASs can provide focusing on the conceptual rather implementation level of the feedback
model. The review includes, on the one hand, how feedback loops contribute to providing
assurances about the controlled system and, on the other hand, how assurances improve the
realisation of feedback loops in SASs. To set the stage for the discussion of concrete examples
and their challenges, we first study the parallels between traditional engineering control
theory [1, 2] and the more recent research on feedback control of software computing systems
(e.g., MAPE-K loops) [3, 4] in the realm of SASs in order to establish a common vocabulary
of key concepts, such as the disturbance affecting the system or the control actions used
by the controller to adapt the system. This provides a basis to discuss concrete examples
that allow us to illustrate open challenges in the engineering of SASs [5]. For each of these
examples, we identify the main concepts related to the shared vocabulary and highlight
the need and purpose of feedback loops. Furthermore, we outline the related assurances,
including concrete assurance goals, techniques employed for assurances, and how goals and
techniques relate to the feedback loops present in SASs. By studying concrete examples, we
posit key challenges for assurance research related to feedback loops in self-adaptive software.

1. Identification of the core phenomena to control: in control theory, system transfer
functions based on differential equations are the models on which principles and properties
of the phenomena to control are described and analysed [1, 6, 2]. Depending on the
behavioural characteristics of the target system, a controller can be defined to make the
system behave as desired. The desired behaviour is usually specified by either providing
a reference input the system should follow (e.g., PID controllers), or as an optimisation
problem (e.g., Model Predictive Control) [1]. The characteristics of a controller are
usually defined by adjusting its parameters, which have special significance to generate
the signals that will adapt the system depending on how far measured outputs are from
the corresponding reference inputs. The controllers are indeed designed as (parametric)
transfer functions that generate the control signals that drive the target system towards
accomplishing its goals. In software systems the identification of the core phenomena to
control is typically a complex task. This is mainly because, in contrast to physical systems,
software systems still lack general methods to model the multi-dimensional and non-linear
relationships between system goals and adaptation mechanisms [6, 7, 8]. For example, an
adaptation mechanism can reconfigure the system by applying an architectural pattern
with the goal of improving the system performance. However, it is still an open challenge
to model the exact effect of this pattern in the performance of the system. Many research
questions remain open in the identification and modelling of the core phenomena to
control in software systems. For example, how to model explicitly and accurately the
relationship among system goals, adaptation mechanisms, and the effects produced by

http://dx.doi.org/10.1016/S0951-8320(03)00094-2
http://dx.doi.org/10.1016/S0951-8320(03)00094-2

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 75

actuators? Can we design software systems having an explicit specification of what we
want to assure with control-based approaches? Can we do it by focusing only on some
aspects for which feedback control is more effective? Can we improve the use of control, or
achieve control-based design, by connecting as directly as possible to some “real physics”
inside the software system? What techniques can we use for this? How far can we go by
modelling SAS systems mathematically? What are the limitations?

2. Composition and incrementality: performing validation and verification (V&V) tasks
over the entire system—at runtime, to guarantee desired properties and goals, is often
infeasible due to prohibitive computational costs. Therefore, the assurance of SAS systems
requires composable V&V tasks that can be applied incrementally along the adaptation
loop. With respect to composition, relevant research questions include: what are the
problems that require the composition of assurance mechanisms? What are suitable
techniques to realise the composition of V&V tasks? What approaches can we borrow
from testing? How can we reuse or adjust them for the assurance of SAS systems?
Regarding incrementality: in which cases is it useful? How can incrementality be realised?
How to characterise increments, and their relationship to system changes?

3. Synergy between control and software engineering: despite the efforts to apply control
theory to the engineering of SASs, evidenced for instance in [5, 9, 10, 6, 3, 11, 12], the
assurance of SASs still demands effective ways of integrating control theory and software
engineering. Research questions to advance towards this direction include: what are the
best practices from both sides that can be exploited in the assurance of SAS systems?
How to construct reliable controllers leveraging formal model techniques used in software
engineering? Can we define and/or use anti-patterns in control-based assurance of SAS
systems? How to apply off-line V&V mechanisms at runtime? How to close the semantic
gap between control in physical systems and control in software systems? Can we define
a model in the middle of these two worlds? Would these models be domain or problem
specific? Can we characterise (at least some of) these problems and corresponding suitable
models? How can we educate software engineers in the application of control to the
design of software systems?

4. Management of viability zones: the viability zone of a SAS system can be defined as the
set of possible states in which the system operation is not compromised [13]. Moreover,
it can be characterised in terms of relevant context attributes and corresponding desired
values [14], and can change with context changes. In effect, the viability zone of a target
system under adaptation constantly varies with and along adaptation dimensions. The
dynamic nature of viability zones is a relevant research challenge in the assurance of
SAS systems because it implies adjusting the domain coverage not only of design and
adaptation realisation but also of V&V tasks. Open research questions in this aspect
include: what are runtime models that can be used for the incremental and dynamic
derivation of software artefacts for implementing V&V tasks? How to maintain the causal
connection between viability zones, adapted system, and its corresponding V&V software
artefacts? How to adapt these artefacts at runtime?

References
1 Karl Johan Astrom and Bjorn Wittenmark. Adaptive Control. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.
2 Richard M. Murray, editor. Control in an Information Rich World. Society for In-

dustrial and Applied Mathematics, 2003. URL: http://epubs.siam.org/doi/abs/10.1137/
1.9780898718010, arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9780898718010,
doi:10.1137/1.9780898718010.

13511

http://epubs.siam.org/doi/abs/10.1137/1.9780898718010
http://epubs.siam.org/doi/abs/10.1137/1.9780898718010
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9780898718010
http://dx.doi.org/10.1137/1.9780898718010

76 13511 – Software Engineering for Self-Adaptive Systems: Assurances

3 Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback Control
of Computing Systems. John Wiley & Sons, 2004.

4 Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003. URL: http://dx.doi.org/10.1109/MC.2003.1160055, doi:10.
1109/MC.2003.1160055.

5 Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger Kienle,
Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-adaptive
systems through feedback loops. In Betty H.C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, and Jeff Magee, editors, Software Engineering for Self-Adaptive Systems,
volume 5525 of Lecture Notes in Computer Science (LNCS), pages 48–70. Springer-Verlag,
2009. doi:10.1007/978-3-642-02161-9_3.

6 Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. Automated design of
self-adaptive software with control-theoretical formal guarantees. In Proceedings of the
36th IEEE/ACM International Conference on Software Engineering, ICSE 2014, page (to
appear), New York, NY, USA, 2014. ACM.

7 T. Patikirikorala, A. Colman, J. Han, and Liuping Wang. A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on,
pages 33–42, June 2012. doi:10.1109/SEAMS.2012.6224389.

8 Norha M. Villegas, Hausi A. Müller, Gabriel Tamura, Laurence Duchien, and Rubby Cas-
allas. A framework for evaluating quality-driven self-adaptive software systems. In Pro-
ceedings of the 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS ’11, pages 80–89, New York, NY, USA, 2011. ACM. URL:
http://doi.acm.org/10.1145/1988008.1988020, doi:10.1145/1988008.1988020.

9 Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. Self-adaptive software
meets control theory: A preliminary approach supporting reliability requirements. In Pro-
ceedings of the 2011 26th IEEE/ACM International Conference on Automated Software En-
gineering, ASE ’11, pages 283–292, Washington, DC, USA, 2011. IEEE Computer Society.
URL: http://dx.doi.org/10.1109/ASE.2011.6100064, doi:10.1109/ASE.2011.6100064.

10 A. Filieri, C. Ghezzi, A. Leva, and M. Maggio. Reliability-driven dynamic binding via feed-
back control. In Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
2012 ICSE Symposium on, pages 43–52, June 2012. doi:10.1109/SEAMS.2012.6224390.

11 Hausi Müller, Mauro Pezzè, and Mary Shaw. Visibility of control in adaptive systems.
In Proceedings of the 2Nd International Workshop on Ultra-large-scale Software-intensive
Systems, ULSSIS ’08, pages 23–26, New York, NY, USA, 2008. ACM. URL: http://doi.
acm.org/10.1145/1370700.1370707, doi:10.1145/1370700.1370707.

12 Gabriel Tamura, Norha M. Villegas, HausiA. Muller, JoãoPedro Sousa, Basil Becker, Gabor
Karsai, Serge Mankovskii, Mauro Pezzè, Wilhelm Schäfer, Ladan Tahvildari, and Kenny
Wong. Towards practical runtime verification and validation of self-adaptive software sys-
tems. In Rogerio Lemos, Holger Giese, Hausi. Müller, and Mary Shaw, editors, Software
Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Sci-
ence, pages 108–132. Springer Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.1007/
978-3-642-35813-5_5, doi:10.1007/978-3-642-35813-5_5.

13 Jean-Pierre Aubin, Alexandre Bayen, and Patrick Saint-Pierre. Viability Theory: New
Directions. Springer, 2011. URL: http://hal.inria.fr/inria-00636570, doi:10.1007/
978-3-642-16684-6.

14 Norha M. Villegas. Context Management and Self-Adaptivity for Situation-Aware Smart
Software Systems. PhD thesis, University of Victoria, Canada, February 2013.

http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://dx.doi.org/10.1109/SEAMS.2012.6224389
http://doi.acm.org/10.1145/1988008.1988020
http://dx.doi.org/10.1145/1988008.1988020
http://dx.doi.org/10.1109/ASE.2011.6100064
http://dx.doi.org/10.1109/ASE.2011.6100064
http://dx.doi.org/10.1109/SEAMS.2012.6224390
http://doi.acm.org/10.1145/1370700.1370707
http://doi.acm.org/10.1145/1370700.1370707
http://dx.doi.org/10.1145/1370700.1370707
http://dx.doi.org/10.1007/978-3-642-35813-5_5
http://dx.doi.org/10.1007/978-3-642-35813-5_5
http://dx.doi.org/10.1007/978-3-642-35813-5_5
http://hal.inria.fr/inria-00636570
http://dx.doi.org/10.1007/978-3-642-16684-6
http://dx.doi.org/10.1007/978-3-642-16684-6

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 77

3.3 Perpetual Provisioning of Assurances
Contributors: G. Tamburrelli, D. Weyns, N. Bencomo, R. Calinescu, J. Camara, C. Ghezzi,
V. Grassi, L. Grunske, P. Inverardi, J.M. Jezequiel, S. Malek, R. Mirandola, M. Mori

The breakout group focused first of finding a clear and unanimous definition of “assurances
for self-adaptive systems” and then focused on (1) studying solutions for assurances of self-
adaptive systems together with benchmark criteria, and (2) defining a unifying case study to
be used by practitioners and academics to assess, challenge and compare their solutions. After
a debate we came up with the following definition: “Assurances for self-adaptive systems
means providing evidences for requirements compliance (functional and non-functional) on
and off-line”. With perpetual assurances, the group refers to the perpetual process of evidence
provision for assurance that blends system and human activities throughout the live cycle of
a self-adaptive system. Given this premise, the group concentrated on two aspects discussed
in two subgroups.

One subgroup discussed key challenges of perpetual assurances for self-adaptive systems,
requirements for solutions, realisation techniques, mechanism to make solutions suitable, and
benchmark criteria to compare solutions. Identified challenges include: uncertainty, incom-
pleteness, heterogeneity of systems, dynamism (changes in requirements, environment . . .),
scale of systems, distribution, and user/resource constraints. The following requirements
of the solution were discussed: dealing with uncertainty and incompleteness, dealing with
variants, timeliness, overhead, and scalability (efficiency), traceability of adaptation decisions
(convey the rationale and evidences), user-in-the-loop, and reactive vs. proactive(speculative)
vs. predictive provision of assurances. Discussed techniques to provide assurances are model
checking, testing, simulation and statistical analysis, proving, runtime verification, and sanity
checks. We identified possible mechanisms for making the techniques suitable: increment-
ally, compositionality, hierarchical reasoning (fallback mechanisms), parallelism/off-loading,
parameterisation, abstraction, learning, and caching. Key benchmark criteria identified
were: (1) does the approach provides evidence with respect to (can your approach handle);
(2) does your approach provide evidence based on the current state, the past, projection
in the future (or any combination of these; (3) how efficient (effective) is your approach in
providing evidence, e.g., wrt. timeliness given a set of system reconfigurations, and overhead
(memory, CPU).

The other subgroup discussed the definition of the case study. We decided do focus on the
specific domain of Service Oriented Architectures for several reasons: popularity, flexibility,
and incremental complexity. First the subgroup identified three distinct areas of assurances:
assurances w.r.t. the services, the users, and the requirements. As a consequence of this
initial assessment, the definition of the case study went through several refinement steps that
included the definition of a series of challenges, techniques, and mechanisms that the case
study implementers may exploit. This process culminated with the definition of an initial
list of scenarios and a list of categories that detailed the case study. This refinement process
and the scenario characterisation is still an on-going process and is part of the future work
of the group. The final goal of the subgroup is to have a repository of one or more concrete
case study that may be used as concrete benchmarks for the community.

The joint group discussed the results of subgroup discussions and decided to elaborate
further on solutions for perpetual assurances (challenges, requirements, techniques and
mechanisms, and benchmark criteria) and case studies that allow benchmarking. To that
end, the group plans to write a joint book chapter that integrates both aspects.

13511

78 13511 – Software Engineering for Self-Adaptive Systems: Assurances

4 Outcomes

The two concrete outcomes from this seminar will be a challenges paper and a new book.
The challenges paper, which will follow the same format from previous roadmap papers will
be structured according to the topics to be identified during the seminar, namely: criteria
for assurances, composition and decomposition of assurances, feedback loop and assurances,
and perpetual provisioning of assurances. For each topic, the objective is to summarise the
current state-of-the-art, discuss its limitations, and identify future challenges for the field.

The book will contain state-of-the-art contributions from participants of the seminar and
some invited contributions. In addition to these contributions, the roadmap paper will be
the introductory chapter of the book, which should be followed by four chapters containing
extended versions of the topics discussed in the roadmap paper. The book will be published
by Springer as Lecture Notes in Computer Science volume on their State-of-the-Art series.

5 Overview of Talks

5.1 Self-Adaptive Authorisation Infrastructures: Managing malicious
behaviour

Chris Bailey (University of Kent, GB)

License Creative Commons BY 3.0 Unported license
© Chris Bailey

Joint work of Bailey, Chris; de Lemos, Rogerio; Chadwick, David

Authorization infrastructures are an integral part of any network where electronic resources
require protection. As networks expand and organizations begin to federate access to their
resources, authorization infrastructures become increasingly challenging to manage. This
talk outlines recent works in regards to self-adaptive security, specifically self-adaptive
authorization. This explores the automatic adaptation of authorization assets (such as access
control policies and subject access rights) for the handling of malicious user behavior. We
identify the core motivation for our work, our current progress, and a short adaptation
scenario that demonstrates key aspects and challenges of self-adaptive authorization. Finally,
we identify our evaluation approach and discuss how our work applies to self-adaptive
assurances, in regards to verification and validation of adaptations.

5.2 A Fine-grained Autonomic Management Solution for Multi-
layered Systems

Luciano Baresi (Technical University of Milan, IT)

License Creative Commons BY 3.0 Unported license
© Luciano Baresi

The service paradigm, together with virtualization technology, is imposing a profound re-
thinking of many complex software systems. Providing virtual infrastructures as services is
gaining more and more momentum, and is imposing a more cohesive view of the different
layers that constitute a software system. Applications, service platforms, and virtualized
infrastructures have become tightly integrated. It is now possible to change a software’s

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 79

quality of service (QoS) by changing the configuration of the virtual machines it uses. We can
even instantiate new virtual machines to address load problems, or move our software from
one infrastructure to another if its quality is not acceptable. Even if one might say that this
is nothing new, the key distinctive feature is the ease with which the different parameters can
be changed, and the different runtime executors (e.g., virtual machines) added or modified
to impact a system’s behavior. Originally, monitoring of service-oriented systems was only
performed at the application layer, and the lower layers were considered to be a constant.
Recently, however, cross-layer monitoring is imposing itself as a promising and challenging
research problem. Available technologies provide users with means to tackle the problem of
the quality of service of these applications by digging down into the different layers. However,
the more complexity we want to tame, the more sophisticated our solutions must become.
If we take advantage of the ease and low impact of installing software probes within the
different layers, the amount of data we collect can grow very rapidly. This calls for efficient
and precise methods for their management. We need a customizable and extensible way to
collect, aggregate, and analyze data, in order to identify the causes of anomalous behaviors.
This talk introduces a new approach for the cross-layer monitoring of complex service-based
systems. The approach proposes two main novel contributions. We present mlCCL, a novel
and extensible declarative language that designers can use to define (i) the various data they
want to collect from the layers in their system, (ii) how to aggregate them to build higher-level
knowledge, and (iii) how to analyze them to discover undesired behaviors. The talk also
presents ECoWare (Event Correlation Middleware), an event correlation and aggregation
middleware that supports mlCCL specifications. It provides advanced data aggregation and
analysis features, and can be used to probe systems. Ecoware also provides a dashboard for
reasoning on multiple dimensions of a running system at the same time, and for performing
drill-down analyses to discover the causes of a revealed anomaly.

5.3 Artificial software diversity: automatic synthesis of program sosies
Benoit Baudry (INRIA Rennes – Bretagne Atlantique, FR)

License Creative Commons BY 3.0 Unported license
© Benoit Baudry

Recent work have exploited the plastic properties of software to develop unsound program
transformations. These transformations modify the program’s behavior while staying in
acceptable correctness boundaries with the aim of improving some qualitative attribute
(e.g., response-time, fault-tolerance, etc.). This work reports on a novel form of unsound
transformation, which consists in generating program ’sosies’. Sosies of a program P are
variants that exhibit exactly the same observable behavior, through different execution
paths (’sosie’ is the French word for look-alike). We use the test suite of the program as the
specification of acceptable correctness and we experiment transformations that replace code in
the program by other code that comes from the same program. We define transformations at
different levels of granularity (expression, statement, block). Here we report on the feasibility
of automatic synthesis of sosies, at different granularities, on a set of open source Java
programs of very different sizes. We show that transformations, which consider a part of the
program’s semantics are more effective for sosie synthesis than pure random transformations.

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

80 13511 – Software Engineering for Self-Adaptive Systems: Assurances

5.4 Bayesian Artificial Intelligence for Tackling Uncertainty in
Self-Adaptive Systems: The Case of Dynamic Decision Networks

Nelly Bencomo (Aston University – Birmingham, GB)

License Creative Commons BY 3.0 Unported license
© Nelly Bencomo

In recent years, there has been a growing interest towards the application of artificial
intelligence approaches in software engineering (SE) processes. In the specific area of SE
for self-adaptive systems (SASs) there is a growing research awareness about the synergy
between SE and AI. However, just few significant results have been published. We report
and discuss our own experience using Dynamic Decision Networks (DDNs) to model and
support decision-making in SASs while explicitly taking into account uncertainty. In this
session we talk about the application of our DDN-based approach to the case of an adaptive
remote data mirroring system. We discuss results, implications and potential benefits of
the DDN to enhance the development and operation of self-adaptive systems, by providing
mechanisms to cope with uncertainty and automatically make the best decision. We also
discuss the ongoing work on a Bayesian definition of surprise as the basis for quantitative
analysis to measure degrees of uncertainty and deviations of self- adaptive systems from
normal behavior. A surprise measures how observed data affects the models or assumptions
of the world during runtime. The key idea is that a surprising event can be defined as one
that causes a large divergence between the belief distributions prior to and posterior to the
event occurring. In such a case the system may decide either to adapt accordingly or to flag
that an abnormal situation is happening.

5.5 Inferring models for verification
Yuriy Brun (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
© Yuriy Brun

Model inference – constructing a model of an implementation based on execution information
– can help greatly with ensuring that requirements are satisfied, enable exploration and
evaluation of potential adaptations, and predicting the effects of adaptations.

5.6 Self-Adaptive Software Assurance through Continual Verification
of Non-Functional Properties

Radu Calinescu (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Radu Calinescu

Software systems are used in business-critical and safety-critical applications from domains
ranging from e-commerce and e-government to finance and healthcare. Many of these systems
must comply with strict non-functional requirements while evolving in response to changes
in their environment and requirements. My talk will describe how such compliance can be
achieved through the run-time use of quantitative verification, and discuss the challenges
that must be overcome to make this continual verification feasible for real-world software
systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 81

5.7 Failure Avoidance using Feature Locality
Myra B. Cohen (University of Nebraska – Lincoln, US)

License Creative Commons BY 3.0 Unported license
© Myra B. Cohen

Joint work of Cohen, Myra B.; Garvin, Brady J.; Dwyer, Matthew B.; Swanson, Jacob

Despite the best efforts of software engineers, faults still escape into deployed systems.
Developers need time to prepare and distribute fixes, and in the interim, deployments must
either avoid failures or endure their consequences. Configurable software, software in which
features can be added or removed at run-time, are known to suffer from failures that appear
only under certain feature combinations, and these failures are particularly challenging for
testers, who must find suitable configurations as well as inputs to detect them. We believe
that these failures are well suited for avoidance by self-adaptation. This talk discusses that
possibility by leveraging a phenomenon we call feature-locality that allows us to use historical
data to predict failure-prone configurations and hence reconfiguration workarounds. We
have evidence from two case studies that feature locality exists, and that our algorithms
can improve time to failure avoidance as more and more history is incorporated. We have
implemented a version of our avoidance algorithms within the Rainbow framework and show
preliminary results of this study.

5.8 Applying Model Differences to Automate Performance-Driven
Refactoring of Software Models

Vittorio Cortellessa (University of L’Aquila, IT)

License Creative Commons BY 3.0 Unported license
© Vittorio Cortellessa

Identifying and removing the causes of poor performance in software systems are complex
problems, and these issues are usually tackled after software deployment only with human-
based means. Performance anti patterns can be used to harness these problems since
they capture design patterns that are known leading to performance problems, and they
suggest refactoring actions that can solve the problems. This talk introduces an approach
to automate software model refactoring based on performance antipatterns. A Role-Based
Modeling Language is used to model antipattern problems as Source Role Models (SRMs), and
antipattern solutions as Target Role Models (TRMs). Each (SRM, TRM) pair is represented
by a difference model that encodes refactoring actions to be operated on a software model to
remove the corresponding antipattern. Differences are applied to software models through
a model transformation automatically generated by a higher-order transformation. The
approach is shown at work on an example in the e-commerce domain.

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

82 13511 – Software Engineering for Self-Adaptive Systems: Assurances

5.9 Assurance of Autonomous Adaptive Systems: (Some) Lessons
Learned

Bojan Cukic (West Virginia University – Morgantown, US)

License Creative Commons BY 3.0 Unported license
© Bojan Cukic

Over the past decade, we have been involved in design, verification and validation of self-
adaptive systems in two very different domains: avionics and border management. While
the first is safety critical and adaptation addresses unanticipated aircraft failures, the second
is critical for national security. In border management, adaptation adjusts the accuracy of
traveler identification with the throughput of the border crossing under changing arrival
patterns and security requirements. Although these domains appear to have little in common,
the assurance arguments we made about systems and adaptation appear to point to common
underlying principles. The first commonality is the importance of the choice of an appropriate
level of detail available in the model of the system that explores adaptation options (the
controller). The strength of assurance arguments is inextricable from the granularity the
model supports. We also conclude that the overall goal of assurance of self-adaptive systems
is maintaining the assurance case made prior to system deployment. In other words, any
adaptation should support existing assurance arguments even if system’s functionality or
non-functional properties evolve. Finally, the selection of assurance techniques used in case
studies points to the diversity. As assurance goals are system specific, the techniques to
achieve them vary too.

5.10 Software engineering for self-adaptive software: motivational talk
Carlo Ghezzi (Technical University of Milan, IT)

License Creative Commons BY 3.0 Unported license
© Carlo Ghezzi

Research on self-adaptive software systems must mature in a way that assurances can be
given on dependability of adaptation. Dependability assurance means that one must be
able to show satisfaction of the following fundamental argument (FA): S (specification of
the software) and E (environment assumptions and properties) entail satisfaction of R (the
requirements)

FA was first stated by Jackson and Zave in their foundational work on requirements.
Because of changes in D (and R), FA must be shown to hold not only at design time, but it
must be continuously checked also at run time. If the run-time check is done by reasoning
on models (of S and D), then a violation of FA must lead to a change in S (and hence in
the running software). Possibly, the change in S must be accomplished in a self-managed
manner.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 83

5.11 Assurance for Self-Adaptive Software and Models
Holger Giese (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY 3.0 Unported license
© Holger Giese

This presentation discusses, which role development-time models and runtime models can
play for the assurance of self-adaptive software. On the one hand the role of models to assure
the proper functioning of the adaptation algorithm is addressed. On the other hand also the
roles of model for ensuring the correct implementation is covered. Furthermore, concrete
research results for the different cases were presented to outline concrete results that have
been achieved for these different roles of models for self-adaptive software.

5.12 Fully Decentralized Service Assembly under Non Functional
Requirements

Vincenzo Grassi (University of Rome “Tor Vergata”, IT)

License Creative Commons BY 3.0 Unported license
© Vincenzo Grassi

Joint work of Grassi, Vincenzo; Mirandola, Raffaela; Marzolla, Moreno

We present a fully decentralized solution to the adaptive self-assembly of distributed services.
The proposed solution is able to build and maintain an assembly of services, guaranteeing
the fulfillment of both functional requirements, and non functional requirements concerning
global quality of service (QoS) and structural properties. The key aspect of our solution is
the use of a gossip protocol to achieve decentralized information dissemination and decision
making. Simulation experiments show the effectiveness of our approach in terms of robustness,
and convergence speed.

5.13 Runtime Quality Problem Detection Techniques with Statistical
Techniques: Theory and Practical Applications

Lars Grunske (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Lars Grunske

Software systems may suffer at runtime from changes in their operational environment or/and
requirements specification, so they need to be adapted to satisfy the changed environment
or/and specifications [5]. The research community has developed a number of approaches to
building adaptive systems that respond to these changes such as Rainbow [6]. Additionally
currently, several approaches have been proposed to monitor QoS attributes at runtime with
the goal of reactively detecting QoS violations (e.g. [9]).

The presentation will introduce some reactive [1, 3, 8] and proactive [2, 4] detection
techniques.

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

84 13511 – Software Engineering for Self-Adaptive Systems: Assurances

References
1 Ayman Amin, Alan Colman, and Lars Grunske. Using Automated Control Charts for the

Runtime Evaluation of QoS Attributes. In Proc. of the 13ht IEEE Int. High Assurance
Systems Engineering Symposium, pages 299–306. IEEE Computer Society, 2011.

2 Ayman Amin, Alan Colman, and Lars Grunske. An Approach to Forecasting QoS Attrib-
utes of Web Services Based on ARIMA and GARCH Models. In Proc. of the 19th Int. Conf.
on Web Services, pages 74–81. IEEE, 2012.

3 Ayman Amin, Alan Colman, and Lars Grunske. Statistical Detection of QoS Violations
Based on CUSUM Control Charts. In Proc. of the 3rd ACM/SPEC Int. Conf. on Perform-
ance Engineering, pages 97–108. ACM, 2012.

4 Ayman Amin, Lars Grunske, and Alan Colman. An automated approach to forecasting
QoS attributes based on linear and non-linear time series modeling. In Proc. of the 27th
IEEE/ACM Int. Conf. on Automated Software Engineering, pages 130–139. IEEE, 2012.

5 Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, and Giordano
Tamburrelli. Dynamic QoS Management and Optimization in Service-Based Systems. IEEE
Trans. Software Eng., 37(3):387–409, 2011.

6 David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter Steen-
kiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):45–54, 2004.

7 Lars Grunske: An effective sequential statistical test for probabilistic monitoring. Inform-
ation & Software Technology 53(3): 190–199 (2011)

8 Lars Grunske, Pengcheng Zhang: Monitoring probabilistic properties. ESEC/SIGSOFT
FSE 2009: 183–192

9 Raffaela Mirandola and Pasqualina Potena. A QoS-based framework for the adaptation of
service-based systems. Scalable Computing: Practice and Experience, 12(1), 2011.

5.14 Pluggable Verification for Models at Runtime
Jean-Marc Jezequel (University of Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Jean-Marc Jezequel

We propose an approach to integrate the use of ad hoc verifiers (e.g. time-related stochastic
properties) in a continuous design process based on models at runtime. Assurance guarantees
are an important aspect of component-based architectures, for instance in distributed, volatile
networks of computation nodes. The models at runtime approach eases the management of
such architectures by maintaining abstract models of architectures synchronized with the
physical, distributed execution platform. For self-adapting systems, prediction of quality
attributes such as delays and throughput of a component assembly is of utmost importance to
take adaptation decision and accept evolutions that conform to non functional specifications.
To this aim we propose a modular way of defining metamodel extensions to capture quality
attributes. Model transformations are then executed at runtime to process these extensions
and connect to off-the-shelf verification engines. The result of the verification is then fed back
into the decision engine to help it choose the right reconfiguration model, before it is enacted
on the component platform level. Of course one challenge is that both the transformation
machinery and the verification engine are fast enough to be used at runtime.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 85

5.15 Can RE Contribute to SAS Assurance?
Zhi Jin (Peking University, CN)

License Creative Commons BY 3.0 Unported license
© Zhi Jin

When systems will run in open, changing, uncertain execution and/or interaction environ-
ments, self-adaptation becomes a must-be requirement. That is the expectation to the systems
to cope with variable resources and variable interactors that may cause system errors, while
maintaining the business goals envisioned by the engineers and expected from the users. The
task of the requirement phase is to identify such a requirement and explore the requirement
into sufficient detailed specification that is ready for system design. This talk proposes an
environment-based methodologies for engineering the self- adaptation requirements, that is
the first step assurance. The following are the three features: (1) Identifying the requirement
should start from the environment conceptualisation that allowing to identifying the uncer-
tainty and changing patterns of the environment; (2) Modelling the system-to-be as discrete
control system which captures the capabilities of monitoring and detecting the potential
changes in both environment and system itself; (3) Defining precisely the specification of the
run-time mechanism for allowing the system to be self- adaptive.

5.16 Self-adaptivity vs. Latent Software Defects: Software Health
Management

Gabor Karsai (Vanderbilt University, US)

License Creative Commons BY 3.0 Unported license
© Gabor Karsai

The complexity of software systems is reaching the point where latent defects remain in
deployed systems. To detect, isolate, and mitigate the effects of such defects new paradigms
are needed. One such paradigm is software health management that is interesting application
area of self- adaptive software techniques. Software health management borrows the language
and techniques from system health management (frequently used in aerospace vehicles),
where anomaly detection, fault diagnostics, and reconfiguration are used to remove faults
from systems while in operation. The talk describes a software framework that was created
to enable developers to design and implement software health management functions in their
systems.The framework is based on a software component model, local and global health
managers. The latter incorporates a system-wide fault diagnostics component as well as
a reasoner engine that computes architectural adaptations of the component architecture
to mitigate the effect of component faults. The framework is supported by a model-driven
development toolchain.

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

86 13511 – Software Engineering for Self-Adaptive Systems: Assurances

5.17 Challenges in Autonomous Vehicle Validation
Philip Koopman (Carnegie Mellon University, US)

License Creative Commons BY 3.0 Unported license
© Philip Koopman

Creating safe Transportation Cyber-Physical Systems (CPSs) presents new challenges as
autonomous operation is attempted in unconstrained operational environments. The ex-
tremely high safety level required of such systems (perhaps one critical failure per billion
operating hours) means that validation approaches will need to consider not only normal
operation, but also operation with system faults and in exceptional environments. Additional
challenges will need to be overcome in the areas of rigorously defining safety requirements,
trusting the safety of multi-vendor distributed system components, tolerating environmental
uncertainty, providing a realistic role for human oversight, and ensuring sufficiently rigorous
validation of autonomy technology.

5.18 Control-theoretical computing system design
Alberto Leva (Technical University of Milan, IT)

License Creative Commons BY 3.0 Unported license
© Alberto Leva

In the last years, we have been addressing several problems related to computing systems by
adopting a control-theoretical approach. With respect to the mainstream research on the
matter, our work has a relevant peculiarity: instead of taking the system “as is” and just
adding a control layer on top of it, we try to isolate the parts of the overall problem that can
be formally stated as control ones, and design parts of the considered system consequently.
To explain with an example relative to task scheduling, we do not take an existing and
fully functional scheduler and use a feedback controller to adapt its tuning parameters (e.g.,
priorities). On the contrary, we build the entire scheduler as a controller, that directly
decides the CPU times to be allotted to the tasks. Applying this idea to different contexts,
ranging from time synchronisation to service composition and dynamic binding, we found
that isolating the “core” problems – in the sense above – tends to allow for the application of
simple modelling and control methods. We also noticed that once formalised this way, many
heterogeneous problems come to assume a significantly uniform mathematical structure. We
finally observed that some properties of interest for control systems are potentially very
keen to be re-formulated as “assurances” in the computing systems sense. As a result,
besides favouring efficiency, the proposed approach also eases the formal assessment of some
properties of interest. We therefore conjecture that by setting up (wherever possible and
convenient) a sound correspondence between said properties – that are natively expressed in
control-theoretical terms – and assurances in the computing system sense, significant benefits
can be achieved.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 87

5.19 Adaptation in Software Defined Infrastructures
Marin Litoiu (York University – Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Marin Litoiu

To be efficient and robust, an adaptive feedback loop has to aggregate the contributions of
different software layers. For example, the performance of an application can be controlled
not only by tuning the parameters of the application but also by adjusting the underlying
computing, storage, network or hardware infrastructures. With the advent of Software
Defined Infrastructure, those adjustment can be effected at runtime. In this presentation, we
introduce the Smart Applications on Virtual Infrastructure (SAVI), a Canadian project that
builds an experimental Software Defined Infrastructure testbed. As an example of problems
that we can solve more efficiently with the cross layer approach are the Low and Slow
Distributed Denial of Service attacks. Those attacks are becoming a serious issue because,
due to low resource consumption and slow ramping, they are hard to detect. A possible
solution is to identify the attack at the application layer and then to use the underlying
layers to mitigate the attack.

5.20 Toward the Making of Software that Learns to Manage Itself
Sam Malek (George Mason University – Fairfax, US)

License Creative Commons BY 3.0 Unported license
© Sam Malek

A self-managing software system is capable of adjusting its behavior at runtime in response
to changes in the system, its requirements, or the environment in which it executes. Self-
management capabilities are sought-after to automate the management of complex software in
many computing domains, including service-oriented, mobile, cyber-physical and ubiquitous
settings. While the benefits of such software are plenty, its development has shown to be
much more challenging than the conventional software.

At the state of the art, it is not an impervious engineering problem in principle to develop
a self-adaptation solution tailored to a given system, which can respond to a bounded set
of conditions that are expected to require automated adaptation. However, any sufficiently
complex software system once deployed in the field is subject to a broad range of conditions
and many diverse stimuli. That may lead to the occurrence of behavioral patterns that have
not been foreseen previously: in fact, those may be the ones that cause the most critical
problems, since, by definition, they have not manifested themselves, and have not been
accounted for during the previous phases of the engineering process. A truly self-managing
system should be able to cope with such unexpected behaviors, by modifying or enriching its
adaptation logic and provisions accordingly.

In this talk, I will first provide an introduction to some of the challenges of making
software systems self-managing. Afterwards, I will provide an overview of two research
projects in my group that have tackled these challenges through the applications of automated
inference techniques (e.g., machine learning, data mining). The results have been promising,
allowing the software engineers to empower a software system with advanced self-management
capabilities with minimal effort. I will conclude the talk with an outline of future research
agenda for the community.

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

88 13511 – Software Engineering for Self-Adaptive Systems: Assurances

5.21 On the uncertainties in the modeling of self-adaptive systems
Raffaela Mirandola (Technical University of Milan, IT)

License Creative Commons BY 3.0 Unported license
© Raffaela Mirandola

The complexity of modern software systems has grown enormously in the past years with
users always demanding for new features and better quality of service. The satisfaction of
non-functional requirements like performance and availability is of paramount importance if
a product hopes to be considered in the marketplace. Model-based evaluation techniques at
software design-time have been proposed to ensure the delivering of software that meets its
non-functional requirements. However, since a large part of modern software is embedded
in dynamic execution contexts where requirements, environment assumptions, and usage
profiles continuously change, this quality assessment at design time becomes more difficult.
As an answer to dynamic execution context, self-adaptive systems have been adopted. Self-
adaptation endows a system with the capability to accommodate its execution to different
contexts in order to achieve continuous satisfaction of requirements. Often, self- adaptation
process also makes use of runtime model evaluations to decide the changes in the system.
However, even at runtime, context information that can be managed by the system is not
complete or accurate; i.e, it is still subject to some uncertainties. This work motivates the
need for the consideration of the concept of uncertainty in the model-based evaluation as a
primary actor, classifies the avowed uncertainties of self-adaptive systems, and illustrates
examples of how different types of uncertainties are present in the modeling of system
characteristics for availability requirement satisfaction.

5.22 A Software Lifecycle Process For Data-intensive Self-adaptive
Systems

Marco Mori (University of Namur, BE)

License Creative Commons BY 3.0 Unported license
© Marco Mori

Joint work of Cleve, Anthoy; Inverardi, Paola; Mori, Marco

Nowadays ubiquitous software systems have to meet user expectations while considering
an ever-changing environment. The increasing space of possible contexts and the limited
capacity of mobile devices make no longer possible to incorporate all necessary software
alternatives and the required data for all possible contexts. Thus, upon variations to user
task, user role, user preferences or physical environment, the current software alternative and
its required data have to be reconfigured. In order to prevent incorrect system behaviours,
reconfigurations should avoid inconsistencies of both data and software by providing assurance
to the uncertainty of changes affecting the system.

In this talk we present a generic lifecycle process for self-adaptive systems which supports
predictable and unpredictable system evolutions and different notions of inconsistencies
which apply to code artifacts and system requirements. Consequently we introduce the
problem of supporting adaptivity of data belonging to a global database and we improve the
former definition of assurance by considering consistency of database schema and instances.
We claim the need for a new lifecycle process which has to consider together adaptivity of
software with adaptivity of data occurring in a consistent predictable and unpredictable
manner.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 89

5.23 Managing Viability Zone Dynamics for the Assurance of
Self-Adaptive Systems

Hausi A. Mueller (University of Victoria, CA)

License Creative Commons BY 3.0 Unported license
© Hausi A. Mueller

We define the viability zone of a self-adaptive software (SAS) system as the set of possible
states in which the system operation is not compromised, that is, the set of states where the
system’s requirements and desired properties (i.e., adaptation goals) are satisfied. Viability
zones can be characterized in terms of relevant context attributes and corresponding desired
values. These context attributes correspond to either measurements of internal variables of
the target system or the adaptation mechanism, or environmental variables whose variations
can take the system outside its viability zone. Viability zones are N-dimensional. Therefore,
a particular SAS system may have more than one associated viability zone (e.g., one for each
adaptation goal). The global viability zone of a system thus results from the composition of
these partial viability zones. Moreover, existing viability zones can be added, replaced or
adjusted by adding or removing variables of interest at runtime. Viability zones can change
with context changes, as opposed to the solution space concept, which is assumed to be
fixed. In effect, the viability zone of a target system under adaptation constantly varies along
adaptation dimensions. These variations take place every time the adaptation operation
modifies either the target system architecture (e.g., adding or removing components and
connectors) or the controller itself (e.g., modifying its parameters or replacing the control
algorithm), thus introducing new, or removing existing variables and associated domain types.
To extend the V&V coverage of the expanded viability zone, runtime models are required for
the incremental derivation of software artifacts for V&V monitoring and checking. Therefore,
not only are runtime V&V methods required to cope with the viability zone dynamics
problem, but these V&V methods also need to be automatically generated according to
the modifications that result from dynamic adaptation to keep the adaptive system inside
its viability zone. We believe that managing viability zones at runtime is crucial for the
assurance of self-adaptive systems.

5.24 Self-Adaptive Cloud Controllers
Mauro Pezze (University of Lugano, CH)

License Creative Commons BY 3.0 Unported license
© Mauro Pezze

Cloud technologies are rapidly substituting classic computing solutions and challenge the
community with new problems. In our research we focus on cloud controllers and we work
on novel solutions for self-adaptive cloud controllers based on Kriging models. While in
classic software engineering solutions, scheduling problems are mostly hidden from the
application developers, in Cloud based applications the responsibility of allocating the
required resources is assigned to the developers and depends on the application requirements
and the nature of the cloud. General-purpose Cloud schedulers provide sub-optimal solutions
to the problem with respect to application-specific solutions that we call cloud controllers.
We are investigating the use of surrogate models, and in particular Kriging models, that
present interesting properties to support adaptive control.

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

90 13511 – Software Engineering for Self-Adaptive Systems: Assurances

5.25 Feedbacks Control Loops as 1st Class Entities – The SALTY
Experiment

Romain Rouvoy (Université de Lille I, FR)

License Creative Commons BY 3.0 Unported license
© Romain Rouvoy

Joint work of Collet, Philippe; Krikava, Filip; Rouvoy, Romain; Seinturier, Lionel
Main reference F. Krikava, P. Collet, R. France, “ACTRESS: Domain-Specific Modeling of Self-Adaptive Software

Architectures,” in Proc. of the 9th DADS Track of the 29th ACM Symp. on Applied Computing,
ACM, 2014.

URL http://salty.unice.fr/

This talk shortly reports on the results of the SALTY R&D project (https://salty.unice.fr)
funded by the French funding agency (ANR). The key outcome of this project is a software
framework that covers both design-time and runtime support for integrating self-adaptive
behaviours into potentially complex legacy systems. SALTY therefore provides a reflective
domain-specific model to externalise and make explicit the control layer of legacy systems.
While the adoption of a domain-specific model leverages the mapping on different middleware
stacks (FraSCAti or Akka in our case studies), it also acts as a pivot, within a modular
toolchain, to implement design-time verifications and to inject runtime guards. Future case
studies of this approach will cover green computing, crowd- sensing, and big data systems.

5.26 Model-driven infrastructure for reliable service compositions using
dynamic software product lines

Cecilia Mary Fischer Rubira (UNICAMP, BR)

License Creative Commons BY 3.0 Unported license
© Cecilia Mary Fischer Rubira

Joint work of Rubira, Cecilia Mary Fischer; Nascimento; Amanda S. Castor; Fernando
Main reference A. Nascimento, C. Rubira, F. Castor, “ArCMAPE: A Software Product Line Infrastructure to

Support Fault-Tolerant Composite Services,” in Proc. of the 15th IEEE Int’l Symposium on High
Assurance Systems Engineering (HASE’14), pp. 41–48, IEEE CS, 2014.

URL http://doi.ieeecomputersociety.org/10.1109/HASE.2014.15

A number of solutions use software fault tolerance techniques based on design diversity
to create fault-tolerant composite services that leverage functionally equivalent services.
Nevertheless, these solutions are not able to adapt themselves at runtime to cope with
dynamic changes of user requirements and fluctuations in the quality of services (QoS).
We propose a self-adaptive solution, called ArCMAPE, that leverages ideas from Software
Product Line Engineering to support fault-tolerant composite services. In particular, we
specify a feature model and product line architecture to capture the common and variable
features among a number of software fault tolerance techniques based on design diversity.
ArCMAPE provides software com- ponents implementing the common features; and a
foundation on which plug-in components, or variable components, can be easily added to
realise the target variable features. At runtime, ArCMAPE dynamically instantiates software
fault tolerance techniques tailored to the specific needs of different clients and contexts by
employing feature-based runtime adaptations. Outcomes obtained from an empirical study
suggest the feasibility and efficiency of our solution to support self-adaptive, fault- tolerant
composite services. We discuss the obtained outcomes and present directions for future work.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://salty.unice.fr/
http://salty.unice.fr/
http://salty.unice.fr/
http://salty.unice.fr/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://doi.ieeecomputersociety.org/10.1109/HASE.2014.15
http://doi.ieeecomputersociety.org/10.1109/HASE.2014.15
http://doi.ieeecomputersociety.org/10.1109/HASE.2014.15
http://doi.ieeecomputersociety.org/10.1109/HASE.2014.15

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 91

5.27 Modular Discrete Control for Adaptive Software Systems
Eric Rutten (INRIA Grenoble – Rhône-Alpes, FR)

License Creative Commons BY 3.0 Unported license
© Eric Rutten

This talk will present a synthesis on our work on safe design of controllers for autonomic
computing systems, using techniques originally conceived in Control thoery, more specifically
Discrete event Systems. Our approach is supported by a programming language from the
family of reactive languages, and based on a formalism of Labelled Transition Systems.
Applications concern control of logical and synchronization aspects in reconfigurable FPGA-
based architectures, coordination of multiple loops in Data-center management, and smart-
environments in the Internet of Things.

5.28 Managing Non-Functional Uncertainty via Model-Driven
Adaptivity

Giordano Tamburrelli (University of Lugano, CH)

License Creative Commons BY 3.0 Unported license
© Giordano Tamburrelli

Modern software systems are often characterized by uncertainty and changes in the environ-
ment in which they are embedded. Hence, they must be designed as adaptive systems. We
propose a framework that supports adaptation to non-functional manifestations of uncertainty.
Our framework allows engineers to derive, from an initial model of the system, a finite state
automaton augmented with probabilities. The system is then executed by an interpreter that
navigates the automaton and invokes the component implementations associated to the states
it traverses. The interpreter adapts the execution by choosing among alternative possible
paths of the automaton in order to maximize the system’s ability to meet its non-functional
requirements. To demonstrate the adaptation capabilities of the proposed approach we
implemented an adaptive application inspired by an existing worldwide distributed mobile
application and we discussed several adaptation scenarios.

5.29 Managing Viability Zone Dynamics for the Assurance of
Self-Adaptive Systems

Gabriel Tamura (Universidad Icesi, CO)

License Creative Commons BY 3.0 Unported license
© Gabriel Tamura

We define the viability zone of a self-adaptive software (SAS) system as the set of possible
states in which the system operation is not compromised, that is, the set of states where the
system’s requirements and desired properties (i.e., adaptation goals) are satisfied. Viability
zones can be characterized in terms of relevant context attributes and corresponding desired
values. These context attributes correspond to either measurements of internal variables of
the target system or the adaptation mechanism, or environmental variables whose variations
can take the system outside its viability zone. Viability zones are N-dimensional. Therefore,
a particular SAS system may have more than one associated viability zone (e.g., one for each
adaptation goal). The global viability zone of a system thus results from the composition of

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

92 13511 – Software Engineering for Self-Adaptive Systems: Assurances

these partial viability zones. Moreover, existing viability zones can be added, replaced or
adjusted by adding or removing variables of interest at runtime.

Viability zones can change with context changes, as opposed to the solution space concept,
which is assumed to be fixed. In effect, the viability zone of a target system under adaptation
constantly varies along adaptation dimensions. These variations take place every time the
adaptation operation modifies either the target system architecture (e.g., adding or removing
components and connectors) or the controller itself (e.g., modifying its parameters or replacing
the control algorithm), thus introducing new, or removing existing variables and associated
domain types. To extend the V&V coverage of the expanded viability zone, runtime models
are required for the incremental derivation of software artifacts for V&V monitoring and
checking. Therefore, not only are runtime V&V methods required to cope with the viability
zone dynamics problem, but these V&V methods also need to be automatically generated
according to the modifications that result from dynamic adaptation to keep the adaptive
system inside its viability zone. We believe that managing viability zones at runtime is
crucial for the assurance of self-adaptive systems.

5.30 Managing Viability Zone Dynamics for the Assurance of
Self-Adaptive Systems

Norha Milena Villegas Machado (Universidad Icesi, CO)

License Creative Commons BY 3.0 Unported license
© Norha Milena Villegas Machado

We define the viability zone of a self-adaptive software (SAS) system as the set of possible
states in which the system operation is not compromised, that is, the set of states where the
system’s requirements and desired properties (i.e., adaptation goals) are satisfied. Viability
zones can be characterized in terms of relevant context attributes and corresponding desired
values. These context attributes correspond to either measurements of internal variables of
the target system or the adaptation mechanism, or environmental variables whose variations
can take the system outside its viability zone. Viability zones are N-dimensional. Therefore,
a particular SAS system may have more than one associated viability zone (e.g., one for each
adaptation goal). The global viability zone of a system thus results from the composition of
these partial viability zones. Moreover, existing viability zones can be added, replaced or
adjusted by adding or removing variables of interest at runtime.

Viability zones can change with context changes, as opposed to the solution space concept,
which is assumed to be fixed. In effect, the viability zone of a target system under adaptation
constantly varies along adaptation dimensions. These variations take place every time the
adaptation operation modifies either the target system architecture (e.g., adding or removing
components and connectors) or the controller itself (e.g., modifying its parameters or replacing
the control algorithm), thus introducing new, or removing existing variables and associated
domain types. To extend the V&V coverage of the expanded viability zone, runtime models
are required for the incremental derivation of software artifacts for V&V monitoring and
checking. Therefore, not only are runtime V&V methods required to cope with the viability
zone dynamics problem, but these V&V methods also need to be automatically generated
according to the modifications that result from dynamic adaptation to keep the adaptive
system inside its viability zone. We believe that managing viability zones at runtime is
crucial for the assurance of self-adaptive systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 93

5.31 Modeling Self-Adaptive Software
Thomas Vogel (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY 3.0 Unported license
© Thomas Vogel

Self-adaptive software typically uses a self-representation to reflect on its adaptable parts.
While runtime models are employed for such a self-representation, runtime models and
model-driven engineering methods may additionally be employed to specify, execute, and
adjust (on-line and off-line) the individual adaptation activities of a feedback loop as well
as the whole feedback loop. Besides leveraging flexibility, keeping models alive at runtime
and considering them as first class entities support the provisioning of assurances for on-line
and off-line adaptation based on such models. Therefore, a formal underpinning of modeling
languages and models, the composition and decomposition of models and assurances, and
assurances for the models themselves are critical aspects that, among others, have to be
addressed.

5.32 ActivFORMS: Active FORmal Model for Self-adaptation
Danny Weyns (Linnaeus University – Växjö, SE)

License Creative Commons BY 3.0 Unported license
© Danny Weyns

Self-adaptation enables a software system to adapt itself at runtime to deal with uncertainties,
such as dynamic operating conditions that were difficult to predict or unanticipated changes
of goals. Self-adaptation is realized with a feedback loop, which typically consists of monitor,
analysis, plan, and execution functions. To provide guarantees of the adaptations, state of
the art approaches propose to equip the feedback loop with formal models of the managed
system, its environment and goals. However, existing approaches do not systematically
formalize and verify the behavior of the adaptation functions themselves. Furthermore, there
is limited attention for adaptation of unanticipated changes. We propose ActivFORMS
(Active FORmal Model for Self-adaptation) that uses a formal model of the complete feedback
loop. This model is directly executed at runtime by a virtual machine realizing adaptation.
ActivFORMS assures that the verified system goals are met at runtime, and the approach
enables dynamic updates of self-adaption behaviors to support unanticipated changes.

5.33 Reconciling self-adaptation and self-organization towards effective
assurances

Franco Zambonelli (University of Modena, IT)

License Creative Commons BY 3.0 Unported license
© Franco Zambonelli

Two complementary software engineering approaches currently exist to make complex software
systems adaptive. Self-adaptation approaches attack the problem by engineering proper
feedback loops around components and systems, so as to make them adaptive by explicit
design. Self-organization approaches, on the other hand, attack the problems by trying to

13511

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

94 13511 – Software Engineering for Self-Adaptive Systems: Assurances

mimic in software the capabilities of collective adaptation of natural systems, so as to make
systems adaptive by emergence. A key challenge is that, while self-organization can be much
more effective, assurances can be better achieved via self-adaptation. Accordingly, I analyze
the issue of reconciling the two approaches towards a novel, innovative, approach that to
synthesize the benefits of both approaches, efficiency and assurance.

5.34 Runtime Testing of Self-Adaptive Systems
Carlos Eduardo da Silva (Federal University of Rio Grande do Norte, BR)

License Creative Commons BY 3.0 Unported license
© Carlos Eduardo da Silva

In our previous work we have tackled the problem of dynamically generating adaptation
plans in order to deal with situation not foreseen during development. We have developed
a framework for the dynamic generation of processes that factors out common process
generation mechanisms and provides explicit customisation points to tailor process generation
capabilities to different application domains. Such framework has been focused on the
planning aspects of the MAPE-K loop, and has benn applied in two different domains,
namely, architectural reconfiguration and integration testing. We have also considered the
problem of dynamic modifying the mechanisms responsible for generating processes.

Currently, we have been looking further on the aspects related to testing at run-time as
the means of providing assurances about self-adaptive systems. We have also been looking
on “feature phases”, that is, MAPE-K loops that deals with different features (concerns) of
each of the phases of the main MAPE-K loops, investigating patterns of interaction between
MAPE-K loops and their phases as the means to position run-time testing in the MAPE-K
loop.

5.35 Architecting Resilience: Handling Malicious and Accidental
Threats

Rogerio de Lemos (University of Kent, GB)

License Creative Commons BY 3.0 Unported license
© Rogerio de Lemos

Resilience is the persistence of service delivery that can justifiably be trusted, when facing
changes. While architecting is the art and science of creating and building complex systems,
and which covers the following basic activities: scope, structure and certification. One
important aspect of resilience is the provision of assurances, and these are obtained by
building arguments about system resilience. However in order to build arguments, one needs
to collect, structure and analyse evidence. In self-adaptive systems, evidence can be obtained
either at development-time or run-time.

This talk has covered three contributions. In the first contribution, we describe how
for self-adaptive software systems integration testing can be performed at run-time. This
activity should be implemented as a feedback control loop, which should be associated with
the analysis phase of the autonomic MAPE-K loop.

The second contribution is related to a stepwise progress for the provision of assurances
about the resilience of self-adaptive software systems, and it covers the following topics: (i)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese 95

resilience evaluation based on environmental stimuli in which probabilistic model-checking is
used for obtaining levels of confidence, (ii) resilience evaluation by comparing adaptation
mechanisms of self-adaptive software systems, (iii) robustness evaluation of controllers by
injecting faults into the probes of Rainbow, (iv) effectiveness of architecture-based self-
adaptation by evaluating the effort of evolving industrial middleware into a architectural-
based self-adaptive software system, finally (v) robustness-driven resilience evaluation of
self-adaptive software systems in which system properties are evaluated by injecting faults.

The third contribution concerns an approach based on self-adaptation as a means to
improve the management of malicious behaviour, by adapting authoris ation policies and
access rights. The goal is to adapt to mitigate malicious behaviour, and prevent future
attacks.

References
1 J. Camara, R. de Lemos, M. Vieira, R. Almeida, R. Ventura. Architecture-Based Resilience

Evaluation for Self-Adaptive Systems. Computing Journal (Special “Software Architecture
for Code Testing and Analysis”) 95(8). 2013. pp. 689–722.

2 J. Camara, R. de Lemos. Evaluation of resilience in self-adaptive systems using probabilistic
model-checking. Proceedings of the International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2012). Zurich, Switzerland. June 2012.
pp. 53–62.

3 J. Camara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, R. Ventura. Evolving
an Adaptive Industrial Software System to Use Architecture-Based Self-Adaptation. Pro-
ceedings of the International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2013). San Francisco, CA, USA. May 2013. pp. 13–22.

4 J. Camara, R. de Lemos, N. Laranjeiro, R. Ventura, M. Vieira. Robustness Evaluation in
Self-Adaptive Software Systems. Latin American Symposium on Dependable Computing
(LADC 2013). Rio de Janeiro, RJ, Brazil. April 2013. pp. 1–10.

5 C. Bailey, D.W. Chadwick, R. de Lemos, K. W. S. Sui. Enabling the Autonomic Man-
agement of Federated Identity Providers. 7th International Conference on. Autonomous
Infrastructure, Management and Security (AIMS 2013). June 2013, UPC Barcelona, Spain.
2013. pp. 100–111.

6 C.E. da Silva and R. de Lemos. Dynamic plans for integration testing of self-adaptive
software systems. Proceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS 2011). Honolulu, HI, USA. May 2011.
pp. 148–157.

13511

96 13511 – Software Engineering for Self-Adaptive Systems: Assurances

Participants

Jesper Andersson
Linnaeus University – Växjö, SE

Chris Bailey
University of Kent, GB

Luciano Baresi
Technical University of Milan, IT

Benoit Baudry
INRIA Rennes – Bretagne
Atlantique, FR

Nelly Bencomo
Aston Univ. – Birmingham, GB

Yuriy Brun
University of Massachusetts –
Amherst, US

Radu Calinescu
University of York, GB

Javier Cámara
Carnegie Mellon University, US

Myra B. Cohen
Univ. of Nebraska – Lincoln, US

Vittorio Cortellessa
University of L’Aquila, IT

Bojan Cukic
West Virginia University –
Morgantown, US

Carlos Eduardo da Silva
Federal University of Rio Grande
do Norte, BR

Rogerio de Lemos
University of Kent, GB

Antonio Filieri
Universität Stuttgart, DE

Carlo Ghezzi
Technical University of Milan, IT

Holger Giese
Hasso-Plattner-Institut –
Potsdam, DE

Alessandra Gorla
Universität des Saarlandes –
Saarbrücken, DE

Vincenzo Grassi
University of Rome “Tor
Vergata”, IT

Lars Grunske
Universität Stuttgart, DE

Paola Inverardi
Univ. degli Studi di L’Aquila, IT

Jean-Marc Jezequel
University of Rennes, FR

Zhi Jin
Peking University, CN

Gabor Karsai
Vanderbilt University, US

Philip Koopman
Carnegie Mellon University, US

Seok-Won Lee
Ajou University, KR

Alberto Leva
Technical University of Milan, IT

Marin Litoiu
York University – Toronto, CA

Sam Malek
George Mason University –
Fairfax, US

Raffaela Mirandola
Technical University of Milan, IT

Marco Mori
University of Namur, BE

Hausi A. Müller
University of Victoria, CA

Mauro Pezzè
University of Lugano, CH

Romain Rouvoy
Université de Lille I, FR

Cecilia Mary Fischer Rubira
UNICAMP, BR

Eric Rutten
INRIA Grenoble –
Rhône-Alpes, FR

Bradley Schmerl
Carnegie Mellon University, US

Mary Shaw
Carnegie Mellon University, US

Giordano Tamburrelli
University of Lugano, CH

Gabriel Tamura
Universidad Icesi, CO

Norha Milena Villegas
Machado
Universidad Icesi, CO

Thomas Vogel
Hasso-Plattner-Institut –
Potsdam, DE

Danny Weyns
Linnaeus University – Växjö, SE

Franco Zambonelli
University of Modena, IT

	Executive Summary Rogerio de Lemos, David Garlan, Carlo Ghezzi, and Holger Giese
	Table of Contents
	Key Topics on Assurances
	Composition and Decomposition of Assurances
	Feedback Loop and Assurances
	Perpetual Provisioning of Assurances

	Outcomes
	Overview of Talks
	Self-Adaptive Authorisation Infrastructures: Managing malicious behaviour Chris Bailey
	A Fine-grained Autonomic Management Solution for Multi- layered Systems Luciano Baresi
	Artificial software diversity: automatic synthesis of program sosies Benoit Baudry
	Bayesian Artificial Intelligence for Tackling Uncertainty in Self-Adaptive Systems: The Case of Dynamic Decision Networks Nelly Bencomo
	Inferring models for verification Yuriy Brun
	Self-Adaptive Software Assurance through Continual Verification of Non-Functional Properties Radu Calinescu
	Failure Avoidance using Feature Locality Myra B. Cohen
	Applying Model Differences to Automate Performance-Driven Refactoring of Software Models Vittorio Cortellessa
	Assurance of Autonomous Adaptive Systems: (Some) Lessons Learned Bojan Cukic
	Software engineering for self-adaptive software: motivational talk Carlo Ghezzi
	Assurance for Self-Adaptive Software and Models Holger Giese
	Fully Decentralized Service Assembly under Non Functional Requirements Vincenzo Grassi
	Runtime Quality Problem Detection Techniques with Statistical Techniques: Theory and Practical Applications Lars Grunske
	Pluggable Verification for Models at Runtime Jean-Marc Jezequel
	Can RE Contribute to SAS Assurance? Zhi Jin
	Self-adaptivity vs. Latent Software Defects: Software Health Management Gabor Karsai
	Challenges in Autonomous Vehicle Validation Philip Koopman
	Control-theoretical computing system design Alberto Leva
	Adaptation in Software Defined Infrastructures Marin Litoiu
	Toward the Making of Software that Learns to Manage Itself Sam Malek
	On the uncertainties in the modeling of self-adaptive systems Raffaela Mirandola
	A Software Lifecycle Process For Data-intensive Self-adaptive Systems Marco Mori
	Managing Viability Zone Dynamics for the Assurance of Self-Adaptive Systems Hausi A. Mueller
	Self-Adaptive Cloud Controllers Mauro Pezze
	Feedbacks Control Loops as 1st Class Entities – The SALTY Experiment Romain Rouvoy
	Model-driven infrastructure for reliable service compositions using dynamic software product lines Cecilia Mary Fischer Rubira
	Modular Discrete Control for Adaptive Software Systems Eric Rutten
	Managing Non-Functional Uncertainty via Model-Driven Adaptivity Giordano Tamburrelli
	Managing Viability Zone Dynamics for the Assurance of Self-Adaptive Systems Gabriel Tamura
	Managing Viability Zone Dynamics for the Assurance of Self-Adaptive Systems Norha Milena Villegas Machado
	Modeling Self-Adaptive Software Thomas Vogel
	ActivFORMS: Active FORmal Model for Self-adaptation Danny Weyns
	Reconciling self-adaptation and self-organization towards effective assurances Franco Zambonelli
	Runtime Testing of Self-Adaptive Systems Carlos Eduardo da Silva
	Architecting Resilience: Handling Malicious and Accidental Threats Rogerio de Lemos

	Participants

