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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14071 “Graph Modi-
fication Problems”. The seminar was held from February 9 to February 14, 2014. This report
contains abstracts for presentations about the recent developments on algorithms and structural
results for graph modification problems, as well as related areas. Furthermore, the report contains
a summary of open problems in this area of research.
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A surprisingly high number of the interesting computational problems arising from theory
and applications can be formulated as graph modification problems. Here we are given as
input a graph G, and the goal is to apply certain operations on G (such as vertex deletions,
edge deletions, additions or contractions) in order to obtain a graph H with some particular
property. For an example the classical Vertex Cover problem can be formulated as trying
to change G into an edgeless graph by performing the minimum possible number of vertex
deletions. The Cluster Editing problem is to change G into a disjoint union of cliques
with a minimum number of edge deletions or additions. Graph modification problems have
been studied quite extensively, and both algorithms for these problems and structural aspects
have been thoroughly explored.

Graph modification problems have received a significant amount of attention from the
perspective of Parameterized Complexity. In parameterized complexity input comes with a
parameter k and the goal is to design fixed parameter tractable algorithms, i.e. algorithms
with running time f(k)nO(1) for some, hopefully not too fast growing function f . The
parameter k can be the size of the solution sought for, or it could be a number describing
how structured the input instance is. For an example k could be the treewidth of the input
graph. Over the last few years, our understanding of the parameterized complexity of graph
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modification problems has greatly improved. Fixed parameter tractable algorithms have
been found for a number of fundamental graph modification problems. For several problems,
surprising new algorithms with subexponential (2o(k)) dependence on k have been developed.

There is a strong connection between graph modification problems and graph classes. A
graph class is simply a set of graphs satisfying some common properties. Thus many, if not
all, graph modification problems can be phrased as modifying the input graph G by as few
operations as possible to make it fit into a particular graph class. There is a large and active
Graph Classes research community that primarily investigates how restricting the input graph
to a particular graph class affects the computational complexity of computational problems.
In the setting of graph modification problems we have no restrictions on the input graph, but
the problem definitions dictate which graph class the output graph should belong to. The
main objective of the seminar was to bring together experts within Parameterized Algorithms
and experts within Graph Classes to join forces on graph modification problems. We also
invited experts from related areas, such as Structural Graph Theory and Bioinformatics.
Structural graph theory, in order to learn of the new powerful graph theoretic tools being
developed, and hopefully to apply them on graph modification problems. Bioinformatics,
in order to better understand the relationship between the idealized models we study and
real-world applications of graph algorithms.

The scientific program of the seminar consisted of 21 talks. 4 of these talks were longer
(45 or 90 minute) presentations covering some of the most exciting developments on graph
modification problems and related areas. We had one long talk for each of the main topics
covered by the seminar. On Monday, Marcin and Michał Pilipczuk gave a joint 90 minute
talk (“Subexponential parameterized complexity of completion problems”) on parameterized
algorithms. On Tuesday, Paul Medvedev gave a 45 minute talk (“An introduction to genome
assembly and its relation to problems on graphs”) showcasing how graph algorithms can
be used in Bioinformatics applications. On Wednsday, Kristina Vušković gave a 45 minute
presentation (“Weighted Independent Set in bull-free graphs”) about how deep structure
theorems can be useful in algorithm design, and on Thursday, Andreas Brandstädt gave a
presentation (“Clique separator decomposition for a subclass of hole-free graphs”) on graph
classes. We believe that the invited talks were a good starting point for cross-community
collaboration. The remaining talks were 30 or 35 minute presentations on recent research of
the participants. We made a point out of having fewer short talks, in order to leave more
time for individual discussions and collaboration in groups, as well as for open problem
sessions. The idea was to reserve almost all of the time between lunch and dinner for research.
This was very well received by the participants. There were 3 fruitful open problem sessions,
on Monday, Tuesday and Thursday. Notes on the presented problems can be found in this
report.
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3 Overview of Talks

3.1 A few things about linear rankwidth
Isolde Adler (Goethe-Universität Frankfurt am Main, DE)

Joint work of Adler, Isolde; Farley, Art; Ganian, Robert; Kante, Mamadou; Kwon, O-joung; Proskurowski,
Andrzej

License Creative Commons BY 3.0 Unported license
© Isolde Adler

Path-width can be seen as linearized variant of tree-width, and similarly, linear rank-width
is the linearized version of rank-width. It is defined like rank-width by restricting the
decomposition trees to being caterpillars. It is known that a graph class has bounded linear
rank-width if and only if it has bounded linear clique-width. Many problems that are NP-hard
in general become tractable on graphs on bounded (linear) rank-width. For instance, this is
the case for all problems expressible in MSO1 (monadic second order logic with quantification
over vertex sets only).

While path-width is a well-studies notion, much less is yet known about linear rank-width.
If a graph class has bounded path-width, then it has bounded linear rank-width. The

converse is not true: cliques and complete bipartite graphs have linear rank-width 1, but
their path-width is unbounded.

Since computing linear rank-width is NP-hard in general, we are interested in finding
graph classes that permit an efficient computation of linear rank-width.

In this talk we give a short overview of the state of the art and we present some results
on trees and distance-hereditary graphs.

The talk includes results of joint work with Art Farley, Robert Ganian, Mamadou Kante
and O-joung Kwon and Andrzej Proskurowski.

3.2 Parameterized complexity of three edge contraction problems with
degree constraints

Rémy Belmonte (Kyoto University, JP)

License Creative Commons BY 3.0 Unported license
© Rémy Belmonte

Joint work of Belmonte, Rémy; Golovach, Petr A.; van ’t Hof, Pim; Paulusma, Daniël
Main reference R. Belmonte, P.A. Golovach, P. van ’t Hof, D. Paulusma, “Parameterized Complexity of Two Edge

Contraction Problems with Degree Constraints,” in Proc. of the 8th Int’l Symp. on Parameterized
and Exact Computation (IPEC’13), LNCS, Vol. 8246, pp. 16–27, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-319-03898-8_3

For any graph class H, the H-Contraction problem takes as input a graph G and an integer
k, and asks whether there exists a graph H ∈ H such that G can be modified into H using at
most k edge contractions. We study the parameterized complexity of H-Contraction for
three different classes H: the class H≤d of graphs with maximum degree at most d, the class
H=d of d-regular graphs, and the class of d-degenerate graphs. We completely classify the
parameterized complexity of all three problems with respect to the parameters k, d, and d+k.
Moreover, we show that H-Contraction admits an O(k) vertex kernel on connected graphs
when H ∈ {H≤2,H=2}, while the problem is W[2]-hard when H is the class of 2-degenerate
graphs and hence is expected not to admit a kernel at all. In particular, our results imply
that H-Contraction admits a linear vertex kernel when H is the class of cycles.
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3.3 Clique separator decomposition and modular decomposition for
some subclasses of odd-hole-free graphs

Andreas Brandstädt (Universität Rostock, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Brandstädt, Andreas; Berry, Anne; Giakoumakis, Vassilis; Maffray, Frédéric; Mosca, Raffaele
Main reference A. Brandstädt, V. Giakoumakis, F. Maffray, “Clique separator decomposition of hole-free and

diamond-free graphs and algorithmic consequences,” Discrete Applied Math. 160 (2012):471–478.
URL http://dx.doi.org/10.1016/j.dam.2011.10.031

A hole is a chordless cycle of length at least 5. An odd hole is a hole with odd length. An
odd anti-hole is the complement of an odd hole. A diamond is a 4-clique minus an edge.
A paraglider is a graph having five vertices such that four of them induce a diamond, and
the fifth is adjacent to exactly the vertices of degree 2 in the diamond. A bull is a graph
having five vertices such that four of them induce a chordless path (a P4) and the fifth is
adjacent to exactly the vertices of degree 2 in the P4. The famous Strong Perfect Graph
Theorem by Chudnovsky et al. says that a graph is perfect if and only if it is odd-hole-free
and odd-antihole-free. Graph decomposition is one of the fundamental tools for studying
graph structure. Two of the most famous decomposition types are modular decomposition
and clique separator decomposition.

Motivated by the study of graph classes related to perfect graphs and the fact that the
complexity of the Maximum (Weight) Independent Set (MWIS) problem is an open question
for hole-free graphs, we present the following results in the talk:
1. In a paper with Giakoumakis and Maffray, we characterize (hole, paraglider)-free graphs

by the structure of their subgraphs having no clique separator. As a consequence, the
MWIS problem is solvable in polynomial time on (hole, paraglider)-free graphs.

2. In a paper with Berry, Giakoumakis and Maffray, we describe the structure of (hole,
diamond)-free graphs (which is a subclass of (hole, paraglider)-freegraphs) by the structure
of their subgraphs having no clique separator and give an O(n2) time recognition algorithm
for this class.

3. In a paper with Raffaele Mosca, we give a polynomial time algorithm for the MWIS
problem on (odd-hole, bull)-free graphs ((odd-hole, dart)-free graphs, respectively).

3.4 Linear recognition of almost (unit) interval graphs
Yixin Cao (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
© Yixin Cao

Main reference Y. Cao, “Linear Recognition of Almost (Unit) Interval Graphs,” arXiv:1403.1515v1 [cs.DM], 2014.
URL http://arxiv.org/abs/1403.1515v1

Give a graph class G and a nonnegative integer k, we use G+kv, G+ke, and G−ke to denote
the classes of graphs that can be obtained from some graph in G by adding k vertices, adding
k edges, and deleting k edges, respectively. They are called almost (unit) interval graphs if G
is the class of (unit) interval graphs. Almost (unit) interval graphs are well motivated from
computational biology, where the data ought to be represented by a (unit) interval graph
while we can only expect an almost (unit) interval graph for the best. For any fixed k, we
give linear-time algorithms for recognizing all these classes, and in the case of membership,
our algorithms provide also a specific (unit) interval graph as evidence.
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When k is part of the input, all the recognition problems are NP-complete. Our res-
ults imply that all of them are fixed-parameter tractable parameterized by k, thereby
resolving the long-standing open problem on the parameterized complexity of recognizing
(unit-)interval + ke, first asked by Bodlaender et al. [1]. Moreover, our algorithms for recog-
nizing (unit-)interval + kv and (unit-)interval− ke have single-exponential dependence on k
and linear dependence on the graph size, which significantly improve all previous algorithms
for recognizing the same classes. In particular, we show that: (n and m stand for the numbers
of vertices and edges respectively in the input graph)

interval − ke can be recognized in time O(6k · (n + m)), improved from O(k2k · n3m)
[Heggernes et al., STOC 2007];
unit-interval−ke can be recognized in time O(4k ·(n+m)), improved from O(16k ·(m+n))
[Kaplan et al., FOCS 1994];
interval + kv can be recognized in time O(8k · (n+m)), improved from O(10k · n9) [Cao
and Marx, SODA 2014]; and
unit-interval + kv can be recognized in time O(6k · (n+m)), improved from O(6k · n6)
[Villanger, IPEC 2010].

These problems have natural optimization versions, which are known as graph modification
problems. For those related to interval graphs, we show that under certain condition, there
always exist optimum solutions that preserve all modules of the input graph. Another
important ingredient of our algorithms is combinatorial and algorithmic characterizations of
graphs free of small non-interval graphs. These studies might be of their own interest.

References
1 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Michael T. Hallett, and Har-

old T. Wareham. Parameterized complexity analysis in computational biology. Computer
applications in the biosciences, 11(1):49–57, 1995.

3.5 Convexity in graphs
Tinaz Ekim (Bogaziçi University – Istanbul, TR)

License Creative Commons BY 3.0 Unported license
© Tinaz Ekim

Joint work of Ekim, Tinaz; Erey, Aysel

Let G = (V,E) be a connected graph and D ⊆ V (G). The geodetic closure of D, denoted
by I[D], consists of all vertices which lie on some shortest path between two vertices of D.
We say that D is a geodetic set if I[D] = V (G). The geodetic number, denoted by g(G), is
the cardinality of a minimum geodetic set in G, and a g-set is a geodetic set of minimum
cardinality.

As it is NP-hard to compute the g-set already in chordal graphs, the complexity of the
problem of finding a g-set is considered in special graph classes. Polynomial time algorithms
are designed for split graphs and proper interval graphs among subclasses of chordal graphs,
and for distance hereditary graphs, cographs and P4-sparse graphs. We will briefly exhibit
the block decomposition approach which yields a polynomial time algorithm to compute a
g-set in monopolar chordal graphs and a superclass of block-cacti. Then we will discuss some
other approaches to handle minimum geodetic set problem. In particular, we will consider
the following questions: What are the graphs for which some greedy algorithm finds a g-set?
What are the graphs for which the simplicial vertices form a g-set? Which graph modification
would yield a graph having this property after k operations?

http://creativecommons.org/licenses/by/3.0/
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3.6 Tree deletion set has a polynomial kernel
Archontia C. Giannopoulou (Durham University, GB)

License Creative Commons BY 3.0 Unported license
© Archontia C. Giannopoulou

Joint work of Giannopoulou, Archontia C. ; Lokshtanov, Daniel; Saurabh, Saket; Suchy, Ondrej
Main reference A.C. Giannopoulou, D. Lokshtanov, S. Saurabh, O. Suchy, “Tree Deletion Set has a Polynomial

Kernel (but no OPTO(1) approximation),” arXiv:1309.7891v1 [cs.DS], 2013.
URL http://arxiv.org/abs/1309.7891v1

In the Tree Deletion Set problem the input is a graph G together with an integer k. The
objective is to determine whether there exists a set S of at most k vertices such that G \ S is
a tree. The problem is NP-complete and even NP-hard to approximate within any factor
of OPTc for any constant c. In this talk we give a O(k4) size kernel for the weighted Tree
Deletion Set problem.

3.7 Editing to a connected graph of given degrees
Petr A. Golovach (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Petr A. Golovach

Main reference P.A. Golovach, “Editing to a Connected Graph of Given Degrees,” arXiv:1308.1802v1 [cs.DS], 2013.
URL http://arxiv.org/abs/1308.1802v1

The aim of edge editing or modification problems is to change a given graph by adding
and deleting of a small number of edges in order to satisfy a certain property. We consider
the Edge Editing to a Connected Graph of Given Degrees problem that asks for a graph
G, non-negative integers d, k and a function δ : V (G) → {1, . . . , d}, whether it is possible
to obtain a connected graph G′ from G such that the degree of v is δ(v) for any vertex v
by at most k edge editing operations. As the problem is NP-complete even if δ(v) = 2, we
are interested in the parameterized complexity and show that Edge Editing to a Connected
Graph of Given Degrees admits a polynomial kernel when parameterized by d + k. For
the special case δ(v) = d, i.e., when the aim is to obtain a connected d-regular graph, the
problem is shown to be fixed parameter tractable when parameterized by k only.

3.8 Characterizations of cographs as intersection graphs of paths on a
grid

Martin Charles Golumbic (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Martin Charles Golumbic

Joint work of Cohen, Elad; Golumbic, Martin Charles; Ries, Bernard

A cograph is a graph which does not contain any induced path on four vertices. We
characterize those cographs that are intersection graphs of paths on a grid in the following
two cases: (i) the paths on the grid all have at most one bend and the intersections concern
edges (the B1-EPG graphs); (ii) the paths on the grid are not bended and the intersections
concern vertices (the B0-VPG graphs).
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In both cases, we give a characterization by a family of forbidden induced subgraphs.
We further present polynomial-time algorithms to recognize B1-EPG cographs and B0-VPG
cographs using their cotree.

This work began during the previous Dagstuhl workshop in 2011.

3.9 A near-optimal planarization algorithm
Bart M.P. Jansen (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Bart M.P. Jansen

Joint work of Jansen, Bart Maarten Paul; Lokshtanov, Daniel; Saurabh, Saket
Main reference B.M.P. Jansen, D. Lokshtanov, S. Saurabh, “A near-optimal planarization algorithm,” in Proc. of

the 25th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’14), pp. 1802–1811, SIAM,
2014.

URL http://dx.doi.org/10.1137/1.9781611973402.130

The problem of testing whether a graph is planar has been studied for over half a century, and
is known to be solvable in O(n) time using a myriad of different approaches and techniques.
Robertson and Seymour established the existence of a cubic algorithm for the more general
problem of deciding whether an n-vertex graph can be made planar by at most k vertex
deletions, for every fixed k. Of the known algorithms for k-Vertex Planarization, the algorithm
of Marx and Schlotter (WG 2007, Algorithmica 2012) running in time 2kO(k3)

n2 achieves
the best running time dependence on k. The algorithm of Kawarabayashi (FOCS 2009),
running in time f(k)n for some f(k) ≥ 2kk3

that is not stated explicitly, achieves the best
dependence on n.

We present an algorithm for k-Vertex Planarization with running time 2O(k log k)n, sig-
nificantly improving the running time dependence on k without compromising the linear
dependence on n. Our main technical contribution is a novel scheme to reduce the treewidth
of the input graph to O(k) in time 2O(k log k)n. It combines new insights into the structure of
graphs that become planar after contracting a matching, with a Baker-type subroutine that
reduces the number of disjoint paths through planar parts of the graph that are not affected
by the sought solution. To solve the reduced instances we formulate a dynamic programming
algorithm for Weighted Vertex Planarization on graphs of treewidth w with running time
2O(w logw)n, thereby improving over previous double-exponential algorithms.

While Kawarabayashi’s planarization algorithm relies heavily on deep results from the
graph minors project, our techniques are elementary and practically self-contained. We expect
them to be applicable to related edge-deletion and contraction variants of planarization
problems.

3.10 Around the listing of minimal dominating sets
Mamadou Moustapha Kante (University Blaise Pascal – Aubiere, FR)

License Creative Commons BY 3.0 Unported license
© Mamadou Moustapha Kante

Joint work of Kante, Mamadou Moustapha; Limouzy, Vincent; Mary, Arnaud; Nourine, Lhouari; Uno, Takeaki

The Transversal Problem which consists in the enumeration of minimal hitting sets of a
hypergraph in output-polynomial time, ie in time polynomial in the cumulated sizes of the
input hypergraph and output set of minimal hitting sets is a long standing open problem
(more than a 50 years old problem). Until now a few examples of tractable cases are known,
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the most general examples being the k-degenerate hypergraphs and the k-conformal ones.
The best known algorithm is the quasi-polynomial algorithm by Fredman and Khachiyan [1].
A dominating set in a graph is a subset of vertices that hits every closed neighborhood. Hence,
the enumeration of minimal dominating sets in a graph (DOM Problem) is a special case of
the Transversal Problem. We first sketch the proof that the two problems are equivalent in
the sense that there is a polynomial delay algorithm for the Transversal Problem iff there is
one for the DOM Problem. In a second part we give examples of graphs where the DOM
Problem is tractable by emphasing on used techniques:
1. Tractable Cases from Hypergraphs: k-degenerate graphs, undirected path-graphs, . . .
2. The case of Bounded clique-width graphs: meta-theorem by Courcelle based on automata

and logic. This case is interesting in its own since it transforms the DOM Problem into
an enumeration of trees (simulating successful runs) in DAGS.

3. Transformations of instances into enumeration of paths in DAGS: Interval and permutation
graphs. This allows to count in polynomial time, and can be extended to several other
graph classes: circular-arc graphs, d-trapezoid, . . .

4. Mix of hypergraph techniques and graph theoretic: a polynomial delay algorithm for the
enumeration of minimal edge dominating sets.

References
1 Michael L. Fredman, Leonid Khachiyan: On the Complexity of Dualization of Monotone

Disjunctive Normal Forms. J. Algorithms 21(3): 618–628 (1996)

3.11 On the variants of tree-width
O-joung Kwon (KAIST – Daejeon, KR)

License Creative Commons BY 3.0 Unported license
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Joint work of Kwon, O-joung; Ok, Seongmin

In this talk, we consider the notion of spaghetti treewidth, directed spaghetti treewidth,
and strongly chordal treewidth, which are variants of tree-width. For each of these graph
parameters, we show that the class of graphs with this parameter at most two is closed under
taking of minors, and give the obstruction set for this class. We also characterize the class,
in terms of a tree of cycles with additional conditions. We also show that for an integer k
larger than 2, the classes of graphs with spaghetti treewidth, directed spaghetti treewidth, or
strongly chordal treewidth, respectively at most k, are not closed under taking minors.

3.12 Introduction to genome assembly and its relation to problems on
graphs

Paul Medvedev (Pennsylvania State University, US)

License Creative Commons BY 3.0 Unported license
© Paul Medvedev

In this talk, we give a short tutorial on genome assembly, focusing on the algorithmic aspects.
We first describe the biological problem and then formulate the shortest superstring model
and show its limitations. We then describe the de Bruijn graph model, showing its limitations
as well as strengths.
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In the second part of the talk, we describe a recent algorithm to collapse all the chains in
a de Bruijn graph using a small amount of memory. The algorithm works by partitioning
the node in the graph using a hash function so that only the nodes with the same hash value
need to be loaded into memory at the same time. The hash function is based on the idea of
frequency-based minimizers, which allow the nodes to be evenly distributed and the hash
function to exhibit structural locality. This second part is joint work with Rayan Chikhi and
Antoine Limasset that will appear at RECOMB 2014.

3.13 On the recognition of four-directional orthogonal ray graphs
George B. Mertzios (Durham University, GB)

License Creative Commons BY 3.0 Unported license
© George B. Mertzios

Orthogonal ray graphs are the intersection graphs of horizontal and vertical rays (i.e. half-
lines) in the plane. If the rays can have any possible orientation (left/right/up/down) then
the graph is a 4-directional orthogonal ray graph (4-DORG). Otherwise, if all rays are only
pointing into the positive x and y directions, the intersection graph is a 2-DORG. Similarly,
for 3-DORGs, the horizontal rays can have any direction but the vertical ones can only have
the positive direction. The recognition problem of 2-DORGs, which are a nice subclass of
bipartite comparability graphs, is known to be polynomial, while the recognition problems
for 3-DORGs and 4-DORGs are open. Recently it has been shown that the recognition of
unit grid intersection graphs, a superclass of 4-DORGs, is NP-complete. In this paper we
prove that the recognition problem of 4-DORGs is polynomial, given a partition {L,R,U,D}
of the vertices of G (which corresponds to the four possible ray directions). For the proof,
given the graph G, we first construct two cliques G1, G2 with both directed and undirected
edges. Then we successively augment these two graphs, constructing eventually a graph G̃
with both directed and undirected edges, such that G has a 4-DORG representation if and
only if G̃ has a transitive orientation respecting its directed edges. As a crucial tool for our
analysis we introduce the notion of an S-orientation of a graph, which extends the notion of
a transitive orientation. We expect that our proof ideas will be useful also in other situations.
Using an independent approach we show that, given a permutation π of the vertices of U (π
is the order of y-coordinates of ray endpoints for U), while the partition {L,R} of V \ U is
not given, we can still efficiently check whether G has a 3-DORG representation.

3.14 Vector connectivity in graphs
Martin Milanic (University of Primorska, SI)

License Creative Commons BY 3.0 Unported license
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Joint work of Boros, Endre; Cicalese, Ferdinando; Heggernes, Pinar; van ’t Hof, Pim; Milanič, Martin; Rizzi,
Romeo;

Main reference P. Heggernes, P. van ’t Hof, Pim, M. Milanič, “Vector connectivity in graphs,” Networks, online
version, February 2014.

URL http://dx.doi.org/10.1002/net.21545

Motivated by challenges related to domination, connectivity, and information propagation in
social and other networks, we introduce and study the Vector Connectivity problem. This
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problem takes as input a graph G and an integer r(v) for every vertex v of G, and the
objective is to find a vertex subset S of minimum cardinality such that every vertex v either
belongs to S, or is connected to at least r(v) vertices of S by disjoint paths. If we require
each path to be of length exactly 1, we get the well-known vector domination problem,
which is a generalization of the dominating set and vertex cover problems. Consequently,
the vector connectivity problem becomes NP-hard if an upper bound on the length of the
disjoint paths is also supplied as input. Due to the hardness of these domination variants
even on restricted graph classes, like split graphs, Vector Connectivity seems to be a natural
problem to study for drawing the boundaries of tractability for this type of problems. We
show that Vector Connectivity can actually be solved in polynomial time on split graphs, in
addition to cographs and trees.

We also show that the problem is NP-hard for planar line graphs and for planar bipartite
graphs, APX-hard on general graphs, and can be approximated in polynomial time within a
factor of logn+ 2 on all n-vertex graphs.

Vertex covers and dominating sets in a graph G can be easily characterized as hitting
sets of derived hypergraphs (of G itself, and of the closed neighborhood hypergraph of
G, respectively). Using Menger’s Theorem, we give a similar characterization of vector
connectivity sets.

References
1 Endre Boros, Pinar Heggernes, Pim van ’t Hof, and Martin Milanič. Vector connectivity

in graphs. Networks, http://dx.doi.org/10.1002/net.21545.
2 Ferdinando Cicalese, Martin Milanič, and Romeo Rizzi. On the complexity of the vector

connectivity problem. Submitted.

3.15 Parameterized algorithms for Max Colorable Induced Subgraph
problem on perfect graphs

Neeldhara Misra (Indian Institute of Science, IN)
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Main reference N. Misra, F. Panolan, A. Rai, Ve. Raman, S. Saurabh, “Parameterized Algorithms for Max

Colorable Induced Subgraph Problem on Perfect Graphs,” in Proc. of the 39th Int’l Workshop on
Graph-Theoretic Concepts in Computer Science (WG’13), LNCS, Vol. 8165, pp. 370–381, Springer,
2013.

URL http://dx.doi.org/10.1007/978-3-642-45043-3_32

We explore the parameterized complexity of Max Colorable Induced Subgraph on perfect
graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input
graph G. Yannakakis and Gavril (IPL 1987) showed that this problem is NP-complete even
on split graphs (which is a proper subset of perfect graphs, chordal graphs and co-chordal
graphs). However, they showed that for fixed q, the problem is solvable in time nO(q) on
chordal graphs. A natural question is whether the problem is fixed parameter tractable
(FPT) when parameterized by the number of colors q, that is, whether the problem admits
an algorithm with running time f(q)nO(1). A simple reduction shows that the problem is
W[2]-hard parameterized by q, even on split graphs. Thus, we study this problem with
another natural parameter – the solution size – l.

We design two parameterized algorithms for the problem. The first one runs in time
5.44l(n + #α(G))O(1) where #α(G) is the number of maximal independent sets of the
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input graph and the second algorithm runs in time q(l+o(l))nO(1). Observe that since q < l

for all non-trivial situations, we have that the second algorithm is FPT in l alone. The
first algorithm is efficient when the input graph contains only polynomially many maximal
independent sets; for example split graphs and co-chordal graphs. Finally, we show that
(under standard complexity-theoretic assumptions) the problem does not admit a polynomial
kernel even on split graphs and on perfect graphs the problem does not admit a polynomial
kernel even for fixed values of q > 1.

3.16 Certifying FPT-algorithms
Haiko Müller (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
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Main reference H. Müller, S. Wilson, “An FPT Certifying Algorithm for the Vertex-Deletion Problem,” in Proc. of

the 24th Int’l Workshop on Combinatorial Algorithms (IWOCA’13), LNCS, Vol. 8288, pp. 468–472,
Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-45278-9_45

We propose a scheme of certifying FPT-algorithms for vertex-deletion problems on graphs.
For a class C of graphs that is closed under a partial order < these algorithms decide, for a
fixed integer k, whether a given graph G has a set U of at most k vertices such that G− U
belongs to C. That is, these algorithms recognize the class C + kv of graphs in time f(k)nc
for some constant c. In the affirmative case the algorithm should also provide the user with
such a set U of vertices, and otherwise it should point out an obstruction of C + kv in G.
For instance, if < is the ordering defined by induced subgraphs then the obstruction will be
a minimal forbidden subgraph.

We give conditions on the partial order < that are necessary or sufficient for such certifying
FPT-algorithms to exist for all classes C that are closed under < and have a finite obstruction
set with respect to <. Moreover we illustrate these conditions by examples, namely the partial
orders defined by vertex deletion, edge deletion, vertex dissolution and edge contraction, or
combinations thereof.

3.17 On the complexity of degree anonymization
Andre Nichterlein (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
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Main reference S. Hartung, A. Nichterlein, R. Niedermeier, and O. Suchy, “A refined complexity analysis of degree
anonymization on graphs,” in Proc. of the 40th Int’l Colloquium on Automata, Languages, and
Programming (ICALP’13), LNCS, Vol. 7966, pp. 594–606, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-39212-2_52

Motivated by a growing interest in graph anonymization (in particular with respect to social
networks), we study the NP-hard Degree Anonymity problem asking whether a graph can
be made k-anonymous by adding at most a given number of edges. Herein, a graph is
k-anonymous if for every vertex in the graph there are at least k−1 other vertices of the same
degree. We show that the problem is intractable when considering the standard parameter
solution size, even when searching for parameterized approximation algorithms. Contrasting
these negative results, we prove fixed-parameter tractability for the parameter maximum
vertex degree and experimentally evaluate the corresponding algorithm.
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3.18 Subexponential parameterized complexity of completion problems
Marcin Pilipczuk and Michał Pilipczuk (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
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Let Π be a fixed hereditary graph class. In the Π Completion problem, given a graph
G and an integer k, we ask whether it is possible to add at most k edges to G to obtain a
member of Π. In the recent years completion problems received significant attention from
the perspective of parameterized complexity, with the standard parameterization by k.

In our tutorial we first survey the history of the study of parameterized complexity of
completion problems, including the breakthrough paper of Villanger et al [6] that settles
fixed-parameter tractability of Interval Completion, as well as recent advancements
on polynomial kernelization. Then, we move to the main topic of the tutorial, namely
subexponential parameterized algorithms.

First fixed-parameter algorithms for completion problems focused mostly on the ‘forbidden
induced subgraphs’ definition of the graph class Π in question. In 2012 Fomin and Villanger [4]
came up with a novel idea to instead focus on some structural definition of the class Π,
trying to build the modified output graph by dynamic programming. Slightly simplifying, we
may say that the main technical contribution of [4] is a bound of at most kO(

√
k) reasonable

‘partial chordal graphs’ for an input instance (G, k) of Chordal Completion. Consequently,
Chordal Completion can be solved in kO(

√
k) + nO(1) time. Following the approach of

Fomin and Villanger, in the past two years subexponential parameterized algorithms were
shown for the class of chain [4], split [5], threshold [3], trivially perfect [3], pseudosplit [3]
and, very recently, proper interval [2] and interval [1] graphs. Moreover, a few lower bounds
for related graph classes were found [3].

In our tutorial we present the approach of Fomin and Villanger on the example of
Trivially Perfect Completion, and then survey the main ideas needed in the remaining
algorithms.
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fill-in. SODA 2012:1737–1746
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3.19 Optimal Erdős Pósa for pumpkins revisited
Dimitrios M. Thilikos (ALGCo project team, CNRS, LIRMM, Montpellier, FR, and Depart-
ment of Mathematics, National and Kapodistrian University of Athens, GR)
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Given two graphs H and G, we denote by packv
H(G) the maximum number of vertex-disjoint

minor models of H in G. We denote by packe
H(G) the maximum number of edge-disjoint

minor models of H in G. We also denote by coverv
H(G) the minimum number of vertices

that intersect all minor models of H in G. Similarly, by covere
H(G) we denote the minimum

number of edges that intersect all minor models of H in G. Finally, we denote by θr the
multi-graph containing two vertices and r parallel edges between them (also known as the
r-pumpkin).

We prove the following results.

I Theorem 1. There exists a function f : N→ N such that for every two positive integers r, q,
and every graph G excluding Kq as a minor, it holds that coverv

θr
(G) ≤ f(r)·packv

θr
(G)·log q.

I Theorem 2. There exists a function f : N→ N such that for every two positive integers r, q,
and every graph G excluding Kq as a minor, it holds that covere

θr
(G) ≤ f(r)·packe

θr
(G)·log q.

The above results also imply that, for every r, the problems of computing the values of
packv

θr
, coverv

θr
, packe

θr
, and covere

θr
admit log(OPT )-approximation (deterministic and

polynomial) algorithms.

3.20 Parameterized complexity dichotomy for Steiner multicut
Erik Jan van Leeuwen (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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We consider the Steiner Multicut problem, which asks, given an undirected graph G, a
collection T1, . . . , Tt ⊆ V (G), of terminal sets of size at most p, and an integer k, whether
there is a set S of at most k edges or nodes such that of each set Ti at least one pair of
terminals is in different connected components of G \ S. This problem generalizes several
well-studied graph cut problems, in particular the Multicut problem, which corresponds
to the case p = 2. We provide a dichotomy of the parameterized complexity of Steiner
Multicut on general graphs. That is, for any combination of k, t, p, and the treewidth
tw(G) as a constant, parameter, or unbounded, and for all versions of the problem (edge
deletion, and node deletion with and without deletable terminals), we prove either that the
problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)
NP-complete). Among the many results in the paper, we highlight that:

The edge deletion version of Steiner Multicut is fixed-parameter tractable for the
parameter k + t on general graphs (but has no polynomial kernel, even on trees).
In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the
parameter k + t on general graphs.
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All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p = 3
and the graph is a tree plus one node. This means that the known parameterized
algorithms of Marx and Razgon, and Bousquet et al. (STOC 2011) for Multicut do not
generalize to even the most basic instances of Steiner Multicut.

Since we allow k, t, p, and tw(G) to be any constant, our characterization includes a
dichotomy for Steiner Multicut on trees (i.e., for tw(G) = 1) as well as a polynomial-time
versus NP-hardness dichotomy (by restricting k, t, p, tw(G) to a constant or unbounded).

3.21 Parametrized algorithm for weighted independent set problem in
bull-free graphs

Kristina Vušković (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
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Main reference S. Thomassé, N. Trotignon, K. Vušković, “Parameterized algorithm for weighted independent set

problem in bull-free graphs,” arXiv:1310.6205v1 [cs.DM], 2013.
URL http://arxiv.org/abs/1310.6205v1

The bull is the graph obtained from a triangle by adding two pendant nonadjacent edges. A
graph is bull-free if it does not contain a bull as an induced subgraph. We show the existence
of an FPT algorithm for weighted independent set problem for bull-free graphs (parametrized
by solution size). While a polynomial kernel is unlikely to exist for this problem, we show
however that the problem has a polynomial size Turing-kernel. As a byproduct, if we forbid
odd holes in addition to the bull, we show the existence of a polynomial time algorithm
for the independent set problem. We also prove that the chromatic number of a bull-free
graph is bounded by a function of its clique number and the maximum chromatic number
of its triangle-free induced subgraphs. All our results rely on a decomposition theorem of
bull-free graphs due to Chudnovsky which is modified here, allowing us to provide extreme
decompositions, adapted to our computational

4 Open Problems

4.1 Treecost as a parameterized problem
Hans L. Bodlaender (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Hans L. Bodlaender

Let f be a function on the natural numbers. Consider the following problem. Given a
graph G, and an integer L, is there a chordal supergraph H of G such that the sum over all
maximal cliques C in H of f(|C|) is at most L.

What is the complexity of the problem when parameterized by L?

14071

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1310.6205v1
http://arxiv.org/abs/1310.6205v1
http://arxiv.org/abs/1310.6205v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


54 14071 – Graph Modification Problems

4.2 Two simple edge editing problems
Henning Fernau (Universität Trier, DE)

License Creative Commons BY 3.0 Unported license
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We propose two graph modification problems mentioned by Damaschke and Mogren in [1].
Edit Into Clique & Isolates
Given a graph G of order n and an integer k, is it possible to turn G into one clique K`

and a collection of n− ` isolates by adding or removing at most k edges from G?
This problem is termed K1[0] Bag Editing in [1].
Edit Into Biclique & Isolates
Given a graph G of order n and an integer k, is it possible to turn G into one biclique
Kj,` and a collection of n− j − ` isolates by adding or removing at most k edges from G?
This corresponds to P3 Bag Editing from [1] by graph complementation.

In both cases, it was open whether the problem is NP-hard or whether it can be solved in
polynomial time.

Edit Into Clique & Isolates was shown NP-hard in the course of the seminar by
André Nichterlein.

References
1 P. Damaschke and O. Mogren. Editing the simplest graphs. In S. Prasant Pal and

K. Sadakane, editors, Algorithms and Computation – 8th International Workshop, WAL-
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4.3 More graph editing problems
Henning Fernau (Universität Trier, DE)
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The typical graph editing problems seen during this seminar are to delete at most i vertices,
or to delete at most j edges, or to insert at most k edges from a given graph G of order n and
size m to obtain a target graph that satisfies certain properties P . Often, such properties
can be specified by (induced) subgraphs or similar substructures. There are several related
problems that might be worth studying, as well. From the perspective of parameterized
complexity, the “dual problems” could be interesting to study. This could mean:

Delete vertices from G such that the target graph satisfying P contains at least id = n− i
vertices. In other words, does there exist an induced subgraph of G on at least id vertices
that satisfies P?
Delete edges from G such that the target graph satisfying P contains at least jd = m− j
edges. In other words, does there exist a subgraph of G on at least jd vertices that
satisfies P?
Add edges to G such that the target graph satisfying P contains at least kd = (n2 −
n)/2 − m + k edges. The upper bound (n2 − n)/2 − m is derived from the fact that
adding edges corresponds to deleting edges in the complement graph.

Also, there are natural lower bounds for these problems in terms of packings, assuming
that P is given by a set of forbidden structures (e.g., forbidden induced subgraphs) SP . We
would arrive at problems like:
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Can we find a vertex-disjoint packing of G with ip objects from SP ?
Can we find an edge-disjoint packing of G with jp objects from SP ?

Possibly, stranger problems would show up when defining packing problems for edge-
addition problems. This seems to necessitate a forbidden substructure characterization of
the complement graphs. There could be also other related packing problems, for instance:

Can we add some vertices and edges to the graph G so that the resulting graph H admits
a “perfect packing” with at most ` objects from SP ?

Here, “perfect packing” could either mean that all vertices or that all edges of H are covered
by the at most ` objects from SP . An example for such a problem can be found in [1]. This
might also answer a question raised by one of the participants of the seminar about the
meaningful existence of vertex addition problems.

To our knowledge, far less recent work on the graph (modification) problems sketched
above has been done. In particular, general question on when such problems are hard or easy
in the parameterized sense could be posed. Also, the existence of sub-exponential algorithms
for such types of problems should be interesting to look into.

Clearly, ip ≤ i and jp ≤ j, so that also the question of “parameterizing above guaranteed
value” shows up, which has not been in the focus of talks from the seminar, either.
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Let C1 and C2 be two graph classes. Then, given a graph G = (V,E) ∈ C1, what is the
complexity of each of the problems:

compute a minimum set F of edges such that the graph G′ = (V,E ∪ F ) belongs to class
C2 (completion problem);
compute a minimum set F ⊆ E of edges such that the graph G′ = (V,E \ F ) belongs to
class C2 (edge deletion problem);
compute a minimum set U ⊆ V of vertices such that the graph G′ = G[U ] belongs to
class C2 (vertex deletion problem).

For which classes C1, C2 are the above problems solvable in polynomial or FPT time? For
instance, what is the complexity of these problems in the case where C1 is the class of interval
graphs and C2 is the class of proper interval graphs?
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4.5 H-minor sequences
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Call a sequence of operations, each of type “edge contraction”, “edge deletion” or “vertex
deletion”, that modifies a graph G into a graph H an H-minor sequence. The length of an
H-minor sequence is the number of its operations.

For a fixed graph H, let H-Minor Sequence be the problem that asks whether a given
graph G has an H-minor sequence of length at most ` for some given integer `. There are
many graphs H for which this problem is known to be polynomial-time solvable, and many
graphs H for which this problem is known to be NP-complete.

Let Ck be the cycle on k vertices. It is known that Ck-Minor Sequence is polynomial-
time solvable for every k ≤ 4. We pose the following problem:
Determine the computational complexity of Ck-Minor Sequence for any fixed k ≥ 5.

4.6 Open problems from the tutorial on subexponential parameterized
complexity of completion problems

Marcin Pilipczuk (University of Bergen, NO)
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Let Π be a fixed hereditary graph class. In the Π Completion problem, given a graph
G and an integer k, we ask whether it is possible to add at most k edges to G to obtain a
member of Π. During the tutorial on subexponential parameterized complexity of completion
problems and the discussion on open problem session following the tutorial the following
interesting open problems were identified.
1. For most of known subexponential parameterized algorithm for completion problems the

dependency on the parameter in the running time is kO(
√
k) or better, with the exception

of Proper Interval Completion where the dependency is kO(k2/3) [2]. Can it be
improved to kO(

√
k)?

2. The running time of the algorithm for Split Completion [4] has dependency 2O(
√
k) on

the parameter. Can we obtain such a dependency for other problems?
3. We believe that for the discussed graph classes Π, no FPT algorithm with dependency

2o(
√
k) on the parameter should exist, as it would be also a 2o(n)-time algorithm. Can we

prove this conjecture for some discussed graph classes Π, under the assumption of the
Exponential Time Hypothesis? We remark that to achieve this goal most likely one would
need to reengineer the known NP-hardness reductions for these completion problems, as
the only currently known reductions use Optimal Linear Arrangement as a pivot
problem, causing at least cubic blowup in the parameter.

4. In scope of the techniques used in the recent subexponential parameterized algorithm
for Interval Completion [1], a question of a polynomial kernel for this problem is
appealing.
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5. We conjecture that for an instance (G, k) of Chordal Completion, one can enumerate
a family F of nO(

√
k) subsets of V (G) such that for any chordal supergraph H of G with

|E(H) \E(G)| ≤ k, all maximal cliques of H belong to F . This statement does not follow
from the work of Fomin and Villanger [3], as in some cases the algorithm of [3] identifies
and executes a subexponential branching.

6. For the search of further subexponential parameterized algorithms for completion problems,
the following interesting graph classes have been identified: weakly chordal graphs, strongly
chordal graphs, permutation graphs, perfect graphs, 3-leaf powers and path graphs. Of
particular importance is the case of Perfect Completion, where no fixed-parameter
algorithm is known.
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4.7 Open problem: Eulerian SCC Deletion
Marcin Pilipczuk (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Marcin Pilipczuk

In the Eulerian SCC Deletion problem, given a directed graph G and an integer k, we ask
whether it is possible to delete at most k arcs from G to obtain a graph where each strongly
connected component contains an Euler tour. Is Eulerian SCC Deletion fixed-parameter
tractable, when parameterized by k?

A few remarks are in place. The question of fixed-parameter tractability of Eulerian
SCC Deletion was originally posted by Cechlárová and Schlotter in [1], where it appeared
naturally in modelling of housing markets. A somehow related deletion problems were studied
in [2]. However, it is not hard to reduce Directed Feedback Vertex Set to Eulerian
SCC Deletion, and, hence, we expect that a hypothetical fixed-parameter algorithm for
Eulerian SCC Deletion would need to use substantially different techniques than the
ones developed in [2].
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4.8 Existence of Polynomial Kernel for Edge-Disjoint Paths
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The Vertex-Disjoint Paths problem takes as input a graph G and a set of k pairs of
terminals in G, and one should decide whether there exist k pairwise vertex-disjoint paths
in G such that the vertices in each terminal pair are connected to each other by one of the
paths. In the Edge-Disjoint Paths problem, the paths should be edge-disjoint instead of
vertex-disjoint. It is known that both problems are NP-hard on general graphs [4, 2], but
fixed-parameter tractable when parameterized by k [5]. Recently, in joint work with Pinar
Heggernes, Pim van ’t Hof, and Reza Saei, I showed that both problems remain NP-hard
on the class of split graphs, which are graphs whose vertex set can be partitioned into an
independent set and a clique. Moreover, we showed that both problems admit a polynomial
kernel on split graphs when parameterized by k [3]. This is the first polynomial kernel for both
problems on graph classes. On general graphs, it is known that Vertex-Disjoint Paths
does not admit a polynomial kernel when parameterized by k, unless NP ⊆ coNP/poly [1].
However, for Edge-Disjoint Paths, no such result seems to be known. Therefore, we ask
whether or not there exists a polynomial kernel for Edge-Disjoint Paths on general graphs
when parameterized by k?
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