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Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 14081 “Robots
Learning from Experiences”. The report begins with a summary comprising information about
the seminar topics, the programme, important discussion points, and conclusions. The main
body of the report consists of the abstracts of 25 presentations given at the seminar, and of four
reports about discussion groups.
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Topics and Motivation
The ability to exploit experiences is an important asset of intelligent beings. Experiences
provide a rich resource for learning, solving problems, avoiding difficulties, predicting the
effects of activities, and obtaining commonsense insights. Current robots do not in general
possess this ability, and this is a decisive reason for the often perceived “lack of intelligence”
of current robotic systems: they repeat mistakes, do not learn to anticipate happenings in
their environment, and need detailed instructions for each specific task.

Consider an everyday task of a service robot, such as grasping a cup from a cupboard
and bringing it to a person sitting at a table. This task may occur in many variations
and under unpredictable circumstances. For example, persons may sit at different
sides of a table, a direct path to the table may be blocked, the table may be cluttered
with various objects, hot water may be ready or not, the cup on the shelf may be
upside-down, etc. It is clearly infeasible to provide the robot with precise instructions
for all contingencies at design time or to specify tasks with highly detailed instructions
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for each particular concrete situation which may arise. Hence without such knowledge,
robot behaviour is bound to lack robustness if the robot cannot autonomously adapt
to new situations.

How would the robot, for example, avoid pouring coffee into an upside-down cup?
Based on experiences with multiple pouring actions, the robot will have formed a
conceptualisation of all concomitant circumstances of successful pouring, for example
to pour into a “container”. The robot may not know the name of this conceptualisation
but will know that it must be open on top, hollow, empty, etc. Similarly, the robot
may have encountered upside-down objects before and hence be able to conceptualise
the corrective action of turning an object to make it a usable container.

This seminar has brought together experts and scholars from the robotics, learning, and
knowledge representation communities to discuss current approaches to make robots learn
from experiences. Emphasis was on the representation of real-world experiences and on
exploiting experiences for autonomous acting in a changing or partially unknown environment.
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3 Seminar Overview

Programme
The seminar was attended by 41 participants. Based on abstracts submitted before, the
organizers had proposed a tentative programme and distributed it to all participants. The
programme was slighly adapted during the seminar, its final version is shown below. The
talks were presented as shown in the schedule (Fig. 1). Thanks to the speakers, there was
sufficient time for discussion after the talks, and the time frame could be kept without
difficulties.

The invited participants included delegates from several EU projects that all share a strong
focus on the workshop topics (RACE, STRANDS, Co-Friends, RobotHearth, RoboHow,
GeRT, XPERIENCE). This choice was aimed at maximizing the sharing of knowledge and
results across those projects both through presentations and, more importantly, though
informal discussions.

Monday Tuesday Wednesday Thursday Friday
08:45 Organizers,	  all Opening,	  short	  presentations Luc	  De	  Raedt

KU	  Leuven
Statistical	  Relational	  Learning	  for	  
Robotics	  and	  Computer	  Vision

Ivan	  Bratko
Univ.	  of	  Ljubljana

Discovery	  of	  Abstract	  
Notions	  by	  a	  Robot

Carme	  Torras
UPC	  –	  Barcelona

Robot	  manipulation	  in	  
human	  environments:	  
Challenges	  for	  learning	  
algorithms

Discussion	  Springer	  Book

09:15 Bernd	  Neumann
Univ.	  of	  Hamburg

Introduction	  to	  seminar	  topic Krishna	  Sandeep	  
Reddy	  Dubba
Univ.	  of	  Leeds

Scene	  layout	  
conceptualization	  and	  
recognition	  using	  graphs

09:45 Coffee
10:15 Michael	  Beetz

Univ.	  of	  Bremen
Experience-‐based	  Learning	  for	  
Bayesian	  Cognitive	  Robotics

Michael	  Zillich
TU	  Wien

Project	  report	  STRANDS Martin	  Günther
Univ.	  of	  Osnabrück

Context-‐aware	  semantic	  
object	  mapping	  for	  plan	  
execution

Manfred	  Hild
Humboldt	  
University	  Berlin

Self-‐Exploration	  of	  
Autonomous	  Robots	  
Using	  Attractor-‐Based	  
Behavior	  Control

Reports	  from	  discussion	  groups

10:45 Jianwei	  Zhang
Univ.	  of	  Hamburg

Project	  Report	  RACE Vaclav	  (Vasek)	  Hlavac
Czech	  TU	  in	  Prague

Dual-‐arm	  manipulation	  
with	  clothes,	  lessons	  from	  
CloPeMa	  project.

Sebastian	  Stock
Univ.	  of	  Osnabrück

Towards	  an	  integrated	  
hierarchical	  planner	  for	  
complex	  robot	  tasks

11:15 Pierre-‐Yves	  Oudeyer
INRIA	  –	  Bordeaux

Developmental	  robotics:	  
lifelong	  learning	  and	  the	  
morphogenesis	  of	  
developmental	  structures

Federico	  Pecora
Univ.	  of	  Orebro

Reasoning	  about	  Learned	  
Knowledge	  for	  Robots:	  the	  Next	  
Big	  Challenge	  for	  AI?

Laurent	  Orseau
AgroParisTech	  –	  Paris

Beyond	  the	  traditional	  
agency	  framework

Sebastian	  Rockel
Univ.	  of	  Hamburg

Beyond	  state-‐of-‐the-‐art	  
Planning:	  A	  Survey	  of	  
Imaginary	  Planning

11:45 All Collecting	  discussion	  topics All Collecting	  discussion	  topics Muralikrishna	  
Sridhar
Univ.	  of	  Leeds	  +	  
Continental,	  Lindau

Scene	  Understanding	  
from	  Videos

Wrapping	  up	  by	  organizers

12:15 Lunch

14:00 Luc	  Steels
Free	  Univ.	  of	  Brussels

Robot	  tutoring Marek	  S.	  Kopicki
Univ.	  of	  Birmingham

Learning	  to	  generalise	  grasps	  to	  
novel	  objects

Excursion,	  hike Discussion	  groups Departure

14:30 Richard	  Bowden
Univ.	  of	  Surrey

Learning	  by	  Imitation Lorenzo	  Jamone
TU	  Lisboa

Autonomous	  Online	  Learning	  of	  
Sensori-‐Motor	  Internal	  Models	  in	  
Humanoid	  Robots

15:00 Ales	  Leonardis
Univ.	  of	  Birmingham

Compositional	  hierarchies	  for	  
learning	  visual	  representations	  
and	  building	  knowledge	  from	  
experience

Sven	  Behnke
Univ.	  of	  Bonn

Manipulation	  Skill	  Learning	  for	  
Cognitive	  Service	  Robots

15:30 Coffee
16:00 Ralf	  Möller

TU	  Hamburg-‐Harburg
Location	  Prediction	  Based	  on	  
Mobility	  Patterns	  in	  Location	  
Histories

Alexandre	  
Bernardino
TU	  Lisboa

Co-‐Development	  of	  Visuo-‐Motor	  
Structures

Discussion	  groups

16:30 Francois	  Bremont
INRIA	  -‐	  Sophia	  Antipolis

Scene	  understanding	  for	  Activity	  
Monitoring

Jure	  Zabkar
Univ.	  of	  Ljubljana

Sensorimotor	  memory:	  the	  
representation,	  learning	  and	  
inference

17:00 Luis	  Seabra	  Lopes
Univ.	  of	  Aveiro

Conceptualization	  of	  objects	  
and	  activities	  for	  open-‐ended	  
learning	  in	  robotics

Emre	  Ugur
Univ.	  of	  Innsbruck

Skill	  development	  through	  
affordance-‐based	  bootstrapping

17:30 All Collecting	  discussion	  topics All Collecting	  discussion	  topics
18:00 Dinner

Figure 1 Schedule of the seminar.

Seminar Introduction
At the beginning of the opening session, all participants introduced themselves shortly and
indicated which special interests they had in the seminar. Bernd Neumann then introduced
to the seminar topic. He first gave some examples of what robots could learn from experiences
and then pointed out several open issues which should hopefully be addressed and maybe
clarified during the seminar. In particular, he addressed knowledge representation issues
regarding formalisms and tools. He also pointed out integration issues arising, for example,
from divergent requirements of robotic components regarding a common ontology. Another
important issue is modelling, in particular when using the standardized language OWL. As
yet, there is no standardized support for compositional hierarchies and constraints, among
others.
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Discussions
Each day, discussion topics were collected for extended treatment in discussion groups. The
topics were clustered, and the following discussion sessions were arranged reflecting the
interest of the participants:

Session 1a and 1b
How to construct a good Ontology?
Representations bridging the gap between high and low level
Can we learn anything suitable to be used by higher levels?
Can we use high-level knowledge to influence the low level?
Semantic vs. low-level information
Where/how should uncertainty be dealt with in learning robots?
Computer Vision in Robotics

Session 2
Learning strategies
Domain adaptation, knowledge transfer
What is the role of affordances in robot learning, control and planning?
Weakly supervised learning
Learning over long periods
One-shot learning vs. statistical learning

Session 3
Setting up learning experiments
Collecting datasets, robot tasks, challenges
Performance metrics for learning in Robotics

Session 4a and 4b
Should we take a system perspective on the above questions?
Theoretical framework for learning agents
Selfmodifying agents, representations vs. processes
Learning commonsense, metaknowledge

The points of views and prevailing opinions voiced in the discussion sessions were collected
by rapporteurs and presented in a plenary session on Friday morning.

Book Publication
Participants discussed whether refereed seminar contributions should be collected for a book
or special issue of a journal. The majority showed preference and interest in contributing to
a book, for example in the Springer LNCS series. It was agreed that the seminar organizers
would explore both possibilities.

Conclusions
The questionnaires distributed by the Dagstuhl organization showed that the participants
appreciated the organization of the seminar, the contributions of the speakers and the insights
gained in the discussions. Hopefully, the seminar has helped to pave the way for a next
generation of cognitive robotic systems.
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4 Overview of Talks

4.1 Experience-based Learning for Bayesian Cognitive Robotics
Michael Beetz (Universität Bremen, DE)

License Creative Commons BY 3.0 Unported license
© Michael Beetz

Bayesian cognitive robotics is a novel paradigm for the knowledge-enabled control of autonom-
ous robots. The paradigm presumes that one of the most powerful ideas to equip robots with
comprehensive reasoning capabilities is the lifelong autonomous learning of joint probability
distributions over robot control programs, the behavior they generate and the situation-
dependent effects they bring about. Having learned such probability distributions from
experience, a robot can make predictions, diagnoses and perform other valuable inference
tasks in order to improve its problem-solving performance. In this talk, I will present our
ongoing research efforts in investigating the realization and the potential impact of Bayesian
cognitive robotics by 1. presenting the design of plans facilitating Bayesian cognitive robotics,
2. explaining how the plans collect experiences in performing human-scale manipulation activ-
ities, and 3. showing how robots can learn realistic first-order joint probability distributions
over plans, their behavior, and the effects they cause.

4.2 Manipulation Skill Learning for Cognitive Service Robots
Sven Behnke (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Sven Behnke

Service robots need to be equipped with sufficient cognitive abilities to perceive their
surroundings and to plan their actions. They also need to learn from experience. At
University of Bonn, we developed cognitive service robots that integrate robust mobility,
object manipulation and intuitive multimodal interaction with human users [1, 2]. In the
talk, I report on the learning of manipulation skills. This is based on robust perception of
the manipulated objects by laser scanners and RGB-D sensors. We learn models of object
geometry and appearance from moving sensors and track them in real time [3]. By means of
deformable registration between models and the current RGB-D view, our robot can generalize
manipulation skills to novel object instances [4]. For learning manipulation skills, we developed
an interactive approach that combines the advantages of reinforcement and imitation learning
in a single coherent framework [5]. This method is used to learn the grasping of objects. Goal-
directed representation of motion facilitates segmentation of motion sequences into actions
and the transfer of motions to new situations [6]. We extend our approach to action sequences
[7] and to action hierarchies in a MAXQ hierarchical reinforcement learning formulation in
continuous state spaces using Gaussian Process Regression [8]. We demonstrate the ability
to efficiently learn solutions to complex tasks in a box stacking scenario. Finally, I report on
recent advanced in semantic mapping using object class segmentation of RGB-D images by
random forests and 3D SLAM fusion [9] or discriminative superpixel CRF learning [10].

References
1 J. Stückler, D. Droeschel, K. Gräve, D. Holz, M. Schreiber, A. Topalidou- Kyniazopoulou,

M. Schwarz, and S. Behnke: Increasing Flexibility of Mobile Manipulation and Intuitive
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Human-Robot Interaction in RoboCup@Home. RoboCup 2013: Robot World Cup XVII,
LNCS 8371, pp. 135-146, Springer, 2014.

2 J. Stückler, D. Holz, and S. Behnke: RoboCup@Home: Demonstrating Everyday Manip-
ulation Skills in RoboCup@Home. IEEE Robotics & Automation Magazine. 19(2):34-42,
2012.

3 J. Stückler and S. Behnke: Multi-Resolution Surfel Maps for Efficient Dense 3D Modeling
and Tracking. Journal of Visual Communication and Image Representation 25(1):137-147,
2014.

4 J. Stückler and S. Behnke: Efficient Deformable Registration of Multi- Resolution Surfel
Maps for Object Manipulation Skill Transfer. Robotics and Automation (ICRA), IEEE Int.
Conference on, Hong Kong, 2014.

5 K. Gräve, J. Stückler, and S. Behnke: Improving Imitated Grasping Motions through
Interactive Expected Deviation Learning. Humanoid Robots (Humanoids), IEEE-RAS Int.
Conference on, Nashville, TN, 2010.

6 K. Gräve and S. Behnke: Incremental Action Recognition and Generalizing Motion Gener-
ation based on Goal-Directed Features. Intelligent Robots and Systems (IROS), IEEE/RSJ
Int. Conf. on, Vilamoura, Portugal, 2012.

7 K. Gräve and S. Behnke: Learning Sequential Tasks Interactively from Demonstrations
and Own Experience. Intelligent Robots and Systems (IROS), IEEE/RSJ International
Conference on, Tokyo, Japan, 2013.

8 K. Gräve and S. Behnke: Bayesian Exploration and Interactive Demonstration in Con-
tinuous State MAXQ-Learning. Robotics and Automation (ICRA), IEEE International
Conference on, Hong Kong, 2014.

9 J. Stückler, B. Waldvogel, H. Schulz, and S. Behnke: Dense Real-Time Mapping of Object-
Class Semantics from RGB-D Video. Journal of Real-Time Image Processing, 2014.

10 A.C. Müller and S. Behnke: Learning Depth-Sensitive Conditional Random Fields for
Semantic Segmentation of RGB-D Images. Robotics and Automation (ICRA), IEEE Inter-
national Conference on, Hong Kong, 2014.

4.3 On the Co-development of Visuomotor Structures: How to Create
an Artificial Retina.

Alexandre Bernardino (Technical University – Lisboa, PT)

License Creative Commons BY 3.0 Unported license
© Alexandre Bernardino

Joint work of Ruesch, Jonas; Ferreira, Ricardo; Bernardino, Alexandre
Main reference J. Ruesch, R. Ferreira, A. Bernardino, “A computational approach on the co-development of

artificial visual sensorimotor structures,” Adaptive Behavior, 21(6):452–464, December 2013.
URL http://dx.doi.org/10.1177/1059712313492176

Many simple biological systems are able to survive and exhibit advanced behavior with very
limited neuronal resources due to very adapted sensorimotor systems to their particular
environment. Following the same paradigm, and inspired in some solutions found in biological
systems, we are working to provide robots with highly optimized sensorimotor processing
systems through the joint optimisation of their different subsystems. Having small low-cost
embedded robots operating in the real world with reduced computational resources is a
necessary step towards the large- scale deployment of robots to perform distributed tasks
and/or operate in barely accessible places to execute tasks otherwise impossible for humans.
In this talk we present an approach for co-development of sensori-motor structures based on
the minimisation of a prediction error under sparsity inducing criteria. We focus particularly

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1177/1059712313492176
http://dx.doi.org/10.1177/1059712313492176
http://dx.doi.org/10.1177/1059712313492176
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on the visuo-motor system an show how to self-organize the retina morphology and the
topology of the motor space (motor-primitives) of an agent that collects experiences (pre-
and post-action stimuli) on a certain environment. We show that biologically resembling
structures can be developed from realistic natural stimuli with very few initial assumptions.

4.4 Learning by Imitation
Richard Bowden (University of Surrey, GB)

License Creative Commons BY 3.0 Unported license
© Richard Bowden

We pose learning by imitation as a weakly supervised learning approach where human action
or noisy annotation provides weak supervision to the learning process. Trying to identify
consistent visual features that correspond to an action or classification then becomes a data
mining process. This talk will briefly outline 2 approaches to learning by example. In the
first example we will discuss how pre-attentive vision modelled by low level filter banks can
provide regressed control signals and scenario classification for an autonomous vehicle. In the
second example we will show how standard datamining tools can be used in an active learning
framework to provide image and video classification with equal or superior performance to
state-of-the-art batch learning approaches using significantly less data.

4.5 Discovery of Abstract Concepts by a Robot
Ivan Bratko (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Ivan Bratko

Joint work of Bratko, Ivan; Leban, Gregor
Main reference I. Bratko, “Autonomous discovery of abstract concepts by a robot,” in Proc. of the 10th Int’l Conf.

on Adaptive and Natural Computing Algorithms (ICANNGA’11), LNCS, Vol. 6593, pp. 1–11,
Springer, 2011.

URL http://dx.doi.org/10.1007/978-3-642-20282-7_1

How could a robot, on its own, discover abstract notions such as a general concept of a
tool? In this talk, I will describe one possible approach to this, and present experiments
in autonomous discovery of abstract concepts in a robotic domain. The setting involves
an autonomous robot performing tasks in its world, collecting data and learning predictive
theories about its world. In particular, we are interested in the robot’s inventing new
abstract concepts that enable the simplification of the robot’s current theory about the
world. Such newly introduced concepts, sometimes called insights, improve the robot’s
hypothesis language and thus make the further learning more effective. Examples of insights
are discoveries of concepts like mobility, obstacle, stability, etc. It should be noted that
these concepts are not explicitly present in the robot’s sensory observations, which makes
the use of machine learning techniques more difficult. A particular challenge is to make
the robot discover functional roles of objects in solving robot manipulation tasks. In an
experiment in robot’s learning from its plans to solve concrete tasks, the concept of a tool was
discovered. Our approach employs machine learning in logic (Inductive Logic Programming)
with predicate invention.
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4.6 Scene Understanding for Activity Monitoring
Francois Bremond (INRIA Sophia Antipolis – Méditerranée, FR)
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Scene understanding is the process, often real time, of perceiving, analyzing and elaborating
an interpretation of a 3D dynamic scene observed through a network of sensors (e.g. video
cameras). This process consists mainly in matching signal information coming from sensors
observing the scene with models which humans are using to understand the scene. Based
on that, scene understanding is both adding and extracting semantic from the sensor data
characterizing a scene. This scene can contain a number of physical objects of various types
(e.g. people, vehicle) interacting with each others or with their environment (e.g. equipment)
more or less structured. The scene can last few instants (e.g. the fall of a person) or few
months (e.g. the depression of a person), can be limited to a laboratory slide observed
through a microscope or go beyond the size of a city. Sensors include usually cameras (e.g.
omni- directional, infrared), but also may include microphones and other sensors (e.g. optical
cells, contact sensors, physiological sensors, radars, smoke detectors). Scene understanding is
influenced by cognitive vision and it requires at least the melding of three areas: computer
vision, cognition and software engineering. Scene understanding can achieve five levels of
generic computer vision functionality of detection, localization, tracking, recognition and
understanding. But scene understanding systems go beyond the detection of visual features
such as corners, edges and moving regions to extract information related to the physical
world which is meaningful for human operators. Its requirement is also to achieve more
robust, resilient, adaptable computer vision functionalities by endowing them with a cognitive
faculty: the ability to learn, adapt, weigh alternative solutions, and develop new strategies
for analysis and interpretation. In this talk, we will discuss how scene understanding can be
applied to Home Care Monitoring.

4.7 Statistical Relational Learning for Robotics and Vision
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Luc De Raedt

Agents need to reason and learn about the world before they can select the right actions
to perform. The world is inherently relational, that is, there exist multiple objects as well
as relationships that hold amongst them and there is often knowledge available about the
world that can be taken into account. But traditional approaches to robotics and computer
vision have difficulties in handling such relations and background knowledge. However, the
new field of statistical relational learning tackles this problem by integrating probabilistic
models with expressive logical representations and machine learning. In this talk, I shall
introduce statistical relational learning [2, 5] (SRL) through a number of techniques and I
shall illustrate their use on a number of applications related to robotics, vision and natural
language processing. More specifically, I shall introduce the relational representations that
underlie SRL, show how they allow one to deal with structured environments, with a variable
number of objects and relations as well as with background knowledge. I shall then continue
to show how probabilistic and kernel-based methods can be extended to deal with such
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relational representations in order to learn and reason about the environment. Covered
techniques will include Problog, a probabilistic extension of the logic programming language
Prolog [3], and kLog, a language for relational learning with kernel-based methods. These
techniques shall then be illustrated on some example problems from computer vision, such
as recognizing configurations of houses [1], from activity recognition, where activities of daily
life can be recognized from sensory information [6], from playing massive multiplayer online
games such as Travian [9], where models can be learned to predict future actions and events,
and from robotics, where one can use SRL techniques to track occluded objects and reason
about affordances in multi-object manipulation tasks [7, 8].

References
1 Laura Antanas, Martijn van Otterlo, José Oramas Mogrovejo, Tinne Tuytelaars, and

Luc De Raedt. There are plenty of places like home: Using relational representations
in hierarchies for distance-based image understanding. Neurocomputing, 123:75–85, 2014.

2 L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, eds.. Probabilistic Inductive
Logic Programming – Theory and Applications, volume 4911 of Lecture Notes in Artificial
Intelligence. Springer, 2008.

3 L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic Prolog and its applic-
ation in link discovery. In M. Veloso, ed., IJCAI, pp. 2462–2467, 2007.

4 Paolo Frasconi, Fabrizio Costa, Luc De Raedt, and Kurt De Grave. klog: A language for
logical and relational learning with kernels. CoRR, abs/1205.3981, 2012.

5 L. Getoor and B. Taskar, eds., An Introduction to Statistical Relational Learning. MIT
Press, 2007.

6 Niels Landwehr, Bernd Gutmann, Ingo Thon, Luc De Raedt, and Matthai Philipose. Rela-
tional transformation-based tagging for activity recognition. Fundam. Inform., 89(1):111–
129, 2008.

7 Bogdan Moldovan, Plinio Moreno, Martijn van Otterlo, José Santos-Victor, and Luc De
Raedt. Learning relational affordance models for robots in multi-object manipulation tasks.
In IEEE Int’l Conf. on Robotics and Automation, ICRA 2012, pp. 4373–4378, 2012.

8 Davide Nitti, Tinne De Laet, and Luc De Raedt. A particle filter for hybrid relational
domains. In 2013 IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, Tokyo, Japan,
pp. 2764–2771, 2013.

9 Ingo Thon, Niels Landwehr, and Luc De Raedt. A simple model for sequences of relational
state descriptions. In W. Daelemans, B. Goethals, and K. Morik, eds., ECML, volume 5211
of LNCS, pp. 506–521. Springer, 2008.

4.8 Conceptualizing Static and Dynamic Scenes
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In order to behave autonomously, it is desirable for robots to have the ability to use human
supervision and learn from different input sources (perception, gestures, verbal and textual
descriptions etc). In many machine learning tasks, the supervision is directed specifically
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towards machines and hence is straight forward clearly annotated examples. But this is
not always very practical and recently it was found that the most preferred interface to
robots is natural language. Also the supervision might only be available in a rather indirect
form, which may be vague and incomplete. This is frequently the case when humans teach
other humans since they may assume a particular context and existing world knowledge. We
explore this idea here in the setting of conceptualizing objects, scene layouts and environment
activities. Initially the robot undergoes training from a human in recognizing some objects
in the world and armed with this acquired knowledge it sets out in the world to explore and
learn more higher level concepts like static scene layouts and environment activities. Here it
has to exploit its learned knowledge and ground language into perception to use inputs from
different sources that might have overlapping as well as novel information. When exploring,
we assume that the robot is given visual input, without explicit type labels for objects, and
also that it has access to more or less generic linguistic descriptions of scene layout. Thus
our task here is to learn the spatial structure of a scene layout and simultaneously visual
object models it was not trained on. In this work [1], we present a cognitive architecture
and learning framework for robot learning through natural human supervision and using
multiple input sources by grounding language in perception.
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4.9 Context-aware Semantic Object Mapping for Plan Execution
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A service robot that creates and executes plans involving objects in its environment needs a
semantic map of those objects and places. Such a map needs to be continually updated with
new object recognition results, which may be noisy and incomplete. A key idea of this talk
is that the basic object recognition results can be improved by exploiting the rich context
between the objects. For example, once a monitor has been detected, the probability of an
elongated object in front of it being a keyboard increases. We model these context relations
as a Conditional Random Field.

We also present first steps towards a more active semantic perception system: Given
a partially recognized scene, ontological knowledge about spatial layouts can be used to
hypothesize areas where undetected task-relevant objects are expected. By querying the
CRF for the most likely locations of undetected objects, we can plan actions to observe these
areas by moving the robot to a different position or by moving occluding objects.
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The future of humanoid robots is to become efficient helpers for humans, both in the execution
of everyday tasks and in the accomplishment of tedious and dangerous works. Driven by this
vision, researchers have been challenged to design more and more complex robots, that show
an increasing number of degrees of freedom and sensors [1, 2]; these robots should be able to
cope with the unstructured environment in which humans daily live and act. In particular, it
would be desirable that robot behaviors become autonomous (not requiring the supervision
of a human expert) and flexible (applicable to different situations and contexts). However,
as robots become more complex, building the analytical models needed for robot control is
turning more and more difficult and time-consuming. Moreover, the lack of knowledge of
certain hard to measure physical parameters and the existence of highly non-linear physical
interactions, makes it infeasible to obtain adequate and accurate models for such kind of
systems [3]; as a consequence, resorting to modern machine learning techniques is becoming a
more and more popular way to provide these complex robots with the necessary representation
capability (see [4] for a recent survey). I will present some of the results I obtained during the
last five years in providing humanoid robots with the ability to learn sensori-motor internal
models (to achieve different motor skills) i) autonomously and ii) incrementally during the
goal-directed exploration of the environment. The approach I have been following focuses on
some distinctive aspects:

life-long continuous learning (accounting for both gradual and abrupt modifications in
the system);
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goal-directed exploration of the environment (i.e. learning a general model by trying to
accomplish specific tasks);
developmental framework (the acquisition of a motor skill may allow to gather data to
learn a new motor skill);
bio-inspired (human-inspired) learning and control strategies.

I will discuss why goal-directed exploration is beneficial [5], and how suggestions from
biology can help to build better robotic systems. I will sketch a developmental path in which
a robot starts from basic visual perception to finally achieve goal-directed visually-guided
locomotion and intelligent whole- body reaching capabilities, including the ability to reach
with tools. Namely, first the robot learns how to the control the neck [6] and eyes to fixate
targets in the environment, then it starts learning arm reaching [7] (also using different tools
[9]), then it builds incrementally a representation of its own reachable space [8], and finally
it exploits this knowledge to perform whole-body reaching [10] and goal-directed walking
[11], that are seen as ways to maximize the reachability of visually detected objects. Results
obtained on different humanoid robots (namely, James [12], Kobian [2] and iCub [1]) will be
presented.
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4.11 Learning to Generalise Grasps to Novel Objects.
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the 2014 IEEE Int’l Conf. on Robotics and Automation (ICRA’14), to appear.

Generalising grasps to novel objects is an open problem in robotics. In this talk I will present
a method that can learn grasps for high degree of freedom robots that generalise to novel
objects, given as little as one demonstrated grasp. The method is potentially more general
and can be used not only in grasping, but also in any kind of robotic applications that
involve robot body-environment/object spatial relations. The example could be dexterous
manipulation, manipulation of deformable objects, walking robots, etc. During grasp learning
two types of probability density are learned that model the demonstrated grasp. The first
density type (the contact model) models the relationship of an individual robot link to a local
object feature at its neighbourhood. The second density type (the robot configuration model)
models the whole robot configuration which is preferable for a particular grasp type. When
presented with a new object, many candidate grasps are generated, and a grasp is selected
that maximises the product of these densities. The experimental results show successful
grasp transfers to novel objects performed on two different robots with different multi-finger
hands. The experiments include cases where the robot has only partial information about
the object shape and other physical properties.

4.12 Compositional Hierarchies for Learning Visual Representations
and for Building Knowledge from Experiences

Ales Leonardis (University of Birmingham, GB)
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Building knowledge from experiences is one of the most important capabilities of intelligent
artificial systems. This requires proper structures and mechanisms that enable efficient
learning, retrieval, and, when necessary, modification and augmentation of the acquired
knowledge. Recently, it has become increasingly clear that new approaches are needed
to tackle these problems and there have been several indications that possible solutions
should be sought in the framework of hierarchical architectures. Among various design
choices related to hierarchies, compositional hierarchies show a great promise in terms of
scalability, real-time performance, efficient structured on-line learning, shareability, and
knowledge transfer. In my talk I will first present our work on compositional hierarchies
for learning visual representations and then present some ideas towards generalizing the
proposed approach to other modalities and to building knowledge from experiences.
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4.13 Location Prediction Based on Mobility Patterns in Location
Histories
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Human individuals generally tend to follow several habits during the course of the day. This
fact intuitively allows predicting human behavior to a certain degree based on previous
observations. A generic algorithm for dynamic location prediction that uses kernel density
estimation and quadratic optimization is devleoped and analysed in this presentation. The
algorithm was implemented and tested in a large scale environment using mobility traces of
taxis. The test results clearly indicate that the algorithm can extract and exploit patterns
in the data to predict future locations. For instance, the algorithm achieves an accuracy
better than 1000m in approximately 32% of the executed tests using a prediction interval
of six minutes. Moreover, in 13% of these tests the prediction error is smaller than 500m.
In addition, the test results show that the algorithm is able to estimate the reliability of
its predictions with an accuracy of up to 98.75%. As expected, the test results also clearly
demonstrate that the prediction capability of the algorithm strongly depends on the properties
of the given location data and the underlying stochastic process. We conjecture that the
kind of location prediction we present can be adapted to be applicable also in the small scale,
i.e., in cases where robots have to directly interact with humans, e.g., for carrying out service
tasks.

4.14 Beyond the Traditional Agency Framework
Laurent Orseau (AgroParisTech – Paris, FR)
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In the traditional theoretical framework for dealing with agents, as used in Reinforcement
Learning for example, an agent and an environment are put in interaction, but they are
considered to be two completely separate entities. In particular, this implies that the
computer of the agent is “immortal”, along with its source code and memory. Although this
is convenient for most purposes, this framework is actually inaccurate and can lead to wrong
decisions from an autonomous and intelligent agent. We build several frameworks in order to
study some consequences of making the agent being a part of the environment, where the
latter can modify directly either the memory or the source code of the former. We conclude
by proposing what we call the Space-Time Embedded framework, where the agent can not
only be modified by the environment but is also computed by it, and we give a definition of
intelligence in this framework.
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4.15 Developmental Robotics: Lifelong Learning and the
Morphogenesis of Developmental Structures
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Developmental robotics studies and experiments mechanisms for autonomous life-long learning
of skills in robots and humans. One of the crucial challenges is due to the sharp contrast
between the high-dimensionality of their sensorimotor space and the limited number of
physical experiments they can make within their life-time. This also includes the capability
to adapt skills to changing environments or to novel tasks. To achieve efficient life-long
learning in such complex spaces, humans benefit from various interacting developmental
mechanisms which generally structure exploration from simple learning situations to more
complex ones. I will present recent research in developmental robotics that has studied
several ways to transpose these developmental learning mechanisms to robots. In particular, I
will present and discuss computational mechanisms of intrinsically motivated active learning,
which automatically select training examples [4, 5], or tasks through goal babbling [2], of
increasing complexity, and their interaction with imitation learning [3]„ as well as maturation
and body growth where the number of sensori and motor degrees-of-freedom evolve through
phases of freezing and freeing [1, 6]. I will discuss them both from the point of view of
modeling sensorimotor and cognitive development in infants and from the point of view
of technology, i.e. how to build robots capable to learn efficiently in high-dimensional
sensorimotor spaces.
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4.16 Reasoning about Learned Knowledge for Robots: the Next Big
Challenge for AI?

Federico Pecora (University of Örebro, SE)
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The robot of the future will possess a great deal of general and domain-specific knowledge, it
will be capable of representing in symbolic terms its perceptions, and it will most likely learn
much of its knowledge from experience. In order to be competent, this robot must leverage
the diverse knowledge it possesses through reasoning. Crucially, the robot’s knowledge will
not be expressed in one knowledge representation formalism, rather with a multitude of inter-
dependent representations, each expressing a subset of aspects (e.g., temporal, causal, resource,
taxonomic, common-sense) pertaining to the robot’s capabilities, tasks and environment.
This poses an important problem: although we may soon have very knowledgeable robots,
all we can give them is the ability to reason within particular fragments of their knowledge.
The multitude of AI reasoning algorithms that would be necessary in a realistic scenario are
studied only individually, and very limited results exist in how to concurrently reason about
diverse types of knowledge with current AI techniques.

This talk outlines some of the challenges in hybrid reasoning, with a particular emphasis
on robot reasoning tasks. These include planning (reasoning about causal relations), temporal
reasoning, symbolic and geometric spatial reasoning, scheduling (reasoning about time and
resources), and ontological reasoning. The talk will outline solutions studied in the EU-FP7
RACE project. Focus will be given to a general method for hybrid reasoning grounded on
the notion of meta-constraints.
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4.17 Predicting Robot Action Results Physically Correct: Towards
Imaginary Planning

Sebastian Rockel (Universität Hamburg, DE)
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Imagination enables humans to consult rules or principles but do not merely apply that rule.
Instead humans imagine what the consequences might be of following or not following the
rule. It is even commonly maintained that humans constantly do imaginative projection.
Furthermore some works conclude that imagination is essential to human reasoning. Our
approach is inspired by the concept of imagination and its goal is to employ it on a mobile robot
system. The presented work uses physics-based simulation in order to predict action results.
Based on robot imagination this talk shall stress supporting scenarios where simulation as the
tool for common sense reasoning can be exploited. Different scenarios will be presented that
demonstrate an improved performance of such an imaginary planning-based robot system
compared to state-of-the-art symbolic planning approaches. A comparison between the
presented techniques and a possible integration shall conclude the talk.
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4.18 Interactive Open-Ended Learning about Objects and Activities
Luis Seabra Lopes (University of Aveiro, PT)
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Tomé, Ana Maria

We presented an overview of previous work on open-ended learning in robotics, with emphasis
on projects in which our group is/was involved [2, 5]. Key characteristics of intelligent
service robots as well as some of the issues in the development of such robots were identified
[1]. The presentation then focussed on two important phases in experience-based learning,
namely experience extraction and experience conceptualization. These two learning steps are
addressed in two different domains, namely object category learning [4] and activity schema
learning [3]. The human user, playing the role of instructor, helps to speed up and focus the
learning process. Aspects of evaluation of open-ended learning were also addressed.
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4.19 Robot Tutoring
Luc Steels (Free University of Brussels, BE)
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A lot of research has gone into mechanisms by which a robot could learn from experience.
Usually the robot is seen as an agent that receives a corpus of data (ideally sensory states
with motor states and possibly effects in the world) and performs some kind of induction
to learn when certain actions are appropriate or how actions carried out by others should
be interpreted. This approach certainly has to be part of the road towards learning robots.
However, in the case of human learning, particularly of symbolic intelligence including
language, a tutor (for example a caregiver) plays a crucial role. Learning thus becomes
much more interactive. The tutor creates constrained contexts for learning, provides critical
feedback, and interprets behaviors by guessing their intend and thus infuses meaning in them.
For example, pointing gestures are acquired from attempts to grasp objects out of reach.
The caregiver interprets failed grasping and brings the object within reach, from where the
grasping gesture itself evolves to become symbolic and the basis of language games. I will
argue in this talk that there is great value in studying the coupling between learning and
tutoring by setting up experiments in which robots are programmed to act both as learners
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and as tutors. I will show examples of this approach for different stages in the origins of
symbolic intelligence grounded through sensory-motor intelligence: the discovery of symbol
use, the big spurt in vocabulary, the origins of grammar, and the origins of the self.

4.20 Towards an Integrated Hierarchical Planner for Complex Robot
Tasks

Sebastian Stock (Universität Osnabrück, DE)
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Planning and execution is crucial for the performance of complex tasks in challenging
environments with a mobile service robot. Furthermore, if we want the robot to adapt its
behavior based on experiences of previous execution traces, task planning can be a point to
apply the learned knowledge resulting in a changed behavior. The plans can also be part
of the experience itself and be used afterwards for learning. For this, hierarchical planning
has the benefit of providing additional levels of abstraction to the plan generation and the
resulting plans itself. To change the robot’s behavior only additional methods need to be
added to the planning domain or preconditions of existing methods might be changed while
the implementation of operators can be fixed.

In the first two years of the RACE project an off-the-shelf HTN planner has been used.
Since this imposes several limitations, ongoing work will be presented of a hierarchical
planning system which is closely integrated to execution monitoring and is able to use
different kinds of knowledge.
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4.21 Robot Manipulation in Human Environments: Challenges for
Learning Algorithms

Carme Torras (UPC – Barcelona, ES)
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Manipulator robots are widening their range of activities in factories, as well as finding
increased application in human-centered domains such as healthcare, education, entertainment
and services. For robots to become handy co-workers and helpful assistants, quick and user-
friendly ways to endow them with flexible manipulation skills are needed. At the Perception
and Manipulation Lab of IRI (CSIC-UPC), we are addressing several of the learning challenges
arising in this context [1]. Namely, manipulator robots should be easy to teach by non-experts
[2] and acquire skills from demonstrations [3, 4], they need to be intrinsically safe [5] able
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to appropriately deal with forces [6] and to perceive and manipulate deformable objects
[7, 8, 9, 10], to, tolerant to noisy perceptions and inaccurate actions [11, 12], and they must
exhibit a high adaptability [13, 14] to non-predefined and dynamic environments, as well
as the capability of learning to plan [15]. The cited works will be showcased along the
presentation and support for their development is acknowledged from the European projects
PACO-PLUS, GARNICS and IntellAct, the Spanish projects PAU and PAU+, and the
Catalan grant SGR-155.

References
1 Kemp C.C., Edsinger A. and Torres-Jara E. (2007): Challenges for robot manipulation

in human environments. IEEE Robotics and Automation Magazine, 14(1): 20–29. doi:
10.1109/MRA.2007.339604

2 Agostini A., Torras C. and Wörgötter F. (2011): Integrating task planning and inter-
active learning for robots to work in human environments, Int’l Joint Conf. on Artifi-
cial Intelligence (IJCAI 11), Barcelona, pp. 2386–2391. http://ijcai.org/papers11/Papers/
IJCAI11-398.pdf

3 Rozo L., Calinon S., Caldwell D., Jimenez P. and Torras C. (2013): Learning collaborative
impedance-based robot behaviors. 27th Int’l Conf. of the Assoc. for the Advancement of
Artificial Intelligence (AAAI-13), Bellevue, Washington, pp. 1422–1428. http://www.aaai.
org/ocs/index.php/AAAI/AAAI13/paper/view/6243/6845

4 Colome A., Alenya G. and Torras C. (2013): Handling high parameter dimensionality in
reinforcement learning with dynamic motor primitives. ICRAWorkshop on “Novel Methods
for Learning and Optimization of Control Policies and Trajectories for Robotics”, Karlsruhe,
Germany. http://www.ias.tu-darmstadt.de/uploads/Research/ICRA2013/Colome.pdf

5 Colome A., Pardo D., Alenya G. and Torras C. (2013): External force estimation during
compliant robot manipulation. IEEE Int’l Conf. on Robotics and Automation (ICRA 13),
Karlsruhe, Germany, pp. 3535–3540. http://dx.doi.org/10.1109/ICRA.2013.6631072

6 Rozo L., Jimenez P. and Torras C. (2013): A robot learning from demonstration framework
to perform force-based manipulation tasks. Intelligent Service Robotics, 6(1): 33–51. doi:
10.1007/s11370-012-0128-9

7 Alenya G., Dellen B. and Torras C. (2011): 3D modelling of leaves from color and ToF
data for robotized plant measuring. IEEE Int’l Conf. on Robotics and Automation (ICRA
11), Shanghai, pp. 3408–3414. doi: 10.1109/ICRA 2011.5980092

8 Alenya G., Dellen B., Foix S. and Torras C. (2013): Robotized plant probing: Leaf seg-
mentation utilizing time-of-flight data. IEEE Robotics and Automation Magazine, 20(3):
50–59. doi: 10.1109/MRA.2012.2230118

9 Ramisa A., Alenya G., Moreno-Noguer F. and Torras C. (2012): Using depth and appear-
ance features for informed robot grasping of highly wrinkled clothes. IEEE Int’l Conf. on
Robotics and Automation (ICRA 12), St. Paul, Minnesota, pp. 1703–1708. doi: 10.1109/I-
CRA.2012.6225045

10 Ramisa A., Alenya G., Moreno-Noguer F. and Torras C. (2013): FINDDD: A fast 3D
descriptor to characterize textiles for robot manipulation, IEEE/RSJ Int’l Conf. on Intelli-
gent Robots and Systems (IROS 13), Tokyo, pp. 824–830. doi: 10.1109/IROS.2013.6696446

11 Foix S., Alenya G., Andrade-Cetto J. and Torras C. (2010): Object modeling using a ToF
camera under an uncertainty reduction approach. IEEE Int’l Conf. on Robotics and Auto-
mation (ICRA 10), Anchorage, Alaska, pp. 1306–1312. doi: 10.1109/ROBOT.2010.5509197

12 Monso P., Alenya G. and Torras C. (2012): POMDP approach to robotized clothes sep-
aration. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS 12), Vilamoura,
Portugal, pp. 1324–1329. doi: 10.1109/IROS.2012.6386011

http://dx.doi.org/10.1109/MRA.2007.339604
http://dx.doi.org/10.1109/MRA.2007.339604
http://ijcai.org/papers11/Papers/IJCAI11-398.pdf
http://ijcai.org/papers11/Papers/IJCAI11-398.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6243/6845
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6243/6845
http://www.ias.tu-darmstadt.de/uploads/Research/ICRA2013/Colome.pdf
http://dx.doi.org/10.1109/ICRA.2013.6631072
http://dx.doi.org/10.1007/s11370-012-0128-9
http://dx.doi.org/10.1007/s11370-012-0128-9
http://dx.doi.org/10.1109/ICRA 2011.5980092
http://dx.doi.org/10.1109/MRA.2012.2230118
http://dx.doi.org/10.1109/ICRA.2012.6225045
http://dx.doi.org/10.1109/ICRA.2012.6225045
http://dx.doi.org/10.1109/IROS.2013.6696446
http://dx.doi.org/10.1109/ROBOT.2010.5509197
http://dx.doi.org/10.1109/IROS.2012.6386011


Anthony G. Cohn, Bernd Neumann, Alessandro Saffiotti, and Markus Vincze 101

13 Ulbrich S., Ruiz de Angulo V., Asfour T., Torras C. and Dillman R. (2012): Kinematic
Bezier maps. IEEE Trans. on Systems, Man and Cybernetics: Part B, 42(4): 1215–1230.
doi: 10.1109/TSMCB.2012.2188507

14 Ulbrich S., Ruiz de Angulo V., Asfour T., Torras C. and Dillman R. (2012): General robot
kinematics decomposition without intermediate markers. IEEE Trans. on Neural Networks
and Learning Systems, 23(4): 620–630. doi: 10.1109/TNNLS.2012.2183886

15 Martinez D., Alenya G., Jimenez P., Torras C., Rossmann J., Wantia N., Aksoy E.E., Haller
S. and Piater J. (2014): Active Learning of Manipulation Sequences. IEEE Int’l Conf. on
Robotics and Automation (ICRA 14), Hong-Kong.

4.22 Skill Development through Affordance-based Bootstrapping
Emre Ugur (Universität Innsbruck, AT)
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In this talk, we introduce our robot learning framework which follows a similar timeline with
human infant development. In the initial stages of the development, the robot organizes its
action parameter space to form behavior primitives, and explore the environment with these
primitives to learn basic object affordances such as graspability, pushability and rollability.
After learning, the robot can emulate observed goals by making multi-step plans using the
discovered behaviors and affordances.

The focus of this this talk will be on the next stages of development where the robot
learns more complex behaviors and affordances in multi-object environments with the help
of a demonstrator. Regarding to complex behavior learning, we studied how the robot
can directly map demonstrated complex action trajectories to its own sensorimotor space.
We proposed a mechanism that enables the robot to extract subgoals (with the help of
demonstrator through motionese) and to imitate the observed complex behavior by satisfying
these subgoals sequentially. The new complex behaviors that involve two or more objects
should be further explored as before to learn multi-object affordances. At the end of this
talk, we will discuss how multi-object affordance learning can be bootstrapped by utilizing
basic affordances as additional properties of the objects.

4.23 Sensorimotor Memory: Representation, Learning and Inference
Jure Zabkar (University of Ljubljana, SI)
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An efficient representation of sensorimotor system is vital to robot control and its ability to
learn new skills. While the increasing sensor accuracy and the speed of signal processing
failed to bridge the gap between the performance of artificial and human sensorimotor
systems, the motor memory architecture seems to remain neglected. Despite the advances
in robot skill learning, the latter remains limited to predefined tasks and pre-specified
embodiment. We propose a new motor memory architecture that enables information sharing
between different skills, on-line learning and off-line memory consolidation. We develop an
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algorithm for learning and consolidation of motor memory and study the space complexity
of the representation in the experiments with humanoid robot Nao. Finally, we propose the
integration of motor memory with sensor data into a common sensorimotor memory.

4.24 Project Report: RACE
Jianwei Zhang (Universität Hamburg, DE)
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URL http://www.project-RACE.eu

In a dynamic and changing world, a robust, adaptive and effective artificial cognitive system
(ACS) must have a high-level conceptual understanding of the world it inhabits. The overall
aim of RACE is to develop an artificial cognitive system, embodied by a robot, able to build
such a model of the world by storing and exploiting appropriate memories of its experiences.
We will demonstrate how an ACS can evolve its model as a result of novel experiences; and
show how such a model allows an ACS to better understand new situations enabling it to
achieve its goals in new situations at a level of robustness and effectiveness previously not
achievable. Experiences is recorded as semantic spatio-temporal structures connecting high-
level representations, including goals, tasks and behaviours, via their constituents at lower
levels down to the sensory and actuator level. In this way, experiences provide a detailed
account of how the ACS has achieved past goals or how it has failed, and what sensory
events have accompanied the activities. Conceptualisations are obtained by abstracting and
generalising from experiences, extending task planning and execution beyond preconceived
situations. Activities successfully carried out by the ACS for specific objects at specific
locations may be generalised to activity concepts applicable to classes of objects at variable
locations. Conceptualisations may also result in commonsense insights, e.g. about object
behaviour on tilted surfaces. The project aims at the following main results: (i) Agents
capable of storing experiences in their memory in terms of multi- level representations
connecting actuator and sensory experiences with high- level semantic structures,
(ii) Methods for learning and conceptualising from experiences obtained from behaviour in
realistically scaled real-world environments,
(iii) Robot systems demonstrating superior robustness and effectiveness caused by experience-
based planning and behaviour adaptation within incompletely specified environments.
Results will be integrated and evaluated in an operational mobile platform with grasping
facilities.

4.25 Project Report: STRANDS
Michael Zillich (TU Wien, AT)
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STRANDS will produce intelligent mobile robots that are able to run for months in dynamic
human environments. We will provide robots with the longevity and behavioural robustness
necessary to make them truly useful assistants in a wide range of domains. Such long-lived
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robots will be able to learn from a wider range of experiences than has previously been
possible, creating a whole new generation of autonomous systems able to extract and exploit
the structure in their worlds.

Our approach is based on understanding 3D space and how it changes over time, from
milliseconds to months. We will develop novel approaches to extract spatio-temporal structure
from sensor data gathered during months of autonomous operation. Extracted structure
will include reoccurring 3D shapes, objects, people, and models of activity. We will also
develop control mechanisms which exploit these structures to yield adaptive behaviour in
highly demanding, realworld security and care scenarios.

5 Working Groups

5.1 Report Discussion Group 1
Alexandre Bernardino (Technical University – Lisboa, PT)

License Creative Commons BY 3.0 Unported license
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Scientific Questions
1. Where/How should uncertainty be dealt with in learning robots?
2. Computer Vision in Robotics (why robot vision seems somewhat disconnected from CV)?
3. How to construct a good ontology (for robot learning)?
4. What representations bridge low-level and high level?
5. Can we learn anything suitable to be used by higher levels?
6. Semantic vs low-level info
7. Can we use high-level knowledge to influence the low level?

Report. This report summarises the debate of Group 1 on the topics of theme A, listed
above. The questions were not addressed by a specific order.

The starting point of the discussion was related to the utilisation of high-level knowledge
in the lower levels of a cognitive architecture. In particular, the noise and percept instability
in the low-level sensory sensory system were noted as major difficulties in information
processing. To deal with noise some ideias were put forwards, in particular sequential (Bayes)
probabilistic reasoning but maintaining logical representations from the high-level knowledge,
although it is not yet clear how to go from the continuous/probabilistic information into
symbols (where to put the threshold). If appropriate logical and temporal constraints are
encoded, the large number of interpretations coming from the probabilistic representation
cleans itself if one waits long enough. Therefore high-level models can be seen as a kind of
filter that helps removing noise from the lower levels.

The next point under discussion was related to the application of computer vision in
robotics. In robotics the images move constantly thus making interpretation more difficult.
In some cases it is a matter of image retrieval (trying to identify known objects in the
scene) but in other cases the robot itself may what to take an active role in searching for
the objects. In this case ontologies, context and expectation can be helpful in the process.
Anyway the problem is very complex and its seems difficult to tackle with only two levels of
representation (low vs high level) because of big differences between them. More intermediate
representations, with less variation among consecutive ones would probably simplify the
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planning levels. In particular some semantic levels could go lower in the hierarchy, even if
names cannot be assigned to the managed symbols. Assigning names to symbols or having
1-to-1 mappings between words and symbols was considered not essential. Anything that
can be labeled may carry semantic meaning.

Discussion then concentrated on how to build a good ontology. It was made a distinction
between the purpose of the ontology: learning vs planning. Different purposes may demand
ontologies with different characteristics. For learning it is important to have compositionally
but no recursion. For planning it is important to have recursion. Then, appropriate
translations are needed to convert among them. Good ontologies are also important for
knowledge sharing (provide an organised way to share information), and for efficient reasoning.
Another difficulty is related to different meanings of items in an ontology (example of the
match box, candle and pin – the matchbox can be used as a support for the candle, which is
not is common usage). For these cases we may need multiple ontologies and ways to switch
between them. Also it is important to have languages supporting generalisation of concepts
like ILP.

In the last point, it was discussed if ontologies are really needed or if we can just use all
the stored experiments. One problem of using data alone is the need to define similarities
between examples which is hard in high-dimensional spaces. In fact, is a similarity metric
can be defined, it can also implicitly define an ontology, but needs to adjust to different
situations and is not trivial. An example is obstacle avoidance. There is no concept of
an obstacle (e.g. a chair) but just examples of failures to move associated to examples of
chairs. Upon the observation of another chair, how to generalize ? By learning, we build a
taxonomical representation “anything with bounding box of this shape is an obstacle”. But
again similarity is hard to assess, as largely debated in the book: The Subtlety of Sameness:
A Theory and Computer Model of Analogy-making, by Robert Mills French.

5.2 Report Discussion Group 2
Alexandre Bernardino (Technical University – Lisboa, PT)

License Creative Commons BY 3.0 Unported license
© Alexandre Bernardino

Joint work of All participants of the group

Scientific Questions
1. Domain adaption, knowledge transfer
2. Cross-modal learning
3. Learning strategies. Weakly supervised learning
4. What is the role of affordances (in robot learning, control and planning)?
5. One shot learning vs statistical learning
6. Learning over long (life) periods of time

Report. The discussion group addressed the questions in order. Below are listed the main
points discussed for each one question.

1. The problem of domain adaption and knowledge transfer can be tackled by realising
what is the transformation between the domains that may lead to the adaption of the
behaviours. It can be as simple as estimating a parameter that maps the domains (e.g.
calibration) or very hard in complex domains. Even in the simple one parameter case
it may be hard to generalize. For example, consider shooting a ball of different weights.
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If we use a football, the most efficient way is to kick it fast with the foot. However, if
you try to generalize to a bowling ball, you need a very different strategy: hold with the
hand, swing to gain momentum and then throw. There is continuous transition in the
weight of the ball but a very significantly difference in the extreme cases.

2. Cross-modal learning is related to learning from different sensor modalities and creating
associations between them. Having several sensor modalities is important to have a more
complete perception of the environment – individual sensors may not be enough to sort
out the relevant information in the environment. However, it brings many challenges
like synchronisation between modalities, temporal segmentation, extraction of the right
features, etc. The diversity of way to associate data between the different modalities may
lead to high computational complexity.

3. Regarding learning strategies, the group debated whether it is beneficial to start learning
in a simplified domain (easy to discover some basic principles) and then use them when
learning in full sized domain (although some laws will have to be modified, refined to
special cases). Example: learn about moving balls (snooker balls) in a limited plane with
obstacles around. One could think of a staged learning approach: (i) start with a ball in
infinite domain; (ii) then increase the number of balls; (iii) then include obstacles and
limits on the plane. The approach seems reasonable but there are cases where things
may work better otherwise. For example in chess teaching, adults start learning the
movements of individual pieces, but for children it is better to teach the hole game from
the start. Still in this point it was debated weakly supervised learning. In principle this
method is able reduce the labelling effort but may be more sensitive to (weak)- label
mistakes. Training data is critical.

4. Affordances are a complex concept with many alternative interpretations. One of the
interpretations can be related to the pre-conditions for the application of actions on
objects (object shape, position, orientation, etc). Under this interpretation it is possible
to assess the key role of affordances in robot-learning, planning and control.

5. One shot learning vs statistical learning. It was discussed that one-shot learning may be
enough with enough prior knowledge and/or simple domains. For instance, children can
learn to recognise giraffes from a single picture. However, a giraffe is a very distinctive
animal with respect to the other. In cases where the distinction between classes is more
ambiguous, statistical learning and many more examples may be required.

6. The problem of learning over long life periods of time was the last point of discussion on
this session. The most critical aspect of this type of learning was related to knowledge
management. Learning over long period of time require to compress the examples
acquired (it is impossible to keep all the examples in memory), so issues like forgetting
and remembering and of great relevance and not very much explored in the literature.
Other aspect related to continual learning it how to explore the world to learn fast. This
is sometimes denoted as active learning. With adequate exploration strategies, a robot
can learn more efficiently. Finally, having huge amounts of data may lead to overfitting
(learning too specific examples and do not generalize well). To prevent this effect, classical
machine learning methodologies can be used, e.g. cross-validation.
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5.3 Report Discussion Group 4a
Laurent Orseau (AgroParisTech – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Laurent Orseau

Joint work of Bernd Neumann; Laurent Orseau; Georgi Stojanov; Markus Vincze

Participants of the group: Bernd Neumann, Laurent Orseau, Georgi Stojanov, Markus
Vincze.

1. The question was whether we should adopt a systemic perspective of all the topics
discussed during the seminar, i.e. whether we should keep in mind the global picture and
the long term goals of robotics. We (the group of 4 participants) unanimously agreed
that it was preferable.

2. The underlying question is: “What is the level of autonomy that we want for a robot?”.
Should robots be able to modify themselves entirely? The example of the Gödel Machine [1]
was taken as an example of such an agent. Self-modification is related to learning since
learning modifies the parameters of the underlying system. For moderately intelligent
robots such as service robots, it does not seem that full self-modification is useful. However,
it must be noted that (human-level) intelligent robots will nonetheless be able to modify
themselves entirely, possibly by indirect means like asking someone else.

3. The framework presented in [2] makes a clear distinction between the source code and the
memory of the agent: Knowledge and reasoning are separated into two entities. Although
it is a practical separation for the cited work, it is not clear that it is a necessary or even
a useful assumption for robotics.y It must be noted that the human brain actually takes
the completely opposite approach: memory and processes are completely entangled.

4. Common sense has been a desirable feature since the beginnings of robotics, but has
never been properly tackled. Everyone is focusing on more short-term tasks. According
to some in the discussion group, ontologies are probably not going to solve this problem,
as it seems unlikely that we can handcraft all common sense knowledge in advance. So
we probably need something different.
Learning the (intuition of the) laws of physics can be important to predict the effects
of actions like pulling a notepad on which there is a pen. Will the pen roll and fall, or
will it come with the notepad? Humans seem to reason by predicting the consequences
of actions, but the kind of reasoning seem to be context-dependent (e.g., depending on
what to focus on), and so it is not clear that common-sense is always about prediction.
Learning common sense seems to be a big challenge. The group suggested the possibility
to build a robot that, in a first phase, is meant to learn without a particular goal, so as to
accumulate common-sense, much like Pierre-Yves Oudeyer’s curiosity learning robots [4],
or Laurent Orseau’s knowledge-seeking agents [3], the latter of which chooses its actions so
as to maximise the entropy of the possible outcomes, in order to gain as much information
about the world as possible. In the second phase, copies of the robot could be specialised
for various tasks suitable for a service robot.

5. Designing rewards can be very complicated, in particular if we want autonomous agents.
The example of a gliding agent in a maze was taken: If we want the agent to move around
the maze, it is not sufficient to merely give a reward to the agent for moving forward and
punishment for hitting walls, as the agent may then simply turn in circles, which indeed
maximises the expected reward. This shows that designing a reward function is far from
trivial. In particular, for a service robot that can be rewarded and punished through a
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remote-control, it should require only moderate intelligence and common sense for the
robot to realise that it should acquire the remote-control to press the reward button itself.
The question of designing a good reward function becomes quite complicated when
we consider multidimensional rewards, in particular when considering the interactions
between various rewards. It was also discussed whether rewards should be defined once
and for all or if rewards could change in time, seemingly by analogy with how humans
change their preferences. However, it was not clear whether it is the rewards or the values
that change.

5.4 Report Discussion Group 4b
Sebastian Rockel (Universität Hamburg, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Rockel

Joint work of Rockel, Sebastian; Stock, Sebastian; Konecny, Stefan; Saffiotti, Alessandro; Lehmann, Jos; Hotz,
Lothar; Bratko, Ivan; Möller, Ralf; Cohn, Anthony

Participants of the group: Ivan Bratko, Anthony Cohn, Alessandro Saffiotti, Ralf Möller,
Lothar Hotz, Jos Lehmann, Sebastian Rockel, Sebastian Stock, Stefan Konecny.

Scientific Questions
1. Should we take a system perspective on the above questions?
2. Theoretical framework for learning agents
3. Self-modifying agents, representations vs. processes
4. Learning common sense, meta-knowledge

Report. 1 and 4 – Learning common sense and learning meta-knowledge should be viewed
at separately as they are different types of knowledge. Although meta-knowledge does include
some common sense knowledge. Examples for common sense would be how to use tools
(and if at all). For learning common sense knowledge it is required being able to represent
qualitatively physics.

There are different representations of common sense knowledge: e.g. learning from infants
vs. learning with formulas. It is also important to state that humans share common sense
with animals. An example for meta-knowledge on the contrary would be: “Knowing that I
don’t know”. Furthermore the discussion group points out that uncertainty has a notable
relation to meta-knowledge.

A valid robotics related question is: “How should robots be built up with an understanding
capability of common sense knowledge?” Common sense knowledge as a separate form of
knowledge (besides spatial, temporal etc.). Learning common sense knowledge once and
transfer it to multiple (different) robots is a desirable goal when it comes to sharing knowledge
between robots. Learning common sense is lacking negative examples. Thus dedicated
learning methods, such as clustering, have to be applied.

A wide consensus within the group is the openness of a definition for “common sense”. A
direct question to this is: “If at all to learn common sense or rather define it once (and use
it again)?” An agreed definition proposal within the group is (common sense): Everything
learned (by a child) out of pure curiosity is considered to be common sense knowledge.
Furthermore Common sense is more than naive physics reasoning, e.g. following statement is
also considered to be common sense: “You get a cold outside when not dressed appropriately
in winter.”
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Present knowledge representation and learning systems are not well suited when faced
with common sense reasoning, e.g. using ontologies. Common sense in AI is not explored
well as of today. Learning it is certainly a desired capability of a robot, but not much has
been done yet in this field yet. Although it is an attractive way to acquire it by learning. In
principle human common sense can be shared with robots.

In summary, common sense is useful for robots, especially in domestic environments. It
is not usable as of today (in general) with present tools, only in constrained scenarios with a
constrained knowledge base.
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