
Report from Dagstuhl Seminar 14172

Unifying Product and Software Configuration
Edited by
Krzysztof Czarnecki1, Arnaud Hubaux2, Ethan Jackson3,
Dietmar Jannach1, and Tomi Männistö5

1 University of Waterloo, CA, kczarnec@gsd.uwaterloo.ca
2 ASML – Veldhoven, NL, contact@ahubaux.com
3 Microsoft Research – Redmond, US
4 TU Dortmund, Germany, dietmar.jannach@tu-dortmund.de
5 University of Helsinki, FI

Abstract
Research on computer-supported configuration of customizable products and services is currently
carried out in two main communities: one community is mainly focused on the configuration of
hardware artifacts, the other one is interested in configurable software systems and software
product lines. Despite the significant overlap in research interests, the fields have mainly evolved
in isolation in different fields such as Artificial Intelligence, Constraint Programming and Soft-
ware Engineering. Yet, the communities have produced results that are applicable across the
communities. The trend of products becoming increasingly heterogeneous, i. e., consisting of
hardware, software and services, is furthermore increasingly blurring the line between the config-
uration domains in practice.

This report documents the program and the outcomes of Dagstuhl Seminar 14172 “Unify-
ing Product and Software Configuration”. The seminar gathered researchers and practitioners
working on configuration problems. The seminar consisted of invited presentations and working
group sessions covering various topics of software and product configuration including knowledge
representation issues, automated reasoning and configuration management and had a particular
focus on the industry perspective.

Seminar April 21–24, 2014 – http://www.dagstuhl.de/14172
1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods,

D.2.13 Reusable Software, F.4.1 Mathematical Logic, Logic and constraint programming
Keywords and phrases Product Configuration, Software Product Lines, Configuration Manage-

ment
Digital Object Identifier 10.4230/DagRep.4.4.20

1 Executive Summary

Krzysztof Czarnecki
Arnaud Hubaux
Ethan Jackson
Dietmar Jannach
Tomi Männistö

License Creative Commons BY 3.0 Unported license
© Krzysztof Czarnecki, Arnaud Hubaux, Ethan Jackson, Dietmar Jannach, and Tomi Männistö

Customizable products are an integral part of most Business-to-Business (B2B) and Business-
to-Consumer (B2C) markets. The fast-growing demand for mass-customization affects both
tangible products (e. g., cars and mobile phones) and intangible products like software (e. g.,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Unifying Product and Software Configuration, Dagstuhl Reports, Vol. 4, Issue 4, pp. 20–35
Editors: Krzysztof Czarnecki, Arnaud Hubaux, Ethan Jackson, Dietmar Jannach, and Tomi Männistö

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14172
http://dx.doi.org/10.4230/DagRep.4.4.20
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 21

operating systems, Enterprise Resource Planning systems and mobile phones). To this end,
companies use software configurators that provide automated support to tailor products to
the requirements of specific customers or market segments. These configurators have been
developed essentially in two threads of research: Product Configuration (PC) and Software
Configuration (SC).

PC is the umbrella activity of assembling and customizing physical artefacts (e. g., cars
or muesli) or services (e. g., insurances). Due to the inherent complexity of configuration
problems, PC was one of the first large-scale application fields of artificial intelligence (AI),
as it required both powerful knowledge-representation formalisms and efficient reasoning
methods. The particular challenges of knowledge representation and reasoning in PC even
led to the development of new AI techniques. Today, PC can be seen as one of the major
fields in which AI-based technology found its way into industrial practice and is part of many
industrial configuration systems.

Mostly independent of PC, the software engineering community was confronted with
challenging configuration problems. A typical challenge is the design and implementation
of software components that can be adapted and parameterized according to customer
requirements and business or technical constraints. As in PC approaches, the goal is to save
costs by assembling individualized systems from reusable components. These challenges are
dealt with in different strands of software engineering, e. g. software product line engineering
or self-adaptive systems.

Questions of knowledge representation and types of reasoning support have been investig-
ated for many years in PC and SC. Interestingly, research in these two fields has been carried
out so far mostly independently. Except in rare cases, researchers in both fields are often
unaware of approaches that have been developed in the other community.

This fragmentation is observable in two particular dimensions: knowledge representation
and configuration reasoning. Knowledge representation is concerned with the question of
how to encode the domain knowledge, e. g., about the compatibility of different features of a
configurable product, in a formal or machine processible way. Configuration reasoning covers
various aspects of how to make inferences given a knowledge base (configuration model),
specific user requirements or an existing configuration. Typical tasks include the automatic
completion of a partial configuration or checking the consistency of a given configuration.

The seminar was organized around the following research questions:
(RQ1) What classes of configuration problems exist?
(RQ2) How are these problems modelled?
(RQ3) What automated tasks are supported?
(RQ4) How are these automated tasks implemented?
The seminar was structured into three main blocks: Problem characteristics, Knowledge

representation and Reasoning and tools. Each block consisted of a number of introductory
presentations on the topic, which were given by researchers from different subfields and the
seminar participants from industry. These talks then served as a basis for discussions on
commonalities, differences and possible synergies. These discussions were made in small
working groups in break-out sessions and the results then synthesized in plenary meetings.
To make these break-out sessions more effective, the seminar participants were asked to fill
out a detailed questionnaire before the seminar.

Overall, the seminar featured more than a dozen introductory talks from academia and
from industry. In general, the interest from industry was particularly encouraging and the
seminar was attended by representatives and speakers, e. g., from IBM, SAP, Microsoft,
Siemens and BigLever. The evening sessions were used by several seminar participants to give
additional “lightning” talks, to share recent research results and dive deeper into technical
aspects.

14172

22 14172 – Unifying Product and Software Configuration

2 Table of Contents

Executive Summary
Krzysztof Czarnecki, Arnaud Hubaux, Ethan Jackson, Dietmar Jannach, and Tomi
Männistö . 20

Overview of Talks
Selected knowledge representation aspects
Michel Aldanondo . 23

Configuration reasoning is hard in general, but can be made efficient by exploiting
the hierarchical structure of configuration problems
Conrad Drescher . 23

Problem Characteristics of Industrial Product Configuration
Andreas Falkner and Albert Haag . 24

Towards combining performance optimisation and constraint satisfaction in software
configuration
Holger H. Hoos . 26

Configuration in Industrial Product Families
Lothar Hotz . 26

High-Level Languages for Configuration Modeling and Analysis
Eunsuk Kang . 27

Product Line Engineering Meets Product Line Operations
Charles Krueger . 28

Some Verification Problems in Automotive Configuration
Wolfgang Küchlin . 28

Boolean reasoning requires smart propositional encodings
Daniel Le Berre . 29

Configuration Evolution
Leonardo Gresta Paulino Murta . 29

Configuration in Variability-Rich Software Ecosystems
Klaus Schmid . 30

Performance Prediction in the Presence of Feature Interactions
Norbert Siegmund . 31

A minimal introduction to product configuration
Juha Tiihonen . 32

Challenges of topological variability
Andrzej Wasowski . 33

Strategically Optimizing Product Portfolios
Patrick Wischnewski . 33

Summary of Closing Discussion . 34

Participants . 35

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 23

3 Overview of Talks

3.1 Selected knowledge representation aspects
Michel Aldanondo (University of Toulouse, France)

License Creative Commons BY 3.0 Unported license
© Michel Aldanondo

Main reference M. Aldanondo, E. Vareilles, “Configuration for mass customization: how to extend product
configuration towards requirements and process configuration,” Journal of Intelligent
Manufacturing, 19(5):521–535, 2008.

The talk deals first with the elements that need to be modeled. First, three views (functional,
physical and process) are shown; then the multi-level modeling idea is introduced. The need
of using both discrete and continuous types of variables and constraints is then discussed.
In some situations, the need to add some location aspects (ports, location constraints, ...)
to the traditional bill-of-material (physical view) is described. The fact that the model of
the problem can change during configuration (adding variables or variables set) is discussed
and also the need for distributed modelling. Then the talk presents two key modeling ideas:
either modeling the problem or modelling the solution space. Classical constraint based
approaches are recalled as a problem modelling solution while less known solutions automata
illustrates the solution space modelling idea.

References
1 P. Pitiot, M. Aldanondo, E. Vareilles, Concurrent product configuration and process plan-

ning : Some optimization experimental results. Computers in Industry, Vol. 65, pp. 610–621,
2014

2 A. Felfernig, G. E. Friedrich, D. Jannach, UML as domain specific language for the con-
struction of knowledge-based configuration systems. International Journal of Software En-
gineering and knowledge Engineering, 10(4), 449–469, 2000.

3.2 Configuration reasoning is hard in general, but can be made
efficient by exploiting the hierarchical structure of configuration
problems

Conrad Drescher (SAP AG – Walldorf, Germany)

License Creative Commons BY 3.0 Unported license
© Conrad Drescher

In my talk I give an overview of reasoning problems arising in configuration and the most
common solution approaches. Problems discussed include:

checking the consistency of a configuration
computing valid domains for user choices in interactive configuration; explaining why
some option is not available
finding a valid / optimal / updated configuration
proving properties about configuration models (model equivalence, . . .)

Except for the first one all of the problems are computationally hard in general, an observation
that has important implications for scalability of configuration reasoning. I also discuss
key differences between the most important approaches to reasoning such as constraint
propagation solvers, conflict-driven clause learning solvers for Boolean problems, compilation
of problems to finite graphs (BDDs/MDDs), mathematical programming and local search.

I then discuss two state-of-the-art approaches for calculating valid domains. One is based
on storing a maximally condensed version of the complete search tree of the configuration

14172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
M. Aldanondo, E. Vareilles, ``Configuration for mass customization: how to extend product configuration towards requirements and process configuration,'' Journal of Intelligent Manufacturing, 19(5):521--535, 2008.
M. Aldanondo, E. Vareilles, ``Configuration for mass customization: how to extend product configuration towards requirements and process configuration,'' Journal of Intelligent Manufacturing, 19(5):521--535, 2008.
M. Aldanondo, E. Vareilles, ``Configuration for mass customization: how to extend product configuration towards requirements and process configuration,'' Journal of Intelligent Manufacturing, 19(5):521--535, 2008.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24 14172 – Unifying Product and Software Configuration

problem (i. e., as an MDD) [1]. The other is based by incrementally exploring portions of the
search tree on the fly [2].

Finally I argue that configuration problems as typically encountered in practice differ
from general constraint satisfaction problems in that they have a low tree-width. This fact
can be exploited in both approaches for computing valid domains as CSP with low tree-width
are known to admit search trees and hence also BDDs/MDDs of polynomial size [3].

More generally, for the above mentioned reasoning problems low tree-width can in many
cases be exploited to devise efficient algorithms.

References
1 J. Amilhastre, H. Fargier, P. Marquis, “Consistency Restoration and Explanations in Dy-

namic CSP – Application to Configuration”, Artificial Intelligence, 2002
2 C. Bessiere, H. Fargier, C. Lecoutre, “Global Inverse Consistency for Interactive Constraint

Satisfaction”, Proceedings of CP, 2013
3 P. Jegou and C. Terrioux, “Hybrid Backtracking Bounded by Tree-Decomposition of Con-

straint Networks”, Artificial Intelligence, 2003

3.3 Problem Characteristics of Industrial Product Configuration
Andreas Falkner (Siemens AG, Austria), Albert Haag (SAP AG – Walldorf, Germany)

License Creative Commons BY 3.0 Unported license
© Andreas Falkner and Albert Haag

A “product” can be anything a company offers for sale, both tangible (manufacturable) goods
and intangible ones such as services, software, or projects. The product can also be an upgrade
of something a customer already has. A configurable product is one that is not specified solely
by its product designation. Product configuration is a step in a business process to establish
a complete and correct specification of a configurable product. A predominant business
process is sales, including associated manufacturing and/or assembly. Sales configuration is
not meaningful without being able to give and guarantee both a price and an availability
date. It also affects the entire logistics supply chain. For example, production pre-planning
will also need to be based on the history of sold configurations. After a sale is completed it
may be necessary to configure the specific product instance sold to make it operational (such
as an airplane or computer server). This after-sales configuration poses distinct challenges
and will tend to be product specific. Various terms are in use to characterize different ways
of dealing with sales configuration. Some examples are Pick-to-Order, Assemble-to-Order,
Make-to-Order, and Engineer-to-Order. These aim mainly to distinguish two business relevant
aspects:

to what degree the product is assembled at the company’s site and the customer’s site
respectively
to what degree the product has been standardized. Standardization enables a streamlined
fulfillment process. In the worst case, manual intervention by engineers is necessary in
non-standard cases. (However, note that product design is considered outside the scope
of configuration.)

Sales configuration poses three somewhat different tasks:
High-level configuration is the interactive configuration dialog with the customer/sales
person. Besides needing an underlying sales model for the product, this will depend on
sales organization data and an availability date.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 25

Completion derives additional properties/components needed for manufacturing and
at the same time ensures that the configuration can be manufactured as ordered for
the given date and at what cost. This is usually non-interactive and will depend on a
manufacturing (engineering) model of the product, and the particular manufacturing
plant(s) as well as the effective date of manufacture.
Low-level configuration (or Bill-of-Materials (BoM) explosion) is selecting the actual parts
(BoMs) and operations (route sheets/routings) needed for manufacturing and reserving
corresponding resources. Again, this process depends on plant and effective date.

It is a current topic of research whether all three tasks might be handled using a uniform
approach (such as SAT-solving). Practical experience in the last decades suggests separation.
This is also vindicated by the fact that different parts of the organization have responsibility
for the different tasks. The first task is the responsibility of the sales organization. They
will want to influence the model to some degree. The last task is fulfillment and mainly the
responsibility of the manufacturing engineers. The completion task joins the two.

Often high-level configuration must primarily provide decision support rather than just
solving under given constraints. A sales configuration will typically be under-constrained
with respect to actual hard constraints, but poses an embedded multi-criteria optimization
problem in determining a best configuration. Optimality is not expressed explicitly, but in
the form of soft constraints or desirable properties that should be fulfilled in a good solution.
When adding these soft constraints the problem becomes over-constrained. Which properties
to forego is ultimately a decision of the user. The requirements for a user interface (UI)
depend on the type of user. In a B2C scenario the user is non-expert and requires very explicit
visualization of alternatives/aid in resolving inconsistencies. In a B2B or in-house scenario
the users are more expert and it may be sufficient to simply alert them to inconsistencies
and incompleteness.

Problems can occur in the context of upgrades or after-sales configuration that may
require dedicated CSP or SAT-solving approaches. The complexity of the first two sales
configuration tasks is determined mainly by how the product is represented at that level.
The easiest way would be as a single component with a manageable number of specifiable
characteristics (attributes). An example of a product presented this way is a car (50-70
characteristics presented in the high-level configuration, 150-300 in completion, tens of
thousands of components in low-level configuration). At the other end of the spectrum is
a complex multi-level system with an a priori indeterminate number of sub-components.
Examples of this would be elevators, busses, or computer servers.

Since a sales contract is legally binding, care must be taken that a configuration that
is accepted is complete and correct and can be delivered at the promised date and price.
Thus tools for model verification, testing and debugging are very important. Limiting
the complexity of the product is essential in achieving this at reasonable cost. An exact
methodology for measuring the complexity of a configurable product project from the business
perspective is still lacking.

14172

26 14172 – Unifying Product and Software Configuration

3.4 Towards combining performance optimisation and constraint
satisfaction in software configuration

Holger H. Hoos (University of British Columbia – Vancouver, Canada)

License Creative Commons BY 3.0 Unported license
© Holger H. Hoos

Joint work of Hoos, Holger H.; Hutter, Frank; Leyton-Brown, Kevin
Main reference H.H. Hoos, “Programming by Optimization,” Communications of the ACM, 55(2):70–80, February

2012.
URL http://dx.doi.org/10.1145/2076450.2076469

My group works on automatically configuring software for the purpose of performance
optimisation. This is very widely applicable in industry (e. g., mixed integer programming –
CPLEX, scheduling, SAT-based hardware and software verification, machine learning) and
academia. There are several classes of techniques available for carrying out these configuration
tasks, the best of which have been demonstrated to work on configuration problems involving
up to about 750 parameters. I believe that sequential model-based techniques, like our
own SMAC procedure, are particularly promising, especially in cases where performance
evaluations are costly and therefore few can be completed over the course of the configuration
process. I see very significant potential for these kinds of techniques to fundamentally change
the way performance-critical software will be designed, towards much more configurable
systems than used currently. This is at root of the Programming by Optimisation (PbO)
software design paradigm developed and promoted by my group (see main reference provided
above).

There is a different notion of configuration problems where the focus is on finding
configurations that satisfy potentially complex constraints. These can be tackled with SAT
and CSP solvers, which should be automatically configured using the previously mentioned
techniques to perform well on the specific configuration problems they are being used on.

I see interesting potential in combining the two aspects of configuration mentioned above:
performance optimisation within a potentially large space of configurations satisfying given
constraints.

3.5 Configuration in Industrial Product Families
Lothar Hotz (HITeC e.V. / Universität Hamburg, Germany)

License Creative Commons BY 3.0 Unported license
© Lothar Hotz

The software product line (SPL) approach provides a general reference process for supporting
reuse of software components. This process is divided into domain engineering and application
engineering. In domain engineering reusable components are developed and implemented that
can be used in multiple applications. During application engineering these components are
selected, configured, and composed to form a particular application. However, SPL provides
a general schema, how the engineering subtasks can be resolved is matter of research.

Knowledge-based configuration as a field of Artificial Intelligence provides modeling
languages and reasoning tools that enable the task of composing a system from components
[1]. As such, knowledge-based configuration supplies technologies that support the task of
application engineering.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2076450.2076469
http://dx.doi.org/10.1145/2076450.2076469
http://dx.doi.org/10.1145/2076450.2076469
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 27

The ConIPF methodology [2] demonstrates a successful application of knowledge-based
configuration technologies for solving the application engineering task of SPL. The ConIPF
methodology enhances the reference process by configuration activities such as development
of a configuration model and running the configuration process. As a difference to hardware
configuration, the ConIPF methodology adds activities to the process that create (com-
pile, link, test) configured software (sub-)systems during the configuration process. The
ConIPF methodology was applied to construct software-intensive systems in the field of car
manufacturing.

References
1 Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (Eds.), Knowledge-based Configuration –

From Research to Business Cases. Morgan Kaufmann Publishers, 2014.
2 Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor, J.,

2006. Configuration in Industrial Product Families – The ConIPF Methodology. IOS Press,
Berlin.

3.6 High-Level Languages for Configuration Modeling and Analysis
Eunsuk Kang (MIT – Cambridge, USA)

License Creative Commons BY 3.0 Unported license
© Eunsuk Kang

URL http://people.csail.mit.edu/eskang/talks/dagstuhl-configuration.pdf

In this talk, I will introduce two modeling languages, Alloy (developed at MIT) and Formula
(Microsoft Research), and describe how they can be used to model and analyze a variety of
configuration problems.

Alloy is an expressive modeling language based on first-order relational logic [1]. Originally
designed for describing complex structures that arise in software systems, it has been
applied to a variety of applications, including requirements analysis, program verification,
policy modeling, and security protocols. It has also been used to solve different types of
configuration problems, including product lines, feature models, multi-objective optimization,
and configuration synthesis. The analysis in Alloy is done by translating an original FOL
formula to an equisatisfiable SAT formula, which is then handed off to a third-party SAT
solver. When the solver finds an instance, it is translated back to a high-level representation
in the original model. If no instance is found, a minimal unsatisfiable core is generated to
highlight the parts of the model are contradictory; this feature can be used to produce an
explanation for configuration problems.

FORMULA is a modeling language developed at Microsoft Research for model-driven
architecture development [2]. Based on logic programming (stratified horn clauses), FOR-
MULA provides expressive constructs for modeling and composing domain abstractions. Its
analysis is done by translation to the Z3 SMT solver, which is capable of handling a variety
of theories (arithmetic, arrays, etc.). FORMULA has been used in a number of applications,
including exploring the design space of automobile architectures [3].

References
1 Official page for Alloy (http://alloy.mit.edu)
2 Official page for FORMULA (http://research.microsoft.com/en-us/projects/formula)
3 Eunsuk Kang, Ethan K. Jackson, Wolfram Schulte: An Approach for Effective Design

Space Exploration. Monterey Workshop 2010:33–54.

14172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://people.csail.mit.edu/eskang/talks/dagstuhl-configuration.pdf
http://alloy.mit.edu
http://research.microsoft.com/en-us/projects/formula

28 14172 – Unifying Product and Software Configuration

3.7 Product Line Engineering Meets Product Line Operations
Charles Krueger (BigLever, Austin, USA)

License Creative Commons BY 3.0 Unported license
© Charles Krueger

URL http://www.biglever.com/newsletters/Edge_PLE_Envelope_Part2.html

The complexity of managing the variability for a family of similar products or systems is
not limited to product line engineering (PLE) organizations. Other organizations that can
spend inordinate amounts of time and effort dealing with product feature diversity include
manufacturing and supply chains in automotive, certification and compliance documentation
in aerospace and defense, portfolio planning in highly competitive markets, web system
deployments in e-commerce, and sales automation for complex configurable systems.

Although it became clear to many successful PLE organizations that alignment of PLE
with their existing business operations was crucial, the idea of consolidating the variant
management and configuration disciplines across engineering and operations groups is an
emerging idea at the edge of the applied research envelope. Some of the industry’s most
innovative product line enterprises are now leveraging their PLE competence to create highly
efficient Product Line Operations. We refer to this convergence as Product Line Engineering
and Operations, or PLE&O.

PLE&O is more than just a new approach for aligning PLE with business operations, it is
a generational step forward in the evolution of product line paradigms. PLE&O extends PLE
with fundamental new perspective and methodology, with consolidated Feature Ontology
and configuration automation.

3.8 Some Verification Problems in Automotive Configuration
Wolfgang Küchlin (Universität Tübingen, Germany)

License Creative Commons BY 3.0 Unported license
© Wolfgang Küchlin

Joint work of Küchlin, Wolfgang; Sinz, Carsten; Zengler, Christoph; Walter, Rouven
Main reference C. Sinz, A. Kaiser, W. Küchlin, “Formal methods for the validation of automotive product

configuration data,” AI EDAM: Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 17(1):75–97, 2003.

URL http://dx.doi.org/10.1017/S0890060403171065

Automotive production is based on product configuration with very high variance, especially
for German premium car manufacturers. Vehicle configuration is structured in two levels.
High-level configuration (HLC) is concerned with the configuration of customer car orders
from sales options such as motors, seats, etc. Low-level configuration (LLC) is concerned
with the selection of the necessary parts for a car order from the bill-of-materials (BOM),
which is the list of all parts necessary for an entire line of cars. Documentation of both HLC
and LLC is usually based on Boolean logic. For a number of years, we have successfully
shipped verification systems based on SAT-solving to the automotive industry.

Some verification issues concerned with HLC are the computation of options which are
necessary, possible, or impossible, for every car order. Verification of LLC is concerned with
the computation of BOM materials (parts or software) which can never be used in any order,
which would be missing for some orders, or which would be multiply selected for some orders.

More recent issues include e. g., model counting the number of car orders in the HLC,
the explanation of proof results, or the reconfiguration of orders.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.biglever.com/newsletters/Edge_PLE_Envelope_Part2.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1017/S0890060403171065
http://dx.doi.org/10.1017/S0890060403171065
http://dx.doi.org/10.1017/S0890060403171065
http://dx.doi.org/10.1017/S0890060403171065

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 29

References
1 Wolfgang Küchlin and Carsten Sinz. Proving consistency assertions for automotive product

data management. J. Automated Reasoning, 24(1–2):145–163, February 2000. (Special issue:
Satisfiability in the Year 2000).

2 Andreas Kübler, Christoph Zengler, and Wolfgang Küchlin. Model counting in product
configuration. In Inês Lynce and Ralf Treinen, editors, Proc. First Int’l Workshop on
Logics for Component Configuration (LoCoCo), volume 29 of EPTCS, pp. 44–53, 2010.

3 Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the validation
of automotive product configuration data. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 17(1):75–97, January 2003. Special issue on configuration.

4 Christoph Zengler and Wolfgang Küchlin. Boolean quantifier elimination for automotive
configuration – a case study. In Charles Pecheur and Michael Dierkes, editors, Formal
Methods for Industrial Critical Systems – 18th Int’l Workshop, FMICS 2013, volume 8187
of LNCS, pp. 48–62. Springer, 2013.

3.9 Boolean reasoning requires smart propositional encodings
Daniel Le Berre (Artois University, Lens, France)

License Creative Commons BY 3.0 Unported license
© Daniel Le Berre

Boolean reasoning has been used both in product and software configuration, with both
success and failure stories. Encoding a problem into a Boolean satisfaction or optimization
problem requires a lot of expertize: there are numerous ways to translate high level constraints
into clauses, and intermediate solutions based on custom constraint propagators do exist. A
great encoding is typically not a Boolean model of the initial problem but a way to describe a
problem specific propagator for a Boolean engine. The choice of the Boolean input language
(SAT, MAXSAT, Pseudo-Boolean Optimization) as well as the Boolean engine used may
also have a deep impact on performances. It is thus important to model those problems
into a high level input language such as ASP (Answer Set Programming), Alloy, MiniZinc,
Copris/Scarab and to reuse state-of-the-art translators to produce Boolean formulas.

3.10 Configuration Evolution
Leonardo Gresta Paulino Murta (Federal University Fluminense – Niteroi, Brazil)

License Creative Commons BY 3.0 Unported license
© Leonardo Gresta Paulino Murta

Both Product and Software Configuration can and do evolve over time. However, low
attention is being provided to this problem. The discipline of Configuration Management can
help to shed some light on this subject. In this talk, we introduce some basic Configuration
Management concepts, discuss why general purpose Version Control Systems provide poor
support for controlling evolution of more elaborate artifacts, and discuss some challenges of
versioning Product and Software Configurations.

14172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

30 14172 – Unifying Product and Software Configuration

3.11 Configuration in Variability-Rich Software Ecosystems
Klaus Schmid (Universität Hildesheim, Germany)

License Creative Commons BY 3.0 Unported license
© Klaus Schmid

Joint work of Schmid, Klaus; Eichelberger, Holger; El-Sharkawy, Sascha; Kroeher, Christian; Brummermann,
Hendrik; Keunecke, Markus

Main reference K. Schmid, “Variability Support for Variability-Rich Software Ecosystems,” in Proc. of the 4th
Int’l Workshop on Product Line Approaches in Software Engineering (PLEASE’13), pp. 5–8, IEEE,
2013.

URL http://dx.doi.org/10.1109/PLEASE.2013.6608654

While software product lines are a way to support a single organization to create a range of
products from common assets with variability, an ecosystem involves a number of organizations
that produce software and services, which mutually enrich each other. In an ecosystem the
final “system” is only created at a later point, when the decision is made which software from
which organizations will be combined to form the final system. Of course, both situations
may happen simultaneously: each – or at least some – organization may employ a product
line approach. This is what we call a variability-rich software ecosystem [1].

In such an ecosystem it is important to describe the composition of the individual parts
as well as the variability of the individual product lines, both of which can be seen as forms
of configuration. Moreover, the situation of an ecosystem leads to additional requirements
for configuring each individual product line. Examples for this are that some sort of default
modeling should be supported [2] so that each composition results in a complete configuration,
some sort of modularization should be supported (e. g., like in CVL [3], using interfaces),
and so forth. Besides the demands such a situation creates for the configuration itself, it
also creates demands on the way the instantiation is performed (e. g., support for partial
instantiation).

As a reaction to these demands, we created the EASy-Producer tool [4]. This supports
the configuration and instantiation of variability-rich ecosystems. As part of this effort a
specific variability modeling language (IVML) and a variability instantiation languages (VIL)
were developed and implemented.

References
1 K. Schmid. Variability Support for Variability-Rich Software Ecosystems, 4th International

Workshop on Product Line Approaches in Software Engineering (PLEASE) at the Interna-
tional Conference on Software Engineering (ICSE), 5–8, 2013.

2 H. Brummermann, M. Keunecke, K. Schmid. Formalizing distributed evolution of variab-
ility in information system ecosystems. Proceedings of the 6th Workshop on Variability
Modeling of Software-Intensive Systems (VaMoS ’12), ACM, 11–19, 2012.

3 CVL. Common variability language, 2012. http://www.omgwiki.org/variability/doku.php?
id=start&rev=1351084099, Online accessed: 25.06.2014.

4 K. Schmid and E. Almeida. Product Line Engineering. IEEE Software, Vol. 30, No. 4,
24–30, 2013.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/PLEASE.2013.6608654
http://dx.doi.org/10.1109/PLEASE.2013.6608654
http://dx.doi.org/10.1109/PLEASE.2013.6608654
http://dx.doi.org/10.1109/PLEASE.2013.6608654
http://www.omgwiki.org/variability/doku.php? id=start&rev=1351084099
http://www.omgwiki.org/variability/doku.php? id=start&rev=1351084099

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 31

3.12 Performance Prediction in the Presence of Feature Interactions
Norbert Siegmund (Universität Passau, Germany)

License Creative Commons BY 3.0 Unported license
© Norbert Siegmund

Joint work of Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don Batory, Marko
Rosenmüller, Gunter, Saake

Main reference N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, G. Saake,
“Predicting Performance via Automated Feature-Interaction Detection,” in Proc. of the 34th Int’l
Conf. on Software Engineering (ICSE’12), pp. 167–177, IEEE, 2012.

URL http://dx.doi.org/10.1109/ICSE.2012.6227196

Customizable programs and program families provide user-selectable features allowing users
to tailor the programs to the application scenario. Beside functional requirements, users
are often interested in non-functional requirements, such as a binary-size limit, a minimized
energy consumption, and a maximum response time.

In our work, we aim at predicting a configuration’s non-functional properties for a specific
workload based on the user-selected features [2, 3]. To this end, we quantify the influence of
each selected feature on a non-functional property to compute the properties of a specific
configuration. Here, we concentrate on performance only.

Unfortunately, the accuracy of performance predictions may be low when considering
features only in isolation, because inaccurate predictions. many factors influence performance.
Usually, a property is program-wide: it emerges from the presence and interplay of multiple
features. For example, database performance depends on whether a search index or encryption
is used and how both features interplay. If we knew how the combined presence of two features
influences performance, we could predict a configuration’s performance more accurately. Two
features interact (i. e., cause a performance interaction) if their simultaneous presence in a
configuration leads to an unexpected performance, whereas their individual presences do not.

We improve the accuracy of predictions in two steps: (i) We detect which features interact
and (ii) we measure to what extent they interact. In our approach, we aim at finding
the sweet spot between prediction accuracy, measurement effort, and generality in terms
of being independent of the application domain and the implementation technique. The
distinguishing property of our approach is that we neither require domain knowledge, source
code, nor complex program-analysis methods, and our approach is not limited to special
implementation techniques, programming languages, or domains.

Our key idea to determine which features interact is the following: We measure each
feature twice. In the first run, we try to measure the performance influence of the feature
in isolation by measuring the variant that has the smallest number of additionally selected
features. The second run, aims at maximizing the number of features such that all possible
interactions that may influence on performance materialize in the measurement. If the
influence of the feature in isolation differs with the influence when combined with other
features, we know that this feature interacts. In the second step, we perform several sampling
heuristics, such as pair-wise sampling, to determine the actual combinations of interacting
features that cause interactions.

Our evaluation is based on six real-world case studies from varying domains (e. g.,
databases, encoding libraries, and web servers) using different configuration techniques.
Our experiments show an average prediction accuracy of 95 percent, which is a 15 percent
improvement over an approach that takes no interactions into account [1].

14172

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSE.2012.6227196
http://dx.doi.org/10.1109/ICSE.2012.6227196
http://dx.doi.org/10.1109/ICSE.2012.6227196
http://dx.doi.org/10.1109/ICSE.2012.6227196

32 14172 – Unifying Product and Software Configuration

References
1 N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and G. Saake.

Predicting Performance via Automated Feature-Interaction Detection. In Proc. ICSE, pp.
167–177. IEEE, 2012.

2 N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and S. Kolesnikov. Scal-
able Prediction of Non-functional Properties in Software Product Lines. In Proc. SPLC,
pp. 160–169. IEEE, 2011.

3 N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and S. Kolesnikov. Scal-
able Prediction of Non-functional Properties in Software Product Lines: Footprint and
Memory Consumption. Information and Software Technology, 55(3):491–507, 2013.

3.13 A minimal introduction to product configuration
Juha Tiihonen (Aalto University, Finland)

License Creative Commons BY 3.0 Unported license
© Juha Tiihonen

A minimal history of product configuration includes rule-based configurators, early model-
based configurators, mainstream configuration environments and mass customization toolkits
[4]. The main ideas of product configuration modeling [2, 5]) cover connection-based,
resource-based, structure-based, and function-based approaches. The related concepts
are treated uniformly in an object oriented manner with the availability of taxonomic
hierarchies with refinement, abstraction, and applicability of attributes. An integral part
of product configuration modeling is supporting the variable compositional structure of
components and functions/features. Common feature modeling concepts of basic, cardinality
based and extended feature models including “complex” constraints [1] can therefore be
easily mapped to concepts of the product configuration community. A demonstration
with product configuration system WeCoTin [6] showed how the example model of [1]
can be modeled and configured. Research challenges include personalized configuration,
unification of configuration and feature models, community-based configuration, standardized
configuration knowledge representations, intelligent user interfaces for configuration knowledge
acquisition, intelligent testing and debugging, unobtrusive preference elicitation, and processes
for intelligent systems development [3]. It is concluded that product configuration has a
long and successful history and product configurators are applied relatively widely. Product
configuration modeling techniques can be directly applied for representing many if not
most feature models. It seems that many aspects of variability modeling from the product
configuration community could be carried from product configuration community to software
configuration community. However, management of variability is just one aspect of software
product family modeling.

References
1 Benavides, D., Segura, S., & Ruiz-Cortes, A. (2010). Automated analysis of feature

models 20 years later: A literature review. Information Systems, 35(6), 615-636. DOI:
10.1016/j.is.2010.01.001

2 Felfernig, A. (2007). Standardized configuration knowledge representations as technolo-
gical foundation for mass customization. Engineering Management, IEEE Transactions On,
54(1), 41–56. DOI: 10.1109/TEM.2006.889066

3 Felfernig, A., Hotz, L., Bagley, C., & Tiihonen, J. (2014). Chapter 15 – Configuration-
Related Research Challenges. In A. Felfernig, L. Hotz, C. Bagley & J. Tiihonen

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1109/TEM.2006.889066

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 33

(Eds.), Knowledge-Based Configuration (pp. 191–195). Boston:Morgan Kaufmann. DOI:
10.1016/B978-0-12-415817-7.00015-3

4 Hotz, L., Felfernig, A., Günter, A., & Tiihonen, J. (2014). Chapter 2 – A Short His-
tory of Configuration Technologies. In A. Felfernig, L. Hotz, C. Bagley & J. Tiihonen
(Eds.), Knowledge-Based Configuration (pp. 9–19). Boston: Morgan Kaufmann. DOI:
10.1016/B978-0-12-415817-7.00002-5

5 Soininen, T., Tiihonen, J., Männistö, T., & Sulonen, R. (1998). Towards a general ontology
of configuration. AI EDAM, 12(4), 357–372.

6 Tiihonen, J., Heiskala, M., Anderson, A., & Soininen, T. (2013). WeCoTin – A practical
logic-based sales configurator. AI Communications, 26(1), 99–131. DOI: 10.3233/AIC-2012-
0547

3.14 Challenges of topological variability
Andrzej Wasowski (IT University of Copenhagen, Denmark)

License Creative Commons BY 3.0 Unported license
© Andrzej Wasowski

Main reference T. Berger, S. Stanciulescu, O. Ogaard, O. Haugen, B. Larsen, A. Wasowski, “To Connect or Not to
Connect: Experiences from Modeling Topological Variability,” to appear in the Proc. of the 18th
Int’l Software Product Line Conf. (SPLC’14).

Classic variability models are non-structural. Both feature models and decision models focus
on capturing sets of parameters, their names and dependencies between them. These are
then used to configure the piecefal of software in question. One well known publicly available
example is the Linux kernel, having a configurator driven by a simple variability model.

In installation engineering, a bit differently than in software, there is need for modelling
component types, and their connections (topologies). Configurators derived from such models
are used by installation engineers to design specifications for particular deployments. I present
the problem using the example of fire alarm systems of a Norwegian vendor, Autronica. The
presentation explains the shortcomings of variability models known from software product
lines area for specifications of such systems.

This work has been funded by the ARTEMIS project VARIES on variability in safety
critical systems.

3.15 Strategically Optimizing Product Portfolios
Patrick Wischnewski (Logic4Business – Saarbrücken, Germany)

License Creative Commons BY 3.0 Unported license
© Patrick Wischnewski

The steadily increasing number of product variants is leading to a steady increase in costs
and time expenditures in development, production and sales. Even more, designing variants
with respect to the actual market situation in order to exactly meet the customer’s demand
requires optimization methods that enable the manufactures to strategically optimize their
product portfolio.

Because of the discrete structure of the products, the respective optimization procedures
are expensive from a computational point of view. Therefore, in order to successfully develop
procedures that efficiently perform strategic optimizations for industrial size problems, two

14172

http://dx.doi.org/10.1016/B978-0-12- 415817-7.00015-3
http://dx.doi.org/10.1016/B978-0-12- 415817-7.00015-3
http://dx.doi.org/10.1016/B978-0-12-415817-7.00002-5
http://dx.doi.org/10.1016/B978-0-12-415817-7.00002-5
http://dx.doi.org/10.3233/AIC-2012-0547
http://dx.doi.org/10.3233/AIC-2012-0547
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
T. Berger, S. Stanciulescu, O. Ogaard, O. Haugen, B. Larsen, A. Wasowski, ``To Connect or Not to Connect: Experiences from Modeling Topological Variability,'' to appear in the Proc. of the 18th Int'l Software Product Line Conf. (SPLC'14).
T. Berger, S. Stanciulescu, O. Ogaard, O. Haugen, B. Larsen, A. Wasowski, ``To Connect or Not to Connect: Experiences from Modeling Topological Variability,'' to appear in the Proc. of the 18th Int'l Software Product Line Conf. (SPLC'14).
T. Berger, S. Stanciulescu, O. Ogaard, O. Haugen, B. Larsen, A. Wasowski, ``To Connect or Not to Connect: Experiences from Modeling Topological Variability,'' to appear in the Proc. of the 18th Int'l Software Product Line Conf. (SPLC'14).
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

34 14172 – Unifying Product and Software Configuration

directions of research are necessary. The first direction is towards efficient optimization
procedures. The second direction is towards efficient encodings of the problem of exactly
matching the properties of the optimization procedure.

In several industrial projects we have successfully used SAT-based optimization procedures.
In these projects we observed that finding the right encoding for a product portfolio and
adjusting the optimization procedure respectively was the key for efficiently performing
strategic optimizations in terms of the product portfolio.

4 Summary of Closing Discussion

The closing discussion of the seminar focused on identifying future research directions in
product and software configuration.

During the discussion, the idea of easy-to-use but expressive configuration languages
emerged as the main vision for the future. These two language properties were identified
as at odds with each other, making achieving this vision challenging. The participants
pondered whether such languages would be generic or domain-specific and questioned how
much representational adequacy generic languages could achieve.

In addition to support for ease of modeling, such languages should also provide efficient
reasoning capabilities without burdening the user. The discussion explored the idea of
targeting a range of solvers using intelligent solver-selection logic and translators determining
the most efficient problem encodings. The languages should also support a smooth transition
between different computational classes, without the need to reformulate existing configuration
models.

A challenge posed by the expressive-language vision is the ability to quickly and reliably
classify a given problem based on its characteristics and identify the most appropriate solvers
and encodings. The participants agreed about the need to create a body of knowledge
classifying configuration problems and the most appropriate solving techniques for each class.

The participants also recognized usable configurators as an additional important research
direction. Existing works on this topic are very sparse; however, tool builders and problem
modelers require clear guidance on how to design effective interactions with users. This
direction requires multi-disciplinary efforts, including human-machine interface, cognitive
science, and experimental research.

Finally, the participants postulated that achieving progress in the field would require creat-
ing widely accessible collections of benchmark problems. They also identified the diversity of
configuration languages and tasks as main challenges in creating such benchmarks. Standard
formats such as DIMACS in the SAT community greatly simplify creating benchmarks.
However, other communities offer some positive experiences in addressing these challenges.
For example, the CSP community has created the MiniZinc language, which is used as a
frontend for wide range of solvers.

K. Czarnecki, A. Hubaux, E. Jackson, D. Jannach, and T. Männistö 35

Participants

Michel Aldanondo
University of Toulouse, FR

Danilo Beuche
pure-systems GmbH –
Magdeburg, DE

Nikolaj Bjorner
Microsoft Res. – Redmond, US

Krzysztof Czarnecki
University of Waterloo, CA

Conrad Drescher
SAP AG – Walldorf, DE

Andreas Falkner
Siemens AG – Wien, AT

Jianmei Guo
University of Waterloo, CA

Albert Haag
SAP AG – Walldorf, DE

Holger H. Hoos
University of British Columbia –
Vancouver, CA

Lothar Hotz
HITeC e.V. /
Universität Hamburg, DE

Arnaud Hubaux
ASML – Veldhoven, NL

Dietmar Jannach
TU Dortmund, DE

Christian Kästner
Carnegie Mellon University, US

Eunsuk Kang
MIT – Cambridge, US

Charles Krueger
BigLever – Austin, US

Wolfgang Küchlin
Universität Tübingen, DE

Daniel Le Berre
Artois University – Lens, FR

Tomi Männistö
University of Helsinki, FI

Leonardo G.P. Murta
Federal University Fluminense –
Niteroi, BR

Klaus Schmid
Universität Hildesheim, DE

Norbert Siegmund
Universität Passau, DE

Markus Stumptner
University of South Australia
Adelaide, AU

Juha Tiihonen
Aalto University, FI

Andrzej Wasowski
IT Univ. of Copenhagen, DK

Patrick Wischnewski
Logic4Business –
Saarbrücken, DE

Ed Zulkoski
University of Waterloo, CA

14172

	Executive Summary Krzysztof Czarnecki, Arnaud Hubaux, Ethan Jackson, Dietmar Jannach, and Tomi Männistö
	Table of Contents
	Overview of Talks
	Selected knowledge representation aspects Michel Aldanondo
	Configuration reasoning is hard in general, but can be made efficient by exploiting the hierarchical structure of configuration problems Conrad Drescher
	Problem Characteristics of Industrial Product Configuration Andreas Falkner and Albert Haag
	Towards combining performance optimisation and constraint satisfaction in software configuration Holger H. Hoos
	Configuration in Industrial Product Families Lothar Hotz
	High-Level Languages for Configuration Modeling and Analysis Eunsuk Kang
	Product Line Engineering Meets Product Line Operations Charles Krueger
	Some Verification Problems in Automotive Configuration Wolfgang Küchlin
	Boolean reasoning requires smart propositional encodings Daniel Le Berre
	Configuration Evolution Leonardo Gresta Paulino Murta
	Configuration in Variability-Rich Software Ecosystems Klaus Schmid
	Performance Prediction in the Presence of Feature Interactions Norbert Siegmund
	A minimal introduction to product configuration Juha Tiihonen
	Challenges of topological variability Andrzej Wasowski
	Strategically Optimizing Product Portfolios Patrick Wischnewski

	Summary of Closing Discussion
	Participants

