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Software and its development generate an inordinate amount of data. For example, check-ins,
work items, bug reports and test executions are recorded in software repositories such as
CVS, Subversion, GIT, and Bugzilla. Telemetry data, run-time traces, and log files reflect
how customers experience software, which includes application and feature usage and exposes
performance and reliability. The sheer amount is truly impressive:

As of July 2013, Mozilla Firefox had 900,000 bug reports, and platforms such as Source-
forge.net and GitHub hosted millions of projects with millions of users.
Industrial projects have many sources of data at similar scale.

But how can this data be used to improve software? Software analytics takes this data
and turns it into actionable insight to inform better decisions related to software. Analytics
is commonly used in many businesses—notably in marketing, to better reach and understand
customers. The application of analytics to software data is becoming more popular.

To a large extent, software analytics is about what we can learn and share about software.
The data include our own projects but also the software projects by others. Looking back
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at decades of research in empirical software engineering and mining software repositories,
software analytics lets us share all of the following:

Sharing insights. Specific lessons learned or empirical findings. An example is that in
Windows Vista it was possible to build high-quality software using distributed teams if the
management is structured around code functionality (Christian Bird and his colleagues).
Sharing models. One of the early models was proposed by Fumio Akiyama and says that
we should expect over a dozen bugs per 1,000 lines of code. In addition to defect models,
plenty of other models (for example effort estimation, retention and engagement) can be
built for software.
Sharing methods. Empirical findings such as insights and models are often context-
specific, e. g., depend on the project that was studied. However, the method (“recipe”)
to create findings can often be applied across projects. We refer to “methods” as the
techniques by which we can transform data into insight and models.
Sharing data. By sharing data, we can use and evolve methods to create better insight
and models.

The goal of this seminar was to build a roadmap for future work in this area. Despite
many achievements, there are several challenges ahead for software analytics:

How can we make data useful to a wide audience, not just to developers but to anyone
involved in software?
What can we learn from the vast amount of unexplored data?
How can we learn from incomplete or biased data?
How can we better tie usage analytics to development analytics?
When and what lessons can we take from one project and apply to another?
How can we establish smart data science as a discipline in software engineering practice
and research as well as education?

Seminar Format
In this seminar, we brought together researchers and practitioners from academia and industry
who are interested in empirical software engineering and mining software repositories to
share their insights, models, methods, and/or data. Before the seminar, we collected
input from the participants through an online survey to collect relevant themes and papers
for the seminar. Most themes from the survey fell into the categories of method (e. g.,
measurement, visualization, combination of qualitative with quantitative methods), data
(e. g., usage/telemetry, security, code, people, etc.), and best practices and fallacies (e. g., how
to choose techniques, how to deal with noise and missing data, correlation vs. causation).
A theme that also emerged in the pre-Dagstuhl survey was analytics for the purpose of
theory format, i. e., “data analysis to support software engineering theory formation (or, data
analytics in support of software science, as opposed to software engineering)”.

At the seminar, we required that attendees
1. discuss the next generation of software analytics;
2. contribute to a Software Analytics Manifesto that describes the extent to which software

data can be exploited to support decisions related to development and usage of software.

Attendees were required to outline a set of challenges for analytics on software data, which
will help to focus the research effort in this field. The seminar provided ample opportunities
for discussion between attendees and also provide a platform for collaboration between
attendees since our time was divided equally between:
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1. Plenary sessions where everyone gave short (10 minute) presentations on their work.
2. Breakout sessions where focus groups worked on shared tasks.

Our schedule was very dynamic. Each day ended with a “think-pair-share” session where
some focus for the next day was debated first in pairs, then shared with the whole group. Each
night, the seminar organizers would take away the cards generated in the “think-pair-share”
sessions and use that feedback to reflect on how to adjust the next day’s effort.
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3 The Manifesto

To compile the manifesto, we followed three steps:
1. In a think-pair-share session we collected 150 statements that participants felt should

be part of the manifesto. Over the Dagstuhl week, the organizers sorted the cards into
categories.

2. A breakout group compiled a draft manifesto, which was then used in a plenary session
to establish core groups that should be part of a manifesto. The resulting groups were
definitions, general statements, people, data, methods, results and outcomes.

3. After the seminar, the organizers selected representative statements, which were then
rated by 22 attendees as part of a post-Dagstuhl survey (“In your opinion, how important
is it to include this statement for a manifesto on data science in software engineering?”).

In the rest of this section, we list the statements that were rated favoribly by 66.6% of the
survey participants as Essential (E) or Worthwhile (W). Statements that were rated by 40.0%
of survey participants as Essential are printed in bold.

3.1 Statements defining data science and analytics
Software analytics is to utilize data-driven approaches to obtain insightful and
actionable information to help software practitioners with their data related
tasks (E: 0.682, W: 0.136)
Data science in SE should lead to: (one of) Insights about users; Advise for practitioners
(which tools to use, design); Theory for researchers; Innovations for all (E: 0.364, W:
0.318)

3.2 General statements
Your project has a history. Learn from it. Decide from it. Embrace it. (E:
0.429, W: 0.381)
What counts is insights not numbers! (E: 0.429, W: 0.381)
Exploration matters. (E: 0.4, W: 0.4)
We strive to do the best we can with the evidence at hand, but we accept that that
evidence may be incomplete, noisy, and even wrong (E: 0.364, W: 0.455)
We will be able to gain insights from the past to improve the future. (E: 0.333, W: 0.381)
Data, analyses, methods and results have to be publicly shared (E: 0.227, W: 0.455)
SE data science should be actionable, reproducible. Should not be about finding a way
to apply your hammer but finding solutions to real problem. (E: 0.19, W: 0.524)
Good data science does not get in the way of developing software (distraction, additional
data collection) but supports it (makes it more efficient) (E: 0.143, W: 0.571)
Measure before action; act; measure again. (E: 0.136, W: 0.545)
Generalizations should be viewed with a healthy skepticism (E: 0.095, W: 0.571)

3.3 Statements about people
Data doesn’t decide, people do. (E: 0.545, W: 0.136)
Good data science takes the people into the account not just code and checkins (aka, in
a study, ask the people involved if your results make sense) (E: 0.364, W: 0.5)
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3.4 Statements about data
Understand where the data comes from, accepting that it may be gamed (E:
0.5, W: 0.318)
Quality of data is more than quantity (E: 0.409, W: 0.409)
Impact requires actionable data (E: 0.4, W: 0.2)
Data is merely one component of the large amount of insight, experience, and knowledge
that informs decisions (E: 0.318, W: 0.409)
Do check your data multiple times (E: 0.227, W: 0.591)

3.5 Statements about methods
Engage domain experts in validation of analysis (E: 0.571, W: 0.381)
Interpretation and visualization is central to data science (E: 0.5, W: 0.364)
We value qualitative study as much as quantitative study; often that’s where
the insights come from (E: 0.476, W: 0.429)
Replicate and triangulate (E: 0.455, W: 0.364)
Big data research should not only consider machine generated data. Qualitative data are
of equal importance. (E: 0.381, W: 0.381)
Effect size matters (E: 0.35, W: 0.45)
Actionable impact over sophisticated method. (E: 0.333, W: 0.429)
When it comes to metrics, more is not necessarily better. (E: 0.286, W: 0.381)
Context must accompany every method. (E: 0.238, W: 0.571)
Data Science is integrating and analyzing data from different sources. (E: 0.19, W: 0.524)

3.6 Statements about results and outcomes
Communicating results is as important as computing results (E: 0.524, W: 0.333)
Analytics should lead to action (E: 0.476, W: 0.286)
Make results actionable and relevant (E: 0.381, W: 0.429)
Publish what didn’t work. (E: 0.364, W: 0.545)
Data science should produce actionable findings (E: 0.333, W: 0.476)
Value usefulness to decide over precision or correctness (E: 0.318, W: 0.682)

4 Follow-up Work

At the seminar, it was recognized that the community needs a web portal to store and
distribute its community product. That portal is currently being developed.

Also, attendees commented there were many “best practices” that were unknown to the
broader community. This resulted in an all-too-varied performance result when newcomers
struggled to apply analytics to their particular project. Hence, it was decided to co-write a
book “Perspectives on Data Science for Software Engineering” where each (small)
chapter would be written by one Dagstuhl seminar attendee as well as other well-known
people in the field.
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5 Overview of Talks

5.1 Emotion Mining for Software Developers
Bram Adams (Polytechnique Montreal, CA)

License Creative Commons BY 3.0 Unported license
© Bram Adams

Joint work of Murgia, Alessandro; Tourani, Parastou; Adams, Bram; Ortu, Marco
Main reference A. Murgia, P. Tourani, B. Adams, M. Ortu, “Do Developers Feel Emotions? An Exploratory

Analysis of Emotions in Software Artifacts,” in Proc. of the 11th Working Conf. on Mining
Software Repositories (MSR’14), pp. 262–271, ACM, 2014.

URL http://dx.doi.org/10.1145/2597073.2597086

Software development is a collaborative activity in which developers interact to create and
maintain a complex software system. Human collaboration inevitably evokes emotions like joy
or sadness, which can affect the collaboration either positively or negatively, yet not much is
known about the individual emotions and their role for software development stakeholders. We
analyzed whether development artifacts like issue reports carry any emotional information
about software development. This is a first step towards verifying the feasibility of an
automatic tool for emotion mining in software development artifacts: if humans cannot
determine any emotion from a software artifact, neither can a tool. Analysis of the Apache
Software Foundation issue tracking system shows that developers do express emotions (in
particular gratitude, joy and sadness), yet more investigation is needed before building a
fully automatic emotion mining tool.

5.2 Software analytics with email data
Alberto Bacchelli (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Alberto Bacchelli

Joint work of Bacchelli, Alberto; Lanza, Michele; Humpa, Viteszlav
Main reference A. Bacchelli, M. Lanza, V. Humpa, “RTFM (Read the Factual Mails) – Augmenting Program

Comprehension with Remail,” in Proc. of the 15th European Conf. on Software Maintenance and
Reengineering (CSMR’11), pp. 15–24, IEEE, 2011; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1109/CSMR.2011.6
URL http://sback.it/publications/csmr2011.pdf

The evolution of software systems leaves its traces in a number of artifacts. Some artifacts
are made of structured data (e. g., source code) that is easily parseable, while others are
made of unstructured data (e. g., documentation and emails) that is more difficult to analyze.
Nevertheless unstructured data contain precious knowledge to support software engineering.

In this talk I provide initial evidence that email data can be effectively used as a valuable
target for software analytics. In particular, I will present anecdotal evidence on the usefulness
of email data in supporting four program comprehension tasks, namely (1) finding Entry
Points in a software system, (2) conducting Software Evolution Analysis, (3) improving
Expert Finding techniques, and (4) recovering Additional Documentation about system’s
entities. The aim of the presentation is to trigger future collaboration and project in using
unstructured software data to support software engineering.
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5.3 Software Analytics to Build Recommender Systems
Ayse Bener (Ryerson University – Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Ayse Bener

The goal of evidence based analytics for software systems is to create methods, techniques,
tools and processes to improve processes and/or to efficiently allocate resources. We need
to migrate from prediction to recommendation by building models that focus on reasons
and casual relationships. We need to integrate prediction models into business rules and
processes to improve software development processes as well as modeling people aspects.
There are also other challenges that both research and practice should consider. One of
these challenges is reproducibility of approaches since no one shares enough data and there
are no standard process/ framework to conduct analytics. Another challenge is the lack of
integration of research tools into development platforms such as Jira, GitHub, Eclipse, etc.

5.4 Data-Driven Engineering at Microsoft
Trevor Carnahan (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Trevor Carnahan

An inside look into Microsoft efforts to apply analytics into data-driven engineering of
software and a fresh look at a modern developer’s responsibilities and activities. This talk
starts with general decision making data concepts at work. Then the talk outlines a few data
systems developed in SQL Server and in Tools for Software Engineers currently in use for
decisions. It finishes with the impact of devops and more service and cloud development to
challenge conceptions of a software engineer.

5.5 Misconceptions about mining bug repositories
Serge Demeyer (University of Antwerp, BE)

License Creative Commons BY 3.0 Unported license
© Serge Demeyer

In this talk I present a few misconceptions that some researchers have about the records
maintained in software repositories in general and bug repositories in particular. These
misconceptions were harvested from a series of focus groups we organised with industrial
team leads about promising research mature enough to be applied in practice.

In no particular order (and without criticising researchers working on these problems) we
received the following feedback.

Recommenders for the component of a particular bug are more useful than recommenders
for the best person to fix.
The time to fix is often seen as the time between opening and closing a bug. A more
actionable definition is the time between a developer acknowledging that he will fix a bug
and the time he submits it for review.
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Accuracy (precision / recall in all its variations) is not the primary criterion to be
optimised. Equally important is the learning curve, i. e. how many bug reports you need
for training before the recommender achieves a reasonable accuracy.

5.6 Rationalism vs. Empiricism in Software Engineering
Premkumar T. Devanbu (University of California – Davis, US)

License Creative Commons BY 3.0 Unported license
© Premkumar T. Devanbu

Researchers in software engineering have each subscribed almost exclusively to one of two
approaches: Rationalist, and Empiricist. This talk is a plea for more overlap and interaction,
specially from the latter to the former.

5.7 A tale of two datasets
Georgios Gousios (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Georgios Gousios

Main reference G. Gousios, “The GHTorent dataset and tool suite,” in Proc. of the 10th Working Conference on
Mining Software Repositories (MSR’13), pp. 233–236, IEEE/AMC, 2013.

URL http://dl.acm.org/citation.cfm?id=2487085.2487132

What drives reuse of shared research artifacts? In my talk, I argue that the openness of the
construction process plays a central role in the dissemination of research artifacts and their
acceptance and trust by other researchers.

5.8 The trouble with performance analytics
Abram Hindle (University of Alberta, CA)

License Creative Commons BY 3.0 Unported license
© Abram Hindle

URL http://softwareprocess.es

Performance Analytics are continually challenged by the lack performance information within
existing software repositories. The lack of logging by developers and users leads to this
problem. Until developers are motivated by better analytics and tools, they will not be
motivated to log performance information and aggregate it. It is up to us as researchers to
generate this data, demonstrate how great the tools and analytics are with this information,
and then motivate developers to log this information in the hope of using our methods and
tools.
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5.9 Applying Qualitative Analytics
Reid Holmes (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Reid Holmes

Joint work of Baysal Olga; Holmes, Reid; Godfrey, Mike
Main reference O. Baysal, R. Holmes, M. Godfrey, “No Issue Left Behind: Reducing Information Overload in Issue

Tracking,” in Proc. of the 22nd ACM SIGSOFT Int’l Symposium on the Foundations of Software
Engineering (FSE’14), 2014, to appear.

Modern software development processes generate large amounts of metadata. While it is
tempting to aggregate this data in forms that are amenable to graphical representations
(e. g., charts of defects fixed over time), these representations are not useful for developers as
they address their day-to-day tasks.

This talk describes a research project that examined the kinds of questions industrial
developers want to answer using modern issue tracking systems along with other questions
they would like to ask but are unable to ask using existing tools. Ultimately we find that
developers want support for expressing queries for addressing specific tasks along with
maintaining overall situational awareness of both their own issues along with other issues
that are relevant to their interests. We have created a model of these information needs
and have built a prototype tool called Dash that fulfills these shortcomings by providing a
qualitative (rather than quantitative) projection of issue tracker data. We have iterated on
this tool several times with industrial developers and it has currently been deployed within
Mozilla so we can gather longitudinal usage data to validate and improve our information
model.

5.10 Information > Tool or Information → Tool?
Miryung Kim (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
© Miryung Kim

Main reference M. Kim, T. Zimmermann, N. Nagappan, “An Empirical Study of RefactoringChallenges and
Benefits at Microsoft,” Trans. on Software Engineering, 40(7):633–649, 2014.

URL http://dx.doi.org/10.1109/TSE.2014.2318734

In this talk, I present my work on systematic changes with the aim of having a discussion on
whether information produced by development analytics is more important than building
development tools or whether we should think about deriving information that could inform
the design of development tools.

References
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5.11 Thoughts on selling software analytics to software companies
Andrew J. Ko (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
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I co-founded a company that provides contextual crowdsourced help to SaaS companies,
providing a stream of insights about the questions, confusions, and struggles that users are
having on their site. In interacting with customers, I have found that very few customers
have mature practices or understanding of metrics, measurement, hypotheses, or experiments.
This heavily skews what can be sold, how customers perceive value, and what types of
analytics they understand and desire.

5.12 An ARCADE for Architecture Analytics
Nenad Medvidovic (University of Southern California, US)

License Creative Commons BY 3.0 Unported license
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From its very inception, the study of software architecture has recognized architectural decay
as a regularly-occurring phenomenon in long-lived systems. At the same time, there is a
relative dearth of empirical data about the nature of architectural change and the actual
extent of decay in existing systems. In this talk, I present a workbench developed to help
us take a step toward addressing that scarcity, by automating the study of architectural
change and decay. The workbench, ARCADE (“Architecture Recovery, Change, and Decay
Evaluator”) enabled us to conduct a pilot study of the evolution of software architectures
from several hundred versions belonging to 12 open- source systems totalling over 112 million
source lines of code. To lay the groundwork for ARCADE, we previously performed an
extensive evaluation of state-of-the-art techniques for obtaining a software architecture from
a system’s implementation and (2) cataloged symptoms of architectural decay. This talk
reported on several results from the study, which revealed a number of unexpected findings
regarding the frequency of architectural changes in software systems, the rate at which
architectural decay occurs, the nature of architectural decay, and its relationship to code-level
decay.

5.13 Software Effort Estimation Models – Past, Present and Future
Leandro L. Minku (University of Birmingham, GB)

License Creative Commons BY 3.0 Unported license
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In this talk, I briefly go through some key points in terms of the past, present and future
of software effort estimation models. I go from (1) conclusion instability to (2) ensembles
[1, 3, 4] and locality [2, 3] to (3) the importance of concentrating more on temporal [5] and
cross-company learning [5, 6], generating insights [5], and obtaining a better understanding
of when, why and how our models work (or don’t work). Even though the talk is in the
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context of software effort estimation models, several of these ideas are also applicable to
other types of software prediction models, such as defect predictors.
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5.14 Operational Data are not Experimental Data
Audris Mockus (Avaya – Basking Ridge, US)
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Main reference A. Mockus, “Engineering big data solutions,” in Proc. of the “Future of Software Engineering”
(FOSE) track at the 36th Int’l Conf. on Software Engineering (ICSE’14), pp. 85–99, ACM, 2014;
pre-print available at author’s webpage.
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The collection and use of low-veracity data in software repositories and other operational
support systems is exploding. It is, therefore, imperative to elucidate basic principles of how
such data comes into being and what it means. Are there practices of constructing software
data analysis tools that could raise the integrity of their results despite the problematic
nature of the underlying data? The talk explores the basic nature of data in operational
support systems and considers approaches to develop engineering practices for software
mining tools.
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5.15 Analytics on Ad Library Maintenance in Android Apps
Meiyappan Nagappan (Rochester Institute of Technology, US)
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URL http://dx.doi.org/10.1109/MS.2014.79

With more than 75% of mobile apps today being free-to-download, advertisement within apps
is one of the key business models to generate revenue. Advertisements are served through the
embedding of specialized code, i. e., ad libraries. Unlike other types of libraries, developers
cannot ignore new versions of the embedded ad libraries or new ad libraries without risking
a loss in revenue. However, updating ad libraries also has expenses, which can become a
major problem as ad library updates are becoming more prevalent in mobile apps.

We mined over 128,000 Android apps over 12 months. After removing apps that were
considered as noise, an analysis of 13,983 versions of 5,937 Android apps shows that almost
half (48.98%) of the studied versions had an ad library update (i. e., ad library was added,
removed, or updated). Interestingly, in 13.75% of app updates (new version in the Google
Play store) with at least one case of ad library update, we found no changes to the app’s
own API, which suggests substantial additional effort for developers to maintain ad libraries.
We also explore the rationales for why such updates are carried out. Finally, we find no
evidence that the number of ad libraries in an app is related to the ratings that an app can
get. However, integrating certain specific ad libraries can negatively impact the rating of an
app.

5.16 Are We Really Helping Developers?
Alessandro Orso (Georgia Institute of Technology, US)
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This talk discusses some of the risks involved in defining and evaluating software engineering
approaches without considering how (or whether) developers will use and benefit from them.
As a specific example, the talks presents a human study that shows how a family of techniques
that received a great deal of attention in the last decade seemed to be ineffective when
evaluated on real users.
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5.17 My flings with data analysis
Venkatesh-Prasad Ranganath (Kansas State University, US)
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This talk presents observations and opportunities in the space of using data analysis to
enable, accomplish, and improve software engineering tasks such as testing. The observations
and opportunities are drawn from efforts in an industrial setting.

5.18 Towards the Impact of Software Analytics
Guenther Ruhe (University of Calgary, CA)
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This position statement raises some questions related to the impact of software data analytics.
Questions being raised are:

How much of the analytics results actually have been used?
Which actual decisions have been supported?
How much of the results was useful?
How much data analytics is enough?

Two examples of ongoing research are presented:
1. Software release readiness
2. Analytical product release planning

5.19 Mere Numbers aren’t Enough – Focus on Interpretation and
Visualization

Per Runeson (Lund University, SE)

License Creative Commons BY 3.0 Unported license
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Software analytics involve data collection, analysis, interpretation and visualization. Current
research focus to a vast majority on the data and analysis. However, interpretation and
visualization are more related to the use and utility of the software analytics. Through a few
examples [2, 3], I show how the interpretation and visualization parts play a significant role,
and I encourage to take these aspects into account in future research [1].

This talk is based on the following publications:
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5.20 Composable Data Mining: Supporting Analytics for End Users
Anita Sarma (University of Nebraska – Lincoln, US)
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There is a need for supporting end users in performing analytics of their own data. We
provide a framework that translates the relationship among project elements into matrices
and allows linear transformation of these matrices to combine relationships and provide
insight. This talk shows how Dominoes can be used to identify expertise for a given project
or an artifact (file) by considering not only the number of edits that a developer has made,
but also the spread of their changes and thereby the breadth of their expertise. Our approach
enables us to identify expertise over any given granularity and time period quickly.

5.21 42 years of Unix history in one repository
Diomidis Spinellis (Athens University of Economics and Business, GR)

License Creative Commons BY 3.0 Unported license
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The goal of the Unix history repository project is to create a git repository representing the
Unix source code history, starting from the early 1970s and ending in the modern time. To
fulfil this goal the project brings data from early system snapshots, repositories, and primary
research. The project aims to put in the repository as much meta-data as possible, allowing the
automated analysis of Unix history. This effort allows the exploration of programming style
evolution, the consolidation of digital artefacts of historical importance, the collection and
recording of history that is fading away, and the provision of a data set for digital archaeology
and repository mining. The project has achieved its first major goal with the establishment of
a continuous time-line from 1972 to 2014. The repository contains snapshots of V1, V3, V4,
V5, V6, and V7 Research Edition, Unix/32V, all available BSD releases, the CSRG SCCS
history, two releases of 386BSD, FreeBSD 1.0, and an import of the FreeBSD repository
starting from its initial imports that led to FreeBSD 2.0. The files appear to be added in
the repository in chronological order according to their modification (or commit) time, and
large parts of the source code have been attributed to their actual authors. Commands such
as git blame and (sometimes) git log produce the expected results. The community can
contribute to the project by using it for research, adding material, and proposing corrections.
The repository is available online at https://github.com/dspinellis/unix-history-repo.
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5.22 Open Problems and Challenges in Software Analytics
Diomidis Spinellis (Athens University of Economics and Business, GR)
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We identify open problems and challenges in software analytics in the areas of the domains
that can be addressed, data analysis, and under-represented stakeholders. In terms of
domains, we refer to the recent paper by Begel and Zimmermann on 145 questions for data
scientists in software engineering, and outline a procedure that can be used to map these
questions into domain challenges. In terms of data analysis, we identify the problems and
challenges of linking persons with their actions in repositories, issue databases, mailing lists,
and social networking sites, linking artefacts between systems that hold them (e. g. commits
with issues they resolve), scalability of tools and techniques over large data sets, the sharing
of industrial data, data privacy, the cleaning of noise, judging and dealing with data quality,
judging the representativeness of data, and reproducing results. In terms of stakeholders,
we highlight that build engineers, system administrators, people with multiple tasks in a
software project, software designers/architects, and business/product managers, and support
personnel are not well catered by current data analysis techniques.
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5.23 Studying social media in software development: reflecting on
research methods

Margaret-Anne Storey (University of Victoria, CA)

License Creative Commons BY 3.0 Unported license
© Margaret-Anne Storey

I present a brief overview of research on the impact of social media on software engineering.
This research highlights how software engineers today actively benefit from a participatory
culture of development, that is fuelled by socially enabled tools. I also provide a brief
overview of the landscape of research methods, highlighting some methods in particular:
grounded theory and mixed methods. As I describe these methods, I reflect on my experiences
using those methods to investigate and learn about social media use in software engineering.
Finally, I suggest that we try to adopt some of the ways open source developers benefit from
their participatory culture, so that we can improve and accelerate the research we do. By
collaborating more, we are more likely to be able to use multiple methods to investigate
software development which will help balance the different limitations of methods.
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5.24 The Graph
Burak Turhan (University of Oulu, FI)
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In this talk I’ll share our experiences in conducting a software analytics project, e. g. bug
prediction. Though the project was a huge success in terms of scholarly outcomes and
performance measures, we had difficulty in communicating the results to the practitioners.
It turned out that our predictions were perceived as stating the obvious – even through
many different modes of communication/ representation; and the most useful and insightful
representation was only a visualization of the issue reports without any predictions. Hence,
exploration trumps prediction in our case!

5.25 Why Quality Models Don’t Work and Why We Need Them
Anyway

Stefan Wagner (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Wagner

Joint work of Wagner, Stefan; Lochmann, Klaus; Heinemann, Lars; Kläs, Michael; Trendowicz, Adam; Plösch,
Reinhold; Seidl, Andreas; Goeb, Andreas; Streit, Jonathan

Main reference S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidl, A. Goeb, J.
Streit, “The Quamoco Product Quality Modelling and Assessment Approach,” in Proc. of 34th
Int’l Conf. on Software Engineering (ICSE’12), pp. 1133–1142, IEEE, 2012

URL http://dx.doi.org/10.1109/ICSE.2012.6227106

Quality is a complex and multifaceted concept. We employ quality models to capture this
complexity. In the project Quamoco, we built a detailed and operationalised quality model
connecting low-level metrics with high-level quality attributes. We managed to build a model
judged well understandable by developers and giving reasonable quality estimates. Yet, the
effort that went into it is prohibitive for a real general model. Also, the many factors in
the model makes it almost impossible to really validate it. So where should we go? Staying
with predicting other low-level metrics (such as defects) or put in the effort to describe the
relationships to high-level attributes?

5.26 Analytics in the Field
Patrick Wagstrom (IBM Watson Group, US)

License Creative Commons BY 3.0 Unported license
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As researchers we often develop elegant tools and models that explain phenomena behind
software engineering. These models are purported to make the development process faster,
easier, and more reliable. However, these research outputs are rarely taken up in industry.
This talk, presented from the industry perspective, identifies some of the challenges around
deploying research output in industry from the lens of understanding user interactions and
desires.
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5.27 Software Analytics in Practice
Dongmei Zhang (Microsoft Research – Beijing, CN)

License Creative Commons BY 3.0 Unported license
© Dongmei Zhang

Joint work of Zhang, Dongmei; Shi Han, Yingnong Dang, Jian-Guang Lou, Haidong Zhang, Tao Xie
Main reference D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, T. Xie, “Software Analytics in Practice,” IEEE

Software – Special Issue on the Many Faces of Software Analytics, 30(5):30–37, 2013; pre-print
available from author’s webpage.

URL http://dx.doi.org/10.1109/MS.2013.94
URL http://research.microsoft.com/en-us/groups/sa/ieeesoft13-softanalytics.pdf

In this short talk, I’ll introduce our definition of software analytics, and explain the definition
from five perspectives – research topics, target audience, input/output, technology pillars,
and connection to practice. In particular, I’ll discuss the importance of connection to practice,
because (1) the data under study comes from real practice; (2) there are real problems to be
answered using the data; (3) one of the success metrics of software analytics research is its
influence and impact on the development practice.

6 Breakout Groups

We will now briefly describe six breakout sessions that were held. The materials produced by
the groups are archived at http://www.dagstuhl.de/mat/index.en.phtml?14261.

Sharing data, methods, and models. The breakout did a SWOT (Strength, Opportunity,
Weakness and Threats) analysis of data, method and model sharing. In general, all
sharing was deemed beneficial for sharing the workload, generalizability, validation, and
collaboration. However, putting the shared artifacts in context was a threat in all cases.
Industry collaboration. The breakout focused on issues related to this important col-
laboration. It was recognized that each of industry and research have different needs
but working together is essential and beneficial. For example, research desires statistical
significance while this is not a concern to industry. Trust must be established between
both parties. Potential legal issues to enable the collaboration and data sharing may
arise.
Development of a software analytics development community. The breakout group
formed a GitHub organization to maintain lists of Software Development Analytics
Community blogs and other resources.
Tools and techniques. Tools for quantitative and qualitative methods were discussed. It
was suggested to create a wiki for the classification of methods, questions asked, good
examples of case studies, pitfalls.
Analytics Framework. The group discussed a spreadsheet to identify dimensions of
analytics, to identify questions asked for each cell in the n-dimensional framework and to
link papers that address those questions
Manifesto. Significant time was spent to develop a data analytics manifesto, as will be
discussed in the next section.

Another outcome of a breakout session were “Good Practices for Software Analytics Papers”,
which can be found at this URL: http://www.cs.mcgill.ca/~martin/blog/2014-06-26.html
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