
Report from Dagstuhl Seminar 14281

Feature Interactions: The Next Generation
Edited by
Sven Apel1, Joanne M. Atlee2, Luciano Baresi3, and Pamela Zave4

1 University of Passau, DE, apel@uni-passau.de
2 University of Waterloo, CA, jmatlee@uwaterloo.ca
3 Politecnico di Milano, IT, luciano.baresi@polimi.it
4 AT&T Labs Research, US, pamela@research.att.com

Abstract
The feature-interaction problem is a major threat to modularity and impairs compositional devel-
opment and reasoning. A feature interaction occurs when the behavior of one feature is affected
by the presence of another feature; often it cannot be deduced easily from the behaviors of the
individual features involved. The feature-interaction problem became a crisis in the telecom-
munications industry in the late 1980s, and researchers responded with formalisms that enable
automatic detection of feature interactions, architectures that avoid classes of interactions, and
techniques for resolving interactions at run-time. While this pioneering work was foundational
and very successful, it is limited in the sense that it is based on assumptions that hold only
for telecommunication systems. In the meantime, different notions of feature interactions have
emerged in different communities, including Internet applications, service systems, adaptive sys-
tems, automotive systems, software product lines, requirements engineering, and computational
biology. So, feature interactions are a much more general concept than investigated in the past in
the context of telecommunication systems, but a classification, comparison, and generalization of
the multitude of different views is missing. The feature-interaction problem is still of pivotal im-
portance in various industrial applications, and the Dagstuhl seminar “Feature Interactions: The
Next Generation” gathered researchers and practitioners from different areas of computer science
and other disciplines with the goal to compare, discuss, and consolidate their views, experience,
and domain-specific solutions to the feature-interaction problem.

Seminar July 6–11, 2014 – http://www.dagstuhl.de/14281
1998 ACM Subject Classification D.2.1 Requirements/Specifications, D.2.4 Software/Program

Verification, D.2.10 Design, D.2.11 Software Architectures, D.2.13 Reusable Software
Keywords and phrases Feature interactions, feature-interaction problem, feature orientation,

product lines, modularity, composition
Digital Object Identifier 10.4230/DagRep.4.7.1
Edited in cooperation with Sergiy Kolesnikov

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Feature Interactions: The Next Generation, Dagstuhl Reports, Vol. 4, Issue 7, pp. 1–24
Editors: Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14281/
http://dx.doi.org/10.4230/DagRep.4.7.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 14281 – Feature Interactions: The Next Generation

1 Executive Summary

Sven Apel
Joanne M. Atlee
Luciano Baresi
Pamela Zave

License Creative Commons BY 3.0 Unported license
© Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave

Overview and Motivation
A major goal of software and systems engineering is to construct systems from reusable
parts, which we call features (end-user–visible units of behavior or increments in system
functionality). Such a compositional approach can decrease time to market, improve product
quality, and diversify the product portfolio. However, the success of a compositional approach
depends on the modularity of the reusable parts. The quest for modularity has a long
tradition in software and systems engineering, programming languages research, and even in
newer fields such as synthetic biology.

In the early days of software and systems engineering, the feature-interaction problem
was identified (and coined) as a major threat to modularity [8, 31, 25]. A feature interaction
occurs when the behavior of one feature is affected by the presence of another feature. Often
the interaction cannot be deduced easily from the intended behaviors of the individual features
involved. A canonical example is the inadvertent interaction between the call-forwarding
and call-waiting features of a telephony system [8]: If both features are active, the system
can reach an undefined possibly unsafe state when it receives a call on a busy line, because it
is not specified whether the call should be suspended or forwarded. Alternatively, a feature
interaction can be planned: for example, advanced cruise-control features are designed to
interact with and extend basic cruise control.

To be safe, software developers must analyze the consequences of all possible feature
interactions, in order to find and fix the undesired interactions. The feature-interaction
problem is that the number of potential interactions to consider is exponential in the number
of features. As a result, software developers find that their work in developing new features
is dominated by the tasks to detect, analyze, and verify interactions.

The feature-interaction problem is deeply rooted in the fact that the world is often not
compositional [25, 20]. That is, a feature is not an island. It communicates and cooperates
with other features and the environment, so it cannot be completely isolated. Insights
from complex-systems research suggest that feature interactions are a form of emergent
behavior that is inherent to any system that consists of many, mutually interacting parts.
So, emergent system behavior – which is not deducible from the individual parts of a system
– can be observed in many situations including in quantum systems (e. g., superconductivity),
biological systems (e. g., swarm intelligence), and economical systems (e. g., trading market
crashes). The challenge is to foster and manage desired interactions and to detect, resolve,
and even avoid undesired feature interactions – in a scalable manner.

The feature-interaction problem became a crisis in the telecommunications industry in
the late 1980s [5]. To handle complexity, there was the strong desire to compose systems
from independently developed features, but there was no means to detect, express, and
reason about feature interactions. Researchers responded with formalisms that enable
automatic detection of feature interactions [4, 7, 15, 14, 21, 26], architectures that avoid
classes of interactions [17, 29, 18, 28, 31], and techniques for resolving interactions at run-

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 3

time [16, 27]. Architectural solutions have been the most successful because they impose
general coordination strategies (i. e., serial execution) that apply to all features that are
‘plugged’ into the architecture, thereby, addressing the scalability issue at the heart of
the feature-interaction problem. In coordination-based approaches, such as BIP [2, 3] or
Composition Patterns [10], the interactions among a set of features are specified explicitly
and can be specialized for subsets of features.

While the pioneering work on the feature-interaction problem in telecommunication
systems was foundational and very successful [8], it is limited in the sense that it is based on
assumptions that hold for telecommunication systems, but that do not hold in other domains.
For example, architecture-based approaches take advantage of the fact that communication
takes place over a mostly serial connection between communicating parties – which is not the
case in systems made up of parallel components (e. g., service systems, automotive software)
or software product lines (e. g., features implemented via conditional compilation such as the
Linux kernel). Specifying interactions explicitly is not a general solution either. When facing
systems composed of thousands of features, attempting to identify and model a possibly
exponential number of feature interactions is elusive. Furthermore, the highly dynamic
nature of feature (or service) composition in self-adaptive systems, dynamic product lines,
cloud computing, and systems of systems imposes a new class of challenges to solving the
feature-interaction problem [24, 9, 1].

So, it is not surprising that different notions of feature interactions have emerged in
different communities [6]. Instances of the feature-interaction problem have been observed
and addressed in Internet applications [11], service systems [30], automotive systems [12],
software product lines [19], requirements engineering [23], computational biology [13], and in
many other fields outside of computer science. While all instances of the problem are rooted in
the nature of modularity and compositionality [25, 20], the individual views, interpretations,
and possible solutions differ considerably. For example, the view on feature interactions
taken in program synthesis [22] differs significantly from the view in automotive systems
engineering [12]: there are structural vs. behaviour views, static vs. dynamic views, sequential
vs. parallel views, functional vs. non-functional, coordinated vs. emergent-behaviour views,
and so on. It turns out that feature interactions are a much more general concept than
investigated in the past in the context of telecommunication systems, but a classification,
comparison, and generalization of the multitude of different views is missing.

The feature-interaction problem is still of pivotal importance in various industrial applic-
ations, but, despite significant efforts, it is far from being solved. The underlying hypothesis
of organizing a Dagstuhl seminar on this topic was that the time is ripe to gather researchers
and practitioners from different areas of computer science and other disciplines to compare,
discuss, and consolidate their views, experience, and domain-specific solutions to the feature-
interaction problem. To make progress, scientific discourse on the feature-interaction problem
must be based on a broader foundation to be able to join forces of different communities.
Can other domains learn from the success of domain-specific solutions for telecommunication
systems? Are there key principles, patterns, and strategies to represent, identify, manage,
and resolve feature interactions that are domain-independent, that are valid and useful across
domains? Or, should we strive for domain-specific solutions that are only loosely related
to solutions from other domains? Can we develop a unified terminological and conceptual
framework for feature-interaction research? Is that even possible or meaningful, given that
interactions in telecommunication systems and emergent behavior and phase transitions in
swarm systems are, although related, quite different views?

14281

4 14281 – Feature Interactions: The Next Generation

Goals of the Seminar and Further Activities
It is our goal and firm belief that the feature-interaction problem needs to be viewed from
a broader perspective. While feature interactions are still a major challenge in software
and systems engineering, both in academia and industry, research on the feature-interaction
problem has diversified and diverged in the last decade. Researchers working on similar
problems, but in different contexts, are largely disconnected and unaware of related work. A
major goal of the seminar was to (re)launch a sustained research community that embraces
researchers and practitioners from different fields within and outside computer science. We
firmly believe that we reached this goal with our seminar. In particular, a subset of the
participants is going to organize a follow-up seminar that directly builds on this seminar’s
results. The next major milestone will be – now as we gained a better understanding of the
similarities and differences between the different notions of feature interactions – to establish
a catalog on feature-interaction patterns and solutions thereof. The idea for this pattern
catalog arose from the final panel session of the seminar. It is inspired by work on patterns
in architecture (of buildings). Such a catalog will be the necessary basis for further research
on leveraging patterns for detecting, managing, and resolving feature interactions in different
kinds of systems.

References
1 L. Baresi, S. Guinea, and L. Pasquale. Service-oriented dynamic software product lines.

IEEE Computer, 45(10):42–48, 2012.
2 A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP.

In Proc. of the Int’l Conf. on Software Engineering and Formal Methods (SEFM), pages
3–12. IEEE, 2006.

3 S. Bliudze and J. Sifakis. The algebra of connectors – Structuring interaction in BIP. IEEE
Transactions on Computers, 57(10):1315–1330, 2008.

4 J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular specification of
telephone services. In Feature Interactions in Telecommunications Systems, pages 197–216.
IOS Press, 1994.

5 T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin. The feature
interaction problem in telecommunications systems. In Proc. of the Int’l Conf. on Software
Engineering for Telecommunication Switching Systems (SETSS), pages 59–62. IEEE, 1989.

6 G. Bruns. Foundations for features. In Feature Interactions in Telecommunications and
Software Systems VIII, pages 3–11. IOS Press, 2005.

7 G. Bruns, P. Mataga, and I. Sutherland. Features as service transformers. In Feature
Interactions in Telecommunications Systems V, pages 85–97. IOS Press, 1998.

8 M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. Computer Networks, 41(1):115–141, 2003.

9 B. Cheng, R de Lemos, H. Giese, P. Inverardi, J. Magee, et al. Software engineering for self-
adaptive systems: A research roadmap. In Software Engineering for Self-Adaptive Systems,
LNCS 5525, pages 1–26. Springer, 2009.

10 S. Clarke and R. Walker. Composition patterns: An approach to designing reusable aspects.
In Proc. of the Int’l Conf. on Software Engineering (ICSE), pages 5–14. IEEE, 2001.

11 R. Crespo, M. Carvalho, and L. Logrippo. Distributed resolution of feature interactions for
Internet applications. Computer Networks, 51(2):382–397, 2007.

12 A. Dominguez. Detection of Feature Interactions in Automotive Active Safety Features.
PhD thesis, School of Computer Science, University of Waterloo, 2012.

13 R. Donaldson and M. Calder. Modular modelling of signalling pathways and their cross-talk.
Theoretical Computer Science, 456(0):30–50, 2012.

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 5

14 A. Felty and K. Namjoshi. Feature specification and automated conflict detection. ACM
Transactions on Software Engineering and Methodology, 12(1):3–27, 2003.

15 M. Frappier, A. Mili, and J. Desharnais. Defining and detecting feature interactions. In
Proc. of the IFIP TC 2 WG 2.1 Int’l Workshop on Algorithmic Languages and Calculi,
pages 212–239. Chapman & Hall, Ltd., 1997.

16 N. Griffeth and H. Velthuijsen. The negotiating agents approach to runtime feature inter-
action resolution. In Feature Interactions in Telecommunications Systems, pages 217–235.
IOS Press, 1994.

17 J. Hay and J. Atlee. Composing features and resolving interactions. In Proc. of the ACM
SIGSOFT Symp. on Foundations of Software Engineering (FSE), pages 110–119. ACM,
2000.

18 M. Jackson and P. Zave. Distributed feature composition: A virtual architecture for tele-
communications services. IEEE Transactions on Software Engineering (TSE), 24(10):831–
847, 1998.

19 P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa. Model composition in product
lines and feature interaction detection using critical pair analysis. In Proc. of the Int’l Conf.
on Model Driven Engineering Languages and Systems (MoDELS), LNCS 4735, pages 151–
165. Springer, 2007.

20 C. Kästner, S. Apel, and K. Ostermann. The road to feature modularity? In Proc. of the
Int’l Workshop on Feature-Oriented Software Development (FOSD), pages 5:1–5:8. ACM,
2011.

21 F. Lin and Y.-J. Lin. A building block approach to detecting and resolving feature inter-
actions. In Feature Interactions in Telecommunications Systems, pages 86–119. IOS Press,
1994.

22 J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of legacy applications. In
Proc. of the Int’l Conf. on Software Engineering, pages 112–121. ACM, 2006.

23 A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature interaction: The security threat from
within software systems. Progress in Informatics, (5):75–89, 2008.

24 L. Northrop, P. Feiler, R. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R. Kazman,
M. Klein, D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-large-scale systems – The
software challenge of the future. Technical report, Software Engineering Institute, Carnegie
Mellon University, 2006.

25 K. Ostermann, P. Giarrusso, C. Kästner, and T. Rendel. Revisiting information hiding:
Reflections on classical and nonclassical modularity. In Proc. of the Europ. Conf. on Object-
Oriented Programming (ECOOP), LNCS 6813, pages 155–178, 2011.

26 K. Pomakis and J. Atlee. Reachability analysis of feature interactions: A progress report.
In Proc. of the Int’l Symp. on Software Testing and Analysis (ISSTA), pages 216–223. ACM,
1996.

27 S. Tsang and E. Magill. Learning to detect and avoid run-time feature interactions in
intelligent networks. IEEE Transactions on Software Engineering (TSE), 24(10):818–830,
1998.

28 G. Utas. A pattern language of feature interaction. In Feature Interactions in Telecommu-
nications Systems V, pages 98–114. IOS Press, 1998.

29 R. van der Linden. Using an architecture to help beat feature interaction. In Feature
Interactions in Telecommunications Systems, pages 24–35. IOS Press, 1994.

30 M. Weiss, B. Esfandiari, and Y. Luo. Towards a classification of web service feature inter-
actions. Computer Networks, 51(2):359–381, 2007.

31 Pamela Zave. Modularity in Distributed Feature Composition. In Software Requirements
and Design: The Work of Michael Jackson, pages 267–290. Good Friends Publishing, 2010.

14281

6 14281 – Feature Interactions: The Next Generation

2 Table of Contents

Executive Summary
Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 2

Perspective Talks
Toward User-Centric Feature Composition for the Internet of Things
Pamela Zave . 8

The Feature Interaction Problem in a Federated Communications-Enabled Collab-
oration Platform
Mario Kolberg . 8

Feature Interactions in Software Systems: An Implementation Perspective
Christian Kästner, Sven Apel . 9

Feature Interactions in Smartphones
Christian Prehofer . 10

Behaviours and Feature Interactions
Michael Jackson . 11

Lightning Talks
Extracting Feature Model Changes from the Linux Kernel using FMDiff
Nicolas Dintzner . 12

Feature Interactions Taxonomy and Case Studies
Sergiy Kolesnikov . 12

(Structural) Feature Interactions for Variability-Intensive Systems Testing
Gilles Perrouin . 13

Performance Prediction in the Presence of Feature Interactions
Norbert Siegmund . 13

Feature Interaction in the Browser and the Software-Defined Network
Shriram Krishnamurthi . 15

Feature Interaction and Emergent Properties
Gerhard Chroust . 15

Extending Ruby into a DSL Good and Bad Feature Interactions
Thomas Gschwind . 16

Probabilistic Model Checking of DTMC Models of User Activity Patterns
Oana M. Andrei . 17

Presence-Condition Simplification
Alexander von Rhein . 17

On the Relation between Feature Dependencies and Change Propagation
Bruno Cafeo . 18

Breakout Groups: Domain-independence of Feature Interactions
Summary of Group 1
Krzysztof Czarnecki . 18

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 7

Summary of Group 2
Sandro Schulze, Sebastian Erdweg . 19

Summary of Group 3
Oscar M. Nierstrasz . 20

Breakout Groups: Framework for Modeling Feature Interactions
Summary of Group 1
Michael Jackson . 21

Summary of Group 2
Kathi Fisler . 22

Panel Discussions
Reflections and Perspectives
Sven Apel . 22

Participants . 24

14281

8 14281 – Feature Interactions: The Next Generation

3 Perspective Talks

3.1 Toward User-Centric Feature Composition for the Internet of
Things

Pamela Zave (AT&T Labs Research, US)

License Creative Commons BY 3.0 Unported license
© Pamela Zave

Main reference P. Zave, E. Cheung, S. Yarosh, “Toward User-Centric Feature Composition for the Internet of
Things,” unpublished manuscript.

URL http://www2.research.att.com/~pamela/userFtrComp.pdf

Many user studies of home automation, as the most familiar representative of the Internet of
Things, have shown the difficulty of developing technology that users understand and like.
It helps to state requirements as largely-independent features, but features are not truly
independent, so this incurs the cost of managing and explaining feature interactions. We
propose to compose features at runtime, resolving their interactions by means of priority.
Although the basic idea is simple, its details must be designed to make users comfortable
by balancing manual and automatic control. On the technical side, its details must be
designed to allow meaningful separation of features and maximum generality. As evidence
that our composition mechanism achieves its goals, we present three substantive examples of
home automation, and the results of a user study to investigate comprehension of feature
interactions. A survey of related work shows that this proposal occupies a sensible place in a
design space whose dimensions include actuator type, detection versus resolution strategies,
and modularity.

3.2 The Feature Interaction Problem in a Federated
Communications-Enabled Collaboration Platform

Mario Kolberg (University of Stirling, Stirling, Scotland, GB)

License Creative Commons BY 3.0 Unported license
© Mario Kolberg

Joint work of Kolberg, M.; Buford, J. F.; Dhara, K.; Wu, X.; Krishnaswamy, V.
Main reference M. Kolberg, J. F. Buford, K. Dhara, X. Wu, V. Krishnaswamy, “Feature Interaction in a Federated

Communications-Enabled Collaboration Platform,” Computer Networks Journal, 57(12):2410–2428,
2013.

URL http://dx.doi.org/10.1016/j.comnet.2013.02.023

For enterprise use there is a need to integrate various collaboration tools such as email,
instant messages, wikis, blogs, web conferences, and shared documents, as well as link with
existing intelligent communication systems to support long-term collaborations in a variety
of ways. By the very nature of such systems they include a large number of independently
developed features and services and thus provide a strong potential for feature interactions.
This paper presents novel work on feature interaction analysis in collaboration environments
and presents new types of interactions found in this space.

In this talk ConnectedSpaces is used as a basis to carry out a detailed analysis of feature
interaction problems in collaboration environments. ConnectedSpaces is a new model for
federated collaboration environments. Like a number of existing systems, ConnectedSpaces
uses a collaboration space as the basic construct. ConnectedSpaces enables the user to work
directly in the client application of their choice, including MS Outlook, Internet Explorer
and Skype.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www2.research.att.com/~pamela/userFtrComp.pdf
http://www2.research.att.com/~pamela/userFtrComp.pdf
http://www2.research.att.com/~pamela/userFtrComp.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.comnet.2013.02.023
http://dx.doi.org/10.1016/j.comnet.2013.02.023
http://dx.doi.org/10.1016/j.comnet.2013.02.023
http://dx.doi.org/10.1016/j.comnet.2013.02.023

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 9

This talk presents distinctive characteristics of ConnectedSpaces, including views, spaces
as communication endpoints, space persistence and structuring, and embedded objects. Using
these features, new types of feature interactions for collaboration platforms are categorized
and analyzed. This work is novel as it is the first investigation into feature interactions
with collaboration platforms. The talk will also outline potential approaches to handle such
interactions. We advocate a runtime feature interaction technique which can cope with
features being provided by different organizations.

3.3 Feature Interactions in Software Systems: An Implementation
Perspective

Christian Kästner (Carnegie Mellon University, US), Sven Apel (University of Passau, DE)

License Creative Commons BY 3.0 Unported license
© Christian Kästner, Sven Apel

Joint work of Apel, Sven; Kästner, Christian; Nguyen, Hung Viet; Nguyen, Tien N.; Kolesnikov, Sergiy;
Siegmund, Norbert

Main reference S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, B. Garvin, “Exploring Feature Interactions in the
Wild: The New Feature-Interaction Challenge,” in Proc. of the 5th Int’l Workshop on
Feature-Oriented Software Development (FOSD’13), pp. 1–8, ACM, 2013.

URL http://dx.doi.org/10.1145/2528265.2528267

In this talk, we have discussed feature interactions in software systems from an implementation
perspective. Feature interactions are a common problem in configurable systems, among
implementations of configuration options. Key differences to classic research on feature
interactions [3] are: We operate under a closed-world assumption where the implementation
of all features are known; we typically focus on a single, non-distributed process; variability
is induced by configuration options with non- trivial dependencies, implemented through
various implementation mechanisms, from modules to conditional compilation. Feature
interactions manifest in different forms, four of which we discussed.

First, interaction bugs occur when a system exhibits a bug if and only if multiple options
are selected in specific combinations [5]. Typically options work well in isolation, but expose
a bug if combined. The community has developed close-world, whole-product-line techniques,
which we call variability-aware or family-based analyses [1, 7], that can identify certain
classes of bugs. Compared to standard analysis techniques, variability-aware analyses cover
the whole configuration space and allow statements about the configurable system in its
entirety (and not only about individual configurations). This way, several bugs have been
found that are only triggered by specific configurations settings. Empirical studies on the
reported bugs have revealed common interaction patterns.

Second, performance interactions have been defined as unexpected performance behaviors
when combining multiple configuration options [6]. Assuming that the influence of each
option on the system’s performance (for a given benchmark) can be isolated, a performance
interaction occurs (according to our definition) when the performance of multiple options
cannot be explained by their individual performances. Automated interaction detection
based on sampling techniques has been successful in improving performance prediction in
configurable systems; it has found that performance interactions occur mostly among pairs
of options, but also beyond.

Third, at the level of source code, interactions are manifested as glue code that combines
or coordinates the implementation of multiple options; the additional code is only included
in the program if all options are selected. This pattern is common in component connectors,

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2528265.2528267
http://dx.doi.org/10.1145/2528265.2528267
http://dx.doi.org/10.1145/2528265.2528267
http://dx.doi.org/10.1145/2528265.2528267

10 14281 – Feature Interactions: The Next Generation

lifters, derivatives, connector plugins, as well as code in nested ifdef directives and if
statements. Code-level interactions are relatively easy to identify (especially, for compile-time
configuration mechanisms), but they are not necessarily useful predictors of other kinds of
interactions.

Finally, in a running system, we consider it as an interaction when the value of a program
variable depends on multiple configuration options [4]. For example, when executing a test
case in a configurable system, we expect most variables to have the same value in all executed
configurations, and a few variables to have two (or more) alternative values depending on a
single option. However, variables can potentially depend on many options. In a study of
Wordpress, we found dependencies among up to 16 of 50 optional plugins.

Overall, the picture of feature interactions in configurable systems is diverse, and there is
no single, feasible classification or terminology. Working with real systems provides lots of
data and much opportunity for studying interactions. While some of these interactions are
easy and reliable to detect, others require intensive testing and sophisticated sampling. We
hope that, in the long run, we are able to identify correlations between different kinds of
interactions, found with different techniques, and to combine them effectively [2].

References
1 S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product Lines:

Concepts and Implementation. Springer, October 2013.
2 S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin. Exploring Feature Inter-

actions in the Wild: The New Feature-Interaction Challenge. In Proc. of the Int’l Workshop
on Feature-Oriented Software Development (FOSD), pages 1–8. ACM, 2013.

3 M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature Interaction: A Critical
Review and Considered Forecast. Computer Networks, 41(1):115–141, 2003.

4 H. Nguyen, C. Kästner, and T. Nguyen. Exploring Variability-Aware Execution for Testing
Plugin-Based Web Applications. In Proc. of the Int’l Conf. on Software Engineering (ICSE),
pages 907–918. ACM, 2014.

5 C. Nie and H. Leung. A Survey of Combinatorial Testing. ACM Computing Surveys,
43(2):1–29, 2011.

6 N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and G. Saake.
Predicting Performance via Automated Feature-Interaction Detection. In Proc. of the Int’l
Conf. on Software Engineering (ICSE), pages 167–177. IEEE, 2012.

7 T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A Classification and Survey of
Analysis Strategies for Software Product Lines. ACM Computing Surveys, 47(1):6:1–6:45,
2014.

3.4 Feature Interactions in Smartphones
Christian Prehofer (fortiss GmbH – München, DE)

License Creative Commons BY 3.0 Unported license
© Christian Prehofer

This talk reviews feature interactions in telecom, mobile phones and smartphones. We first
discuss the history of feature interactions in telecommunications and focus on typical reasons
for feature interactions. In particular, Software and standards evolution over long period of
time as well as legacy devices are a frequent reason behind feature interactions. Then, we
discuss technology developments in telephony systems, standards as well as system platforms
which relate to these causes of feature interactions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 11

3.5 Behaviours and Feature Interactions
Michael Jackson (The Open University – Milton Keynes, GB)

License Creative Commons BY 3.0 Unported license
© Michael Jackson

The feature interaction problem arises in the physical problem world of computer-based
systems rather than in the machine – the software – per se. The difficulty, in essence,
is that each feature places its own demands on the physical behaviour of the problem
world, and that the demands of different features may be in some way incompatible. In
automotive software, the speed limiting and cruise control features may conflict: the car
can have only one speed at any one time. In controlling an elevator, normal use conflicts
with use by firefighters: when the lift stops at a floor, normal use demands that the doors
close automatically after a specified delay, but firefighter use demands that they close
only in response to the Door_Close button in the lift car.
Direct conflict is far from the only type of feature interaction. Additional interaction
types include: mutual exclusion, interference, resource sharing, and – very commonly –
switching, in which control of some part of the problem world is passed from one regime
that has terminated to another that has been newly activated. Further, the physical
nature of the problem world can vitiate apparently sound reasoning: the fact that each
of two physical demands can be satisfied in isolation gives no guarantee that they can
be satisfied in combination. Even when the alphabets of the two demands appear to
be disjoint they may interact through the medium of other phenomena that have been
neglected in the analysis.
In computer-based systems, which interact with and control the physical world, our
primary concerns are with system dynamics. The behaviour of the system – of the
interacting computing machine and problem world – is the essential product of software
development, and the salient aspect of this behaviour is in the problem world, not in
the software. In developing the software we are developing this behaviour, and we may
usefully regard feature interaction as the interaction among the constituent behaviours
that together make up the whole behaviour of the system. Because the behaviour of a
realistic – and especially a critical – system is very complex, it is necessary to adopt a
disciplined approach to its design.
The design approach suggested here structures the system behaviour into its constituent
behaviours by a combination of top-down and bottom-up decomposition. Each constituent
behaviour is considered in its totality: that is, the desired problem world behaviour is
considered together with the software behaviour that will evoke it and also the behaviours
of all parts of the problem world that lie implicitly on a causal path between the machine
and the problem world behaviour explicitly desired.
Further elements of the suggested approach are important. First, each proposed constitu-
ent behaviour is initially considered in a loose decomposition: it is considered in isolation,
as if it were a complete stand-alone system in itself, ignoring its eventual interactions with
other constituent behaviours. Second, the complexity of each constituent behaviour is
developed in stages: the main-line isolated behaviour; the main-line behaviour elaborated
as necessary to handle exceptional conditions; and the elaborated behaviour further
complicated by its interactions with other constituent behaviours. Third, the control of
behaviour is rigorously separated from behaviour content.
This approach offers advantages in the identification and treatment of feature interactions.
Considering each behaviour in its totality maintains an awareness of the physical implica-

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 14281 – Feature Interactions: The Next Generation

tions of the design both of the desired behaviour and of the software behaviour that will
evoke it. This awareness is strengthened by the emphasis on simplicity, separating out
the sources of behavioural complexity. The insistence on loose decomposition ensures
that combination of the constituent behaviours to give the complete system behaviour is
a distinct and explicitly recognised design task in which the constituents to be combined
are already well understood. In this combination task, feature interactions are the heart
of the design problem to be addressed, and much – perhaps, everything possible – has
been done to make the task and its design problem as perspicuous as it can be.

4 Lightning Talks

4.1 Extracting Feature Model Changes from the Linux Kernel using
FMDiff

Nicolas Dintzner (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Nicolas Dintzner

Joint work of Dintzner, Nicolas; Van Deursen, Arie; Pinzger, Martin
Main reference N. Dintzner, A. Van Deursen, M. Pinzger, “Extracting feature model changes from the Linux

kernel using FMDiff,” in Proc. of the 8th Int’l Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS’14), Article No. 22, ACM, 2014.

URL http://dx.doi.org/10.1145/2556624.2556631

The Linux kernel feature model has been studied as an example of large scale evolving
feature model and yet details of its evolution are not known. We present here a classification
of feature changes occurring on the Linux kernel feature model, as well as a tool, FMDiff,
designed to automatically extract those changes. With this tool, we obtained the history
of more than twenty architecture specific feature models, over ten releases and compared
the recovered information with Kconfig file changes. We establish that FMDiff provides a
comprehensive view of feature changes and show that the collected data contains promising
information regarding the Linux feature model evolution.

4.2 Feature Interactions Taxonomy and Case Studies
Sergiy Kolesnikov (University of Passau, DE)

License Creative Commons BY 3.0 Unported license
© Sergiy Kolesnikov

Joint work of Apel, Sven; Kolesnikov, Sergiy; Siegmund, Norbert; Kästner, Christian; Garvin, Brady
Main reference S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, B. Garvin, “Exploring Feature Interactions in the

Wild: The New Feature-Interaction Challenge,” in Proc. of the 5th Int’l Workshop on
Feature-Oriented Software Development (FOSD’13), pp. 1–8, ACM, 2013.

URL http://dx.doi.org/10.1145/2528265.2528267

The feature-interaction problem has been keeping researchers and practitioners in suspense for
years. Although there has been substantial progress in developing approaches for modeling,
detecting, managing, and resolving feature interactions, we lack sufficient knowledge on
the kind of feature interactions that occur in real-world systems. In this talk, we set out
the goal to explore the nature of feature interactions systematically and comprehensively,
classified in terms of order and visibility. Understanding this nature will have significant
implications on research in this area, for example, on the efficiency of interaction-detection

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2556624.2556631
http://dx.doi.org/10.1145/2556624.2556631
http://dx.doi.org/10.1145/2556624.2556631
http://dx.doi.org/10.1145/2556624.2556631
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2528265.2528267
http://dx.doi.org/10.1145/2528265.2528267
http://dx.doi.org/10.1145/2528265.2528267
http://dx.doi.org/10.1145/2528265.2528267

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 13

or performance-prediction techniques. A set of preliminary results as well as a discussion
of possible experimental setups and corresponding challenges give us confidence that this
endeavor is within reach but requires a collaborative effort of the community.

4.3 (Structural) Feature Interactions for Variability-Intensive Systems
Testing

Gilles Perrouin (University of Namur, BE)

License Creative Commons BY 3.0 Unported license
© Gilles Perrouin

Joint work of Perrouin, Gilles; Henard, Christopher; Papadakis, Mike; Klein, Jacques; Heymans, Patrick; Le
Traon, Yves

Main reference C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, Y. L. Traon, “Bypassing the
combinatorial explosion: Using similarity to generate and prioritize t-wise test configurations for
software product lines,” IEEE Transactions on Software Engineering, 40(7):650–670, 2014.

URL http://dx.doi.org/10.1109/TSE.2014.2327020

Adopting a middle-ground view between Michael Jackson’s (“features are behaviours”) and
Christian Kaestner’s (“features are configuration options”) definitions, we consider features as
units of variability specified within a feature model. Feature models can be used to document
valid choices (called configurations) formed by combinations of features. Such configurations
can either relate to desired elevator behaviours interactions (normal use, emergency use,
etc.) or to viable Linux kernels. The number of configurations derivable from a given
feature model grows exponentially with the number of features, making the testing process
inherently difficult. To harness combinatorial explosion of the number of configurations to
be considered, we propose to sample them by computing t-way interactions from the feature
model. We present initial experiments and a search-based approach maximising dissimilarity
between configurations. This approach mimics combinatorial interaction testing techniques
in a flexible and scalable manner.

References
1 Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves

le Traon. Pairwise testing for software product lines: comparison of two approaches. Soft-
ware Quality Journal, 20(3-4):605–643, 2012.

2 Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le Traon.
Pledge: A product line editor and test generation tool. In Proceedings of the 17th In-
ternational Software Product Line Conference Co-located Workshops, SPLC’13 Workshops,
pages 126–129, New York, NY, USA, 2013. ACM.

4.4 Performance Prediction in the Presence of Feature Interactions
Norbert Siegmund (University of Passau, DE)

License Creative Commons BY 3.0 Unported license
© Norbert Siegmund

Joint work of Siegmund, Norbert; Kolesnikov, Sergiy; Christian, Kästner; Apel, Sven; Batory, Don; Rosenmüller,
Marko; Saake, Gunter

Customizable programs and program families provide user-selectable features allowing users
to tailor the programs to the application scenario. Beside functional requirements, users

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/TSE.2014.2327020
http://dx.doi.org/10.1109/TSE.2014.2327020
http://dx.doi.org/10.1109/TSE.2014.2327020
http://dx.doi.org/10.1109/TSE.2014.2327020
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 14281 – Feature Interactions: The Next Generation

are often interested in non-functional requirements, such as a binary-size limit, a minimized
energy consumption, and a maximum response time.

In our work, we aim at predicting a configuration’s non-functional properties for a specific
workload based on the user-selected features [2, 3, 4]. To this end, we quantify the influence
of each selected feature on a non-functional property to compute the properties of a specific
configuration. Here, we concentrate on performance only.

Unfortunately, the accuracy of performance predictions may be low when considering
features only in isolation, because many factors influence performance. Usually, a property
is program-wide: it emerges from the presence and interplay of multiple features. For
example, database performance depends on whether a search index or encryption is used
and how both features interplay. If we knew how the combined presence of two features
influences performance, we could predict a configuration’s performance more accurately. Two
features interact (i. e., cause a performance interaction) if their simultaneous presence in
a configuration leads to an unexpected performance, whereas their individual presences do
not. We improve the accuracy of predictions in two steps: (i) We detect which features
interact and (ii) we measure to what extent they interact. In our approach, we aim at finding
the sweet spot between prediction accuracy, measurement effort, and generality in terms
of being independent of the application domain and the implementation technique. The
distinguishing property of our approach is that we neither require domain knowledge, source
code, nor complex program-analysis methods, and our approach is not limited to special
implementation techniques, programming languages, or domains.

Our key idea to determine which features interact is the following: We measure each
feature twice. In the first run, we try to measure the performance influence of the feature
in isolation by measuring the variant that has the smallest number of additionally selected
features. The second run, aims at maximizing the number of features such that all possible
interactions that may influence on performance materialize in the measurement. If the
influence of the feature in isolation differs with the influence when combined with other
features, we know that this feature interacts. In the second step, we perform several sampling
heuristics, such as pair-wise sampling, to determine the actual combinations of interacting
features that cause interactions.

Our evaluation is based on six real-world case studies from varying domains (e. g.,
databases, encoding libraries, and web servers) using different configuration techniques.
Our experiments show an average prediction accuracy of 95 percent, which is a 15 percent
improvement over an approach that takes no interactions into account [1].

References
1 N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and G. Saake.

Predicting Performance via Automated Feature-Interaction Detection. In Proc. ICSE, pages
167–177. IEEE, 2012.

2 N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and S. Kolesnikov. Scal-
able Prediction of Non-functional Properties in Software Product Lines. In Proc. SPLC,
pages 160–169. IEEE, 2011.

3 N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and S. Kolesnikov. Scal-
able Prediction of Non-functional Properties in Software Product Lines: Footprint and
Memory Consumption. Information and Software Technology, 55(3):491–507, 2013.

4 Norbert Siegmund, Alexander von Rhein, and Sven Apel. Family-Based Performance Meas-
urement. In Proceedings of the International Conference on Generative Programming and
Component Engineering (GPCE), pages 95–104. ACM, 2013.

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 15

4.5 Feature Interaction in the Browser and the Software-Defined
Network

Shriram Krishnamurthi (Brown University, US)

License Creative Commons BY 3.0 Unported license
© Shriram Krishnamurthi

In this presentation, I give a brief overview of feature interaction problems as they occur in
current real-world systems and are likely to occur in future ones. I illustrate the present using
Web browser extensions and the problem of finding violations (especially of security-sensitive
properties such as Private Browsing Mode). For the future, I speculate that software-defined
networking will result in “app stores” of networking behavior, which will inevitably interact
in unsavory ways and will need to be kept distinct.

4.6 Feature Interaction and Emergent Properties
Gerhard Chroust (Johannes Kepler Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Gerhard Chroust

Main reference G. Chroust, “System properties under composition,” in Proc. of the European Meeting on
Cybernetics and Systems Research (EMCSR’02), pp. 203–208, Austrian Society for Cybernetic
Studies, 2002.

The interaction of features is a mixed blessing in engineering. It enables useful functions
e. g. radio reception by utilizing resonance, but it can also have disastrous and destructive
effects like the collapse of a bridge due to undesirable resonance. In systems theory the
so-called emergent properties of systems with individual components show similar effects. In
this paper I explore the similarities between Feature Interaction in Systems Engineering and
Emergent Properties in Systems Theory and show the analogy between these two concepts.

According to my understanding (following K.C. Kang, 1990) “a feature of a . . . product
can be described as a prominent or distinctive user-visible aspect, quality, or characteristic
. . . ”.

When composing a system from interconnected subsystems (components) the properties
of the resulting system (and their predictability!) are one of the key issues of engineering.
Difficulties stem from two observations:

The structure of the system plays a key role.
A composed system often exhibits ’unexpected’ behavior due to the occurrence of so-called
emergent properties.
In general a system’s properties depend on the structure of the system and on all

properties of all components in the system AND are usually different from the properties of
the individual components.

We define an “emergent property of a system is a property which cannot be determined
solely from the properties of the system’s components, but which is additionally determined
by the system’s structure (i. e. by the way the parts are connected to form the system)”.

Emergent properties depend inherently and essentially on the structure of the system i. e.
on the way the system is composed, and change with a change of the structure! It is often
not easy to determine them from the system, they often appear as a surprise (“emergence”!).

It is obvious that emergent properties complicate the prediction of system properties
since their value can only be determined by considering also the system structure. As

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
G. Chroust, ``System properties under composition,'' in Proc. of the European Meeting on Cybernetics and Systems Research (EMCSR'02), pp.~203--208, Austrian Society for Cybernetic Studies, 2002.
G. Chroust, ``System properties under composition,'' in Proc. of the European Meeting on Cybernetics and Systems Research (EMCSR'02), pp.~203--208, Austrian Society for Cybernetic Studies, 2002.
G. Chroust, ``System properties under composition,'' in Proc. of the European Meeting on Cybernetics and Systems Research (EMCSR'02), pp.~203--208, Austrian Society for Cybernetic Studies, 2002.

16 14281 – Feature Interactions: The Next Generation

long as we allow any imaginable structure for a system there is little chance to make
any reasonable statements about the emergent properties. A restricted set of admissible
composition structures allows to make some statements about the behavior of emergent
properties under composition. Software patterns are good candidates for such “admissible
composition patterns.”

All Features are system properties, but not all system properties are to be considered
Features. Feature Interactions can be interpreted as emergent properties since they usually
depend on the (static and/or dynamic) structure of the system.

One of the standard examples in the seminar was an automatic door locking/unlocking
mechanism which was dependent on the time-of-the-day, the setting of several switches with
different purposes and a timeout facility. The resulting feature could be called “safety of the
house” and is a typical “emergent property,” where both the physical structure (whether
some components are arranged in parallel or serial order) and also the chronological order
(in which certain settings are activated) have a decisive influence on the outcome.

My contribution established the strong analogy between Feature Interaction in systems
engineering and the system theoretic concept of emergent properties in multi-component
systems. This analogy can be used to consolidate the terminology and exchange insights
between these two domains. I hope that this will be a source for fruitful discussion and more
clarification in both areas.

4.7 Extending Ruby into a DSL Good and Bad Feature Interactions
Thomas Gschwind (IBM Research GmbH – Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Thomas Gschwind

Joint work of Michael H. Kalantar, James Doran, Tamar Eilam, Michael D. Elder, Fabio Oliveira, Edward C.
Snible, Tova Roth

Main reference M.H. Kalantar, F. Rosenberg, J. Doran, T. Eilam, M.D. Elder, F. Oliveira, E.C. Snible, T. Roth,
“Weaver: Language and runtime for software defined environments,” IBM Journal of Research and
Development, 58(2/3):10:1–10:12, 2014.

URL http://dx.doi.org/10.1147/JRD.2014.2304865

We present our experiences of using Ruby as the basis for Weaver, a Domain Specific
Language (DSL) to describe applications to be deployed and run in a Cloud or Cloud-like
environment. Weaver describes the requirements and constituents of such an application.
Based on this description, Weaver automates the deployment of such applications and
facilitates the cooperation between the development and operations teams.

Weaver is an Internal DSL which means it extends the Ruby language rather than
being implemented as a DSL from scratch. Extending Ruby has several advantages. For
instance, we do not have to implement our own parser and additionally because our language.
Additionally, our DSL shall interoperate with Chef, another Ruby-based DSL. Hence, by
using Ruby, users do not have to learn yet another totally different language.

By extending an existing language we have to deal with features provided by the base
language interferring with features in our DSL. One such problem is error handling, as any
stack traces produced by the Ruby language will intermingle with functions provided by
users as part of the DSL with functions provided by the framework used to implement the
DSL.

Another advantage of Ruby is its ability to sandbox code and override Ruby’s approach for
looking up symbols which allows to intercept access to variables etc. This is typically achieved
with the method_missing method which Ruby typically invokes when a name cannot be

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1147/JRD.2014.2304865
http://dx.doi.org/10.1147/JRD.2014.2304865
http://dx.doi.org/10.1147/JRD.2014.2304865
http://dx.doi.org/10.1147/JRD.2014.2304865

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 17

resolved. However, care has to be taken to distinguish legitimate calls to this method from
those generated by spelling mistakes and again to factor this into errors generated by the
DSL.

4.8 Probabilistic Model Checking of DTMC Models of User Activity
Patterns

Oana M. Andrei (University of Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Oana M. Andrei

Joint work of Andrei, Oana; Calder, Muffy; Higgs, Matthew; Girolami, Mark
Main reference O. Andrei, M. Calder, M. Higgs, M. Girolami, “Probabilistic Model Checking of DTMC Models of

User Activity Patterns,” in Proc. of the 11th Int’l Conf. on Quantitative Evaluation of Systems
(QEST’14), LNCS, Vol. 8657, pp. 138–153, Springer, 2014; pre-print available as arXiv:1403.6678v1
[cs.SE].

URL http://dx.doi.org/10.1007/978-3-319-10696-0_11
URL http://arxiv.org/abs/1403.6678v1

Software developers cannot always anticipate how users will actually use their software as
it may vary from user to user, and even from use to use for an individual user. In order
to address questions raised by system developers and evaluators about software usage, we
define new probabilistic models that characterise user behaviour, based on activity patterns
inferred from actual logged user traces. We encode these new models in a probabilistic
model checker and use probabilistic temporal logics to gain insight into software usage. We
motivate and illustrate our approach by application to the logged user traces of an iOS app.
Next we will consider how to represent the orthogonal concerns of two classes of features –
activity patterns and structural variability (e. g. configurability) of software systems, and
their combined impact on user experience and user engagement.

4.9 Presence-Condition Simplification
Alexander von Rhein (University of Passau, DE)

License Creative Commons BY 3.0 Unported license
© Alexander von Rhein

Joint work of Apel, Sven; Berger, Thorsten; Beyer, Dirk; Grebhahn, Alexander; Siegmund, Norbert

Analysis approaches for configurable systems take system variability explicitly into account.
The notion of presence conditions is central to such approaches. A presence condition specifies
a subset of system configurations in which a certain artifact is present (e. g., the presence of a
certain piece of code) or any other concern of interest that is associated with this subset (e. g.,
the presence of a defect). Our informal goal is to raise awareness of the problem of presence-
condition simplification; we will demonstrate that presence conditions often contain redundant
information, which can be safely removed in the interest of simplicity. As contributions, we
present a formalization of the problem of presence-condition simplification, discuss various
application scenarios, compare different algorithms for solving the problem, and report on an
empirical evaluation comparing the algorithms by means of a set of substantial case studies.

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-10696-0_11
http://dx.doi.org/10.1007/978-3-319-10696-0_11
http://dx.doi.org/10.1007/978-3-319-10696-0_11
http://dx.doi.org/10.1007/978-3-319-10696-0_11
http://dx.doi.org/10.1007/978-3-319-10696-0_11
http://arxiv.org/abs/1403.6678v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 14281 – Feature Interactions: The Next Generation

4.10 On the Relation between Feature Dependencies and Change
Propagation

Bruno Cafeo (PUC – Rio de Janeiro, BR)

License Creative Commons BY 3.0 Unported license
© Bruno Cafeo

As the SPL evolves, dealing with feature dependencies in the source code in a cost- and
effort-effective way is challenging. It is expected that changes affect a minimum of existing
features as possible. However, changes in one feature usually require changes in the code of
other dependent features. In this context, it is important to have an understanding on the
relation between feature dependency and change propagation. To this end, we present an
exploratory study analysing this relation in five evolving SPLs. The results revealed that the
extent of change propagation in SPL features might be higher than it was found in studies of
change propagation in modules of stand-alone programs (i. e., non-SPL). We also found a
high concentration of change propagation in a few feature dependencies. This result shows
that feature dependencies are not alike regarding change propagation.

5 Breakout Groups: Domain-independence of Feature Interactions

5.1 Summary of Group 1
Krzysztof Czarnecki (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Krzysztof Czarnecki

What We’ve Done
Revisited

Each plenary talk
Gerhard’s presentation on systems theory

Analyzed
The notion of feature used
The notion of feature interactions used
The handling of features and feature interactions in the lifecycle

Recorded
Similarities and differences
Questions

Features
Feature notion

Requirement or Behavior decomposition to understand a problem
Implementation unit to achieve reuse

Purpose of features
Incremental development (additive) vs. independent design (“care about interactions
later”)
Single system vs. product line (variability)

Other characteristics
Automatic (prepared) composition vs. manual integration (combination)
Open vs. close: Are features independently developed
Functional vs. non-functional properties

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 19

Feature Interactions
Vaguely: “feature behave differently together than in isolation”

“surprising or unexpected”, different, missing, extra behavior or properties
Coordination code

Manifestation of interactions in the implementation
Potential exponential explosion in configurable systems

Systems theory
Studying composition of components in systems and the resulting properties
Structure-independent properties (like mass) vs. emergent properties (like usability)

Handling Feature Interactions
Upfront composition mechanism (architecture) vs. manual integration (combination)

Isolating features (e. g., Android)
For some properties there is hope of compositionality, for some there isn’t
Partial specifications, feature-based specifications
Address by updates

Discussion
Are there any conceptual problems?
Hierarchy considered important?
Can we learn from systems theory?
Michael: Problem-oriented decomposition vs. component-oriented decomposition?
Definition of feature interaction?

5.2 Summary of Group 2
Sandro Schulze (TU Braunschweig, DE), Sebastian Erdweg (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Sandro Schulze, Sebastian Erdweg

Note: This abstract is the result of a breakout group a the Dagstuhl Seminar 14281 on
Feature Interactions.

When talking about feature interactions (FIs) it becomes clear quickly that, although
people work in related domains, they may have totally different views on feature interactions,
which needs to be taken into account in discussions. Basically, we identified three major
views on feature interactions within our breakout group. First, feature interactions may be
documented in a specification such as through requirements or contracts (for example, the
latter is used for verification). In any case, this provides a rather formal (and sometimes
theoretical) way of defining expected FIs. Second, the source code itself may manifest a
variety of feature interactions such as method calls or method extensions between two or
more features. Finally, we argue that even the user may have expectations about how certain
features interact, even if this expectation is not spelled out explicitly. Just think about
modern cars and their capabilities to support the driver in driving the car. For instance,
having a cruise control and a speed limit assistant, a driver has certain expectation how both
work together, that is, how they interact.

Detecting and validating existing feature interactions is difficult without a specification
that describes the expected behavior. However, during our discussion we came to the
conclusion that the implementation of a feature can induce a specification beyond a formal

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 14281 – Feature Interactions: The Next Generation

system or requirements specification. For instance, the requirement that a certain program
(or product of a product line) does compile can be considered as a (somewhat implicit)
specification. Hence, features that prevent a program from compiling in fact do constitute
unwanted interactions. Other examples for such specifications are generic properties (such
as absence of deadlocks or conflicts), system invariants, a poor user experience (i. e., the
experienced interactions are criticized), or concrete feature specifications such as test cases.
All of these specifications may support developers in detecting and validating wanted and
unwanted feature interactions.

Even when we can detect feature interactions, it is even more challenging to guarantee
a certain behavior of features in concert. We especially identified the fact that many
(eco) systems are open world and require specific platform support for dealing with feature
interactions. For example, one can deal with FIs by coordinating features on the architectural
level. In other eco systems, such as the Android platform, it is common to adhere to certain
conventions and to involve the user in resolving feature interactions. Finally, a practical
solution to deal with feature interactions is to a) provide a default behavior in case of
alternatives and b) to let the user decide which behavior she wants in case of alternatives
(e. g., think of the case of selecting an App for displaying a PDF file). In any case, there is no
silver bullet for how to deal with feature interactions, especially in an open-world scenario,
but it is necessary to choose at least one way to resolve possible conflicts. Sometimes,
this may even be a manual and time-consuming task such as informing developers about
unintended FIs and (optionally) providing a corresponding patch to fix it.

To summarize, we think that feature interactions can not be treated generically, because
different views and other non-functional factors have to be considered. Nevertheless, it is
clear that a) there always has to be some kind of specification and b) at least an idea of how
to deal with interactions when they arise. Of course, it depends on the criticality of such
interactions how and when to resolve them.

5.3 Summary of Group 3
Oscar M. Nierstrasz (Universität Bern, CH)

License Creative Commons BY 3.0 Unported license
© Oscar M. Nierstrasz

This breakout group discussed open issues and challenges for feature interaction.
We identified two essentially different perspectives on feature interaction:

1. Design: Here the focus is on understanding requirements with a view towards building a
system in which features either do not interact, or do so in a positive way.

2. Development: The focus here is on code, with a view towards analysing and understanding
an existing system. Tools are used to detect FI bugs or control quality.

We discussed three questions related to a taxonomy of FI:
What’s a feature? We reviewed the results of the feature interaction survey conducted by

the organizers and concluded that the two perspectives (i. e., Design vs Development) dom-
inated: Features are either considered to be requirements (design) or units of functionality,
behaviour etc. (development).

What’s feature interaction? Generally, FI means that features behave differently in isolation
than in combination. FI can take different forms: (i) features are independent and compose
additively; (ii) features may depend on or require other features; (iii) combinations of

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 21

features may exhibit “emergent behaviour”; (iv) features may conflict, yielding logical
inconsistencies or unacceptable behaviour.

How to deal with FIs? We identified three general approaches. (i) Modeling FI: specify
desired properties (e. g., safety/liveness, non- functional properties etc.). (ii) Detecting
FIs: use approaches like testing, model checking or principle component analysis to expose
unknown FIs. (iii) Resolve FIs: use static or dynamic techniques, such as coordination
patterns with priorities to resolve FIs.

Finally we discussed a number of open challenges and tasks for the FI community.

– Bridging the gap between the Design and Development perspectives of FI.
– Producing a map/taxonomy of FI systems and views.
– Eliciting FI patterns.
– Designing a “feature-aware computational model”, i. e., that expresses when features
interact or interfere

6 Breakout Groups: Framework for Modeling Feature Interactions

6.1 Summary of Group 1
Michael Jackson (The Open University – Milton Keynes, GB)

License Creative Commons BY 3.0 Unported license
© Michael Jackson

In this breakout session we found no reason to disgree specifically with the reference model
proposed by Pamela Zave for discussion and criticism. However, one member of the group
was sceptical about its possible value, on the grounds that wherever there is interaction it
must have some locus: calling that locus a ‘problem domain’ added little or nothing to our
understanding.

We agreed that feature interactions revealed in apparent anomalies of performance were
likely to be located in a problem domain from which the analysis in hand had abstracted. So
for example, the interaction might be due to conflicting demands for positioning the arm of a
disk drive, where the disk drive itself was not explicitly mentioned in the immediate analysis.

It was suggested that the reference model was primarily intended as an aid to development,
structuring the problem world and hence contributing to structuring the problem itself.
Features could in particular cases be regarded as delimited by development or requirement
modularity, or by software modules.

The correspondence between ‘subproblem machines’ and ‘behaviours’ (or perhaps ‘fea-
tures’) could not be expected to carry across into software structure, for which structural
transformation would surely be necessary.

Feature interaction detection by analysis of program texts seemed to some participants no
different from any other formal analysis of program texts; a ‘feature’ construct in programming
languages seemed highly desirable.

14281

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 14281 – Feature Interactions: The Next Generation

6.2 Summary of Group 2
Kathi Fisler (Worcester Polytechnic Institute, US)

License Creative Commons BY 3.0 Unported license
© Kathi Fisler

One of the breakout groups discussed the idea that every feature interaction in every domain
could be described as a conflict within a design domain pertinent to the system. We noted
early that the hypothesis was almost certainly true, but the real question was whether this
approach made practical sense: are there domains or kinds of interactions for which the
design domain that witnesses the interaction is simply too fine-grained to be modeled or
analyzed?

Each person in our breakout group contributed a feature interaction of interest (from a
domain that that participant studies). We then selected two to discuss in more detail.

The contributed interactions included: different markup features in a text editor; syn-
chronization policies that break upon inheritence in OO code; performance anomalies in
course-management software; semantic features of an IDE that must change after the sup-
ported languages change; bugs arising from the introduction of interaction code to mediate
between features; performance impacts when combining compression and encryption; call
forwarding and voicemail; spam picking up email from colleagues in the contact list; and
displaying filtered papers despite conflict-of-interest settings in a conference manager.

We briefly discussed the telephony example, questioning what resource was in question
between call forwarding and voicemail. These simply seemed like different user-level pref-
erences. Later discussion clarified that the single voice channel carrying the data between
these two options constituted the resource in contention.

We spent much of our time debating the "change in IDE" example: we generally converged
on the opinion that this was not really a feature interaction. One participant raised the
idea that something counts as an interaction if some component of the system could be
"blamed" for causing the problem (thus distinguishing cases of misuse from situations where
interactions simply emerge through no error on the part of existing components). The group
disbanded before getting to explore the blame idea in sufficient detail.

7 Panel Discussions

7.1 Reflections and Perspectives
Sven Apel (University of Passau, DE)

License Creative Commons BY 3.0 Unported license
© Sven Apel

The panel discussion on the final day wrapped up the seminar. The format was a concentric-
circles format. In the inner circle, five researchers discussed the results of the seminar, their
insights, and avenues of further research on feature interactions. The panelists were: Marsha
Chechik, Krzysztof Czarnecki, Michael Jackson, Christian Kästner, Pamela Zave. Joanne
Atlee moderated the panel.

The panel session summarized that, during the seminar, we have seen that, in many
different domains, the feature-interaction problem exists: In the telecommunication domain,
the problem of feature interactions has been addressed for years, but now it appears in more

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave 23

and more domains, which is owed to the fact of ever increasing complexity. An important
question is whether research results can be transferred from one domain to another, and
to what extent results can be domain dependent. To answer this question, the panelists
suggested establishing a catalog of exemplary, domain-specific feature interactions. Examples
often need to be specific to a particular domains because the domains and solutions are very
different with respect to abstraction level, methodology, and requirements. The catalog is
supposed to reveal – if possible – more general feature-interaction patterns, arising from
concrete instances. A follow-up seminar or workshop on modeling and feature interactions
shall be established to collect the data for such a catalog.

An important insight mentioned during the panelists’ discussion was that we require
a clearer definition of what a feature is (or should be) and how we handle features at an
architectural level. To achieve better architectures, the community should investigate how to
resolve and combine features independently of the domain. A catalog of feature interactions
that occur in practice would be useful for this investigation.

According to the panelists, the seminar showed that there are many different aspects of
feature interactions, such as the effect (good or bad), the developers’ or designers’ intention
(intended or unintended), and the context of the interaction (design or implementation
level). Several participants noted that this observation broadened their understanding of
the relationship between behaviors of features in the real world and how program features
work. During the discussion, it became clear that feature-oriented systems (1) are often
engineered by people who are not aware of the feature-interaction problem, and (2) that are
used in safety-critical domains. Therefore (intended) feature interactions must be very well
explained, and we should not strive for solutions (for unintended interactions) that work
only half the time. That said, features have the great potential to help people understanding
complex systems in terms of the features, incl. their interactions, they provide.

Finally, the panelists stated that, while several domains experience problems similar to
feature interactions, they do not call them feature interactions. An example are cars where
single features are updated in a garage or even “over the air”, which give rise to feature
interactions. These domains are a rich field for feature-interaction research. How can we put
“the feature-interaction stamp” on them? One participant suggested having a keynote on
feature interactions at a major software-engineering conference.

14281

24 14281 – Feature Interactions: The Next Generation

Participants

Oana M. Andrei
University of Glasgow, GB

Sven Apel
University of Passau, DE

Joanne M. Atlee
University of Waterloo, CA

Luciano Baresi
Politecnico di Milano Univ., IT

Sandy Beidu
University of Waterloo, CA

Bruno Cafeo
PUC – Rio de Janeiro, BR

Marsha Chechik
University of Toronto, CA

Gerhard Chroust
Universität Linz, AT

Krzysztof Czarnecki
University of Waterloo, CA

Nicolas Dintzner
TU Delft, NL

Sebastian Erdweg
TU Darmstadt, DE

Kathi Fisler
Worcester Polytechnic Inst., US

Stefania Gnesi
CNR – Pisa, IT

Thomas Gschwind
IBM Research GmbH –
Zürich, CH

Reiner Hähnle
TU Darmstadt, DE

Michael Jackson
The Open University – Milton
Keynes, GB

Cliff B. Jones
Newcastle University, GB

Christian Kästner
Carnegie Mellon University, US

Mario Kolberg
University of Stirling, GB

Sergiy Kolesnikov
University of Passau, DE

Shriram Krishnamurthi
Brown University, US

Malte Lochau
TU Darmstadt, DE

Oscar M. Nierstrasz
Universität Bern, CH

Gilles Perrouin
University of Namur, BE

Christian Prehofer
fortiss GmbH – München, DE

Gunter Saake
Universität Magdeburg, DE

Sandro Schulze
TU Braunschweig, DE

Norbert Siegmund
University of Passau, DE

Stefan Sobernig
Universität Wien, AT

Mirco Tribastone
University of Southampton, GB

Alexander von Rhein
University of Passau, DE

Andrzej Wasowski
IT Univ. of Copenhagen, DK

Pamela Zave
AT&T Labs Research –
Bedminster, US

	Executive Summary Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave
	Table of Contents
	Perspective Talks
	Toward User-Centric Feature Composition for the Internet of Things Pamela Zave
	The Feature Interaction Problem in a Federated Communications-Enabled Collaboration Platform Mario Kolberg
	Feature Interactions in Software Systems: An Implementation Perspective Christian Kästner, Sven Apel
	Feature Interactions in Smartphones Christian Prehofer
	Behaviours and Feature Interactions Michael Jackson

	Lightning Talks
	Extracting Feature Model Changes from the Linux Kernel using FMDiff Nicolas Dintzner
	Feature Interactions Taxonomy and Case Studies Sergiy Kolesnikov
	(Structural) Feature Interactions for Variability-Intensive Systems Testing Gilles Perrouin
	Performance Prediction in the Presence of Feature Interactions Norbert Siegmund
	Feature Interaction in the Browser and the Software-Defined Network Shriram Krishnamurthi
	Feature Interaction and Emergent Properties Gerhard Chroust
	Extending Ruby into a DSL Good and Bad Feature Interactions Thomas Gschwind
	Probabilistic Model Checking of DTMC Models of User Activity Patterns Oana M. Andrei
	Presence-Condition Simplification Alexander von Rhein
	On the Relation between Feature Dependencies and Change Propagation Bruno Cafeo

	Breakout Groups: Domain-independence of Feature Interactions
	Summary of Group 1 Krzysztof Czarnecki
	Summary of Group 2 Sandro Schulze, Sebastian Erdweg
	Summary of Group 3 Oscar M. Nierstrasz

	Breakout Groups: Framework for Modeling Feature Interactions
	Summary of Group 1 Michael Jackson
	Summary of Group 2 Kathi Fisler

	Panel Discussions
	Reflections and Perspectives Sven Apel

	Participants

