
Report from Dagstuhl Seminar 14352

Next Generation Static Software Analysis Tools
Edited by
Patrick Cousot1, Daniel Kroening2, and Carsten Sinz3

1 ENS – Paris, FR, pcousot@cims.nyu.edu
2 University of Oxford, GB, kroening@cs.ox.ac.uk
3 KIT – Karlsruhe Institute of Technology, DE, carsten.sinz@kit.edu

Abstract
There has been tremendous progress in static software analysis over the last years with, for
example, refined abstract interpretation methods, the advent of fast decision procedures like SAT
and SMT solvers, new approaches like software (bounded) model checking or CEGAR, or new
problem encodings. We are now close to integrating these techniques into every programmer’s
toolbox.

The aim of the seminar was to bring together developers of software analysis tools and
algorithms, including researchers working on the underlying decision procedures (e. g., SMT
solvers), and people who are interested in applying these techniques (e. g. in the automotive or
avionics industry).

The seminar offered the unique chance, by assembling the leading experts in these areas, to
make a big step ahead towards new, more powerful tools for static software analysis.
Current (academic) tools still suffer from some shortcomings:

Tools are not yet robust enough or support only a subset of a programming language’s
features.
Scalability to large software packages is not yet sufficient.
There is a lack of standardized property specification and environment modeling constructs,
which makes exchange of analysis results more complicated than necessary.
Differing interpretations of programming language semantics by different tools lead to limited
trust in analysis results.
Moreover, a comprehensive benchmark collection to compare and evaluate tools is missing.

Besides these application-oriented questions, further, more fundamental questions have also been
topics of the seminar:

What are the right logics for program verification, bug finding and software analysis? How
can we handle universal quantification? And how to model main memory and complex data
structures?
Which decision procedures are most suitable for static software analysis? How can differ-
ent procedures be combined? Which optimizations to general-purpose decision procedures
(SAT/SMT/QBF) are possible in the context of software analysis?

Seminar August 24–29, 2014 – http://www.dagstuhl.de/14352
1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and

Verifying and Reasoning about Programs
Keywords and phrases Software quality, Bug finding, Verification, Decision procedures, SMT/SAT

solvers
Digital Object Identifier 10.4230/DagRep.4.8.107
Edited in cooperation with Christoph Gladisch

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Next Generation Static Software Analysis Tools, Dagstuhl Reports, Vol. 4, Issue 8, pp. 107–125
Editors: Patrick Cousot, Daniel Kroening, and Carsten Sinz

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14352
http://dx.doi.org/10.4230/DagRep.4.8.107
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


108 14352 – Next Generation Static Software Analysis Tools

1 Executive Summary

Patrick Cousot
Klaus Havelund
Daniel Kroening
Carsten Sinz
Christoph Gladisch

License Creative Commons BY 3.0 Unported license
© Patrick Cousot, Klaus Havelund, Daniel Kroening, Carsten Sinz, and Christoph Gladisch

Software errors are still a widespread plague. They manifest themselves, e. g., in program
crashes, malfunction, incorrect behavior, or security vulnerabilities. Even software that has
been in use for decades and has been deployed to millions of users (e. g., the compression
library zlib) still contains flaws that are revealed only now and have to be fixed. Both
in academia and industry considerable effort has been undertaken to develop tools and
methodologies to obtain fault-free software. Nowadays, static analysis tools, which search for
program errors without running the software, have reached a state where they are, in some
industries (e. g., the automotive or avionics industry), already part of the standard software
development and quality assurance process (with tools and companies like, e. g., Polyspace,
Coverity, KlocWork, AbsInt, or Astrée). And although these tools can help finding residual
errors more quickly, they still suffer from some shortcomings:

Lack in precision. For a certain fraction of program locations in the source code it cannot
be decided whether there is an error or not. Such “undecided cases” require (often
time-consuming) manual rework, limiting the value of such tools.
Due to the manual effort required, static software analysis tools have not yet made their
way to mainstream software development (besides industries, where software reliability
is indispensable and considerable amounts of time and money are spent on quality
assurance).

Over the last years, software analysis tools based on abstract interpretation have been
refined and tools based on new core formalisms, such as model checking, have gained traction,
mainly in the form of two key methods: counterexample-guided abstraction refinement
(CEGAR), and bounded model checking (BMC). The success of these new tools was, to a
substantial part, enabled by the enormous progress that was made on the underlying logical
decision procedures (SAT and SMT solvers). New software analysis tools based on these
techniques come with considerably improved precision (less false positives), but they are still
not competitive with tools based on abstract interpretation with respect to scalability. Also,
they are rarely used in industrial software development projects so far.

With this seminar we believe that we were able to stimulate further progress in this field
by intensifying the collaboration between (a) researchers on new static software analysis tools,
(b) scientists working on improved high-performance decision procedures, and (c) practitioners,
who know what is needed in industry and which kind of software analysis tools are accepted
by developers and which are not.

The Dagstuhl Seminar was attended by participants from both industry and academia.
It included presentations on a wide range of topics such as:

Recent trends in static analysis, consisting of new algorithms and implementation tech-
niques.
New decision procedures for software analysis, for example, to analyze programs with
complex data structures.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Patrick Cousot, Daniel Kroening, and Carsten Sinz 109

Industrial case studies: What are the problems industrial users of static analysis tools
are facing?
Experience reports and statements on current challenges.

The first day of the seminar started with an introduction round, in which each participant
shortly presented his research interests. As the seminar was held concurrently with a second,
closely related Dagstuhl Seminar on “Decision Procedures and Abstract Interpretation”
(14351), the introductory session was held jointly by both seminars. Four overview talks were
also organized jointly by both seminars, and were given by Thomas Reps, Patrick Cousot,
Vijay Ganesh, and Francesco Logozzo.

There was also a tool demonstration session on Thursday afternoon, in which seven tools
were presented (15 minutes each).

In further talks of the seminar young as well as senior researchers presented on-going
and completed work. Tool developers and participants from industry reflected on current
challenges in the realm of software analysis.

The seminar was concluded with a panel discussion about the current challenges of static
software analysis for industrial application (see Sec. 5 for an extended exposition of the panel
discussion).

We expect that with this Dagstuhl Seminar we were able to make a step forward towards
bringing static software analysis tools to every programmer’s workbench, and therefore,
ultimately, improve software quality in general.

14352



110 14352 – Next Generation Static Software Analysis Tools

2 Table of Contents

Executive Summary
Patrick Cousot, Klaus Havelund, Daniel Kroening, Carsten Sinz, and Christoph
Gladisch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Overview of Talks
Most Overlooked Static Analysis Pitfalls
Roberto Bagnara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CPAchecker: A Flexible Framework for Software Verification
Dirk Beyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Abstract Interpretation: “Scene-Setting Talk”
Patrick Cousot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Abstracting Induction by Extrapolation and Interpolation
Patrick Cousot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Path-sensitive static analysis using trace hashing
Tomasz Dudziak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

An algebraic approach for inferring and using symmetries in rule-based models
Jerôme Feret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bounded Verification with TACO: Symmetry-breaking + tight field bounds
Marcelo Frias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Impact of Community Structure on SAT Solver Performance
Vijay Ganesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Using a deductive verification environment for verification, bug finding, specification,
and all that
Christoph Gladisch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Static Analysis of Energy Consumption
Manuel Hermenegildo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Insides and Insights of Commercial Program Analysis
Ralf Huuck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Steps towards usable verification
Francesco Logozzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Viper – Verification Infrastructure for Permission-based Reasoning
Peter Mueller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Static Analysis Modulo Theory
Andreas Podelski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Static Analysis Blind Spots in Automotive Systems Development
Hendrik Post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Construction of modular abstract domains for heterogeneous properties
Xavier Rival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Efficiently Intertwining Widening with Narrowing
Helmut Seidl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Patrick Cousot, Daniel Kroening, and Carsten Sinz 111

Automating Software Analysis at Large Scale
Michael Tautschnig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Automatic Inference of Ranking Functions by Abstract Interpretation
Caterina Urban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Byte-Precise Verification of Low-Level List Manipulation
Tomas Vojnar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

System LAV and Automated Evaluation of Students’ Programs
Milena Vujosevic-Janicic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Tool Demonstrations
aiT Worst-Case Execution Time Analysis
Christian Ferdinand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

The Goanna Static Analyzer
Ralf Huuck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Cccheck/Clousot
Francesco Logozzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

LLBMC: The Low-Level Bounded Model Checker
Carsten Sinz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

FuncTion
Caterina Urban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Predator: A Shape Analyzer Based on Symbolic Memory Graphs
Tomas Vojnar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Discussion Session
Discussion on “The current limitations of static analysis tools” . . . . . . . . . . . 124

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

14352



112 14352 – Next Generation Static Software Analysis Tools

3 Overview of Talks

3.1 Most Overlooked Static Analysis Pitfalls
Roberto Bagnara (BUGSENG & University of Parma, IT)

License Creative Commons BY 3.0 Unported license
© Roberto Bagnara

Quality software requires complex verification activities. Such activities cannot be practically
and reliably performed without extensive use of tools. Poor-quality static analysis tools either
result into higher costs of the verification process or fail their goal altogether, delivering a false
sense of security instead of the promised quality for the developed software. There are well-
engineered static analysis tools that are based on obsolete technology, to the point of ignoring
30+ years of research in software verification. There also are theoretically-sophisticated tools
that fall short of their objectives due to poor engineering. In this talk I will illustrate what I
believe are important pitfalls of the design of static analysis tools, drawing on the experience
of the BUGSENG’s team that developed the ECLAIR software verification platform.

3.2 CPAchecker: A Flexible Framework for Software Verification
Dirk Beyer (Universität Passau, DE)

License Creative Commons BY 3.0 Unported license
© Dirk Beyer

Main reference D. Beyer, M.E. Keremoglu, “CPAchecker: A Tool for Configurable Software Verification,” in Proc.
of the 23rd Int’l Conf. on Computer Aided Verification (CAV’11), LNCS, Vol. 6806, pp. 184–190,
Springer, 2011; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1007/978-3-642-22110-1_16
URL http://www.sosy-lab.org/~dbeyer/Publications/2011-

CAV.CPAchecker_A_Tool_for_Configurable_Software_Verification.pdf

CPAchecker is a tool and framework that aims at easy integration of new verification
components. It is based on configurable program analysis, a concept for implementing
different approaches from data-flow analysis, abstract interpretation, and software model-
checking in one uniform software framework. Every abstract domain, together with the
corresponding operations, implements the interface of configurable program analysis (CPA).
The main algorithm is configurable to perform a fixed-point analysis on arbitrary combinations
of existing CPAs.

In software verification, it takes a considerable amount of effort to convert a verification
idea into actual experimental results– we aim at accelerating this process. We hope that
researchers and practitioners find it convenient and productive to implement new verification
ideas and algorithms using this flexible and easy-to-extend platform, and that it advances
the field by making it easier to perform practical experiments.

The tool is implemented in Java and runs as command-line tool or as Eclipse plug-in.
CPAchecker has existing CPAs for several abstract domains already, including predicates,
explicit values, octagons, and BDDs. The tool integrates CEGAR, lazy abstraction refinement,
interpolation, boolean predicate abstraction, large-block encoding, bounded model checking,
generation of error witnesses with test values, and several SMT solvers in a modular and
flexible design. CPAchecker is publicly available under the open-source license Apache 2.
The tool won several medals in competitions on software verification.
http://cpachecker.sosy-lab.org/

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://www.sosy-lab.org/~dbeyer/Publications/2011-CAV.CPAchecker_A_Tool_for_Configurable_Software_Verification.pdf
http://www.sosy-lab.org/~dbeyer/Publications/2011-CAV.CPAchecker_A_Tool_for_Configurable_Software_Verification.pdf
http://cpachecker.sosy-lab.org/


Patrick Cousot, Daniel Kroening, and Carsten Sinz 113

3.3 Abstract Interpretation: “Scene-Setting Talk”
Patrick Cousot (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Patrick Cousot

We unify static analysis by extrapolation (widening) with static analysis by interpolation
to prove a given program specification. This unification is done in the theory of abstract
interpretation using dual-narrowing. We show that narrowing and dual-narrowing are
equivalent up to the exchange of their parameters. This yields new ideas for narrowing based
on Craig interpolation. This unification is also possible by understanding that interpolation
can be done in arbitrary abstract domains, not only logical ones. We show that an increasing
iterative static analysis using extrapolation of successive iterates by widening followed by a
decreasing iterative static analysis using interpolation of successive iterates by narrowing
(both bounded by the specification) can be further improved by a increasing iterative static
analysis using interpolation of iterates with the specification by dual-narrowing until reaching
a fixpoint and checking whether it is inductive for the specification.

3.4 Abstracting Induction by Extrapolation and Interpolation
Patrick Cousot (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Patrick Cousot

We unify static analysis by extrapolation (widening) with static analysis by interpolation
to prove a given program specification. This unification is done in the theory of abstract
interpretation using dual-narrowing. We show that narrowing and dual-narrowing are
equivalent up to the exchange of their parameters. This yields new ideas for narrowing based
on Craig interpolation. This unification is also possible by understanding that interpolation
can be done in arbitrary abstract domains, not only logical ones. We show that an increasing
iterative static analysis using extrapolation of successive iterates by widening followed by a
decreasing iterative static analysis using interpolation of successive iterates by narrowing
(both bounded by the specification) can be further improved by a increasing iterative static
analysis using interpolation of iterates with the specification by dual-narrowing until reaching
a fixpoint and checking whether it is inductive for the specification.

3.5 Path-sensitive static analysis using trace hashing
Tomasz Dudziak (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Tomasz Dudziak

Path-sensitivity can significantly improve precision of static program analysis but due to
the inherently exponential number of possible control flow histories it often requires manual
tweaking of parameters and annotations. I propose an approach based on hashing of control
flow paths that can dynamically adapt to available resources. By careful construction of
the hash function it can exploit additional assumptions about the nature of path-sensitive
properties. Additionally, due to its randomized nature it introduces a new trade-off between
cost of the analysis and probability of proving properties of interest.

14352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


114 14352 – Next Generation Static Software Analysis Tools

3.6 An algebraic approach for inferring and using symmetries in
rule-based models

Jerôme Feret (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Jerôme Feret

Symmetries arise naturally in rule-based models, and under various forms. Besides auto-
morphisms between site graphs, which are usually built within the semantics, symmetries can
take the form of pairs of sites having the same capabilities of interactions, of some protein
variants behaving exactly the same way, or of some linear, planar, or 3D molecular complexes
which could be see modulo permutations of their axis and/or mirror-image symmetries.

In this paper, we propose a unifying handling of symmetries in Kappa. We follow an
algebraic approach, that is based on the single pushout semantics of Kappa. We model classes
of symmetries as finite groups of transformations between site graphs, which are compatible
with the notion of embedding (that is to say that it is always possible to restrict a symmetry
that is applied with the co- domain of an embedding to the domain of this embedding) and
we provide some assumptions that ensure that symmetries are compatible with pushouts.
Then, we characterize when a set of rules is symmetric with respect to a group of symmetries
and, in such a case, we give sufficient conditions so that this group of symmetries induces a
forward bisimulation and/or a backward bisimulation over the population semantics.

3.7 Bounded Verification with TACO: Symmetry-breaking + tight field
bounds

Marcelo Frias (University of Buenos Aires, AR)

License Creative Commons BY 3.0 Unported license
© Marcelo Frias

Main reference J. P. Galeotti, N.Rosner, C.G. Lopez Pombo, M.F. Frias, “TACO: Efficient SAT-Based Bounded
Verification Using Symmetry Breaking and Tight Bounds ,” IEEE Trans. on Software Engineering,
39(9):1283–1307, 2013.

URL http://dx.doi.org/10.1109/TSE.2013.15

I will discuss work developed in my group on bounded verification of JML-annotated Java
code, and how appropriate symmetry breaking predicates and bounds on the semantics of
class fields allow us to improve the performance of TACO.

3.8 Impact of Community Structure on SAT Solver Performance
Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Vijay Ganesh

Joint work of Newsham, Zack; Ganesh, Vijay; Fischmeister, Sebastian; Audemard, Gilles; Simon, Laurent
Main reference Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, L. Simon, “Impact of Community

Structure on SAT Solver Performance,” in Proc. of the 17th Int’l Conf. on Theory and
Applications of Satisfiability Testing (SAT’14), LNCS, Vol. 8561, pp. 252–268, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-09284-3_20

Modern CDCL SAT solvers routinely solve very large industrial SAT instances in relatively
short periods of time. It is clear that these solvers somehow exploit the structure of real-world
instances. However, to-date there have been few results that precisely characterize this
structure. In this paper, we provide evidence that the community structure of real-world

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/TSE.2013.15
http://dx.doi.org/10.1109/TSE.2013.15
http://dx.doi.org/10.1109/TSE.2013.15
http://dx.doi.org/10.1109/TSE.2013.15
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20


Patrick Cousot, Daniel Kroening, and Carsten Sinz 115

SAT instances is correlated with the running time of CDCL SAT solvers. It has been known
for some time that real-world SAT instances, viewed as graphs, have natural communities in
them. A community is a sub-graph of the graph of a SAT instance, such that this sub-graph
has more internal edges than outgoing to the rest of the graph. The community structure
of a graph is often characterized by a quality metric called Q. Intuitively, a graph with
high-quality community structure (high Q) is easily separable into smaller communities,
while the one with low Q is not. We provide three results based on empirical data which
show that community structure of real-world industrial instances is a better predictor of the
running time of CDCL solvers than other commonly considered factors such as variables
and clauses. First, we show that there is a strong correlation between the Q value and
Literal Block Distance metric of quality of conflict clauses used in clause-deletion policies
in Glucose-like solvers. Second, using regression analysis, we show that the the number of
communities and the Q value of the graph of real-world SAT instances is more predictive
of the running time of CDCL solvers than traditional metrics like number of variables or
clauses. Finally, we show that randomly-generated SAT instances with 0.05 <= Q <= 0.13
are dramatically harder to solve for CDCL solvers than otherwise.

3.9 Using a deductive verification environment for verification, bug
finding, specification, and all that

Christoph Gladisch (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Gladisch

Joint work of Gladisch, Christoph; Shmuel Tyszberowicz; Bernhard Beckert; Ferruccio Damiani; Mana Taghdiri;
Mattias Ulbrich; Tianhai Liu; Aboubakr Achraf El Ghazi; Daniel Grunwald

The boundaries between program analysis techniques such as static analysis, deductive veri-
fication, abstract interpretation, and model checking are overlapping. Deductive verification
technology can, for instance, be used as a framework for the other techniques. In this
talk deductive verification technology is taken as a basis and a set of techniques that were
developed on the KeY platform are presented such as fault detection, model generation for
quantified formulas, test generation, and specification techniques.

References
1 Daniel Grunwald and Christoph Gladisch and Tianhai Liu and Mana Taghdiri and Shmuel

Tyszberowicz. Generating JML Specifications from Alloy Expressions. 10th Haifa Verifica-
tion Conference (HVC), Israel, 2014

2 Aboubakr Achraf El Ghazi and Mattias Ulbrich and Christoph Gladisch and Shmuel
Tyszberowicz and Mana Taghdiri. JKelloy: A Proof Assistant for Relational Specifica-
tions of Java Programs. NASA Formal Methods – 6th International Symposium, NFM
2014, Houston, TX, USA, 2014.

3 Wolfgang Ahrendt and Bernhard Beckert and Daniel Bruns and Richard Bubel and Chris-
toph Gladisch and Sarah Grebing and Reiner Hähnle and Martin Hentschel and Vladimir
Klebanov and Wojciech Mostowski and Christoph Scheben and Peter Schmitt and Mattias
Ulbrich. The KeY Platform for Verification and Analysis of Java Programs 6th Working
Conference on Verified Software: Theories, Tools and Experiments 2014, Vienna, Austria,
2014.

14352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


116 14352 – Next Generation Static Software Analysis Tools

4 Christoph Gladisch and Shmuel Tyszberowicz. Specifying a Linked Data Structure in JML
for Formal Verification and Runtime Checking. Brazilian Symposium on Formal Methods
(SBMF), Brasilia, Brasil, 2013

5 Christoph Gladisch. Model Generation for Quantified Formulas with Application to Test
Data Generation. International Journal on Software Tools for Technology Transfer (STTT),
Volume 14, Number 4, 2012.

6 Christoph Gladisch. Verification-based Software-fault Detection. KIT Scientific Publishing,
Karlsruhe, 2011.

3.10 Static Analysis of Energy Consumption
Manuel Hermenegildo (IMDEA Software – Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Manuel Hermenegildo

Joint work of López, Pedro; Haemmerlé, Remy; Hermenegildo, Manuel V.; Klemen, Maximiliano; Liqat, Umer;
Serrano, Alejandro; Eder, Kerstin; Georgiou, Kiryakos; Kerrison, Steve

Main reference U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. López-Garcia, N. Grech, M.V. Hermenegildo, K.
Eder, “Energy Consumption Analysis of Programs based on XMOS ISA-Level Models,” in Proc. of
the 23rd Int’l Symp. on Logic-Based Program Synthesis and Transformation (LOPSTR’13), to
appear; pre-print available from author’s webpage.

URL http://clip.dia.fi.upm.es/papers/isa-energy-lopstr13-final.pdf

Energy consumption is a major concern in data centers and high-performance computing, and
there is also an increased demand for energy savings in devices which operate on batteries and
other limited power sources, such as implantable/portable medical devices, sensors, or mobile
phones. Beyond the advances in hardware power efficiency, significant additional energy
savings can be achieved by improving the software. Static inference of the energy consumed
by programs during execution is instrumental in this task, having important applications
in the optimization and verification of such consumption by programs, and in general in
energy-aware software development. At the same time it is an area that presents a number
of interesting challenges.

We present an approach to the inference and verification of upper- and lower-bounds on
the energy consumption of programs, as well as some current results from our tools. The
bounds we infer and check are functions of the sizes of the input data to the program. Our
tools are based on translating the program to a block-based intermediate representation,
expressed as horn clauses, deriving cost equations, and finding upper- and lower-bound cost
solutions. We also present some recent improvements to resource bounds inference, including
casting the cost analysis more fully within abstract interpretation frameworks and using
sized shapes as data abstractions. The energy analysis makes use of ISA- and LLVM-level
models of the cost of instructions or sequences of instructions. The inferred bounds compare
well to measurements on the hardware and open up new avenues for future research and
application.

See the Dagstuhl Seminar slides (http://www.dagstuhl.de/mat/Files/14/14352/14352.
HermenegildoManuel.Slides.pdf) for a full classified bibliography.

References
1 U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. López-Garcia, N. Grech, M.V. Herme-

negildo, K. Eder. Energy Consumption Analysis of Programs based on XMOS ISA-Level
Models. In Pre-proceedings of the 23rd International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR 13), September 2013.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://clip.dia.fi.upm.es/papers/isa-energy-lopstr13-final.pdf
http://clip.dia.fi.upm.es/papers/isa-energy-lopstr13-final.pdf
http://clip.dia.fi.upm.es/papers/isa-energy-lopstr13-final.pdf
http://clip.dia.fi.upm.es/papers/isa-energy-lopstr13-final.pdf
http://clip.dia.fi.upm.es/papers/isa-energy-lopstr13-final.pdf
http://www.dagstuhl.de/mat/Files/14/14352/14352.HermenegildoManuel.Slides.pdf
http://www.dagstuhl.de/mat/Files/14/14352/14352.HermenegildoManuel.Slides.pdf


Patrick Cousot, Daniel Kroening, and Carsten Sinz 117

2 A. Serrano, P. López-Garcia, M. Hermenegildo. Resource Usage Analysis of Logic Pro-
grams via Abstract Interpretation Using Sized Types. In Theory and Practice of Logic
Programming, 30th Int’l Conference on Logic Programming (ICLP’14) Special Issue, Vol.
14, Num. 4–5, pages 739–754, Cambridge U. Press, 2014.

3.11 Insides and Insights of Commercial Program Analysis
Ralf Huuck (NICTA – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Ralf Huuck

Joint work of Huuck, Ralf; Cassez, Franck; Fehnker, Ansgar

In this work we give an overview of the technologies underpinning our commercial C/C++
program analyzer Goanna and we share some of the experiences in applying these technologies
to large industrial code bases. In particular, we highlight the core technologies of model
checking, abstract interpretation and SMT-based automatic trace refinement as well as their
interplay within the Goanna tool. We present some commercial experiences ranging from
runtime metrics to tool comparison, and we highlight some of the challenges that we have
been facing and as well as opportunities ahead.

3.12 Steps towards usable verification
Francesco Logozzo (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Francesco Logozzo

Main reference M. Fähndrich, F. Logozzo, “Static contract checking with Abstract Interpretation,” in Proc. of the
2010 Int’l Conf. on Formal Verification of Object-oriented Software (FoVeOOS’10), LNCS,
Vol. 6528, pp. 10–30, Springer, 2010.

URL http://dx.doi.org/10.1007/978-3-642-18070-5_2

We describe our experience with the CodeContracts static checker (cccheck), probably the
most successful verification tool out there: The analyzer has been downloaded over 150K
times, and it is used in Microsoft product groups.

The cccheck is based on abstract interpretation, and it does not use any out-of- the-
box SMT solver. In the talk I explain the rationale for this decision. Briefly, abstract
interpretation allows us to have a very fine grain control on the precision/cost ration and it
provides a level of automation unmatched by other approaches (e. g., for the inference of loop
invariants, the suggestion of code fixes, or the generation of sound contracts). Furthermore,
we avoid all kind of problems that come from using external generic tools, as, e. g., timeouts,
non-monotonicity of the analysis, randomizations, non-determinism, etc.

14352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-18070-5_2


118 14352 – Next Generation Static Software Analysis Tools

3.13 Viper – Verification Infrastructure for Permission-based Reasoning
Peter Mueller (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Peter Mueller

Joint work of Juhasz, Uri; Kassios, Ioannis; Müller, Peter; Novacek, Milos; Schwerhoff, Malte; Summers,
Alexander

Main reference U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, A. J. Summers, “Viper: A
Verification Infrastructure for Permission-Based Reasoning,” Technical Report, ETH Zürich, 2014.

URL http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf

The automation of verification techniques based on first-order logic specifications has benefited
greatly from verification infrastructures such as Boogie and Why. These offer an intermediate
language that can express diverse language features and verification techniques, as well as
back-end tools such as verification condition generators.

However, these infrastructures are not well suited for verification techniques based on
separation logic and other permission logics, because they do not provide direct support
for permissions and because existing tools for these logics often prefer symbolic execution
over verification condition generation. Consequently, tool support for these logics is typically
developed independently for each technique, dramatically increasing the burden of developing
automatic tools for permission-based verification.

In this talk, we present a verification infrastructure whose intermediate language supports
an expressive permission model natively. We provide tool support, including two back-end
verifiers, one based on symbolic execution, and one on verification condition generation;
this facilitates experimenting with the two prevailing techniques in automated verification.
Various existing verification techniques can be implemented via this infrastructure, alleviating
much of the burden of building permission-based verifiers, and allowing the developers of
higher-level techniques to focus their efforts at the appropriate level of abstraction.

3.14 Static Analysis Modulo Theory
Andreas Podelski (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Podelski

A recent approach to static analysis can be described in analogy with SMT solving. Satisfiab-
ility here corresponds to the existence of an error path in the program, or: unsatisfiability
corresponds to the emptiness of an automaton. Each time the tool finds an error path, i. e.,
a word accepted by the automaton, it analyzes the word in the theory of the data domain. If
the word is infeasible, it learns a new automaton which rejects the word (and many others).
It then adds the new automaton to the intersection of the already existing automata. We can
extend the approach from sequential to recursive, parallel or unboundedly parallel programs.
The emptiness check always amounts to a static analysis over a “theory-free” abstract domain.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=JKMNSS14.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Patrick Cousot, Daniel Kroening, and Carsten Sinz 119

3.15 Static Analysis Blind Spots in Automotive Systems Development
Hendrik Post (Robert Bosch GmbH – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Hendrik Post

Sound Static Analysis has become a mature and powerful technique for source code analysis.
It is now time to stop and to contemplate whether scalability is still the most important
problem or whether industrial applications lack other non-trivial contributions beyond
improving performance. In this talk, we give an overview about interests and blockers for
static analysis from an industrial perspective. Based on these findings, we give input for the
workshop discussions.

3.16 Construction of modular abstract domains for heterogeneous
properties

Xavier Rival (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Xavier Rival

In this talk, we study the construction of shape-numeric static analysers. We set up an
abstract interpretation framework that allows to reason about simultaneous shape-numeric
properties by combining shape and numeric abstractions into a modular, expressive abstract
domain. Such a modular structure is highly desirable to make its formalisation, proof and
implementation easier to perform and to get correct. Furthermore, we extend this modular
abstract domains so as to combine different memory abstractions, for better scalability and
greater expressiveness. This framework is implemented in the MemCAD static analyser.

3.17 Efficiently Intertwining Widening with Narrowing
Helmut Seidl (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Helmut Seidl

Joint work of Seidl, Helmut; Apinis, Kalmer; Vojdani, Vesal
Main reference K. Apinis, H. Seidl, V. Vojdani, “How to combine widening and narrowing for non-monotonic

systems of equations,” in Proc. of the 34th ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI’13), pp. 377–386, ACM 2013.

URL http://dx.doi.org/10.1145/2491956.2462190

Non-trivial analysis problems require posets with infinite ascending and descending chains.
In order to compute reasonably precise post-fixpoints of the resulting systems of equations,
Cousot and Cousot have suggested accelerated fixpoint iteration by means of widening and
narrowing.

The strict separation into phases, however, may unnecessarily give up precision that
cannot be recovered later. While widening is also applicable if equations are non-monotonic,
this is no longer the case for narrowing. A narrowing iteration to improve a given post-
fixpoint, additionally, must assume that all right-hand sides are monotonic. The latter
assumption, though, is not met in presence of widening. It is also not met by equation

14352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2491956.2462190
http://dx.doi.org/10.1145/2491956.2462190
http://dx.doi.org/10.1145/2491956.2462190
http://dx.doi.org/10.1145/2491956.2462190


120 14352 – Next Generation Static Software Analysis Tools

systems corresponding to context-sensitive interprocedural analysis, possibly combining
context-sensitive analysis of local information with flow-insensitive analysis of globals.

As a remedy, we present a novel operator that combines a given widening operator with a
given narrowing operator. We present adapted versions of round-robin as well as of worklist
iteration, local and side-effecting solving algorithms for the combined operator and prove
that the resulting solvers always return sound results and are guaranteed to terminate for
monotonic systems whenever only finitely many unknowns are encountered.

3.18 Automating Software Analysis at Large Scale
Michael Tautschnig (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Michael Tautschnig

Main reference Michael Tautschnig, “Automating Software Analysis at Large Scale,” in Proc. of the 2014 Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS’14), to
appear.

Software model checking tools promise to deliver genuine traces to errors, and sometimes
even proofs of their absence. As static analysers, they do not require concrete execution
of programs, which may be even more beneficial when targeting new platforms. Academic
research focusses on improving scalability, yet largely disregards practical technical challenges
to make tools cope with real-world code. The Debian/GNU Linux distribution proved to
provide a perfect basis for experimenting with those tools. Initial experiments lead to a
number of improvements in tools, but also more than 500 bug reports.

3.19 Automatic Inference of Ranking Functions by Abstract
Interpretation

Caterina Urban (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Caterina Urban

We present a family of parameterized abstract domains for proving termination of imperative
programs by abstract interpretation. The domains automatically synthesize piecewise-defined
lexicographic ranking functions and infer sufficient preconditions for program termination.
The abstract domains are parameterized by a numerical abstract domain for state partitioning
and a numerical abstract domain for ranking functions. This parameterization allows to easily
tune the trade-off between precision and cost of the analysis. We describe instantiations of
these domains with intervals, octagons, polyhedra and affine functions. We have implemented
a prototype static analyzer for proving conditional termination of programs written in (a
subset of) C and, using experimental evidence, we show that it is competitive with the state
of the art and performs well on a wide variety of benchmarks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
Michael Tautschnig, ``Automating Software Analysis at Large Scale,'' in Proc. of the 2014 Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'14), to appear.
Michael Tautschnig, ``Automating Software Analysis at Large Scale,'' in Proc. of the 2014 Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'14), to appear.
Michael Tautschnig, ``Automating Software Analysis at Large Scale,'' in Proc. of the 2014 Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'14), to appear.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Patrick Cousot, Daniel Kroening, and Carsten Sinz 121

3.20 Byte-Precise Verification of Low-Level List Manipulation
Tomas Vojnar (Technical University of Brno, CZ)

License Creative Commons BY 3.0 Unported license
© Tomas Vojnar

Main reference K. Dudka, P. Peringer, T. Vojnar, “Byte-Precise Verification of Low-Level List Manipulation,”
Brno University of Technology, Technical Report, No. FIT-TR-2012-04, 2013.

URL http://www.fit.vutbr.cz/~vojnar/Publications/FIT-TR-2012-04.pdf

We propose a new approach to shape analysis of programs with linked lists that use low-level
memory operations. Such operations include pointer arithmetic, safe usage of invalid pointers,
block operations with memory, reinterpretation of the memory contents, address alignment,
etc. Our approach is based on a new representation of sets of heaps, which is to some degree
inspired by works on separation logic with higher-order list predicates, but it is graph-based
and uses a more fine-grained (byte-precise) memory model in order to support the various
low-level memory operations. The approach was implemented in the Predator tool and
successfully validated on multiple non-trivial case studies that are beyond the capabilities of
other current fully automated shape analysis tools.

The result is a joint work with Kamil Dudka and Petr Peringer. The work was originally
published at SAS’13. The Predator tool is available here: http://www.fit.vutbr.cz/research/
groups/verifit/tools/predator/

3.21 System LAV and Automated Evaluation of Students’ Programs
Milena Vujosevic-Janicic (University of Belgrade, RS)

License Creative Commons BY 3.0 Unported license
© Milena Vujosevic-Janicic

Joint work of Vujosevic-Janicic, Milena; Kuncak, Viktor;
Main reference M. Vujošević-Janičić, V. Kuncak, “Development and Evaluation of LAV: An SMT-Based Error

Finding Platform,” in Proc. of the 4th Int’l Conf. on Verified Software: Theories, Tools,
Experiments (VSTTE’12), LNCS, Vol. 7152, pp. 98–113, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-27705-4_9

In this talk, we give a short overview of a software verification tool LAV [1], we present
challenges and experiences in applying verification techniques in automated evaluation of
students’ programs [2] and discuss our ongoing work on regression verification of students’
programs.

LAV is an open-source tool for statically verifying program assertions and locating bugs
such as buffer overflows, pointer errors and division by zero. It integrates into the popular
LLVM infrastructure for compilation and analysis. Combining symbolic execution and SAT
encoding of program’s behaviour, LAV generates polynomial-size verification conditions for
loop-free code, while for modelling loops it can use both under- or over- approximation
techniques. Generated verification conditions are passed to one of the several SMT solvers:
Boolector, MathSAT, Yices, and Z3.

Software verification tools are not commonly applied in automated evaluation of students’
programs, although precise and reliable automated grading techniques are of big importance
for both classical and on-line programming courses. We ran LAV on a corpus of students’
programs, observed advantages and challenges of using verification in this context and
we showed that verification techniques can significantly improve the automated grading
process. LAV outperformed (concerning time, bugs found and false alarms) black-box fuzzing

14352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.fit.vutbr.cz/~vojnar/Publications/FIT-TR-2012-04.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/FIT-TR-2012-04.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/FIT-TR-2012-04.pdf
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-27705-4_9
http://dx.doi.org/10.1007/978-3-642-27705-4_9
http://dx.doi.org/10.1007/978-3-642-27705-4_9
http://dx.doi.org/10.1007/978-3-642-27705-4_9


122 14352 – Next Generation Static Software Analysis Tools

techniques that are commonly used for bug finding in students’ programs and successfully
met all the specific requirements posed by evaluation process.

Our ongoing research focuses on functional correctness of small-sized programs written by
students at introductory courses. We explore automatic assessment of functional correctness
by regression verification (where the specification of a student’s program is given as a teacher’s
program). Although this problem is undecidable in general, regression verification can give
useful results and enhance automated grading process in some cases.

References
1 M. Vujošević-Janičić and V. Kuncak. Development and Evaluation of LAV: An SMT-Based

Error Finding Platform. In VSTTE, volume 7152 of LNCS, pages 98–113. Springer, 2012.
2 M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak. Software verification and graph

similarity for automated evaluation of students’ assignments. Information and Software
Technology, 55(6):1004–1016, 2013. Elsevier.

4 Tool Demonstrations

4.1 aiT Worst-Case Execution Time Analysis
Christian Ferdinand (AbsInt – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Christian Ferdinand

AiT WCET Analyzers statically compute tight bounds for the worst-case execution time
(WCET) of tasks in real-time systems. They directly analyze binary executables and take
the intrinsic cache and pipeline behavior into account.

4.2 The Goanna Static Analyzer
Ralf Huuck (NICTA – Sydney, AU)

License Creative Commons BY 3.0 Unported license
© Ralf Huuck

We present some of the features and capabilities of our source code analyser Goanna. In
particular, we show the IDE integration and usage in Visual Studio. This includes analysis
features such as interprocedural tracing, selection for various coding standards and the
bug management dashboard. Furthermore, we explain the Linux command line interface
and demonstrate some exemplary bug finding capabilities. Finally, we present a number of
benchmark detection results and open questions for future work.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Patrick Cousot, Daniel Kroening, and Carsten Sinz 123

4.3 Cccheck/Clousot
Francesco Logozzo (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Francesco Logozzo

I demo cccheck, the popular abstract interpretation-based verifier for .NET. The demo
includes:
1. finding bugs in C# programs;
2. provide automatic code fixes for such bugs;
3. show how Clousot infers contracts and it is also able to prove that a method computes

the max of an array.

4.4 LLBMC: The Low-Level Bounded Model Checker
Carsten Sinz (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Carsten Sinz

URL http://llbmc.org

We present LLBMC, the low-level bounded model checker. LLBMC implements a bounded
model checking algorithm complemented by a rewriting approach to simplify verification
conditions and prove simple properties. LLBMC is fully automatic and requires minimal
preparation efforts and user interaction. It supports all C constructs, including not so
common features such as bitfields. LLBMC models memory accesses (heap, stack, global
variables) with high precision and is thus able to find hard-to-detect memory access errors
like heap or stack buffer overflows. LLBMC can also uncover errors due to uninitialized
variables or other sources of non-deterministic behavior. Due to its precise analysis, LLBMC
produces almost no false alarms (false positives).

We demonstrate the features of LLBMC on three examples: the first is on checking
equivalence of two programs containing many bit-wise logical operations; the second explains
LLBMC’s precise modeling of memory on a program where writing to memory has an
unexpected effect on the control flow; the third example presents LLBMC’s ability to derive
lambda-expressions for loops with array updates.

For further information on LLBMC see http://llbmc.org. An evaluation / academic
version can also be downloaded from this URL.

4.5 FuncTion
Caterina Urban (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Caterina Urban

We present FuncTion, a research prototype static analyzer able to infer piecewise-defined
ranking functions for programs written in (a subset of) C language. In particular, we present
FuncTion’s web interface and we demonstrate the features and capabilities of the analyzer
by means of a few exemplary programs.

14352

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://llbmc.org
http://llbmc.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


124 14352 – Next Generation Static Software Analysis Tools

4.6 Predator: A Shape Analyzer Based on Symbolic Memory Graphs
Tomas Vojnar (Technical University of Brno, CZ)

License Creative Commons BY 3.0 Unported license
© Tomas Vojnar

URL http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

Predator is a shape analyzer that uses the abstract domain of symbolic memory graphs
(SMGs) in order to support various forms of low-level memory manipulation commonly
used in optimized C code. Predator is implemented as a GCC (GNU Compiler Collection)
plug-in. Predator is freely available at http://www.fit.vutbr.cz/research/groups/verifit/tools/
predator.

5 Discussion Session

5.1 Discussion on “The current limitations of static analysis tools”
On the last day of the seminar a discussion session was held involving people from both
academia and industry. The discussion focussed on the current limitations of static analysis
tools and how to overcome them.
More specifically, we asked participants to think about:

How can we improve the usability of static analysis tools and bring them to more users?
What is the best way to combine algorithms and tools? Do we need a standardized
exchange format?
What is the “best” language for specifying properties and the environment, in which a
program is run?
What has to be done to bring static analysis tools to new fields such as security and
privacy?

During the discussion it was observed that the most notable problems of current tools are:
Annotations and specifications, which are essential to obtain precise analysis results and
fewer false positives, are not standardized and can often not be exchanged between tools.
There is a lack in detailed comparisons between static analysis tools, which makes it more
difficult for a possible user to decide which tool to apply.
Static analysis tools and compilers are not sufficiently integrated.

It was also argued that standardized specification and annotation languages exist, but
are insufficient and thus not frequently used. It was also brought forward that even though
there are benchmarks and competitions for analysis tools, it is still hard for a non-expert
to decide which tool is most appropriate for a specific purpose. More work is needed to
comparatively describe features and strengths of individual tools.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator


Patrick Cousot, Daniel Kroening, and Carsten Sinz 125

Participants

Roberto Bagnara
BUGSENG & University of
Parma, IT

Dirk Beyer
Universität Passau, DE

Mehdi Bouaziz
ENS, Paris, FR

Patrick Cousot
ENS, Paris, FR

Tomasz Dudziak
Universität des Saarlandes, DE

David Faragó
KIT – Karlsruher Institut für
Technologie, DE

Christian Ferdinand
AbsInt, Saarbrücken, DE

Jérôme Feret
ENS, Paris, FR

Marcelo Frias
University of Buenos Aires, AR

Vijay Ganesh
University of Waterloo, CA

Roberto Giacobazzi
University of Verona, IT

Christoph Gladisch
KIT – Karlsruher Institut für
Technologie, DE

Udo Gleich
Daimler Research, Ulm, DE

Manuel Hermenegildo
IMDEA Software, Madrid, ES

Ralf Huuck
NICTA, Sydney, AU

Daniel Kroening
University of Oxford, GB

K. Rustan M. Leino
Microsoft Res., Redmond, US

Francesco Logozzo
Microsoft Res., Redmond, US

Peter Müller
ETH Zürich, CH

Filip Niksic
MPI-SWS, Kaiserslautern, DE

Andreas Podelski
Universität Freiburg, DE

Hendrik Post
Robert Bosch GmbH –
Stuttgart, DE

Francesco Ranzato
University of Padova, IT

Xavier Rival
ENS, Paris, FR

Helmut Seidl
TU München, DE

Carsten Sinz
KIT – Karlsruher Institut für
Technologie, DE

Michael Tautschnig
Queen Mary University of
London, GB

Shmuel Tyszberowicz
Academic College of Tel Aviv
Yaffo, IL

Caterina Urban
ENS, Paris, FR

Tomas Vojnar
Technical University of Brno, CZ

Milena Vujosevic-Janicic
University of Belgrade, RS

Reinhard Wilhelm
Universität des Saarlandes, DE

14352


	Executive Summary Patrick Cousot, Klaus Havelund, Daniel Kroening, Carsten Sinz, and Christoph Gladisch
	Table of Contents
	Overview of Talks
	Most Overlooked Static Analysis Pitfalls Roberto Bagnara
	CPAchecker: A Flexible Framework for Software Verification Dirk Beyer
	Abstract Interpretation: ``Scene-Setting Talk'' Patrick Cousot
	Abstracting Induction by Extrapolation and Interpolation Patrick Cousot
	Path-sensitive static analysis using trace hashing Tomasz Dudziak
	An algebraic approach for inferring and using symmetries in rule-based models Jerôme Feret
	Bounded Verification with TACO: Symmetry-breaking + tight field bounds Marcelo Frias
	Impact of Community Structure on SAT Solver Performance Vijay Ganesh
	Using a deductive verification environment for verification, bug finding, specification, and all that Christoph Gladisch
	Static Analysis of Energy Consumption Manuel Hermenegildo
	Insides and Insights of Commercial Program Analysis Ralf Huuck
	Steps towards usable verification Francesco Logozzo
	Viper – Verification Infrastructure for Permission-based Reasoning Peter Mueller
	Static Analysis Modulo Theory Andreas Podelski
	Static Analysis Blind Spots in Automotive Systems Development Hendrik Post
	Construction of modular abstract domains for heterogeneous properties Xavier Rival
	Efficiently Intertwining Widening with Narrowing Helmut Seidl
	Automating Software Analysis at Large Scale Michael Tautschnig
	Automatic Inference of Ranking Functions by Abstract Interpretation Caterina Urban
	Byte-Precise Verification of Low-Level List Manipulation Tomas Vojnar
	System LAV and Automated Evaluation of Students' Programs Milena Vujosevic-Janicic

	Tool Demonstrations
	aiT Worst-Case Execution Time Analysis Christian Ferdinand
	The Goanna Static Analyzer Ralf Huuck
	Cccheck/Clousot Francesco Logozzo
	LLBMC: The Low-Level Bounded Model Checker Carsten Sinz
	FuncTion Caterina Urban
	Predator: A Shape Analyzer Based on Symbolic Memory Graphs Tomas Vojnar

	Discussion Session
	Discussion on ``The current limitations of static analysis tools''

	Participants

