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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14372 “Analysis of
Algorithms Beyond the Worst Case”.

The theory of algorithms has traditionally focused on worst-case analysis. This focus has led
to both a deep theory and many beautiful and useful algorithms. However, there are a number
of important problems and algorithms for which worst-case analysis does not provide useful or
empirically accurate results. This is due to the fact that worst-case inputs are often rather
contrived and occur hardly ever in practical applications. Only in recent years a paradigm shift
towards a more realistic and robust algorithmic theory has been initiated. The development of a
more realistic theory hinges on finding models that measure the performance of an algorithm not
only by its worst-case behavior but rather by its behavior on “typical” inputs. In this seminar,
we discussed various recent theoretical models and results that go beyond worst-case analysis.

The seminar helped to consolidate the research and to foster collaborations among the re-
searchers working in the different branches of analysis of algorithms beyond the worst case.
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The theory of algorithms has traditionally focused on worst-case analysis. This focus has
led to both a deep theory and many beautiful and useful algorithms. There are, however,
a number of important problems and algorithms for which worst-case analysis does not
provide useful or empirically accurate results. For example, worst-case analysis suggests that
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the simplex method is an exponential-time algorithm for linear programming, while in fact
it runs in near-linear time on almost all inputs of interest. Worst-case analysis ranks all
deterministic caching algorithms equally, while in almost all applications some algorithms
(like least-recently-used) are consistently superior to others (like first-in-first-out).

The problem is that worst-case analysis does not take into consideration that worst-case
inputs are often rather contrived and occur hardly ever in practical applications. It led to
the situation that for many problems the classical theory is not able to classify algorithms
meaningfully according to their performance. Even worse, for some important problems it
recommends algorithms that perform badly in practice over algorithms that work well in
practice only because the artificial worst-case performance of the latter ones is bad.

Only in recent years a paradigm shift towards a more realistic and robust algorithmic
theory has been initiated. The development of a more realistic theory hinges on finding
models that measure the performance of an algorithm not only by its worst-case behavior but
rather by its behavior on typical inputs. However, for an optimization problem at hand it is
usually impossible to rigorously define the notion of “typical input” because what such an
input looks like depends on the concrete application and on other indistinct parameters. The
key to building a rigorous and realistic theory is hence not to define exactly what a typical
input looks like, but to identify common properties that are shared by real-world inputs. As
soon as such properties are identified, in many cases one can explain why certain heuristics
work well in practice while others do not. The next step is then to look for algorithmic means
to exploit these properties explicitly in order to obtain improved algorithms in practice that
are not tailored to unrealistic worst-case inputs.

Many different models that go beyond classical worst-case theory have been suggested.
These models can be divided into two main categories: either they are based on the assumption
that inputs are to some extend random (probabilistic analysis) or they consider only inputs
that satisfy certain deterministic properties that mitigate the worst case.

Probabilistic Analysis

Average-case analysis is probably the first thought that springs to mind when mentioning
probabilistic input models. In such an analysis, one considers the expected performance
on random inputs. Starting in the seventies, many algorithms that showed a remarkable
performance in practice have been analyzed successfully on random inputs. This includes
algorithms for classical optimization problems, such as the traveling salesman problem, or
the simplex method for linear programming.

While average-case analysis has been successfully applied to many problems, a major
concern is that inputs chosen completely at random have for many problems little in common
with inputs arising in practice. Similar as a random TV screen produced by static noise
has nothing to do with a typical TV screen, a set of random points does not resemble, for
instance, a realistic clustering instance with mostly well-separated clusters.

Smoothed Analysis. To overcome the drawbacks of average-case and worst-case analysis,
the notion of smoothed analysis has been suggested by Spielman and Teng in 2001. In this
model, inputs are generated in two steps: first, an adversary chooses an arbitrary instance,
and then this instance is slightly perturbed at random. The smoothed performance
of an algorithm is defined to be the worst expected performance the adversary can
achieve. This model can be viewed as a less pessimistic worst-case analysis, in which the
randomness rules out pathological worst-case instances that are rarely observed in practice
but dominate the worst-case analysis. If the smoothed running time of an algorithm
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is low (i. e., the algorithm is efficient in expectation on any perturbed instance) and
inputs are subject to a small amount of random noise, then it is unlikely to encounter an
instance on which the algorithm performs poorly. In practice, random noise can stem
from measurement errors, numerical imprecision or rounding errors. It can also model
arbitrary influences, which we cannot quantify exactly, but for which there is also no
reason to believe that they are adversarial.
The framework of smoothed analysis was originally invented to explain the practical
success of the simplex method for linear programming. Spielman and Teng analyzed
linear programs in which each coefficient is perturbed by Gaussian noise with standard
deviation σ. They showed that the smoothed running time of the simplex method is
bounded polynomially in the input size and 1/σ. Hence, even if the amount of randomness
is small, the expected running time of the simplex method is polynomially bounded.
After its invention smoothed analysis has attracted a great deal of attention and it has
been applied in a variety of different contexts, e. g., in multi-objective optimization, local
search, clustering, and online algorithms. By now smoothed analysis is widely accepted
as a realistic alternative to worst-case analysis.

Semi-random Models. Semi-random input models can be considered as analogues of smoothed
analysis for graph problems and they even predate smoothed analysis by a couple of years.
There is a variety of semi-random graph models that go beyond the classical Erdős-Rényi
random graphs. In most of these models graphs are generated by a noisy adversary –
an adversary whose decisions (whether or not to insert a particular edge) have some
small probability of being reversed. Another well-studied class of semi-random models
are planted models, in which a solution (e. g., an independent set or a partitioning of the
vertices in color classes) is chosen and then edges are added randomly or by an adversary
of limited power in such a way that the given solution stays a valid solution for the given
problem.
Similar to smoothed analysis, semi-random models have been invented in order to better
understand the complexity of NP-hard graph problems because Erdős-Rényi random
graphs often do not reflect the instances one encounters in practice – many graph problems
are quite easy to solve on such random graphs.

Deterministic Input Models

Smoothed analysis and semi-random models are multi-purpose frameworks that do not
require much information about how exactly typical inputs for the optimization problem
at hand look like. If more information is available, it makes sense to identify structural
properties of typical inputs that make them easier to solve than general inputs. There are well
known examples of this approach like the TSP, which gets easier (in terms of approximation)
when restricted to inputs in which the distances satisfy the triangle inequality. Also in
computational geometry it is a very common phenomenon that problems become easier if
one assumes that no angles are too small or not too many objects overlap in the same region.

In recent years there has been an increased interest in more sophisticated deterministic
input models, in particular for clustering problems. Balcan, Blum, and Gupta introduce
and exploit the so-called (1 + α, ε)-approximation-stability property of data in the context
of clustering. This assumption is motivated by the observation that in many clustering
applications there is usually one correct but unknown target clustering, and the goal is to
find a clustering that is close to this target clustering and misclassifies only a few objects. On
the other hand in the common mathematical formulation of clustering problems a potential
function is defined that assigns a value to each clustering. Then a clustering is computed
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that approximately optimizes the potential function (exact optimization is usually NP-hard).
This approach makes sense only if clusterings that approximately optimize the potential
function are close to the target clustering. Hence, an implicit assumption underlying this
approach is that every clustering that approximately optimizes the objective function is
close to the desired target clustering. Balcan et al. made this assumption explicit: they
define that a clustering instance satisfies the (1 + α, ε)-approximation-stability assumption
if in every c-approximation of the potential function at most an ε-fraction of all objects is
misclassified compared to the target clustering. Balcan et al. showed that clustering instances
with this property are easier to solve than general instances. They have shown specifically
how to get ε-close to the target even for values of α for which finding a 1 + α approximation
is NP-hard. Voevodoski et al. have shown that this approach leads to very efficient and
accurate algorithms (with improved performance over previous state-of-the-art algorithms)
for clustering biological datasets.

Bilu and Linial and later Awasthi, Blum, and Sheffet have considered instances of
clustering problems that are perturbation resilient in the sense that small perturbations of
the metric space do not change the optimal solution. They argue that interesting instances
of clustering problems are stable and they prove that the assumption of stability renders
clustering polynomial-time solvable. Balcan and Liang further relaxed this assumption to
require only that the optimal solution after the perturbations is close to the optimal solution
for the unperturbed instance.

These results have triggered a significant amount of work in the past years in the context
of clustering and machine learning problems more generally, including subsequent works that
proposed new related stability conditions (e. g., the “proximity condition” by Kannan and
Kumar). Such works are very good examples demonstrating that identifying properties of
real-world inputs can be extremely beneficial for our understanding of algorithmic problems.

Program of the Seminar

The program of the seminar consisted of 23 talks, including the following survey talks:
Preprocessing of NP-hard problems, Uriel Feige;
Approximation-stability and Perturbation-stability, Avrim Blum;
Computational Feasibility of Clustering under Clusterability Assumptions, Shai Ben-
David;
Parametrizing the easiness of machine learning problems, Sanjoy Dasgupta;
Linear Algebra++: Adventures and Unsupervised Learning, Sanjeev Arora.

The rest of the talks were 30-minute presentations on recent research of the participants.
The time between lunch and the afternoon coffee break was mostly left open for individual
discussions and collaborations in small groups. One open-problem session was organized.

One of the main goals of the seminar was to foster collaborations among the researchers
working in the different branches of analysis of algorithms as sketched above. This is
particularly important because at the moment the two communities dealing with probabilistic
analysis and deterministic input models are largely disjoint. The feedback provided by the
participants shows that the goals of the seminar, namely to circulate new ideas and create
new collaborations, were met to a large extent.

The organizers and participants wish to thank the staff and the management of Schloss
Dagstuhl for their assistance and support in the arrangement of a very successful and
productive event.
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3 Overview of Talks

3.1 New Measures and Techniques in the Analysis of Online Search
Problems

Spyros Angelopoulos (UPMC – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Spyros Angelopoulos

Joint work of Angelopoulos, Spyros; Durr, Christoph; Lopez-Ortiz, Alejandro; Lucarelli, Giorgio; Panagiotou,
Konstantinos

We consider the problem of exploring a set of concurrent rays using a single searcher. The
rays are disjoint with the exception of a single common point, and in each ray a potential
target may be located. The objective is to design efficient search strategies for locating the
targets as quickly as possible.

In this talk we will describe some recent measures for the analysis of online search
problems and in particular for the star-search problem. The new measures transcend the
traditional worst-case analysis and give rise to new algorithmic approaches.

3.2 Adventures in Linear Algebra++ and Unsupervised Learning
Sanjeev Arora (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Sanjeev Arora

Linear Algebra++ is my name for some extensions to Linear Algebra problems (solving
linear equations, rank, finding better basis to represent the data, eigenvalues/eigenvectors)
that involve constraints such as sparsity, nonnegativity, and approximation (via `2 or another
norm).

These variants arise in machine learning settings and are often NP-hard, i. e., difficult
on worst-case inputs. Hence the only way to design provable algorithms for them is to go
beyond worst case analysis.

The talk surveyed some recent work of mine and others that does this, with applications
to ML problems such as topic modeling, sparse coding, nonnegative matrix factorization,
deep learning, etc.

3.3 Learning Submodular Functions: An Analysis beyond the Worst
Case

Maria-Florina Balcan (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Maria-Florina Balcan

Joint work of Balcan, Maria-Florina; Harvey, Nicholas J.A.; Florin Constantin, Satoru Iwata, Lei Wang; Nan Du,
Yingyu Liang, and Le Song

Main reference M.-F. Balcan, N. J.A. Harvey, “Learning Submodular Functions,” in Proc. of the 43rd Annual
ACM Symp. on Theory of Computing ( STOC’11), pp. 793–802, ACM, 2011; pre-print available
from author’s webpage.

URL http://dx.doi.org/10.1145/1993636.1993741
URL http://www.cs.cmu.edu/~ninamf/papers/LearningSubmodular-STOC.pdf

Submodular functions are discrete functions that model laws of diminishing returns and
enjoy numerous algorithmic applications that have been used in many areas, including social
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networks, machine learning, and economics. In this work we use a learning theoretic angle for
studying submodular functions. We provide algorithms for learning submodular functions,
as well as lower bounds on their learnability. In doing so, we uncover several novel structural
results revealing both extremal properties as well as regularities of submodular functions, of
interest to many areas.

Our lower bounds highlight the importance of providing an analysis on the learnability
of these functions beyond the worst case. For classes of functions that exhibit additional
structure in addition to diminishing returns (including probabilistic coverage functions and
XOS functions with bounded complexity) we provide stronger guarantees on their learnability
together with an interesting application for learning the influence function in a social network.

References
1 Maria Florina Balcan, Nick Harvey. Learning submodular functions. STOC 2011.
2 Maria Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation

functions. COLT 2012.
3 Maria Florina Balcan, Nan Du, Yingyu Liang, and Le Song. Influence Function Learning

in Information Diffusion Networks. ICML 2014.

3.4 Computational Efficiency of Clustering Well-Behaved Input
Instances

Shai Ben-David (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
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The goal of this talk is two-fold. First, I would like to provide a personally biased overview
of the research concerning the computational complexity of clustering under data niceness
assumptions. Having worked in this area for quite some time now, I feel that while the TCS
community appreciates work that may have practical relevance (and clustering is clearly
a task that arises in many applications), sometimes in this area there is a significant gap
between research motivation and the actual technical results it yields. A secondary aim of
this paper is to call the attention of the theoretical research community to some such gaps
and encourage further work along directions that might otherwise have seemed resolved.

Computational complexity theory aims to provide tools for the quantification and analysis
of the computational resources needed for algorithms to perform computational tasks. Worst-
case complexity is by far the best known, most researched and best understood approach
to computational complexity theory. In particular, NP-hardness is a worst-case-instance
notion. By saying that a task is NP-hard (and assuming P 6= NP), we imply that for every
algorithm, there exist infinitely many instances on which it will have to work hard. However,
for many problems this measure is unrealistically pessimistic compared to the experience of
solving them for practical instances. A problem may be NP-hard and still have algorithms
that solve it efficiently for any instance that is likely to occur in practice or any instance for
which one cares about finding an optimal solution to.

Several approaches have been proposed to bringing computational complexity theory
closer to the actual hardness faced when solving optimization problems on real data. Average
Case Complexity ([8], [3]), analyzes run time w.r.t. some given probability distribution over
the input instances. Smoothed Analysis ([9]) examines the running time of a given algorithm
by taking the worst case over all inputs of the average runtime of the algorithm over some
vicinity of the input. A different approach is to have a notion of “well-behaved-instances”, so
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that on one hand it is reasonable to expect that instances one comes across in applications are
so well behaved, and on the other hand there exist algorithms that can solve any well behaved
input in polynomial time. Various earlier approaches have addressed computational hardness
by defining subsets of relatively-easy instances (most notably, the area of parameterized
complexity ([7])). [2] and [5] propose general notions of tamed instances that apply across
different problems. Both of these papers apply some type of robustness to perturbations as
the key property of such well behaved instances. Algorithms that efficiently solve NP-hard
problems on such perturbation robust instances have been shown to exist for agnostic learning
of half-spaces ([4]) and for graph partitioning problems ([6]). [1] formalized a uniqueness
of the optimal solution criterion as a notion of well behaved clustering instances, which can
also be applied to other types of problems. In this note I address the application of such
approaches to clustering. I discuss those, as well as other notions of niceness-of-instances
that are specific to clustering problems, as a basis for alternatives to worst-case complexity
analysis of clustering tasks.

Clustering is a very useful paradigm that is being applied in a wide range of data
exploration tasks. The term “clustering” should be thought of as an umbrella notion for a
big and varied collection of tasks and algorithmic paradigms. Here, I will focus on clustering
tasks that are defined as discrete optimization problems. Most of those optimization problems
are NP-hard. I wish to examine whether this hardness remains an issue when we restrict
our attention to “clusterable data” – data for which a meaningful clustering exists (one can
argue that when there is no cluster structure in a given data set, there is no point in applying
a clustering algorithm to it). In other words, we wish to evaluate to what extent current
theoretical work supports the “Clustering is difficult only when it does not matter” (CDNM)
thesis. A hint to my conclusion – the answer is a resounding NO.

I’ll upload the full paper to arXiv soon.
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3.5 Approximation and Perturbation Stability
Avrim Blum (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Avrim Blum

Joint work of Blum, Avrim; Balcan, Maria-Florina; Gupta, Anupam; Awasthi, Pranjal; Sheffet, Or; Vempala,
Santosh

Often in optimization problems, the formal objective is a proxy for a goal of finding a desired
“target” answer. For example, in clustering news articles by topic, one would like to find a
clustering that agrees with how a human user would cluster them, or in segmenting a picture
into objects, one would like to find a segmentation that agrees with the ground truth. If one
encodes such a problem as (for instance) a k-means optimization problem, then implicitly
one is hoping that the optimal solution to the objective corresponds to a solution that is
similar to the desired target answer. This talk describes and discusses approximation-stability
and perturbation-resilience, two stability notions motivated by making this and associated
assumptions explicit. We present results for instances satisfying these conditions, focusing
on clustering but also discussing Nash equilibria and related problems.

Nearly all of this work is joint with Nina Balcan. Major portions were also joint with
Pranjal Awasthi, Anupam Gupta, Or Sheffet, and Santosh Vempala. Portions of the talk
also discuss work that I was not involved in (e. g., of Nina Balcan and Bruce Liang).

3.6 Fréchet Distance: Synergies of Algorithms and Lower Bounds
Karl Bringmann (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
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Main reference K. Bringmann, “Why walking the dog takes time: Fréchet distance has no strongly subquadratic

algorithms unless SETH fails,” in Proc. of the 55th IEEE Annual Symp. on Foundations of
Computer Science (FOCS’14), pp. 661–670, IEEE CS, 2014; pre-print available as
arXiv:1404.1448v2 [cs.CG].

URL http://dx.doi.org/10.1109/FOCS.2014.76
URL http://arxiv.org/abs/1404.1448v2

The Fréchet distance is a well-studied and very popular measure of similarity of two curves.
Regarding worst-case complexity, all known algorithms to compute the Fréchet distance of
two polygonal curves with n vertices have a runtime of Θ̃(n2), omitting logarithmic factors.
To obtain a conditional lower bound, we assume the Strong Exponential Time Hypothesis.
Under this assumption we show that the Fréchet distance cannot be computed in strongly
subquadratic time, i. e., in time O(n2−δ) for any δ > 0. This means that finding faster
algorithms for the Fréchet distance is as hard as finding faster algorithms for the satisfiability
problem, and the existence of a strongly subquadratic algorithm can be considered unlikely.

To overcome the worst-case quadratic time barrier, restricted classes of curves have been
studied that attempt to capture realistic input curves. The most popular such class are
c-packed curves, for which the Fréchet distance has a (1 + ε)-approximation in time Õ(cn/ε)
by Driemel, Har-Peled, and Wenk [3]. In dimension d ≥ 5 we show that this cannot be
improved to O((cn/

√
ε)1−δ) for any δ > 0 unless the Strong Exponential Time Hypothesis

fails. Moreover, exploiting properties that prevent stronger lower bounds, we present an
improved algorithm with runtime Õ(cn/

√
ε), matching our conditional lower bound.

This is partly based on joint work with Marvin Künnemann [2].
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3.7 Smoothed Analysis of the Successive Shortest Path and
Minimum-Mean Cycle Canceling Algorithms

Kamiel Cornelissen (University of Twente, NL)

License Creative Commons BY 3.0 Unported license
© Kamiel Cornelissen

Joint work of Brunsch, Tobias; Cornelissen, Kamiel; Manthey, Bodo; Röglin, Heiko
Main reference T. Brunsch, K. Cornelissen, B. Manthey, H. Röglin, “Smoothed Analysis of the Successive Shortest

Path Algorithm,” in Proc. of the 24th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’13), pp. 1180–1189, SIAM, 2013.

URL http://dx.doi.org/10.1137/1.9781611973105.85

For minimum-cost maximum flow (MCF) algorithms, worst-case running time bounds do
not always give a good indication for how the algorithms perform in practice. To model the
performance on practical instances, we analyze two MCF algorithms, the successive shortest
path (SSP) algorithm and the minimum-mean cycle canceling (MMCC) algorithm, in the
framework of smoothed analysis. An adversary can specify the flow network and the edge
capacities, but for the edge costs ce the adversary can only specify density functions fe of
maximum density φ, according to which the edge costs are drawn.

We show that in the smoothed setting the SSP algorithm only needs O(mnφ(m+n logn))
running time, in stark contrast to the worst case running time. We also show almost tight
lower bounds.

For the MMCC algorithm we show a smoothed running time of O(m2n2(n logn+ log φ)),
which is better than the worst-case running time for dense graphs. We also show a lower
bound of Ω(m2n log φ).

3.8 The (Parameterized) Complexity of Counting Subgraphs
Radu Curticapean (Universität des Saarlandes, DE)
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We study the parameterized complexity of the following counting version of subgraph
isomorphism: Given a “pattern” graph H and a “host” graph G, count the (not necessarily
induced) copies of H in G, that is, subgraphs of G that are isomorphic to H.
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In the first part, we follow an approach introduced by Marx and Pilipczuk, who studied
the decision version of this problem under a set of 10 relevant parameters that can be
imposed upon the graphs H and G, e. g., the size of the graphs, the number of connected
components, maximum degree, treewidth, genus, and others. For each choice of parameters
k1, . . . , kr and e1, . . . , es, they either gave an algorithm that solves subgraph isomorphism in
time f(k1, . . . , kr) · ng(e1,...,es) for computable functions f, g – or they showed that such an
algorithm would imply P = NP or FPT = W[1].

We are currently transferring this framework to the counting world and ask which
parameter combinations admit such algorithms for the problem of counting subgraphs. Note
that the set of algorithms can only shrink as counting is always harder than deciding. While
this is still work in progress, we have almost obtained a dichotomy for the problem. In
particular, we have identified some cases when counting is indeed harder than deciding.

In the second part, we consider only the parameter |H| and ask for f(|H|)·nO(1) algorithms
for counting subgraphs. However, in this second problem, the pattern H may only be drawn
from a fixed class C of graphs, which gives rise to the problem #Sub(C). There are very
simple pattern classes C for which #Sub(C) is already known to be #W[1]-complete, such
as the classes of paths, matchings or cycles. On the class of stars however, #Sub(C) actually
even admits an nO(1) algorithm (in particular, this algorithm does not exploit the parameter
|H|). We want to know for which classes #Sub(C) is fixed-parameter tractable (or even
polynomial-time solvable).

It turns out that the only restriction that makes #Sub(C) easy is a bound on the maximum
matching size in C. If C admits such a bound c, then #Sub(C) even admits a polynomial-time
algorithm with an exponent depending only on c. If C however has unbounded matching
size, then #Sub(C) is #W[1]-complete. In particular, we obtain no classes C for which
#Sub(C) is FPT, but (probably) not in P, and thus, under the widely-believed assumption
that FPT is not equal to #W[1], our dichotomy shows precisely which problems #Sub(C)
admit polynomial-time algorithms.

3.9 Parametrizing the Easiness of Machine Learning Problems
Sanjoy Dasgupta (University of California – San Diego, US)
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Joint work of Dasgupta, Sanjoy; Chaudhuri, Kamalika; Freund, Yoav; Kpotufe, Samory; Sinha, Kaushik

We consider a variety of basic machine learning tasks whose worst case complexity (compu-
tational, or statistical, or both) is exponentially bad. These include:

Nonparametric classification and regression
Nearest neighbor search and classification
Density-based clustering

In each case, the lower bounds are based on constructions that may be considered pathological
relative to instances that occur in practice. It has been fruitful to formally describe types
of structure that occur in natural instances, and to find algorithms that are able to exploit
such structure.

This undertaking is in its infancy, and there are many immediate open problems.
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3.10 How to Serve Impatient Users
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Consider the following problem of serving impatient users: we are given a set of customers
we would like to serve. We can serve at most one customer in each time step (getting value
vi for serving customer i). At the end of each time step, each as-yet-unserved customer i
leaves the system independently with probability qi, never to return. What strategy should
we use to serve customers to maximize the expected value collected?

The standard model of competitive analysis can be applied to this problem: picking the
customer with maximum value gives us half the value obtained by the optimal algorithm,
and using a vertex weighted online matching algorithm gives us 1− 1/e ≈ 0.632 fraction of
the optimum. As is usual in competitive analysis, these approximations compare to the best
value achievable by an clairvoyant adversary that knows all the coin tosses of the customers.
Can we do better?

We show an upper bound of ≈ 0.648 if we compare our performance to such an clairvoyant
algorithm, suggesting we cannot improve our performance substantially. However, these are
pessimistic comparisons to a much stronger adversary: what if we compare ourselves to the
optimal strategy for this problem, which does not have an unfair advantage? In this case,
we can do much better: in particular, we give an algorithm whose expected value is at least
0.7 of that achievable by the optimal algorithm. This improvement is achieved via a novel
rounding algorithm, and a non-local analysis.

3.11 Smoothed Analysis of Local Search for the Maximum-Cut
Problem

Michael Etscheid (Universität Bonn, DE)
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Even though local search heuristics are the method of choice in practice for many well-studied
optimization problems, most of them behave poorly in the worst case. This is in particular
the case for the Maximum-Cut Problem, for which local search can take an exponential
number of steps to terminate and the problem of computing a local optimum is PLS-complete.
To narrow the gap between theory and practice, we study local search for the Maximum-Cut
Problem in the framework of smoothed analysis in which inputs are subject to a small amount
of random noise. We show that the smoothed number of iterations is quasi-polynomial, i. e.,
it is bounded from above by a polynomial in nlog(n) and φ where n denotes the number of
nodes and φ denotes the perturbation parameter. This shows that worst-case instances are
fragile and it is a first step in explaining why they are rarely observed in practice.
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3.12 Preprocessing of NP-hard Problems
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Consider a setting in which an input instance for an NP-hard optimization problem is supplied
in two steps. In the first step, one gets to see some partial information about the input
instance, referred to as a “preview”. Based on this preview, a preprocessing algorithm can
spend arbitrary (e. g., exponential) time in preparing some polynomial size “advice” string.
In the second step, one gets to see the full input instance. Thereafter, a polynomial time
algorithm attempts to solve the instance, and may use for this purpose the advice string
prepared by the preprocessing algorithm. For various NP-hard optimization problems we
present natural preview functions whose study appears to be well motivated. In certain
cases we can prove that preprocessing leads to improved approximation ratios, and in certain
cases we can prove limitations on how much preprocessing can help. Many natural questions
within this framework remain open, and can serve as fertile ground for future research.
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3.13 Average-Case Analysis of Parameterized Problems
Tobias Friedrich (Universität Jena, DE)
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Many real world problems are NP-hard and are therefore generally believed not to be solvable
in polynomial time. Additional assumptions on the inputs are necessary to solve such
problems efficiently. Two typical approaches are (i) parameterized complexity where we
assume that a certain parameter of the instances is small, and (ii) average-case complexity
where we assume a certain probability distribution on the inputs. There is a vast literature
on both approaches, but none about their intersection. Nevertheless, combining these two
approaches seems natural and potentially useful in practice.

Analogous to the classical average-case complexity classes of Levin, we define a hierarchy
of parameterized average-case complexity classes. To show the applicability of this theory
we prove that the fundamental W[1]-complete problem k-Clique drops to the average-case
analog of FPT for Erdős- Rényi random graphs of all densities and scale-free inhomogeneous
random graphs.
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3.14 On the Smoothed Approximation Performance of the 2-OPT
Heuristic

Marvin Künnemann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Marvin Künnemann

Joint work of Künnemann, Marvin; Manthey, Bodo

While the 2-OPT heuristic is a very simple and popular approach to solve Euclidean TSP,
the theoretical understanding of its practical performance is still quite restricted. As a
welcome exception, the smoothed analysis perspective proved useful to explain particularly
the heuristic’s fast running time observed in practice [1].

In this talk, we focus on the question of how well this paradigm also explains the practical
approximation performance of the 2-OPT heuristic. We present new upper and lower bounds
and, along the way, discuss aspects of the Gaussian and the φ-bounded perturbation models.

This is joint work (in progress) with Bodo Manthey.
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3.15 Constant Factor Approximation for Balanced Cut in the PIE
Model
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We propose and study a new semi-random semi-adversarial model for Balanced Cut, a planted
model with permutation-invariant random edges (PIE). Our model is much more general
than planted models considered previously. Consider a set of vertices V partitioned into two
clusters L and R of equal size. Let G be an arbitrary graph on V with no edges between
L and R. Let Erandom be a set of edges sampled from an arbitrary permutation-invariant
distribution (a distribution that is invariant under permutation of vertices in L and in R).
Then we say that G + Erandom is a graph with permutation-invariant random edges. We
present an approximation algorithm for the Balanced Cut problem that finds a balanced cut
of cost O(|Erandom|) + n · polylog(n) in this model.

In the most interesting regime, this is a constant factor approximation with respect to
the cost of the planted cut.
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3.16 Bilu-Linial Stable Instances of Max Cut and Minimum Multiway
Cut
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We investigate the notion of stability proposed by Bilu and Linial. We obtain an exact
polynomial-time algorithm for γ-stable Max Cut instances with γ > c

√
logn log logn for some

absolute constant c > 0. Our algorithm is robust: it never returns an incorrect answer; if the
instance is γ-stable, it finds the maximum cut; otherwise, it either finds the maximum cut or
certifies that the instance is not γ-stable. We prove that there is no robust polynomial-time
algorithm for γ-stable instances of Max Cut when γ is less than the best approximation
factor for Sparsest Cut with non-uniform demands. That suggests that solving γ-stable
instances with γ = o(

√
logn) might be difficult or even impossible.

Our algorithm is based on semidefinite programming. We show that the standard SDP
relaxation for Max Cut (with `2

2 triangle inequalities) is integral if γ > D(n), where D(n) is
the least distortion with which every n point metric space of negative type embeds into `1.
On the negative side, we show that the SDP relaxation is not integral when γ < D(n/2).
Moreover, there is no tractable convex relaxation for γ-stable instances of Max Cut when γ
is less than the best approximation factor for Sparsest Cut.

Our results significantly improve previously known results. The best previously known
algorithm for γ-stable instances of Max Cut required that γ > c

√
n (for some c > 0) [1]. No

hardness results were known for the problem.
Additionally, we present an exact robust polynomial-time algorithm for 4-stable instances

of Minimum Multiway Cut. We also study a relaxed notion of weak stability and present
algorithms for weakly stable instances of Max Cut and Minimum Multiway Cut.
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3.17 Smoothed Analysis of Local Search
Bodo Manthey (University of Twente, NL)
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Local search algorithms are a powerful tool for finding good solutions for optimization
problems that often works remarkable well in practice. Yet many local search algorithms
show a very bad performance in the worst case.

Smoothed analysis has been applied successfully in order to explain the performance of
local search algorithms.

We survey results and open problems of smoothed analysis applied to local search
algorithms.
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3.18 Analyzing Non-Convex Optimization for Dictionary Learning
Tengyu Ma (Princeton University, US)
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Dictionary Learning, or as it is often called sparse coding is a basic algorithmic primitive in
many machine learning applications, such as image denoising, edge detection, compression
and deep learning. Most of the existing algorithms for dictionary learning minimize a
non-convex function by heuristics like alternating minimization, gradient descent or their
variants. Despite their success in practice, they are not mathematically rigorous because
they could potentially converge to local minima.

In this work we show that, alternating minimization and some other variants indeed
converge to global minima provably, under a generative model where samples are of the
from A · x, and A is a incoherent and low spectral norm ground truth dictionary and x is a
stochastic sparse vector. Our framework of analysis is potentially useful for analyzing other
alternating minimization type algorithms for problems with hidden variables. This is joint
work with Sanjeev Arora, Rong Ge and Ankur Moitra.

3.19 Efficient Algorithms Beyond Worst-Case Combinatorial Bounds
Matthias Mnich (Universität Bonn, DE)
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A common trait in combinatorics is to find maximum-size or minimum-size substructures of
discrete object, and to measure the size of the structure in terms of the size of the object.
These combinatorial results often come with polynomial-time algorithms that show how to
find the desired structure of optimal size efficiently. For example, in any 3-SAT formula a
fraction of 7/8 of its clauses can always be satisfied by some assignment which can be found
in polynomial time.

We address the question how to beat the extremal bounds by a small additive constant k,
by algorithms whose run-time depends exponentially only on this k. Such kind of problems
are called “parameterizations above guarantee”. We present some recent results and work in
progress in this area.

3.20 Smoothed Analysis of Multi-Objective Optimization
Heiko Röglin (Universität Bonn, DE)
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For most multi-objective optimization problems, the number of Pareto-optimal solutions is
usually small in experiments even though in the worst case instances with an exponential
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number of Pareto-optimal solutions exist. In order to explain this discrepancy, the number
of Pareto-optimal solutions has been studied in the model of smoothed analysis in a series of
papers over the last decade. In this talk we survey some recent upper and lower bounds on
the smoothed number of Pareto-optimal solutions.

3.21 Decompositions of Triangle-Dense Graphs
Tim Roughgarden (Stanford University, US)
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High triangle density – the graph property stating that a constant fraction of two-hop paths
belong to a triangle – is a common signature of social networks. This paper studies triangle-
dense graphs from a structural perspective. We prove constructively that significant portions
of a triangle-dense graph are contained in a disjoint union of dense, radius 2 subgraphs. This
result quantifies the extent to which triangle-dense graphs resemble unions of cliques. We
also show that our algorithm recovers planted clusterings in approximation-stable k-median
instances.

3.22 Utilitarian View of Rankings
Or Sheffet (Harvard University, US)
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Joint work of Boutillier, Craig; Caragiannis, Ioannis; Haber, Simi; Lu, Tyler; Procaccia, Ariel; Sheffet, Or
Main reference C. Boutilier, I. Caragiannis, S. Haber, T. Lu, A.D. Procaccia, O. Sheffet, “Optimal social choice

functions: a utilitarian view,” in Proc. of the 13th ACM Conf. on Electronic Commerce (EC’12),
pp. 197–214, ACM, 2012; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1145/2229012.2229030
URL http://www.cs.cmu.edu/~arielpro/papers/optvoting.full.pdf

In the extensively studied problem of Social Choice (or rank aggregation) n individuals
are picking together one alternative out of m possible alternatives. Each individual has a
preference among all m alternatives (a total ranking), and the social choice function takes as
input these n rankings and outputs a single chosen alternative, called the winner. In this
talk we do not focus on the age-old question of truthful rank aggregation, but rather attempt
to define the high-level idea that the winner is supposed to be the most favorable alternative
for the entire population.

Inspired but newly formulated ideas as to the role of clustering [1], we view social choice
as a proxy for maximizing social welfare. Our premise is that agents have (possibly implicit
or latent) utility functions, and the goal of a social choice function is to maximize the social
welfare – i. e., (possibly weighted) sum of agent utilities – of the selected alternative. We
study the model both under worst-case and non-worst case assumptions. We will also discuss
current, open ended, work as to maximizing utility of a matching / stable matching.
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3.23 Probabilistic Lipschitzness: A Measure of Data Niceness
Ruth Urner (Carnegie Mellon University – Pittsburgh, US)
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Main reference R. Urner, “Learning with non-Standard Supervision,” Ph.D. Thesis, University of Waterloo, 2013.
URL https://uwspace.uwaterloo.ca/handle/10012/7925

Machine learning theory mostly analyses the learning performance of learning in the worst
case over all data-generating distributions. However, this framework is often too pessimistic.
In particular, for learning settings that employ unlabeled data, such as semi-supervised and
active learning, provable savings in label complexity are impossible without assumptions of
niceness on the data generating distribution. We propose Probabilistic Lipschitzness (PL),
to model marginal-label relatedness of a distribution. This notion is particularly useful
for modeling niceness of distributions with deterministic labeling functions. We present
convergence rates for Nearest Neighbor learning under PL. We further summarize reductions
in labeled sample complexity for learning with unlabeled data (semi-supervised and active
learning) under PL.
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