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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14381 “Neural-
Symbolic Learning and Reasoning”, which was held from September 14th to 19th, 2014. This
seminar brought together specialist in machine learning, knowledge representation and reason-
ing, computer vision and image understanding, natural language processing, and cognitive science.
The aim of the seminar was to explore the interface among several fields that contribute to the
effective integration of cognitive abilities such as learning, reasoning, vision and language under-
standing in intelligent and cognitive computational systems. The seminar consisted of contributed
and invited talks, breakout and joint group discussion sessions.
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Neural-symbolic computation aims at building rich computational models and systems
through the integration of connectionist learning and sound symbolic reasoning [1, 2]. Over
the last three decades, neural networks were shown effective in the implementation of
robust large-scale experimental learning applications. Logic-based, symbolic knowledge
representation and reasoning have always been at the core of Artificial Intelligence (AI)
research. More recently, the use of deep learning algorithms have led to notably efficient
applications, with performance comparable to those of humans, in particular in computer
image and vision understanding and natural language processing tasks [3, 4, 5]. Further,
advances in fMRI allow scientists to grasp a better understanding of neural functions, leading
to realistic neural-computational models. Therefore, the gathering of researchers from several
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communities seems fitting at this stage of the research in neural computation and machine
learning, cognitive science, applied logic, and visual information processing. The seminar was
an appropriate meeting for the discussion of relevant issues concerning the development of
rich intelligent systems and models, which can, for instance integrate learning and reasoning
or learning and vision. In addition to foundational methods, algorithms and methodologies
for neural-symbolic integration, the seminar also showcase a number of applications of
neural-symbolic computation.

The meeting also marked the 10th anniversary of the workshop series on neural-symbolic
learning and reasoning (NeSy), held yearly since 2005 at IJCAI, AAAI or ECAI. The NeSy
workshop typically took a day only at these major conferences, and it became then clear
that given that the AI, cognitive science, machine learning, and applied logic communities
share many common goals and aspirations it was necessary to provide an appropriately
longer meeting, spanning over a week. The desire of many at NeSy to go deeper into the
understanding of the main positions and issues, and to collaborate in a truly multidisciplinary
way, using several applications (e. g. natural language processing, ontology reasoning,
computer image and vision understanding, multimodal learning, knowledge representation
and reasoning) towards achieving specific objectives, has prompted us to put together this
Dagstuhl seminar marking the 10th anniversary of the workshop.

Further, neural-symbolic computation brings together an integrated methodological
perspective, as it draws from both neuroscience and cognitive systems. In summary, neural-
symbolic computation is a promising approach, both from a methodological and computational
perspective to answer positively to the need for effective knowledge representation, reason-
ing and learning systems. The representational generality of neural-symbolic integration
(the ability to represent, learn and reason about several symbolic systems) and its learn-
ing robustness provides interesting opportunities leading to adequate forms of knowledge
representation, be they purely symbolic, or hybrid combinations involving probabilistic or
numerical representations.

The seminar tackled diverse applications, in computer vision and image understanding,
natural language processing, semantic web and big data. Novel approaches needed to tackle
such problems, such as lifelong machine learning [6], connectionist applied logics [1, 2], deep
learning [4], relational learning [7] and cognitive computation techniques have also been
extensively analyzed during the seminar. The abstracts, discussions and open problems listed
below briefly summarize a week of intense scientific debate, which illustrate the profitable
atmosphere provided by the Dagstuhl scenery. Finally, a forthcoming article describing
relevant challenges and open problems will be published at the Symposium on Knowledge
Representation and Reasoning: Integrating Symbolic and Neural Approaches at the AAAI
Spring Symposium Series, to be held at Stanford in March 2015 [8]. This article also adds
relevant content and a view of the area, illustrating its richness which may indeed lead to
rich cognitive models integrating learning and reasoning effectively, as foreseen by Valiant [9].

Finally, we see neural-symbolic computation as a research area which reaches out to
distinct communities: computer science, neuroscience, and cognitive science. By seeking
to achieve the fusion of competing views it can benefit from interdisciplinary results. This
contributes to novel ideas and collaboration, opening interesting research avenues which
involve knowledge representation and reasoning, hybrid combinations of probabilistic and
symbolic representations, and several topics in machine learning which can lead to both
the construction of sound intelligent systems and to the understanding and modelling of
cognitive and brain processes.
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3 Overview of Talks

3.1 Symbolic neural networks for cognitive capacities
Tsvi Achler (IBM Almaden Center, US)

License Creative Commons BY 3.0 Unported license
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Pattern recognition (identifying patterns from the environment using those stored in memory)
and recall (describing or predicting the inputs associated with a stored pattern that can be
recognized) are essential for neural-symbolic processing. Without them the brain cannot
interact with the world e. g.: understand the environment, logic, and reason. Neural networks
are efficient, biologically plausible algorithms that can perform large scale recognition.
However, most neural network models of recognition perform recognition but not recall.
It remains difficult to connect models of recognition with models of logic and emulate
fundamental brain functions, because of the symbolic recall limitation. Before discussing
symbolic networks further, one of the important realizations from the Dagstuhl seminar is that
folks that focus on neural networks have a different definition of symbolic (and sub-symbolic)
than folks that focus on logic. This matter was not fully solved. Subsequently I carefully
define symbolic and note that in some literatures this term may be used differently. Here
symbolic (call it “functional” symbolic?) is defined by the relation between input features and
outputs (e. g. zebra has 4 legs). I assume that weights of neurons responsible for zebra demark
mark this in connection weights that do not change. Let me clarify. There are two types of
neural networks in the literature defined by how neurons learn for recognition processing:
localist and globalist. In localist methods only neurons related to the information adjust their
weights based learning on rules quantified within the neuron. Simple Hebbian learning is an
example of this rule. Globalist methods in contrasts may require all neurons (including those
that are not directly responsible) to change their weights to learn a new relation. PDP and
feedforward models are examples of global learning. My symbolic definition is localist because
I assumed the zebra neuron is independent of other neurons in that it does not change if
another neuron is added with another symbolic relation (e. g. there exists another neuron
representing another animal that has 0,4,6,8 or however many legs). Using this definition a
neural network that is symbolic neural network cannot be globalist. A symbolic network also
requires the ability to recall: to be able to derive from the symbol (e. g. zebra) what are
the characteristic components (e. g. 4 legs, stripes etc). Thus the label (e. g. zebra) behaves
as a symbol that encapsulates the components that are associated with it (legs, stripes,
tail, hooves etc). Globalist networks cannot recall and subsequently in some literatures
are called sub-symbolic (e. g. [2, 3]). Fortunately localist networks involve symmetrical
top-down connections (from label to components) and the best example of such networks
are auto-associative networks (e. g. Restricted Boltzmann Machines for Deep Learning).
However auto-associative networks have self-excitatory symmetrical connections (positive
feedback). A property of self-excitatory feedback is that iterative activation of even small
values will lead to the maximal values regardless whether non-binary values are used. This
degrades performance. I introduce a different localist model from auto-associative networks
that uses are self- inhibitory symmetrical connections (negative feedback). The proposed
model can converge to non-binary real-valued activations and is sensitive to real-valued
weights. Moreover the network can be shown mathematically to obtain analogous solutions
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as standard feedforward (globalist) neural networks. Thus we have a model that can be as
powerful as popular globalist neural networks, but is localist and symbolic. It can perform
recall: retrieve the components involved in recognizing the label [1]. I hope to see more focus
on these type of approaches within the neural symbolic community.
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3.2 On extracting Rules for: enriching ontological knowledge bases,
complementing heterogeneous sources of information, empowering
the reasoning process

Claudia d’Amato (University of Bari, IT)
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The Linked Open Data (LOD) cloud, which represents a significant example of Bid Data, could
be seen as a huge portion of assertional knowledge whose intentional part is formally defined
by existing OWL ontologies freely available on the Web. LOD constitutes a tremendous
source of knowledge, that as such needs effective and efficient methods for its management.
Data mining techniques could play a key role with this respect. The focus of the talk is
on the discovery and extraction of knowledge patterns that are hidden in the (often noisy
and inherently incomplete) data. Hidden knowledge patterns are extracted in the form of
(relational) association rules by exploiting the evidence coming from the ontological knowledge
bases [1] and/or from heterogeneous sources of information (i. e. an ontology and a relational
databases referring to the same domain) [2] as well as by exploiting reasoning capabilities.
While using methods at the state of the art, that as such necessarily need a further and
deeper investigation for really scaling on very large data sets, the main focus will be on the
potential that the extracted rules may have for: enriching existing ontological knowledge
bases, for complementing heterogeneous sources of information, and for empowering the
deductive reasoning process.

Particularly, the talk is organized in two parts. In the first one, the focus is on extracting
hidden knowledge patterns from purely ontological knowledge bases. In the second one, the
focus is on extracting hidden knowledge patterns from heterogeneous source of information.

The key observation motivating the first part of the talk is given by the fact that
ontological knowledge bases are often not complete in the sense that missing concept and
role assertions, with respect to the reference domain, can be found, as well as missing
disjointness axioms and/or relationships. In order to cope with this problem, a method for
discovering DL-Safe [4, 5] Relational Association rules, represented with SWRL [3] language,
is presented [1]. This method is intended to discover all possible hidden knowledge patters
that may be used for: a) (semi-)automatizing the completion of the assertional knowledge
(given the pattern in the left hand side of a discovered rule, a new concept/role assertion may
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be induced by the right hand side of the rule); b) straightforwardly extending and enriching
the expressive power of existing ontologies with formal rules, while ensuring and maintaining
the decidability of the reasoning operators (because DL-Safe SWRL rules are extracted [3, 5]);
c) suggesting knew knowledge axioms (induced by the discovered association rules). Inspired
to [11, 12], the proposed method implements a level-wise generate-and-test approach that,
starting with an initial general pattern, i. e. a concept name (jointly with a variable name) or
a role name (jointly with variable names) proceeds, at each level, with generating a number
of specializations by the use of suitable operators defined for the purpose. Each specialized
pattern is then evaluated, on the ground of formally defined conditions, for possible pruning.
This process is iterated until a predefined stopping criterion met. Besides of developing a
scalable algorithm, the experimental evaluation of the developed method represents one of
the most challenging problem since it requires the availability of gold standards (currently
not available) with respect to which assessing the validity of the induced new knowledge. A
possible solution is presented in [6].

As regards the second part of the talk, the motivating observation is given by the fact that
even if available domain ontologies are increasing over the time, there is still a huge amount
of data stored and managed with RDBMS and referring to the same domain. The key idea
is that this complementarity could be exploited for discovering knowledge patterns that are
not formalized within the ontology (or the RDBMS) but that are learnable from the data.
For the purpose, a framework for extracting hidden knowledge patterns across ontologies
and relational DBMS, called Semantically Enriched Association Rules, is illustrated [2, 13].
It is grounded on building an integrated view of (a part of) the RDBM and the ontology
in a tabular representation which allows the exploitation of well know state of the art
algorithms, such as the Apriori algorithm [14], for extracting Association Rules. The
extracted patterns can be used for enriching the available knowledge (in both format) and
for refining existing ontologies. Additionally, the extracted semantically enriched association
rules can be exploited when performing deductive reasoning on an ontological knowledge bases.
Specifically, a modified Tableaux algorithm, that we call Data Driven Tableaux algorithm
is introduced [15, 13]. It is intended as a method for performing automated reasoning on
grounded knowledge bases (i. e. knowledge bases linked to RDBMS data) which combines
logical reasoning and statistical inference (coming from the discovered semantically enriched
association rules) thus making sense of the heterogeneous data sources. The goals of the Data
Driven Tableaux algorithm are twofold. On one hand it aims at reducing the computational
effort for finding a model for a given (satisfiable) concept. On the other hand it aims at
suppling the “most plausible model”, that is the one that best fits the available data, for a
given concept description. The key point of the algorithm is a defined heuristic, exploiting
the semantically enriched association rules, to be used when random choices (e. g. when
processing a concepts disjunction) occur. The proposed framework has to be intended as the
backbone of a mixed models representation and reasoning.

The exploitation of association rules is not new in the Semantic Web context. In [6], a
framework for discovering association rules for predicting new role assertions from an RDF
data source is proposed, but no reasoning capabilities and TBox information are exploited
for the purpose. Additionally, the extracted patterns are not integrated in the considered
source of knowledge. Heterogeneous sources of information have been considered in [7, 8],
where frequent patterns are discovered, respectively in the form of DATALOG clauses, from
an AL-Log knowledge base at different granularity level, and in the form of conjunctive
queries, given a specified objective. Additional usages of association rules have been proposed
in [9], where association rules are learnt from RDF data for inducing a schema ontology, but
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without exploiting any reasoning capabilities and in [10] where association rules are exploited
for performing RDF data compression.
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3.3 Neural-Symbolic Computing, Deep Logic Networks and
Applications

Artur d’Avila Garcez (City University London, GB)
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In this talk I reviewed the work carried out with many collaborators over the past 15 years
in the area of neural-symbolic computing, starting with the CILP system for integrating
logic programming and recurrent neural networks trained with backpropagation [1]. CILP
networks take advantage of background knowledge during learning, which can improve training
performance as shown in power systems and bioinformatics applications [2]. Knowledge
extraction allows CILP networks to be described in symbolic form for the sake of transfer
learning and explanation [3]. Extensions of CILP, including the use of feedback, network
ensembles and nested networks, allows the representation and learning of various forms of
nonclassical reasoning, including modal, temporal and epistemic reasoning [4, 5], as well as
abduction [6]. This has led to a full solution in connectionist form of the so-called muddy
children puzzle in logic [7]. Fibring of CILP networks offers further expressive power by
combining networks of networks for simultaneous learning and reasoning [8]. Applications
have included training and assessment in simulators, normative reasoning and rule learning,
integration of run-time verification and adaptation, action learning and description in videos
[9, 10, 13]. Current developments and efforts have been focused on: fast relational learning
using neural networks (the CILP++ system) [11] and effective knowledge extraction from
large networks, including deep networks and the use of knowledge extraction for transfer
learning [12]. Future applications include the analysis of complex networks, social robotics
and health informatics, and multimodal learning and reasoning combining video and audio
data with metadata.
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3.4 Dreaming and Consciousness in Deep Neural-Symbolic Cognitive
Agents

Leo de Penning (TNO Behaviour and Societal Sciences – Soesterberg, NL)
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Deep Boltzmann Machines (DBM) have been used as a computational cognitive model in
various AI-related research and applications, notably in computational vision and multimodal
fusion. Being regarded as a biological plausible model of the human brain, the DBM is also
becoming a popular instrument to investigate various cortical processes in neuroscience. In
this paper, we describe how a multimodal DBM is implemented as part of a Neural-Symbolic
Cognitive Agent (NSCA) for real-time multimodal fusion and inference of streaming audio
and video data. We describe how this agent can be used to simulate certain neurological
mechanisms related to hallucinations and dreaming and how these mechanisms are beneficial
to the integrity of the DBM. Also we will explain how the NSCA is used to extract multimodal
information from the DBM and provide a compact and practical iconographic temporal logic
formula for complex relations between visual and auditory patterns. Finally we will discuss
the implications of the work in relation to Machine Consciousness.
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3.5 Progress in Probabilistic Logic Programming
Luc De Raedt (KU Leuven, BE)

Probabilistic logic programs combine the power of a programming language with a possible
world semantics, typically based on Sato’s distribution semantics and they have been studied
for over twenty years. In this talk, I introduced the concepts underlying probabilistic
programming, their semantics, different inference and learning mechanisms. I then reported
on recent progress within this paradigm. This was concerned with an extension towards
dealing with continuous distributions as well as coping with dynamics. This is the framework
of distributional clauses that has been applied to several applications in robotics, for tracking
relational worlds in which objects or their properties are occluded in real time. Finally, some
remaining open challenges were discussed.

See also the websites http://dtai.cs.kuleuven.be/problog/ and http://dtai.cs.kuleuven.be/
ml/systems/DC/ for more details and an interactive tutorial on ProbLog.
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3.6 Semantic and Fuzzy Modelling and Recognition of Human
Activities in Smart Spaces. A case study on Ambient Assisted
Living

Natalia Díaz-Rodríguez (Turku Centre for Computer Science, FI)
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Human activity recognition in everyday environments is a critical task in Ambient Intelligence
applications to achieve proper Ambient Assisted Living. Key challenges still remain to be
tackled to achieve robust methods. Our hybrid system allows to model and recognize a set
of complex scenarios where vagueness and uncertainty is inherent to the human nature of
the users that perform it. We provide context meaning to perform sub- activity tracking
and recognition from depth video data. To achieve a more loosely coupled model that lets
flexibility to be part of the recognition process, we validate the advantages of a hybrid
data-driven and knowledge-driven system with a challenging public dataset and achieve an
accuracy of 90.1% and 91.1% respectively for low and high-level activities. The handling of
uncertain, incomplete and vague data (i. e., missing sensor readings or execution variations)
is tackled for first time with a public depth-video dataset taking into account the semantics
of activities, sub-activities and real-time object interaction. This entails an improvement
over both entirely data-driven approaches and merely ontology- based approaches.
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3.7 Making the latent category structure of fMRI data explicit with
Formal Concept Analysis

Dominik Endres (Universität Marburg, DE)
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Understanding how semantic information is represented in the brain has been an important
research focus of Neuroscience in the past few years. The work I presented in this talk is
aimed at extracting concepts and their relationships from brain activity, and to correlate these
concept with behavioral measures. We showed previously (Endres et al 2010) that Formal
Concept Analysis (FCA) can reveal interpretable semantic information (e. g. specialization
hierarchies, or feature-based representations) from electrophysiological data. Unlike other
analysis methods (e. g. hierarchical clustering), FCA does not impose inappropriate structure
on the data. FCA is a mathematical formulation of the explicit coding hypothesis (Foldiak,
2009) Furthermore we (Endres et al 2012) investigated whether similar findings can be
obtained from fMRI BOLD responses recorded from human subjects. While the BOLD
response provides only an indirect measure of neural activity on a much coarser spatio-
temporal scale than electrophysiological recordings, it has the advantage that it can be
recorded from humans, which can be questioned about their perceptions during the experiment.
Furthermore, the BOLD signal can be recorded from the whole brain simultaneously. In
our experiment, a single human subject was scanned while viewing 72 grayscale pictures of
animate and inanimate objects in a target detection task. These pictures comprise the formal
objects for FCA. We computed formal attributes by learning a hierarchical Bayesian classifier,
which maps BOLD responses onto binary features, and these features onto object labels. The
connectivity matrix between the binary features and the object labels can then serve as the
formal context. In a high-level visual cortical area (IT), we found a clear dissociation between
animate and inanimate objects with the inanimate category subdivided between animals
and plants when we increased the number of attributes extracted from the fMRI signal.
The inanimate objects were hierarchically organized into furniture and other common items,
including vehicles. We also used FCA to display organizational differences between high-level
and low-level visual processing areas. For a quantitative validation of that observation, we
show that the attribute structure computed from the IT fMRI signal is highly predictive
of subjective similarity ratings, but we found no such relationship to responses from early
visual cortex. Collaborators: Peter Foldiak, Uta Priss, Ruth Adam, Uta Noppeney
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3.8 Symbolic Data Mining Methods Applied to Human Sleep Records
Jacqueline Fairley (Emory University – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Jacqueline Fairley

Joint work of Fairley, Jacqueline; Georgoulas, George; Karvelis, Petros; Stylios, Chrysostomos; Rye, David;
Bliwise, Donald

Main reference J.A. Fairley, G. Georgoulas, P. Karvelis, C.D. Stylios, D.B. Rye, D. L. Bliwise, “Symbolic
Representation of Human Electromyograms for Automated Detection of Phasic Activity during
Sleep,” 2014.

URL https://www.academia.edu/7659893/SYMBOLIC_REPRESENTATION_OF_HUMAN_
ELECTROMYOGRAMS_FOR_AUTOMATED_DETECTION_OF_PHASIC_ACTIVITY_
DURING_SLEEP

Background: Phasic electromyographic (EMG)/muscle activity in human overnight polysom-
nograms (PSGs) represent a potential indicator/quantitative metric for identifying various
neurodegenerative disorder populations and age-matched controls [1].

Unfortunately, visual labeling of phasic EMG activity is time consuming making this
method unscalable for clinical implementation. Therefore, we propose computerized labeling
of EMG activity in a detection scheme utilizing k-Nearest Neighbor classification and Symbolic
Aggregate approXimation (SAX), a novel algorithm from the field of time series data mining
that transforms a time series, such as EMG, into a string of arbitrary symbols [2]. A primary
advantage of SAX analysis includes access to robust symbolic based data mining algorithms
viable for scalable computing.

Methods: Six male subjects (S001:S006) polysomnograms (PSGs)/sleep data sets were
visually scored, using one second epochs, for phasic and non-phasic left and right leg EMG
activity (sampling rate 200Hz), by the same trained visual scorer. Phasic muscle activity
epochs were characterized by amplitudes visually exceeding four times the surrounding
background activity and having time durations between 100 to 500 msec. SAX was applied
to all EMG records using a one second non-overlapping moving window, four symbol
alphabet, and 1

2 sec frames, followed by translation of the SAX string into an intelligent
icon, a color mapped image representing the frequency of each word in the SAX string.
Results: SAX based classification scheme results, using 10-fold cross validation and k- Nearest
Neighbor Classification (best of k:1:1:7; minimum value:increment value:maximum value),
were compared to visual labeling [3]. Detection of non-phasic EMG activity exceeded 90%
for all six subjects: S001 (98.4), S002 (97.8), S003 (98.1), S004 (93.6), S005 (95.2), and S006
(95.8). Phasic EMG activity detection surpassed 80% for three subjects: S001 (90.5), S004
(81.8), and S006 (87.1). However, phasic EMG activity detection decreased in performance
for S002 (61.0), S003 (53.6) and S005 (68.0).

Conclusions: Detection rates for half of the subjects indicate feasibility of replacing
tedious expert visual scoring with the proposed computational scheme. However, this scheme
lacks robustness across all subjects, and requires refinement of SAX alphabet size and frame
length along with comparison with other classification algorithms such as Support Vector
Machines and Random Forest. Most importantly, efficient fine-tuning of this computational
scheme promises to hasten computerized EMG activity scoring for neurodegenerative disorder
tracking in clinical settings.
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3.9 Affordances, Actionability, and Simulation
Jerry A. Feldman (ICSI – Berkeley, US)
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The notion of affordances depends crucially on the actions available to an agent in context.
When we add the expected utility of these actions in context, the result has been called
actionability. There is increasing evidence that AI and Cognitive Science would benefit from
shifting from a focus on abstract “truth” to treating actionability as the core issue for agents.
Actionability also somewhat changes the traditional concerns of affordances to suggest a
greater emphasis on active perception. An agent should also simulate (compute) the likely
consequences of actions by itself or other agents. In a social situation, communication and
language are important affordances.

3.10 Simulation Semantics and the Rebirth of NLU
Jerry A. Feldman (ICSI – Berkeley, US)
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Natural Language Understanding (NLU) was one of the main original goals of artificial
intelligence and cognitive science. This has proven to be extremely challenging and was nearly
abandoned for decades. We describe an implemented system that supports full NLU for tasks
of moderate complexity. The natural language interface is based on Embodied Construction
Grammar and simulation semantics. The system described here supports dialog with an
agent controlling a simulated robot, but is flexible with respect to both input language and
output task.

3.11 The Neural Binding Problem(s)
Jerry A. Feldman (ICSI – Berkeley, US)
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As with many other “problems” in vision and cognitive science, “the binding problem” has
been used to label a wide range of tasks of radically different behavioral and computational
structure. These include a “hard” version that is currently intractable, a feature-binding
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variant that is productive routine science and a variable-binding case that is unsolved, but
should be solvable. The talk will cover all these and some related problems that seem
intractably hard as well as some that are unsolved, but are being approached with current
and planned experiments.
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3.12 Fast Relational Learning using Neural Nets
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Relational learning can be described as the task of learning first-order logic rules from
examples. It has enabled a number of new machine learning applications, e. g. graph
mining and link analysis. We introduce a fast method and system for relational learning,
called CILP++, which handles first-order logic knowledge and have been on several ILP
datasets, comparing results with Aleph. The results show that CILP++ can achieve accuracy
comparable to Aleph, while being generally faster. Several alternative approaches, both for
BCP propositionalization and for CILP++ learning, are also investigated.

3.13 Evolutionary and Swarm Computing for the Semantic Web
Christophe D. M. Gueret (DANS – Den Hague, NL)
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The Semantic Web has become a dynamic and enormous network of typed links between data
sets stored on different machines. These data sets are machine readable and unambiguously
interpretable, thanks to their underlying standard representation languages. The express-
iveness and flexibility of the publication model of Linked Data has led to its widespread
adoption and an ever increasing publication of semantically rich data on the Web. This
success however has started to create serious problems as the scale and complexity of inform-
ation outgrows the current methods in use, which are mostly based on database technology,
expressive knowledge representation formalism and high-performance computing. We argue
that methods from computational intelligence can play an important role in solving these
problems. In this paper we introduce and systemically discuss the typical application prob-
lems on the Semantic Web and argue that the existing approaches to address their underlying
reasoning tasks consistently fail because of the increasing size, dynamicity and complexity
of the data. For each of these primitive reasoning tasks we will discuss possible problem
solving methods grounded in Evolutionary and Swarm computing, with short descriptions of
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existing approaches. Finally, we will discuss two case studies in which we successfully applied
soft computing methods to two of the main reasoning tasks; an evolutionary approach to
querying, and a swarm algorithm for entailment.

3.14 Computer Science for Development
Christophe D. M. Gueret (DANS – Den Hague, NL)
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Data sharing usually focuses on centralized and very powerful solutions centred around
Web hosted servers and (mobile) clients accessing it. As a direct consequence, the usage
of Linked Data technology depends on the availability of a Web infrastructure compassing
data-centres, high speed reliable Internet connection and modern client devices. If any of
this is missing, our community is not able, yet, to provide any Linked Data enabled data
management solution. Still, the digital divide that is currently widely recognized separates
the world into those who have access to Web-based platforms and those who don’t. When
designing Linked Data platforms we tend to forget those 4 Billion persons who don’t have
access to Internet but would benefit from being able to share structured data. We should
keep everyone in mind when we design Linked Data platforms and aim at helping to reduce
this digital divide. We believe that achieving this goal implies working on three aspects
(Infrastructure, Interfaces and Relevancy) around open data.

This problem the Semantic Web community faces doing knowledge representation in
developing countries is only one facet of Computer Science. Many other aspects of it are
also concerned. For instance, Human-Computer Interaction (HCI) need to account for users
that don’t read or write or don’t speak any “common” language, Engineering need to be
performed on smaller scale devices with sparse networkings and Information retrieval need
to be done with a focus on locally relevant information. These many aspects of Computer
Sciences affected by the specific challenges posed by using ICT in the developing world call
for a global study over CS4D where researchers would join in ensuring the technology they
work on is inclusive and usable by everyone world wide.

3.15 Combining Learning and Reasoning for Big Data
Pascal Hitzler (Wright State University – Dayton, US)

License Creative Commons BY 3.0 Unported license
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Reasoning and learning are natural allies. The former provides deductive expert system-
like capabilities for dealing with interpretation of data, while the latter focuses on finding
patterns in data. This perspective suggests a rather obvious workflow in which inductive
and statistical methods analyze data, resulting in metadata which describes higher-level
conceptualizations (metadata) of the data, which in turn enables the use of the data and
metadata in deduction-based systems. However, this apparently obvious pipeline is broken
since the current state of the art leaves gaps which need to be bridged by new innovations.
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In this presentation, we discuss some of the recent work which addresses these gaps, with
the goal of stimulating further research on the interplay between learning and reasoning.

References
1 P. Hitzler and F. van Harmelen. A reasonable semantic web. Semantic Web, 1(1–2):39–44,

2010.
2 P. Jain, P. Hitzler, P. Z. Yeh, K. Verma, and A.P. Sheth. Linked Data is Merely More

Data. In D. Brickley, V. K. Chaudhri, H. Halpin, and D. McGuinness, editors, Linked Data
Meets Artificial Intelligence, pages 82–86. AAAI Press, Menlo Park, CA, 2010.

3 P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2010.

4 P. Hitzler and K. Janowicz. Linked Data, Big Data, and the 4th Paradigm. Semantic Web,
4(3):233–235, 2013.

5 K. Janowicz and P. Hitzler. The Digital Earth as knowledge engine. Semantic Web,
3(3):213–221, 2012.

6 P. Jain, P. Hitzler, A. P. Sheth, K. Verma, and P. Z. Yeh. Ontology alignment for linked
open data. In P. F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan,
I. Horrocks, and B. Glimm, editors, The Semantic Web – ISWC 2010 – 9th International
Semantic Web Conference, ISWC 2010, Shanghai, China, November 7–11, 2010, Revised
Selected Papers, Part I, volume 6496 of Lecture Notes in Computer Science, pages 402–417.
Springer, 2010.

7 A. Joshi, P. Jain, P. Hitzler, P. Yeh, K. Verma, A. Sheth, and M. Damova. Alignment-based
querying of Linked Open Data. In R. Meersman, H. Panetto, T. Dillon, S. Rinderle-Ma,
P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, and I. F. Cruz, editors, On
the Move to Meaningful Internet Systems: OTM 2012, Confederated International Con-
ferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10–14, 2012,
Proceedings, Part II, volume 7566 of Lecture Notes in Computer Science, pages 807–824.
Springer, Heidelberg, 2012.

3.16 From Human Reasoning Episodes to Connectionist Models
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I present a new approach to model human reasoning based on reasoning towards an appropriate
logical form, weak completion semantics, three-valued Lukasiewicz logic, and an appropriate
semantic operator. The approach admits least models and, hence, reasoning is performed
with respect to least models. After adding abduction the approach can adequately handle
human reasoning episodes like the suppression and the selection task. Moreover, it can be
mapped into a connectionist model using the core method.
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3.17 On Concept Learning as Constructive Reasoning
Francesca Alessandra Lisi (University of Bari, IT)
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In this talk I provided a novel perspective on Concept Learning, which relies on recent results
in the fields of Machine Learning (ML)/Data Mining (DM) and Knowledge Representation
(KR), notably De Raedt et al.’s work on declarative modeling of ML/DM problems [2] and
Colucci et al.’s work on non-standard reasoning in the KR framework of Description Logics
(DLs) [1]. In particular, I provided a formal characterization of Concept Learning which
arises from the observation that the inductive inference deals with finding – or constructing
– a concept. More precisely, non-standard reasoning services which support the inductive
inference can be modeled as constructive reasoning tasks where the solution construction may
be subject to optimality criteria. Under this assumption, I defined a declarative language –
based on second-order DLs – for modeling different variants of the Concept Learning problem
(namely, Concept Induction, Concept Refinement and Concept Formation) [3]. The language
abstracts from the specific algorithms used to solve the Concept Learning problem in hand.
However, as future work, I emphasized the need for an efficient and/or effective solver to
make the proposed language more attractive from a practical point of view.
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3.18 Interactive Intelligent Systems: Scaling Learning with the Expert
in the Loop

Dragos Margineantu (Boeing Research & Technology, US)
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Research in intelligent neural and symbolic systems has made significant advances with
respect to the accuracy of predictions, detections, classifications. However in order to deploy
these algorithms and tools, to execute or assist the execution of real world tasks, in most of
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the cases, these methods require the assistance of an AI expert. A suite of practical tasks
can be addressed optimally at this point in time by a team that combines the expertise of
the user with the strength of automated intelligent systems. Can we develop (or adapt our)
existing algorithms for such tasks? We believe so! By formulating our research questions to
capture the expert-intelligent system goals. This presentation will show how we formulated
the research questions and adapted techniques such as inverse reinforcement learning (IRL)
or active learning for assisting experts in tasks such as detecting abnormal agent behavior,
scene analysis, and estimating intent. We will also outline some open research questions for
usable expert-interactive learning.

3.19 Concepts, Goals and Communication
Vivien Mast (Universität Bremen, DE)
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Much work in computational linguistics and cognitive science implicitly rests on the idea,
dating back to Plato and Aristotle, that there are rational categories which are sets of entities
in the real world, defined by necessary and sufficient properties, and that the power of
linguistic expressions and mental concepts stems from their correspondence to such rational
categories. I will discuss some limitations of a rational notion of concepts and meaning in the
domain of reference, and argue that human concepts should be viewed from the perspective
of actionability, as suggested by Jerry Feldman at this seminar. In particular, I will argue
that concept assignment depends on context and the goals of the conceptualizing agent.

In the standard paradigm of REG (Krahmer & van Deemter, 2012), objects are represented
by attribute-value pairs. The task of REG is defined as finding, for a given target object, a
distinguishing description – a set of attribute-value pairs whose conjunction is true of the
target but not of any of the other objects in the domain. However, research on collaborative
reference has shown that reference ultimately does not rely on truth, but on common ground
and efficient grounding mechanisms (Clark & Bangerter, 2004). I will argue that meta-
knowledge about the potential of conceptual mismatch and miscommunication guide concept
assignment in reference, and I will present the Probabilistic Reference And GRounding
mechanism PRAGR for generating and interpreting referring expressions (Mast et al., 2014;
Mast & Wolter, 2013). PRAGR is geared towards maximizing mutual understanding by
flexibly assigning linguistic concepts to objects, depending on context.
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4 Mast, V. & Wolter, D. A Probabilistic Framework for Object Descriptions in Indoor Route
Instructions.. In Tenbrink, T. and Stell, J. and Galton, A. and Wood, Z. (Ed.), Spatial
Information Theory (Vol. 8116, pp. 185–204). Springer International Publishing, 2013

3.20 Grounding Meaning in Perceptual Representations
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How word meaning may be grounded in perceptual experience is a fundamental problem in
neural-symbolic learning. I will describe an artificial neural network model that shows how
this process may take place through learned associations between visual scenes and linguistic
phrases. I will then describe ongoing work on identifying such associations from fMRI images
of sentence comprehension.

3.21 Mining Graphs from Event Logs
Andrey Mokhov (Newcastle University, GB)
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We introduce a mathematical model for compact representation of large families of (related)
graphs [1], detecting patterns in graphs, and using such compact representations for process
mining [2]. By process mining we mean understanding or explanation of behaviour of complex
systems by observing events occurring in them. These events come in the form of event logs
that record event types, time stamps and other associated metadata. The task of process
mining is to extract useful knowledge from such logs, for example, to explain, predict or
diagnose complex systems. We present graph-theoretic methods that extract information
about concurrency and causality from such logs, and then attempt to represent the result in
the most compact/simple form hopefully amenable to human understanding [3].
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3.22 Learning Compositional Robot Activities from Examples
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In the KR framework of the EU project RACE, as in many other systems, robot activities
are described by compositional hierarchies connecting activity concepts at higher abstraction
levels with components at lower levels, down to action primitives of the robot platform with
quantitative parameters, and down to percepts at neural level. One way for a service robot
to increase its competence is to learn new activities based on known subactivities and coarse
instructions. Given an initial repertoire of basic operations, such a process can establish
compositional structures at increasingly high levels of abstraction and complexity. In this talk
I describe recent advances in learning compositional structures using a Description Logic (DL)
extended by semantic attachments as formal knowledge representation framework. A learning
curriculum, based on positive examples, is presented where the robot has to determine
autonomously which spatiotemporal conditions must be satisfied for a newly learnt activity.
It is shown that the robot can construct conceptual descriptions from the examples in such
a way that the intended target description is approached with monotonously increasing
generality. The generalization process is realized by aligning concept graphs obtained from
DL representations and merging corresponding nodes by a Good Common Subsumer (GCS).
It is shown that this process can also be used for adapting an existing concept to a new
situation. Examples are presented for a service robot learning waiter activities in a restaurant
domain.

3.23 Neural-Symbolic Runtime Verification
Alan Perotti (University of Turin, IT)
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I introduced RuleRunner, a novel Runtime Verification system for monitoring LTL properties
over finite traces. By exploiting results from the Neural-Symbolic Integration area, a
RuleRunner monitor can be encoded in a recurrent neural network. The results show
that neural networks can perform real-time runtime verification and techniques of parallel
computing can be applied to improve the performance in terms of scalability. Furthermore,
our framework allows for property adaptation by using a standard neural network learning
algorithm.
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3.24 Symbolic Computation, Binding and Constraint Learning in
Bolzmann Machines

Gadi Pinkas (Center for Academic Studies, Or-Yehudah and Bar-Ilan University, IL)
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For a long time, connectionist architectures have been criticized for having propositional fixa-
tion, lack of compositionality and, in general, for their weakness in representing sophisticated
symbolic information, learning it and processing it. This work offers an approach that allows
full integration of symbolic AI with the connectionist paradigm. We show how to encode,
learn and process relational knowledge using attractor based artificial neural networks, such
as Boltzmann Machines. The neural architecture uses a working memory (WM), consisting of
pools of “binders”, and a long-term synaptic-memory (LTM) that can store a large relational
knowledge-base (KB). A compact variable binding mechanism is proposed which dynamically
allocates ensembles of neurons when a query is clamped; retrieving KB items till a solution
emerges in the WM. A general form of the Hebbian learning rule is shown that learns
from constraint violations. The learning rule is applied to High-Order Boltzmann machines
(with sigma-pi connections) and is shown to learn networks with attractors (energy minima)
representing correct symbolic inferences. We illustrate the mechanism using predicate logic
inference problems and planning in block-world.

The mechanism uses a biologically inspired cognitive architecture, which is based on
relatively compact Working Memory and larger synaptic Long-Term-Memory which stores
knowledge that constrains the neural activation of the WM and forms attractors in its
dynamics. In this architecture, knowledge items are retrieved from LTM into the WM only
upon need, and, graph-like structures, that represent solution inferences, emerge at thermal
equilibrium as an activation pattern of the neural units. Our architecture is based on the
fact that Boltzmann Machines may be viewed as performing constraint satisfaction, where,
at equilibrium, fixed-points maximally satisfy a set of weighted constraints. We show how to
encode and bind arbitrary complex graphs as neural activation in WM and how a supervised
learner may use miscalculations to adjust synapses so that constraints are better enforced,
in order to correctly retrieve and process such complex structures. The architecture allows
learning representations as expressive as First-Order-Logic (with bounded proof length), has
no central control and is inherently robust to unit failures. The mechanism is goal directed in
the sense, that the query may drive the processing, as well as the current activation pattern
in the WM. It is universal and has a simple underlying computational principle. As such, it
may be further adapted for applications that combine the advantages of both connectionist
and traditional symbolic AI and may be used in modeling aspects of human’ cognition.
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3.25 Learning Action-oriented Symbols: Abstractions over Decision
Processes

Subramanian Ramamoorthy (University of Edinburgh, GB)
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A key question at the interface between sub-symbolic and symbolic learning and reasoning is
that of how symbols can be acquired from experience, and grounded. Can such symbols be
action-oriented in that they consistently abstract the underlying process?

I discuss two approaches we have recently developed for categorising policies obtained
through processes such as reinforcement learning or motion planning in robots. The goal of
categorisation is to arrive at a set of action- relevant symbols that better enable reasoning
about changes associated with dynamic environments; taking a transfer/lifelong learning
perspective.

The first approach is to cluster decision processes in terms of similarities in the effects of
the actions. We define a novel distance and a clustering algorithm that yields a smaller set
of decision processes that make continual transfer algorithms more effective.

The second approach draws on new mathematical tools from computational topology
to abstract a set of trajectories associated with motion plans, yielding entirely qualitative
descriptions of the underlying domain – which can again be used to separate quantitative
detail from other global structural aspects of the tasks. I end by asking how these principles
can be incorporated with a variety of models being studies by the NeSy community, including
in particular deep networks.
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3.26 Mixing Low-Level and Semantic Features for Image
Interpretation: A framework and a simple case study

Luciano Serafini (Fondazione Bruno Kessler and University of Trento, IT)
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In recent years internet has seen a terrific increase of digital images. Thus the need of
searching for images on the basis of human understandable descriptions, as in the case
of textual documents, is emerging. For this reason, sites as YouTube, Facebook, Flickr,
Grooveshark allow the tagging of the media and support search by keywords and by examples.
Tagging activity is very stressful and often is not well done by users. For this reason automatic
methods able to automatically generate a description of the image content, as in textual
documents, become a real necessity. There are many approaches to image understanding

14381

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
I. Donadello, L. Serafini, ``Mixing low-level and semantic features for image interpretation,'' in Proc. of the 1st Int'l Workshop on Computer Vision and Ontologies, to appear.
I. Donadello, L. Serafini, ``Mixing low-level and semantic features for image interpretation,'' in Proc. of the 1st Int'l Workshop on Computer Vision and Ontologies, to appear.


74 14381 – Neural-Symbolic Learning and Reasoning

which try to generate a high level description of an image by analysing low-level information
(or features), such as colours, texture and contours, thus providing such a high level description
in terms of semantic concepts, or high-level information. This would allow a person to search,
for instance, for an image containing “a man is riding an horse”. The difficulty to find the
correspondence between the low-level features and the human concepts is the main problem in
content-based image retrieval. It is the so-called semantic gap [2]. It’s widely recognised that,
to understand the content of an image, contextual information (aka background knowledge)
is necessary [3]. Background knowledge, relevant to the context of an image, can be expressed
in terms of logical languages in an ontology [4]. In image interpretation ontologies can be
used for two main purposes. First, ontologies allow the expression of a set of constraints on
the possible interpretations which can be constructed by considering only low-level features of
an image. The satisfaction of such constraints can be checked via logical reasoning. Second,
the terminology introduced in the ontology can be used as formal language to describe the
content of the images. This will enable semantic image retrieval using queries expressed in the
language introduced by the ontology. The background knowledge formalizes the semantics of
the human understandable concepts and will provide the set of types of objects that can be
found in a picture (e. g., horse, human, etc.) and the set of relations that can exist between
depicted objects (e. g., rides is a relation between a human and an animal, part-of is a general
relation between physical objects, etc.). Furthermore, the background knowledge provides
constraints on types of objects and relations, e. g. a vehicle has at least two wheels or horses
are animals that can be ridden by men. The advantage of having the tags as concepts coming
from a background knowledge allows to reason over the image. For example the tag “horse”
enables to infer the presence of an animal.

In the present work we adopt the natural idea that, already introduced for instance in
[5, 6, 7] where an interpretation of a picture, in the context of an ontology, is a (partial)
model of the ontology itself that expresses the state of affairs of the world in the precise
moment in which the picture has been taken. We propose to formalize the notion of image
interpretation, w.r.t. an ontology, as a segmented image, where each segment is aligned with
an object of a partial model of the reference ontology. To cope with the fact that a picture
reports only partial information on the state of affairs we use the notion of partial model of
a logical theory [8]; to cope with the possibility of having multiple alternative interpretations
of a picture we introduce the notion of most plausible interpretation an image, which is the
interpretation that maximises some scoring function.

In order to have a preliminary evaluation of our idea, we implemented this framework,
for a specific and limited case. We developed a fully unsupervised method to generate image
interpretations able to infer the presence of complex objects from the parts present in the
picture, thus inferring the relative “part-whole” structure. The method jointly exploits the
constraints on the part-whole relation given by the ontology, and the low-level features of
the objects available in the image. From a preliminary evaluation the presented approach
shows promising results.
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3.27 Lifelong Machine Learning and Reasoning
Daniel L. Silver (Acadia University – Wolfville, CA)
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Lifelong Machine Learning (LML) considers systems that learn many tasks over a lifetime,
accurately and efficiently retaining and consolidating the knowledge they have learned and
using that knowledge to more quickly and accurately learn new tasks [2, 1]. Since 1999, I
have investigated aspects of LML for Learning to Classify (L2C) problem domains. In [3] I
provide an overview of prior work in LML, present a framework for LML, and discuss its two
essential ingredients – knowledge retention [4] and transfer learning [1]. Transfer learning is
about using prior knowledge to more accurately develop models for a new task, from fewer
training examples and in shorter periods of time. Knowledge retention is about efficient
and effective methods of storing learned models for use in transfer learning and potentially
reasoning. The proposed research program extends my prior work on LML to the learning of
knowledge for purposes of reasoning. I am motivated by the belief that intelligent agents,
like humans, should develop in their abilities as a function of their experience.

My previous research has focused on the theory and application of transfer learning
and knowledge consolidation. We have published results on functional and representational
knowledge transfer using multiple task learning (MTL), task rehearsal using synthesized
training examples, and selective transfer for classification and regression problems [2]. Most
significantly, we have developed context-sensitive MTL (csMTL); a transfer learning method
that uses an additional context input, rather than an additional output for each new task
[Silver09]. This approach overcomes a number of significant problems of standard MTL when
applied to a LML

Our research has shown that knowledge of a new task can be integrated, or consolidated,
with that of prior tasks in order for a LML solution to overcome the stability-plasticity
problem and scale for practical use [4]. The stability-plasticity problem is the loss of prior
task knowledge in a neural network when learning the examples of a new task [5]. Our work
has demonstrated that MTL and csMTL networks can mitigate this problem by maintaining
functional accuracy of prior tasks (stability) through the relearning, or rehearsal, of prior
task examples while modifying the representation of the network (plasticity) through the
learning new task examples. This can be accomplished using the back-propagation (BP)
algorithm under the conditions described in [4, 5]. Recently, we have shown that a mix of
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proper selection of task rehearsal examples and more advanced methods of regularization
can improve consolidation in csMTL networks.

In 2013, Qiang Yang and I encouraged the machine learning community to move beyond
learning algorithms to systems that are capable of learning, retaining and using knowledge
over a lifetime [3]. ML now has many practical applications of L2C; the next generation of
ML needs to consider the acquisition of knowledge in a form that can be used for more general
AI, such as Learning to Reason (L2R). We argue that opportunities for advances in AI lie at
the locus of machine learning and knowledge representation; specifically, that methods of
knowledge consolidation will provide insights into how to best represent knowledge for use in
future learning and reasoning.

A survey of ML methods that create knowledge representations that can be used for
learning and reasoning revealed three major bodies of work. The first is Neural-Symbolic
Integration (NSI) [6, 8]. NSI research considers the benefits of integrating robust neural
network learning with expressive symbolic reasoning capabilities. Much of NSI work focuses
on the extraction of symbolic rules from trained network weights and the transfer of knowledge
from logical expressions to network weights prior to training. Since the early 2000s, members
of this community have called for a joint treatment of learning and reasoning [7]. At the
IJCAI 2013 NeSy’13 workshop I presented an invited talk on the common ground shared
by LML and NSI. I proposed an integrated framework for NSI and LML and discussed
how the requirement of reasoning with learned knowledge places an additional constraint
on the representational language and search methods used by LML systems. Learning is
necessary to acquire knowledge for reasoning, however, reasoning informs us about the best
ways to store and access knowledge. Thus, learning and reasoning are complimentary and
should be studied together. Recent work at CMU on the NELL system agrees with this
combined view [9]. The second major body of work is Learning to Reason (L2R) [10, 11],
also referred to as Knowledge Infusion [12, 14, 15]. L2R work is not as abundant as that of
NSI; however, it suggests a promising approach to developing is most promising in terms of
our proposed research. The L2R framework is concerned with both learning a knowledge
representation and with it doing deductive reasoning. The perspective is that an agent
only needs to learn the knowledge required to reason in his environment, and to the level
of performance demanded by that environment. Unlike prior approaches to engineering
common knowledge, such as Cyc [16], L2R takes a probabilistic perspective on learning and
reasoning. An L2R agent need not answer all possible knowledge queries, but only those
that are relevant to the environment of the agent in a probably approximately correct (PAC)
sense; that is, assertions can be learned to a desired level of accuracy with a desired level
of confidence [12]. In [10] and [12] both authors show that a L2R framework allows for
efficient learning of Boolean logical assertions in the PAC-sense (polynomial in the number
of variables and training examples). Further to this, they prove that the knowledge learned
can be used to efficiently reason with a similar level of accuracy and confidence. In this
way, L2R agents are robust learners, acquiring most accurately the common knowledge
that they need to reason in accord with their environment [12]. The authors make the
point that traditional artificial intelligence has chosen knowledge representations for their
transparency (e. g. preferring CNF over DNF representations) whereas the L2R framework
chooses knowledge representations because they are learnable and facilitate reasoning. The
third body of work is Deep Learning Architectures (DLA) and includes recent publications
on Semi-supervised Learning [17], Co-training [18], Self-taught Learning [24], Representation
Learning [20, 21], and Deep Learning [25, 26, 28, 22]. All share a common interest with LML
in that they develop knowledge representations of the world from examples that can be used
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for future learning. This fall we are finalizing a survey of transfer learning and consolidation
methods using DLAs.

My future research goals are to (1) develop and test Lifelong Machine Learning and
Reasoning (LMLR) systems that can retain learned knowledge in a form that can be used for
reasoning as well as future learning; and to (2) study the practical benefits and limitations
of a prototype LMLR system applied to real-world problems in data mining and intelligent
agents. To advance on the first goal, we will develop a system that can learn a series of logic
assertions, such as A|B ⇒ C and C ⇒ D, from examples of those expressions. The resulting
knowledge base model can then be used to reason that A ⇒ D by testing the model with
examples. To advance on the second goal, I will scale the system up such that it can learn
to reason from images that encode similar assertions. Such a system could be used by an
intelligent agent to provide recommendations on next best action.

This work will create new theory on the learning and representation of knowledge from
examples acquired from the learner’s environment and methods by which to reason using
that learned knowledge. Finding solutions to consolidating new with prior knowledge from
examples that contain only part of the input space will be a major challenge. The methods
and findings will be of interest to researchers working on machine learning, knowledge
representation, reasoning, and applied areas such as data mining and intelligent agents.
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The recent success of representation learning is built upon the learning of relevant features,
in particular from unlabelled data available in different domains. This raises the question
of how to transfer and reuse such knowledge effectively so that the learning of a new task
can be made easier or be improved. This poses a difficult challenge for the area of transfer
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learning where there is no label in the source data, and no source data is ever transferred
to the target domain. In previous work, the most capable approach has been self- taught
learning which, however, relies heavily upon the compatibility across the domains. In
this talk, I propose a novel transfer learning framework called Adaptive Transferred-profile
Likelihood Learning (aTPL), which performs transformations on the representations to be
transferred, so that they become more compatible with the target domain. At the same time,
it learns supplementary knowledge about the target domain. Experiments on five datasets
demonstrate the effectiveness of the approach in comparison with self- taught learning and
other common feature extraction methods. The results also indicate that the new transfer
method is less reliant on source and target domain similarity, and show how the proposed
form of adaptation can be useful in the case of negative transfer.

3.29 Decoding the Symbols of Life: Learning Cell Types and
Properties from RNA Sequencing Data

Joshua Welch (University of North Carolina – Chapel Hill, US)
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Recent breakthroughs in biochemical techniques for low-input sequencing have enabled
whole-transcriptome quantification (RNA-seq) of single cells. This technology enables
molecular biologists to dissect the relationship between gene expression and cellular function
at unprecedented resolution. In particular, the cell type composition of tissues is now open
to investigation. There is a need for unsupervised learning approaches that can identify cell
types and properties from single-cell RNA sequencing data in a purely unbiased manner,
rather than relying on previously known cell type markers. This task of identifying cell types
and the relationships between them is not unlike recognizing symbols in text or images. An
overview of the relevant biological questions, single-cell RNA sequencing technology, and
existing approaches to solving this problem are presented. The goal of the talk is to initiate
discussion about how neural- symbolic approaches can be used to identify cell types and
their properties from single-cell RNA sequencing data.

4 Working Groups

During the workshop several working groups were formed, and lively discussions on relevant
research challenges took place. Next, we briefly summarize the results and questions raised
during the breakout sessions.

4.1 Consolidation of learned knowledge
This discussion session was related to the concept of Learning to Reason, as investigated by
Valiant, Khardon, Roth and many others. Significant advances in AI lie at the locus of machine
learning and knowledge representation; specifically, methods of knowledge consolidation will
provide insights into how to best represent common knowledge for use in future learning and
reasoning. Knowledge consolidation is about efficient and effective methods of sequentially
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storing knowledge as it is learned. Overcoming the stability-plasticity problem is the main
challenge here. Consolidation in neural networks can occur through a slow process of
interleaved learning of a new and old task examples within a large multiple task learning
(MTL) network. Task rehearsal is one approach to overcoming the stability-plasticity problem
of forgetting of previously learned tasks stored in a MTL network by relearning synthesized
examples of those tasks while simultaneously learning a new task. However this method faces
scaling problems as the number of prior task examples increases. This session discussed new
approaches to overcoming the stability plasticity problem so that knowledge consolidation is
tractable over long sequences of learning.

4.2 Affordabilities and actionability
Inspired by points raised by Feldman, this session started from the ancient idea that the goal
of thought is “truth”, which has been productive, but it is also limiting. There are multiple
reasons to believe that replacing “truth” with “actionability” will be more fruitful and that this
move is necessary for a unified cognitive science. For more on this topic the reader is invited to
the work on affordances by Feldman: ftp://ftp.icsi.berkeley.edu/pub/feldman/affordances.jf.pdf

4.3 Closing the gap in the pipeline: how to use learned knowledge for
reasoning

Deductive and inductive approaches are natural allies. The former uses high-level concep-
tualizations to logically reason over data, while the latter focuses on finding higher-level
patterns in data. This perspective suggests a rather obvious workflow in which inductive and
statistical methods analyze data, resulting in metadata which describes higher level features
of the data, which in turn enables the use of the data in intelligent systems. However, this
apparently obvious pipeline is broken since the current state of the art leaves gaps which
need to be bridged by new innovations. It would be helpful to start establishing the exact
nature of these gaps, and to brainstorm about ways how to address these. Advances on this
topic should provide added value for large-scale data management and analysis.

4.4 What is symbolic, what is sub-symbolic?
An old debate took place: what is the meaning of the terms symbolic and sub-symbolic in
neural computation? Several questions were raised and analyzed. Certain neural networks
are symbolic while others are not. What are factors that determine this? How can recognition
be performed with symbolic networks? How can recall necessary for reasoning be performed
with non-symbolic networks? How can both recognition and recall be achieved with the same
networks?

4.5 How far can nature inspire us?
Among all the nature-inspired computation techniques, neural networks are about the only
ones to have made their way into knowledge representation and reasoning so far. What
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about swarm computing or evolutionary computing? Could they also have a role and a use
for learning and reasoning problems? The conclusion is that this is a discussion we can have
looking at existing prototypes and ongoing research, including recent progress in the area of
autonomous agents and multi-agent systems.

4.6 Demos & Implementation Fest
Finally, a hands on session took place. A lively display of neural-symbolic tools was presented
by a number of the seminar’s participants. The participants had the opportunity to showcase
their NeSy related software and get others to try, evaluate and discuss their work. Future
extensions and integrations of the showcased work were proposed. Most participants had
the opportunity to experiment with existing tools and prototypes that use state-of-the-art
neural-symbolic computation techniques for image, audio, video and multimodal learning
and reasoning.

5 Open Problems

After each discussion session, challenges and open problems were identified. It is clear that a
number of research avenues lay ahead of the communities that participated in the seminar.
The list below reflects, in part, the interdisciplinary nature of the research presented and
the open problems identified at the seminar, leading to interesting future developments and
applications. A companion paper [9] complements the list below and also identifies several
opportunities and challenges for the neural-symbolic community.

Over the last decades, most of the work has been focused on propositional approaches,
which was seen as propositional fixation by McCarthy [1]. However, novel approaches
have significantly contributed to the representation of other logical systems in neural
networks, leading to successful application in temporal specification and synchronization
[2, 3], distributed knowledge representation [4, 5] and even fragments of first-order logic
inference [6]. In order to make progress in this open problem, perhaps one should consider
logics of intermediate expressiveness such as description logics of the Horn family [7].
There remains a number of open issues in knowledge representation and reasoning in
neural networks, in particular with regard to learning. The integration of neural-symbolic
systems and inductive logic programming [8] may also lead to relevant developments.
The companion paper [9] also identifies challenges in this area.
Recently, it has been shown that neural networks are able to learn sequences of actions,
a point raised by Icard during the discussions. Thus, it may well be possible that a
“mental simulation” of some concrete, temporally extended activity can be effected by
connectionist models. Theories of action, based on propositional dynamic logic can thus
be useful. Feldman in [10] has argued that if the brain is not a network of neurons that
represent things, but a network of neurons that do things, action models would probably
be central in this endeavour.
With respect to how the brain actually represents knowledge, perhaps one can draw
inspiration from advances in fMRI. The work of Endres and Foldiak [11] may lead to a
biologically sound model of the brain’s semantic structures. It can also contribute to the
construction of new learning algorithms, by contributing to identifying the functioning of
the brain’s learning mechanisms.
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There is much work to be done with respect to learning to reason (L2R) in neural
networks [12, 13]. A question raised by Silver is how a L2R agent can develop a complete
knowledge-base over time when examples of the logical expressions arrive with values
for only part of the input space. Perhaps a Lifelong Machine Learning (LML) approach
is needed. Such an approach can integrate, or consolidate, the knowledge of individual
examples over many learning episodes [14]. Consolidation of learned knowledge is a
necessary requirement as it facilitates the efficient and effective retention and transfer of
knowledge when learning a new task. It is also a challenge for neural-symbolic integration
because of the computational complexity of knowledge extraction, in general, and the
need for compact representations that would enable efficient reasoning about what has
been learned.
Deep networks represent knowledge at different levels of abstraction in a modular way.
This may be related to the fibring of neural networks and the representation of modal logics
in neural networks, which are intrinsically modular [4, 5] and decidable, offering a sweet
spot in the complexity-expressiveness landscape [15]. Modularity of deep networks seem
suitable to knowledge extraction, which may help reduce the computational complexity
of extraction algorithms [16], contributing to close the gap in the pipeline and leading to
potential advances in lifelong learning, transfer learning, and applications.
Applications: neural-symbolic computation techniques and tools have been applied
effectively to action learning and knowledge description in videos [17, 18], argumentation
learning in AI [19, 20], intelligent transportation systems to reduce CO2 emissions [21], run-
time verification and adaptation [22, 23], hardware/software requirements specification
and verification [3, 22], normative reasoning [24], concept and ontology learning, in
particular considering description logics and the semantic web [25, 26, 27], training and
assessment in driving simulators, action learning and the extraction of descriptions from
videos [17]. The lively demo fest organized at the seminar showed the reach of the field
where promising prototypes and tools were demonstrated.
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