Report from Dagstuhl Seminar 14402

Resilience in Exascale Computing

Edited by

Hermann Hirtig!, Satoshi Matsuoka?, Frank Mueller®, and
Alexander Reinefeld*

TU Dresden, Germany, haertig@os.inf.tu-dresden.de

Tokyo Institute of Technology, Japan, matsutitech@gmail.com
North Carolina State University, USA, mueller@cs.ncsu.edu
Zuse Institute Berlin, Germany, reinefeld@zib.de

W N =

—— Abstract
From September 28 to October 1, 2014, the Dagstuhl Seminar 14402 “Resilience in Exascale
Computing” was held in Schloss Dagstuhl — Leibniz Center for Informatics. During the seminar,
several participants presented their current research, and ongoing work and open problems were
discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar

results and ideas are put together in this paper. The first section describes the seminar topics
and goals in general. Links to extended abstracts or full papers are provided, if available. Slides
of the talks and abstracts are available online.

Seminar September 28 to October 1, 2014 — http://www.dagstuhl.de/14402

1998 ACM Subject Classification B.3.3 Performance Analysis and Design Aids, B.5.1 Design,
C.1.2 Multiple Data Stream Architectures (Multiprocessors), D.1.3 Concurrent Programming

Keywords and phrases Exascale computing, resilience, fault tolerance, manycore computers,
operating systems, micro kernels, work-load balancing, checkpointing

Digital Object Identifier 10.4230/DagRep.4.9.124

1 Executive Summary

Hermann Hartig
Satoshi Matsuoka
Frank Mueller
Alexander Reinefeld

License) Creative Commons BY 3.0 Unported license
© Hermann Hértig, Satoshi Matsuoka, Frank Mueller, and Alexander Reinefeld

Motivation

The upcoming transition! from petascale to exascale computers requires the development of
radically new methods of computing. Massive parallelism, delivered by manycore processors
and their assembly to systems beyond 107 processing units will open the way to extreme
computing with more than 10'® floating point operations per second. The large number
of functional components (computing cores, memory chips, network interfaces) will greatly
increase the probability of partial failures. Already today, each of the four fastest supercom-
puters in the TOP500 list? comprises more than half a million CPU cores, and this tendency

L IDC top ten market prediction no. 2: The Global Petascale/Ezascale Race Will Keep Shifting the Market
Toward Larger Systems, IDC, March 2013.
2 http://www.top500.0org

Except where otherwise noted, content of this report is licensed

37 under a Creative Commons BY 3.0 Unported license
Resilience in Exascale Computing, Dagstuhl Reports, Vol. 4, Issue 9, pp. 124-139
Editors: Hermann Héartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14402
http://dx.doi.org/10.4230/DagRep.4.9.124
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

towards massive parallelism is expected to accelerate in the future. In such large and complex
systems, component failures are the norm rather than an exception. Applications must be
able to handle dynamic reconfigurations during runtime and system software is needed to
provide fault tolerance (FT) at a system level. For example, Jaguar reportedly experience 20
faults per hour in production mode?, some of which could be mitigated while others could
not.

To prevent valuable computation to be lost due to failures, checkpoint/restart (C/R)
has become a requirement for long running jobs. However, current C/R mechanisms are
insufficient, because the communication channels between the main memory and the parallel
file system are far too slow to allow to save (and restore) a complete memory dump to disk
farms. As an alternative, the memory of neighboring compute nodes may be used to keep
partial checkpoints, but then erasure coding must be used to prevent against the loss of data
in case of single node failures. To make things worse, precious communication bandwidth is
needed for writing/reading checkpoints, which slows down the application. Techniques for
data compression or application-specific checkpointing (with a reduced memory footprint)
were proposed as a solution, but they only alleviate the problem by a certain extent.

We assume exascale hardware architectures to consist of a heterogeneous set of computa-
tional units (ranging from general-purpose CPUs to specialized units such as today’s GPUs),
memory chips (RAM, flash, phase-change memory), and various kinds of interconnects.
The operating system and its load balancing mechanisms need to adapt to the hardware’s
properties as well as to workload characteristics. With the co-existence of legacy applications
and new applications, it can be assumed that exascale systems must be capable of executing
a broad range of parallel programming paradigms like MPI, OpenMP, PGAS, or MapReduce.
These will not always and in every case require the functionality of a fully fledged operating
system. We furthermore expect applications to become more complex and dynamic. Hence,
developers cannot be expected to continuously handle load balancing and reliability. It is the
operating system’s task to find a sweet spot that on the one hand provides generic means for
load management and checkpointing, while on the other hand allowing application developers
full control over the performance-relevant functionality if required.

Objectives and Expected Results

The objective of this seminar is to bring together researchers and developers with a background
on HPC system software (OS, network, storage, management tools) to discuss medium to
long-term approaches towards resilience in exascale computers. Two concrete outcomes are
(a) outlines for alternatives for resilience at extreme scale with trade-offs and dependencies on
hardware/technology advances and (b) initiation of a standardization process for a resilience
API. The latter is driven by current trends of resilience libraries to let users specify important
data regions required for tolerating faults and for potential recovery. Berkeley Lab’s BLCR,
Livermore’s SCR and Capello’s FTI feature such region specification in their APIs, and
so do may in-house application-specific solutions. A standardized resilience API would
allow application programmers to be agnostic of future underlying resilience mechanisms
and policies so that resilience libraries can be exchanged at will (and might even become
inter-operable). The focus of solutions is on the practical system side and should reach

3 A. Geist, “What is the Monster in the Closet?”, August 2011, Invited Talk at Workshop on Architectures
I: Exascale and Beyond: Gaps in Research, Gaps in our Thinking

125

14402

126

14402 — Resilience in Exascale Computing

beyond currently established solutions. Examples of areas of interest are:

What is the “smallest denominator” that defines a resilience API? How can the standard-
ization of a resilience API be realized?

How can reactive FT schemes that respond to failures be enhanced to reduce system
overhead, ensure progress in computation and sustain ever shorter MTBFs?

How should low-energy and/or persistent memory be included on nodes for checkpointing
(for example PCM) and used by applications and the OS?

Can a significant number of faults be predicted with exact locations ahead of time so
that proactive FT may provide complementary capabilities to move computation away
from nodes that are about to fail?

Can message logging, incremental checkpointing and similar techniques contribute to
lower checkpointing overhead?

Is redundant execution a viable alternative at exascale? How can partly redundant
execution contribute to increased resilience in exascale algorithms?

Can algorithm-based fault tolerance be generalized to entire classes of algorithms? Can
results continuously be checked?

What is the impact of silent data corruption (SDC) on HPC computing today? Which
solvers can tolerate SDCs, which ones need to be enhanced (and how)?

How do current /novel network architectures interact with the OS (e. g., how does migration
interact with RDMA)?

How can execution jitter be reduced or tolerated on exascale systems, particularly in the
presence of failures?

Can an interface be designed that allows the application to give “hints” to the OS in
terms of execution steering for resilience handling? How does this approach interact with
scalability mechanisms and policies, e. g., load balancing, and with programming models,
e.g., to define fault handlers?

Do distributed communication protocols offer better resilience? How do they support
coordination between node-local and inter-node scheduling?

Does “dark silicon” offer new opportunities for resilience?

How can I/O on exascale be efficient and resilient (e. g., in situ analysis of simulation
results)?

As a result of the seminar, we expect that this list of objectives will be refined, extended,
and approaches to address each of these problems will be formulated, We anticipate that
participants engage in increased coordination and collaboration within the currently (mostly)
separate communities of HPC system software and application development.

Furthermore, the standardization process will be kicked off. One challenge is to find the
most promising context for standardization. Current HPC-related standards (MPI, OpenMP,
OpenACC) do not seem suitable since resilience cuts across concrete runtime environments
and may also extend beyond HPC to Clouds and data centers involving industry participants
from these area (in future standardization meetings beyond the scope of this meeting).

Overall, the objective of the workshop is to spark research and standardization activities
in a coordinated manner that can pave the way for tomorrow’s exascale computers to the
benefit of the application developers. Thus we expect not only HPC system developers
to benefit by the seminar but also the community of scientific computing at large, well
beyond computer science. Due to the wide range of participants (researchers and industry
practitioners from the U.S., Europe, and Asia), forthcoming research work may significantly
help enhance FT properties of exascale systems, and technology transfer is likely to also

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

reach general-purpose computing with many-core parallelism and server-style computing.

Specifically, the work should set the seeds for increased collaborations between institutes in
Europe and the U.S./Asia.

Relation to Previous Dagstuhl Seminars

Two of the proposers, Frank Mueller and Alexander Reinefeld, previously co-organized a

Dagstuhl Seminar on Fault Tolerance in High-Performance Computing and Grids in 2009.

It provided a forum for exchanging research ideas on FT in high-performance computing
and grid computing community. In the meantime, the state-of-the-art greatly advanced and
it became clear, that exascale computing will not be possible without adequate means for
resilience. Hence, the new seminar will be more concrete in that the pressing problems of FT
for exascale computing and standardization must be tackled and solved with the joint forces
of system researchers and developers.

The proposed seminar also builds on the Dagstuhl Perspective Workshop 12212 Co-Design
of Systems and Applications for FExascale, which also relates to the DFG-funded project
FFMK (http://fimk.tudos.org/, “A Fast and Fault-tolerant Microkernel-based System for
Exascale Computing”, DFG priority program 1648). Compared to the perspective workshop,
our proposed seminar is much more focused on single, pressing topic of exascale computing,
namely resilience.

127

14402

http://ffmk.tudos.org/

128

14402 — Resilience in Exascale Computing

Table of Contents

Executive Summary

Hermann Hdrtig, Satoshi Matsuoka, Frank Mueller, and Alexander Reinefeld . . . 124

Overview of Talks

Energy-Performance Tradeoffs in Multilevel Checkpoint Strategies

Leonardo A. Bautista-Gomez i e e 130
APIs, Architecture and Modeling for Extreme Scale Resilience

Kento Sato e 130
Portable Programming and Runtime Support for Application-Controlled Resilience
Andrew Chien e e e e e 130
Open Discussion: Of Apples, Oranges and (Non-)reproducability

Frank Mueller 131
MPI Fault Tolerance: The Good, The Bad, The Ugly

Martin Schulz e e e 131

Supporting the Development of Resilient Message Passing Applications
Christian Engelmann e 131

Fault Tolerance for Remote Memory Access Programming Models
Torsten Hoefler e 132

Application level asynchronous checkpointing/restart: first experiences with GPI
Gerhard Wellein e 132

Operating System Support for Redundant Multithreading
Bjorn Dobelo 133

Resilient gossip algorithms for online management of exascale clusters
Amnon Barak e e 133

FFMK: Towards a fast and fault-tolerant micro-kernel-based Operating System
Hermann Héartig o 0 o e 134

Open Discussion: A Holistic Model for Resilience
Hermann Hértig o o o e e 134

Memory Errors in Modern Systems
Vilas Sridharan e 134

Fault Tolerance for Iterative Linear Solvers
James Elliott e e e e e 134

Scalable Fault Tolerance at the Extreme Scale
Zizhong (Jeffrey) Chen 135

Algorithms for coping with silent errors
Yves Robert o e 135

Assessing the impact of composite strategies for resilience
George Bosilcao e 136

Leveraging PGAS Models for Hard and Soft Errors at Scale
Abhinav Vishnu e 136

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

Open Discussion: Soft Error
Satoshi Matsuoka

Abstractions and mechanisms for proportional resilience
Mattan Erez o e e e e e e e e

A Non-checkpoint /restart, Non-algorithm-specific Approach to Fault-tolerance
Dorian C. Arnold e

Dynamic Resource Management and Scheduling for Fault Tolerance
Felix Wolf o e

Conclusion

Participants e

129

14402

130

14402 — Resilience in Exascale Computing

3 Overview of Talks
APIs, Checkpoint/Restart Systems and Resilience Benchmarks

3.1 Energy-Performance Tradeoffs in Multilevel Checkpoint Strategies
Leonardo Bautista-Gomez (Argonne National Laboratory, US)

License) Creative Commons BY 3.0 Unported license
© Leonardo A. Bautista-Gomez
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.BautistaGomezLeonardo.Slides.pdf

Resilience in high-performance computing is all about protecting information. How to protect
information while minimizing time, space and energy; is an open question. In this talk I will
be presenting our recent work in multilevel checkpointing, lossy floating point compression,
power monitoring and silent data corruption.

3.2 APIs, Architecture and Modeling for Extreme Scale Resilience

Kento Sato (Tokyo Institute of Technology, JP)

License) Creative Commons BY 3.0 Unported license
© Kento Sato
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.SatoKento.Slides.pdf

The computational power of high performance computing systems is growing exponentially,
enabling finer grained scientific simulations. However, as the capability and component count
of the systems increase, the overall failure rate increases accordingly. To make progress in
spite of system failures, applications periodically write checkpoints to a reliable parallel file
system so that the applications can restart from the last checkpoint. While simple, this
conventional approach can impose huge overhead on application runtime for both checkpoint
and restart operations at extreme-scale. In this presentation, to address the problem, first we
introduce multi-level asynchronous checkpointing for fast checkpointing. Second, we present
a fault tolerant messaging interface for fast and transparent recovery. Finally we explore
new storage designs for scalable checkpoint /restart.

3.3 Portable Programming and Runtime Support for
Application-Controlled Resilience

Andrew A. Chien (University of Chicago, US)

License) Creative Commons BY 3.0 Unported license
© Andrew Chien
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.ChienAndrew.Slides.pdf

Application-aware techniques for resilience are promising approaches to efficient resilience
in exascale systems. The Global View Resilience (GVR) system supports flexible, scalable,
application-controlled resilience with a simple, portable abstraction — versioned, distributed
arrays. Using a GVR prototype, we have evaluated the system’s utility on both a number of
mini-apps (miniMD, miniFE), and larger applications (a preconditioned conjugate gradient
solver, OpenMC, ddcMD, and Chombo). Our results show that the programmer effort

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.BautistaGomezLeonardo.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.SatoKento.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.ChienAndrew.Slides.pdf

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld 131

required (code change) to adopt version-based resilience is small (<1% code modified) and
localized, requiring no software architecture changes. The application changes are also
portable (machine-independent) and create a gentle-slope path to tolerating growing error
rates in future systems. With the same applications, we evaluate the overhead of version-
based resilience based on an early prototype GVR system, and find that low overheads can
be achieved for all of them.

3.4 Open Discussion: Of Apples, Oranges and (Non-)reproducability
Frank Mueller (North Carolina State University, US)

License) Creative Commons BY 3.0 Unported license
© Frank Mueller
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.MuellerFrank.Slides.pdf

Current resilience work in HPC lacks a common API and common benchmarks. The objective
of this discussion was to present and adapt an API that embraces most if not all resilience
methods to date in a minimal set of routines, and to identify potential candidates for resilience
benchmarks, execution scenarios with and without fault injection and metrics to report.

HPC Resilience methods and Beyond

3.5 MPI Fault Tolerance: The Good, The Bad, The Ugly
Martin Schulz (LLNL — Livermore, US)

License) Creative Commons BY 3.0 Unported license
© Martin Schulz
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.SchulzMartin.Slides.pdf

The MPI forum is currently investigating the inclusion of fault tolerance as a feature in the
MPI specification. This issue has raised and continuous to raise some controversy about
what MPI implementations can reasonably be expected to provide and what is useful for
application developers. In this talk I will present the main proposals that are currently on
the table, their advantages and the main concerns against them. The goal of this talk is to
expand the discussion and to gather feedback that will help the MPI forum to come to a
solution that is helpful for the larger HPC community.

3.6 Supporting the Development of Resilient Message Passing
Applications

Christian Engelmann (Oak Ridge National Lab., US)

License) Creative Commons BY 3.0 Unported license
© Christian Engelmann
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.EngelmannChristian.Slides.pdf

An emerging aspect of high-performance computing (HPC) hardware/software co-design
is investigating performance under failure. The presented work extends the Extreme-scale
Simulator (xSim), which was designed for evaluating the performance of message passing

14402

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.MuellerFrank.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.SchulzMartin.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.EngelmannChristian.Slides.pdf

132

14402 — Resilience in Exascale Computing

interface (MPI) applications on future HPC architectures, with fault-tolerant MPI extensions
proposed by the MPI Fault Tolerance Working Group. xSim permits running MPI applications
with millions of concurrent MPI ranks, while observing application performance in a simulated
extreme-scale system using a lightweight parallel discrete event simulation. The newly added
features offer user-level failure mitigation (ULFM) extensions at the simulated MPT layer to
support algorithm-based fault tolerance (ABFT). The presented solution permits investigating
performance under failure and failure handling of ABFT solutions. The newly enhanced
xSim is the very first performance tool that supports ULFM and ABFT.

3.7 Fault Tolerance for Remote Memory Access Programming Models

Torsten Hoefler (ETH Zirich, CH)

License) Creative Commons BY 3.0 Unported license
© Torsten Hoefler
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.Hoefler Torsten.Slides.pdf

Remote Memory Access (RMA) is an emerging mechanism for programming high-performance
computers and datacenters. However, little work exists on resilience schemes for RMA-based
applications and systems. In this paper we analyze fault tolerance for RMA and show that it
is fundamentally different from resilience mechanisms targeting the message passing (MP)
model. We design a model for reasoning about fault tolerance for RMA, addressing both flat
and hierarchical hardware. We use this model to construct several highly-scalable mechanisms
that provide efficient low- overhead in-memory checkpointing, transparent logging of remote
memory accesses, and a scheme for transparent recovery of failed processes. Our protocols
take into account diminishing amounts of memory per core, one of major features of future
exascale machines. The implementation of our fault-tolerance scheme entails negligible
additional overheads. Our reliability model shows that in-memory checkpointing and logging
provide high resilience. This study enables highly-scalable resilience mechanisms for RMA
and fills a research gap between fault tolerance and emerging RMA programming models.

3.8 Application level asynchronous checkpointing/restart: first
experiences with GPI

Gerhard Wellein (Universitit Erlangen-Nirnberg, DE)

License) Creative Commons BY 3.0 Unported license
© Gerhard Wellein
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.WelleinGerhard.Slides.pdf

Automatic check-point/restart is one potential way to address the resilience challenge of
exascale computing. This talk presents first experiences of a prototypical application that
is able to recover itself after detecting a failed node. It has been accomplished using GPI
communication library in combination with checkpoint/restart technique. We investigate the
potential of asynchronous checkpointing both to neighboring nodes and parallel file systems
to reduce or even hide the costs of checkpointing.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.HoeflerTorsten.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.WelleinGerhard.Slides.pdf

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld 133

Resilience Models

3.9 Operating System Support for Redundant Multithreading
Bjérn Débel (TU Dresden, DE)

License @@ Creative Commons BY 3.0 Unported license
© Bjoérn Dobel
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.DoebelBjoern.Slides.pdf

Implementing fault tolerance methods in software allows to protect commercial-off-the-shelf
computer systems against the effects of transient and permanent hardware errors. In this
talk I am going to present ROMAIN, an operating system service that provides transparent
replication to binary-only applications on top of the L4 microkernel. I will describe how
ROMAIN supports replication of multithreaded applications and replication of accesses to
shared-memory channels between applications.

In the second part of the talk I am going to discuss how the experiences we gained
while developing ROMAIN might benefit the HPC community and which of ROMAIN’s
assumptions need to be adjusted in this context.

3.10 Resilient gossip algorithms for online management of exascale
clusters

Amnon Barak (The Hebrew University of Jerusalem, IL)

License) Creative Commons BY 3.0 Unported license
© Amnon Barak
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.Barak Amnon.Slides.pdf

Management of forthcoming exascale clusters requires frequent collection and sharing of run-
time information about the health of the nodes, their resources and the running applications.
We present a new paradigm for online management of scalable clusters, consisting of a large
number of computing nodes (nodes) and a small number of servers (masters) that manage
these nodes. We describe the details of gossip algorithms for sharing local information within
subsets (colonies) of nodes and for sending selected global information to the masters, which
hold recent information on all the nodes.

The presented algorithms are decentralized and resilient — they can work well when some
nodes are down and without needing any recovery protocol. We give formal expressions for
approximating the average age of the local information at each node and the average age of
the collected information at a master. We then show that the results of these approximations
closely match the results of simulations and measurements on a real cluster for different-size
colonies.

The main outcome of this study is that a division of a large cluster to colonies can reduce
the overall number of messages and the average load at the masters.

14402

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.DoebelBjoern.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.BarakAmnon.Slides.pdf

134

14402 — Resilience in Exascale Computing

3.11 FFMK: Towards a fast and fault-tolerant micro-kernel-based
Operating System

Hermann Hartig (TU Dresden, DE)

License @@ Creative Commons BY 3.0 Unported license
© Hermann Hartig
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.HaertigHermann.Slides.pdf

FFMK’s architecture is based on a combination of well-proven technologies: the L4 micro-
kernel and L4-based virtualization, on-line management algorithms as used in the MosiX
system, coding as used in RAID, and the XTreem-FS distributed file-system. I plan to
explain the overall architecture and then start discussing the points in the architecture that
require special attention for fault tolerance. My hope is, that — in interaction with the
audience — we will arrive at a clearer idea where which types of fault-tolerance measures are
needed or possible in view of requirements and fault models for exa-scale systems.

3.12 Open Discussion: A Holistic Model for Resilience
Hermann Hartig (TU Dresden, DE)

License) Creative Commons BY 3.0 Unported license
© Hermann Hartig

The following discussion suggested that a failure-model-based systematic analysis is needed
rather than an ad-hoc discussion. It was suggested that the notion of containment domains
makes sense as a starting point. Overall, a holistic view on fault tolerance techniques for
exascale systems does yet exist.

Soft Errors

3.13 Memory Errors in Modern Systems
Vilas Sridharan (Advanced Micro Devices, Inc. — Bozborough, US)

License) Creative Commons BY 3.0 Unported license
© Vilas Sridharan
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.SridharanVilas.Slides.pdf

This talk presents fault and error data collected from several production systems in the field,
and uses this data to project to node hardware reliability in an exascale timeframe.

3.14 Fault Tolerance for lterative Linear Solvers

James J. Elliott (North Carolina State University, US)

License) Creative Commons BY 3.0 Unported license
© James Elliott
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.ElliottJames.Slides.pdf

Computer hardware trends may expose incorrect computation or storage to application codes.
Silent data corruption (SDC) will likely be infrequent, yet one SDC suffices to make numerical

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.HaertigHermann.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.SridharanVilas.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.ElliottJames.Slides.pdf

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

algorithms like iterative linear solvers cease progress towards the correct answer. Initially, we
focus our efforts on the resilience of the iterative linear solver GMRES to a single transient
SDC. Our experiments show that when GMRES is used as the inner solver of an inner-outer
iteration, it can "run through" SDC of almost any magnitude in the computationally intensive
orthogonalization phase. That is, it gets the right answer using faulty data without any
required roll back. Those SDCs, which it cannot run through, are caught by our detection
scheme. We analyze our solvers in the presence of multiple faults, and discuss how fault
rates and fault detection influences iterative solver selection.

3.15 Scalable Fault Tolerance at the Extreme Scale
Zizhong Chen (University of California — Riverside, US)

License) Creative Commons BY 3.0 Unported license
© Zizhong (Jeffrey) Chen
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.ChenZizhong.Slides.pdf

Extreme scale supercomputers available before the end of this decade are expected to have
100 million to 1 billion computing cores. Due to the large number of components involved,
extreme scale scientific applications must be protected from errors. When an error occurs,
the affected application either continues or stops. If the application continues, we call it a
fail-continue error. Otherwise, we call it a fail-stop error. In this talk, In this talk, T will
discuss our recent work on scalable fault tolerance at the extreme scale. We have developed
some highly efficient techniques for selected widely used scientific algorithms to tolerate both
fail-continue and fail-stop errors according to their specific algorithmic characteristics. The
algorithms we consider include direct methods for solving dense linear systems and eigenvalue
problems, iterative methods for solving sparse linear systems and eigenvalue problems, and
Newton’s method for solving systems of non-linear equations and optimization problems. By
leveraging the algorithmic characteristics of these algorithms, the proposed techniques can
achieve much higher efficiency than the traditional general techniques (i. e., Triple Modular
Redundancy for fail-continue errors and checkpoint for fail-stop errors) and therefore have
potential to scale to exascale and beyond. A highly scalable checkpointing scheme is also
developed for general applications.

3.16 Algorithms for coping with silent errors
Yves Robert (ENS — Lyon, FR & University of Tennessee, US)

License) Creative Commons BY 3.0 Unported license
© Yves Robert
Joint work of Guillaume Aupy, Anne Benoit, Aurélien Cavelan, Thomas Hérault, Saurabh K. Raina, Hongyang
Sun, Frédéric Vivien, and Dounia Zaidouni
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.RobertYves.Slides.pdf

Silent errors have become a major problem for large-scale distributed systems. Detection
is hard, and correction is even harder. This talks presents generic algorithms to achieve
both detection and correction of silent errors, by coupling verification mechanisms and
checkpointing protocols. Application-specific techniques will also be investigated for sparse
numerical linear algebra.

135

14402

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.ChenZizhong.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.RobertYves.Slides.pdf

136

14402 — Resilience in Exascale Computing

3.17 Assessing the impact of composite strategies for resilience
George Bosilca (University of Tennessee, US)

License) Creative Commons BY 3.0 Unported license
© George Bosilca
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.BosilcaGeorge.Slides.pdf

With the advances in the theoretical and practical understanding of algorithmic traits enabling
Algorithm Based Fault Tolerant (ABFT) approaches, a growing number of frequently used
algorithms have been proven ABFT- capable. In the context of larger applications, these
algorithms provide a temporal section of the execution when the data is protected by it’s own
intrinsic properties, and can be algorithmically recomputed without the need of checkpoints.
However, while typical scientific applications spend a significant fraction of their execution
time in library calls that can be ABFT- protected, they interleave sections that are difficult
or even impossible to protect with ABFT. As a consequence, the only fault- tolerance
approach that is currently used for these applications is checkpoint/restart. In this talk I
will present a model to investigate the efficiency of a composite protocol, that alternates
between ABFT and checkpoint /restart for effective protection of an iterative application
composed of ABFT-aware and ABFT- unaware sections.

3.18 Leveraging PGAS Models for Hard and Soft Errors at Scale
Abhinav Vishnu (Pacific Northwest National Lab. — Richland, US)

License) Creative Commons BY 3.0 Unported license
© Abhinav Vishnu
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.VishnuAbhinav.Slides.pdf

PGAS Models are finding increasing adoption in the community due to their productivity,
asynchronous communication and high performance. In this talk, we will present research
conducted at PNNL for leveraging PGAS programming models for hard faults and consider
methods for soft error detection and correction using NWChem — a large scale computational
chemistry application. A significant portion of the talk would be presenting the lessons
learned and gaps which should be addressed in the resilience research.

3.19 Open Discussion: Soft Error
Satoshi Matsuoka (Tokyo Institute of Technology, JP)

License () Creative Commons BY 3.0 Unported license
© Satoshi Matsuoka
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.MatsuokaSatoshi.Slides.pdf

The so-called ‘soft-errors’ or undetected ‘silent’ errors are deemed to be one of the roadblocks
as systems such as supercomputers and IDCs growing exponentially large, and the overall
system error rate increasing proportionally. However, we often tend to forget that, unlike
embedded, autonomous systems, for scientific computing there are always humans in the loop
validating the results. In such a scenario, will soft errors matters as anticipated? We conduct
qualitative analysis based on TSUBAME2.0’s fault statics collected over a year period, to
argue that soft errors may not be serious given the improvements in HW reliability as well as
humans re-evaluating false positives due to soft errors, to the extent that the entire problem
space could be dealt with traditional detection and recovery techniques for hard-stop failures.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.BosilcaGeorge.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.VishnuAbhinav.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.MatsuokaSatoshi.Slides.pdf

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

Supporting Frameworks

3.20 Abstractions and mechanisms for proportional resilience

Mattan Erez (University of Texas — Austin, US)

License @@ Creative Commons BY 3.0 Unported license
© Mattan Erez
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.ErezMattan.Slides.pdf

Systems and applications have dynamic reliability characteristics and requirements. As a
result, opportunities, and perhaps even a requirement, exist for co-tuning resilience across
system and application layers. Many challenges must be addressed for co-tuning to be
successful, especially in bridging the gaps between layers. In this talk I will discuss a
few thoughts, examples, and questions related to mechanisms and abstractions (framed
by Containment Domains) for addressing some of these challenges, including: how should
hardware error and detector properties and models be presented to the application? How
can an application specify non- traditional recovery and error tolerance? How can dynamic
applications and load-balancing be modeled w.r.t. time and energy? What metrics should
be optimized?

3.21 A Non-checkpoint/restart, Non-algorithm-specific Approach to
Fault-tolerance

Dorian C. Arnold (University of New Mexico — Albuquerque, US)

License) Creative Commons BY 3.0 Unported license
© Dorian C. Arnold
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.ArnoldDorian.Slides.pdf

Hierarchical or tree-based overlay networks (TBONSs) are often used to execute data ag-
gregation operations in a scalable, piecewise fashion. We present state compensation, a
scalable failure recovery model for high-bandwidth, low-latency TBON computations. By
leveraging inherently redundant state information found in many TBON computations,
state compensation avoids explicit state replication (for example, process checkpoints and
message logging) and incurs no overhead in the absence of failures. Further, when failures
do occur, state compensation uses a weak data consistency model and localized protocols
that allow processes to recover from failures independently and responsively. We describe
the fundamental state compensation concepts and a prototype implementation integrated
into the MRNet TBON infrastructure. Our experiments with this framework suggest that
for TBONSs supporting up to millions of application processes, state compensation can yield
millisecond recovery latencies and inconsequential application perturbation.

137

14402

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.ErezMattan.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.ArnoldDorian.Slides.pdf

138

14402 — Resilience in Exascale Computing

3.22 Dynamic Resource Management and Scheduling for Fault
Tolerance

Feliz Wolf (GRS for Simulation Sciences — Aachen, DE)

License @@ Creative Commons BY 3.0 Unported license
© Felix Wolf
URL http://www.dagstuhl.de/mat/Files/14/14402/14402.WolfFelix.Slides.pdf

To dynamically recover from node failure, a parallel job usually needs to replace the failed
nodes. While the static allocation of spare nodes is technically simpler, pooling spare nodes
across all jobs and allocating them dynamically is more efficient in terms of the number of
required spare nodes but requires dynamic resource management. In this talk, we present an
extension of the Torque/Maui batch systems to support dynamic node allocation for running
parallel jobs and discuss how it can support fault-tolerant applications in the re-acquisition
of failed nodes. As long as the parallel runtime system can continue running the application
with replaced nodes, they can be obtained from the batch system through an API.

4 Conclusion

Through the lively engagement of all participants, the seminar was very successful and
conducted in a professional, friendly and collegiate atmosphere supported by the kind and
helpful staff at Schloss Dagstuhl. Lively discussions continued every day well beyond meeting
times. The group meeting in its three-day format combined with the cozy confinement
of Dagstuhl provided an umbrella for thoughtful discussion that conferences or workshops
cannot provide. This helped create a community feeling that could become a building block
for a concerted effort to coordinate future research activities, cooperate in outreach effort and
maximize everyone’s productivity and impact in fulling together each one’s unique expertise
for a combined effort to successfully solve the grand challenges of resilience in exascale HPC
and beyond. During the meeting, follow-up action items with community-building character
were identified, as detailed in the online discussion notes of the discussion sessions. They
include (a) creation of a mailing list to coordinate activities and disseminate information
on FT in high-performance computing and related areas, (b) development a standard set of
benchmarks and an API for arbitrary resilience mechanisms, and (c¢) organization of follow-on
meetings for the community. Within one month of the seminar, action item (a) have been
realized and the benchmarks set (b) and a follow-up meeting (c) are in the planning stages.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/mat/Files/14/14402/14402.WolfFelix.Slides.pdf

Hermann Hartig, Satoshi Matsuoka, Frank Mueller, Alexander Reinefeld

Participants

= Dorian C. Arnold

University of New Mexico —
Albuquerque, US

= Amnon Barak

The Hebrew University of
Jerusalem, IL

= Leonardo Bautista-Gomez
Argonne National Laboratory, US
= George Bosilca

University of Tennessee, US

= Zizhong Chen

University of California —
Riverside, US

= Andrew A. Chien

University of Chicago, US

= Nathan DeBardeleben

Los Alamos National Lab., US
= Bjorn Dobel

TU Dresden, DE

= James J. Elliott

North Carolina State Univ., US
= Christian Engelmann

Oak Ridge National Lab., US

= Mattan Erez

University of Texas — Austin, US

= Hermann Hartig
TU Dresden, DE

= Torsten Hoefler
ETH Ziirich, CH

= Larry Kaplan
Cray Inc. — Seattle, US

= Dieter Kranzlmiiller
LMU Miinchen, DE

= Matthias Lieber
TU Dresden, DE

= Naoya Maruyama
RIKEN - Kobe, JP

= Satoshi Matsuoka
Tokyo Institute of Technology, JP

= Frank Mueller
North Carolina State Univ., US

= Alexander Reinefeld
Konrad-Zuse-Zentrum —
Berlin, DE

= Yves Robert
ENS — Lyon, FR

= Robert B. Ross
Argonne National Laboratory, US

= Kento Sato

Tokyo Institute of Technology, JP

= Thorsten Schiitt
Konrad-Zuse-Zentrum —
Berlin, DE

= Martin Schulz
LLNL — Livermore, US

= Vilas Sridharan
Advanced Micro Devices, Inc. —
Boxborough, US

= Thomas Steinke
Konrad-Zuse-Zentrum —
Berlin, DE

= Jeffrey Vetter
Oak Ridge National Lab., US

= Abhinav Vishnu
Pacific Northwest National
Laboratory — Richland, US

= Gerhard Wellein
Univ. Erlangen-Niirnberg, DE

= Felix Wolf
GRS for Simulation Sciences —
Aachen, DE

139

14402

	Executive Summary Hermann Härtig, Satoshi Matsuoka, Frank Mueller, and Alexander Reinefeld
	Table of Contents
	Overview of Talks
	Energy-Performance Tradeoffs in Multilevel Checkpoint Strategies Leonardo A. Bautista-Gomez
	APIs, Architecture and Modeling for Extreme Scale Resilience Kento Sato
	Portable Programming and Runtime Support for Application-Controlled Resilience Andrew Chien
	Open Discussion: Of Apples, Oranges and (Non-)reproducability Frank Mueller
	MPI Fault Tolerance: The Good, The Bad, The Ugly Martin Schulz
	Supporting the Development of Resilient Message Passing Applications Christian Engelmann
	Fault Tolerance for Remote Memory Access Programming Models Torsten Hoefler
	Application level asynchronous checkpointing/restart: first experiences with GPI Gerhard Wellein
	Operating System Support for Redundant Multithreading Björn Döbel
	Resilient gossip algorithms for online management of exascale clusters Amnon Barak
	FFMK: Towards a fast and fault-tolerant micro-kernel-based Operating System Hermann Härtig
	Open Discussion: A Holistic Model for Resilience Hermann Härtig
	Memory Errors in Modern Systems Vilas Sridharan
	Fault Tolerance for Iterative Linear Solvers James Elliott
	Scalable Fault Tolerance at the Extreme Scale Zizhong (Jeffrey) Chen
	Algorithms for coping with silent errors Yves Robert
	Assessing the impact of composite strategies for resilience George Bosilca
	Leveraging PGAS Models for Hard and Soft Errors at Scale Abhinav Vishnu
	Open Discussion: Soft Error Satoshi Matsuoka
	Abstractions and mechanisms for proportional resilience Mattan Erez
	A Non-checkpoint/restart, Non-algorithm-specific Approach to Fault-tolerance Dorian C. Arnold
	Dynamic Resource Management and Scheduling for Fault Tolerance Felix Wolf

	Conclusion
	Participants

