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Abstract
This report documents the programme and the outcomes of the Dagstuhl Seminar 14421 “Optimal
algorithms and proofs”. The seminar brought together researchers working in computational and
proof complexity, logic, and the theory of approximations. Each of these areas has its own,
but connected notion of optimality; and the main aim of the seminar was to bring together
researchers from these different areas, for an exchange of ideas, techniques, and open questions,
thereby triggering new research collaborations across established research boundaries.
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General Introduction to the Topic
The notion of optimality plays a major role in theoretical computer science. Given a
computational problem, does there exist a “fastest” algorithm for it? Which proof system
yields the shortest proofs of propositional tautologies? Is there a single distribution which
can be used to inductively infer any computable sequence? Given a class of optimization
problems, is there a single algorithm which always gives the best efficient approximation to the
solution? Each of these questions is a foundational one in its area – the first in computational
complexity, the second in proof complexity, the third in computational learning theory, and
the last in the theory of approximation.
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Consider, as an example, the Boolean Satisfiability (SAT) search problem, which asks,
given a Boolean formula, for a satisfying assignment to the formula. Since SAT is NP-
complete, being able to tell whether the fastest algorithm for SAT runs in polynomial time
would imply a solution to the notoriously hard NP vs P problem, which is far beyond the
state of our current knowledge. However, the possibility remains that we can define an
optimal algorithm which we can guarantee to be essentially the fastest on every instance,
even if we cannot rigorously analyze the algorithm. In a seminal paper, Leonid Levin (1973)
proved that every NP search problem, and in particular SAT, has an optimal algorithm. It
is still unknown whether every decision problem in NP has an optimal algorithm.

In general, given a class of computational artefacts (algorithms/proof systems/distri-
butions) and performance measures for each artefact in the class, we say that an artefact
is optimal if it matches the performance of every other artefact in every case. The main
questions about optimality is: for which classes of artefacts and under which assumptions do
they exist? In case they do exist, how well do they match the performance of other artefacts
in the class? How is the existence of optimal artefacts related to other fundamental theoretical
questions, such as complexity lower bounds, efficient learnability or approximability?

There have been a number of important recent results about optimality in various
computational settings. Prime examples include optimal proof systems and acceptors under
advice or in heuristic settings, surprising relations of optimal proof systems to descriptive
complexity and parameterized complexity, hierarchy results in various computational settings,
and optimal approximation algorithms for constraint satisfaction problems.

Organisation of the Seminar and Activities
The seminar brought together 41 researchers from different areas of computer science and
mathematics such as computational complexity, proof complexity, logic, and approximations
with complementary expertise, but common interest in different notions of optimality. The
participants consisted of both senior and junior researchers, including a number of postdocs
and a few advanced graduate students.

Participants were invited to present their work and to communicate state-of-the-art
advances. Twenty-two talks of various lengths were given over the five-day workshop. Survey
talks of 60 minutes were scheduled prior to workshop, covering the three main areas of
computational complexity, proof complexity, and approximations. Most of the remaining
slots were filled as the workshop commenced. In addition, during two spontaneously organised
open problem sessions – one at the very start and the second, longer one near the end of the
workshop – the participants posed a number of open problems across the different disciplines
covered by the seminar. The organisers considered it important to leave ample free time for
discussion.

Three tutorial talks were scheduled during the first two days in order to establish a
common background for the different communities from computational complexity, proof
complexity, logic, and approximation that came together for the workshop. The presenters
and topics were:

David Steurer: Survey on Approximations and Optimality
Olaf Beyersdorff: Optimal Proof Systems – a Survey
Rahul Santhanam: Hierarchies and Lower Bounds via Optimality – a Survey

The other 19 talks covered a broad range of topics from logic, computational complexity
and proof complexity.
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The organisers think that the seminar fulfilled their original high goals: most talks were
a great success and many participants reported about the inspiring seminar atmosphere,
fruitful interactions, and a generally positive experience. The organisers and participants
wish to thank the staff and the management of Schloss Dagstuhl for their assistance and
excellent support in the arrangement of a very successful and productive event.
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3 Overview of Talks

3.1 Optimal Proof Systems – a Survey
Olaf Beyersdorff (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Olaf Beyersdorff

This talk is a survey on optimal proof system. I will not cover any results in detail, but try
to present the general picture of what is known and what to expect. The question whether
optimal proof systems exist was first raised by Krajíček and Pudlák [9] and has been open
since. In the talk I survey
1. Characterizations for the existence of optimal proof systems [1, 3, 4, 9, 10];
2. Sufficient and necessary conditions for their existence [6, 9];
3. Positive results in different models [2, 5, 11];
4. Connections to first-order logic [7, 8].

A longer exposition of the content of the talk is available as a guest post to Hunter
Monroe’s blog ‘Speedup in Computational Complexity’.

References
1 Olaf Beyersdorff, Johannes Köbler, and Jochen Messner. Nondeterministic functions and

the existence of optimal proof systems. Theoretical Computer Science, 410(38–40):3839–
3855, 2009.

2 Olaf Beyersdorff, Johannes Köbler, and Sebastian Müller. Proof systems that take advice.
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3 Olaf Beyersdorff and Zenon Sadowski. Do there exist complete sets for promise classes?
Mathematical Logic Quarterly, 57(6):535–550, 2011.

4 Yijia Chen and Jörg Flum. From almost optimal algorithms to logics for complexity classes
via listings and a halting problem. J. ACM, 59(4):17, 2012.

5 Edward A. Hirsch and Dmitry Itsykson. On optimal heuristic randomized semidecision
procedures, with application to proof complexity. In Proc. STACS’10, pages 453–464, 2010.

6 Johannes Köbler, Jochen Messner, and Jacobo Torán. Optimal proof systems imply com-
plete sets for promise classes. Information and Computation, 184(1):71–92, 2003.
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8 Jan Krajíček. Forcing with random variables and proof complexity, volume 382 of Lecture
Note Series. London Mathematical Society, 2011.

9 Jan Krajíček and Pavel Pudlák. Propositional proof systems, the consistency of first order
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1079, 1989.

10 Jochen Messner. On optimal algorithms and optimal proof systems. In Proc. STACS’99,
pages 541–550, 1999.

11 Toniann Pitassi and Rahul Santhanam. Effectively polynomial simulations. In Proc. 1st
Innovations in Computer Science, 2010.
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3.2 Total Space in Resolution
Ilario Bonacina (University of Rome “La Sapienza”, IT)
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Joint work of Bonacina, Ilario; Galesi, Nicola; Thapen, Neil

Consider a resolution refutation of some unsatisfiable formula F . Such refutation could be
presented on a blackboard with limited space. Initially the blackboard is empty and at each
step of the presentation we can either: write on the blackboard some clause from F ; apply
the resolution rule to clauses already on the blackboard and write down the clause we get;
erase some clause from the blackboard (in order to save space). The refutation ends when we
can write the empty clause on the blackboard. The Total Space of F is the minimal size of a
blackboard needed to present a refutation of F , where the size of a blackboard is intended to
be the number of literals (counted with repetitions) it can contain.

We will show that some constant width formulas in n variables the blackboard must
contain at least cn clauses each of width cn, for some constant c > 0. Hence require Total
Space Ω(n2). This result is optimal (up to a constant factor).

3.3 Are There Hard Examples for Frege Systems? – Nearly Twenty
Years Later

Samuel R. Buss (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
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We discuss the lack of combinatorial examples of candidate tautologies for exponentially
separating Frege and extended Frege systems. Recently, different groups have given quasipoly-
nomial size Frege proofs for determinental identities, Frankl’s theorem, and the Kneser-Lovasz
tautologies. This talk presents a new proof of the pigeonhole principle which formalizes the
Cook Reckhow proofs as quasipolynomial size Frege proofs.

3.4 Majority is Incompressible by AC0[p] Circuits
Igor Carboni Oliveira (Columbia University, New York, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Carboni Oliveira, Igor; Santhanam, Rahul

Razborov/Smolensky (1987) obtained lower bounds on the size of depth-d Boolean circuits
extended with modulo p gates computing the Majority function. This result remains one
of the strongest lower bounds for an explicit Boolean function. In this work, we obtain
information about the structure of polynomial-size Boolean circuits with modulo p gates
computing Majority. For instance, we show that for any d, at least n/((log n)O(d)) wires
must enter the d-th layer of the circuit, which is essentially optimal. This result follows
from the investigation of a more general framework called interactive compression games
(Chattopadhyay and Santhanam, 2012), which combines computational complexity and
communication complexity, and has applications in cryptography, parametrized complexity
and circuit complexity. In this talk, we will discuss new results in this model, and mention a
few open problems.

14421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


58 14421 – Optimal Algorithms and Proofs

3.5 A Parameterized Halting Problem
Yijia Chen (Shanghai Jiao Tong University, CN)
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Joint work of Chen, Yijia; Flum, Jörg
Main reference Y. Chen, J. Flum, “A parameterized halting problem,” in H. L. Bodlaender, R. Downey, F.V.

Fomin, D. Marx (eds.), “The Multivariate Algorithmic Revolution and Beyond – Essays Dedicated
to Michael R. Fellows on the Occasion of His 60th Birthday,” LNCS, Vol. 7370, pp. 364–397,
Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-30891-8_17

The parameterized problem p−Halt takes as input a nondeterministic Turing machine M

and a natural number n, the size of M being the parameter. It asks whether every accepting
run of M on empty input tape takes more than n steps. This problem is in the class XPuni,
the class “uniform XP ,” if there is an algorithm deciding it, which for fixed machine M
runs in time polynomial in n. It turns out that various open problems of different areas
of theoretical computer science are related or even equivalent to p−Halt ∈ XPuni. Thus
this statement forms a bridge which allows to derive equivalences between statements of
different areas (proof theory, complexity theory, descriptive complexity, . . . ) which at first
glance seem to be unrelated. As our presentation shows, various of these equivalences may
be obtained by the same method.

3.6 Proof Complexity for Quantified Boolean Formulas
Leroy Chew (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
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Joint work of Beyersdorff, Olaf; Chew, Leroy; Janota, Mikoláš
Main reference O. Beyersdorff, L. Chew, M. Janota, “Proof complexity of resolution-based QBF calculi,” to appear.

Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning
for the performance of important QBF solvers. In particular, the calculi Q-resolution and
long- distance Q-resolution serve as underlying formalisms for DPLL solvers for QBFs. More
recently, calculi based on universal expansion were introduced in order to enable reasoning
about expansion-based QBF solvers. These are ∀Exp+Res [3] and its generalisations IR
and IRM [1]. However, the proof complexity of these proof systems is currently not well
understood and in particular lower bound techniques are missing.

In this talk we exhibit a new and elegant proof technique for showing lower bounds in
QBF proof systems based on strategy extraction [2]. This technique provides a direct transfer
of circuit lower bounds to lengths of proofs lower bounds. We use our method to show the
hardness of a natural class of parity formulas for Q-resolution. Variants of the formulas
are hard for even stronger systems as long-distance and universal Q-resolution. With a
completely different lower bound argument we show the hardness of the prominent formulas
of Kleine Büning et al. for the strong expansion-based calculus IR, thus also confirming
the hardness of the formulas for Q-resolution. Our lower bounds imply new exponential
separations between two different types of resolution-based QBF calculi: proof systems
for DPLL-based solvers (Q-resolution, long- distance Q-resolution) and proof systems for
expansion-based solvers (∀Exp+Res and its generalisations IR and IRM). The relations
between proof systems from the two different classes were not known before.
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References
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calculi. In MFCS, pages 81–93, 2014.
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3.7 On the Success Probability of Polynomial-Time SAT Solvers
Andrew Drucker (University of Edinburgh, GB)
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Main reference A. Drucker, “Nondeterministic Direct Product Reductions and the Success Probability of SAT
Solvers,” in Proc. of the 2013 IEEE 54th Annual Symp. on Foundations of Computer Science
(FOCS’13), pp. 736–745, IEEE, 2013.

URL http://dx.doi.org/10.1109/FOCS.2013.84

In one approach to solving NP -complete problems like SAT, we try to design an efficient
randomized algorithm that attempts to guess a solution, and that is guaranteed to have
success probability better than truly-random guessing (if a solution exists). Such “intelligent
random guessing” is at the core of a number of improved exponential-time algorithms for
these problems. This was observed by Paturi and Pudlák [1], who found evidence for the
limitations of such algorithms.

We further this project. We show that a standard hardness assumption (NP 6∈ coNP/poly)
implies the following: For every polynomial-time randomized algorithm attempting to produce
satisfying assignments to Boolean formulas, there are infinitely many satisfiable instances on
which the algorithm’s success probability is nearly-exponentially small. Our proof involves
new ideas for the study of average-case complexity in the circuit model.

References
1 R. Paturi, P. Pudlák. On the Complexity of Circuit Satisfiability. Proceedings of the forty-

second ACM symposium on Theory of computing, pp. 241–250, 2010.

3.8 The Space Complexity of Cutting Planes Refutations
Nicola Galesi (University of Rome “La Sapienza”, IT)
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Joint work of Galesi, Nicola; Pavel Pudlák; Neil Thapen

We study the space complexity of the cutting planes proof system, in which the lines in
a proof are integral linear inequalities. We measure the space used by a refutation as the
number of inequalities that need to be kept on a blackboard while verifying it. We show that
any unsatisfiable set of inequalities has a cutting planes refutation in space five. This is in
contrast to the weaker resolution proof system, for which the analogous space measure has
been well-studied and many optimal lower bounds are known.

Motivated by this result we consider a natural restriction of cutting planes, in which all
coefficients have size bounded by a constant. We show that there is a CNF which requires
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super-constant space to refute in this system. The system nevertheless already has an
exponential speed-up over resolution with respect to size, and we additionally show that it is
stronger than resolution with respect to space, by constructing constant-space cutting planes
proofs of the pigeonhole principle with coefficients bounded by two.

We also consider variable space for cutting planes, where we count the number of instances
of variables on the blackboard, and total space, where we count the total number of symbols.

3.9 On the Correlation of Parity and Small-Depth Circuits
Johan Håstad (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
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Main reference J. Håstad, “On the Correlation of Parity and Small-Depth Circuits,” SIAM J. Computing,
43(5):1699–1708, 2014.

URL http://dx.doi.org/10.1137/120897432

We prove that the correlation of a depth-d unbounded fan-in circuit of size S with parity of
n variables is at most exp(−Ω(n/(log S)d−1)).

3.10 On Optimal Heuristic Computations and Heuristic Proofs
Dmitry Itsykson (Steklov Institute of Mathematics, St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
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Joint work of Itsykson, Dmitry; Hirsch, Edward; Monakhov, Ivan; Nikolaenko, Valeria; Smal, Alexander; Sokolov,
Dmitry

An acceptor for a language L is an algorithm that accepts elements of L and does not stop on
other inputs. Messner proved that for all good enough (paddable) languages the existence of
an optimal acceptor is equivalent to the existence of a p-optimal proof system. We consider
a notion of randomized heuristic acceptors that may accept with noticeable probability a
small fraction of inputs according to some distribution concentrated on the complement of
the language. We show that for every recursively enumerable langauge L and polynomial-
time samplable distribution concentrated on the complement of L there exists an optimal
randomized heuristic acceptor. Sometimes it is possible to make a construction deterministic.
For example for a language of the images of an injective function fn : {0, 1}n → {0, 1}n+1

there exists an optimal deterministic heuristic algorithm. Sometimes it is also possible
to eliminate errors: there exists an average-case optimal randomized acceptor for graph
non-isomorphism.

In the heuristic setting the proof of the equivalence between optimal acceptor and p-
optimal proof systems fails. However a heuristic proof system is an interesting concept. We
give some examples of short heuristic proofs that have no known short classical counterparts.
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3.11 QBF Solving and Proof Systems
Mikoláš Janota (INESC-ID, Lisbon, PT)
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Joint work of Janota, Mikoláš; Klieber, William; Marques-Silva, Joao; Clarke, Edmund
Main reference M. Janota, W. Klieber, J. Marques-Silva, E. Clarke, “Solving QBF with Counterexample Guided

Refinement,” in Proc. of the 15th Int’l Conf. on Theory and Applications of Satisfiability Testing
(SAT’12), LNCS, Vol. 7317, pp. 114–128, Springer, 2012.

URL http://dx.doi.org/10.1007/978-3-642-31612-8_10

Deciding Quantified Boolean Formulas (QBFs) is interesting both theoretically and practically.
QBFs are amenable to solving and theoretical analysis due to its canonic structure . At
the same time, they enable expressing a wide range of problems as the decision problem is
PSPACE complete. In this talk we will look at a recent method for solving QBF, which
gradually expands the given formula and invokes a SAT solver in a blackbox fashion. This
approach has proven to be highly competitive compared to existing ones. We will briefly
discuss a proof system that corresponds to this solving algorithm.

3.12 New Lower and Upper Bounds on Circuit Complexity
Alexander S. Kulikov (Steklov Institute of Mathematics, St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
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In the first part of the talk, we will show how SAT-solvers can help to prove stronger upper
bounds on the Boolean circuit complexity. Roughly, the main idea is that circuits for some
functions are naturally built from blocks of constant size. E.g., the well-known circuit that
computes the binary representation of the sum of n input bits is built from n full adders and
has size 5n. One can then state the question “whether there exist a block of smaller size
computing the same function” in terms of CNF- SAT and then ask SAT-solvers to verify
this. Using this simple approach we managed to improve the upper bound for the above
mentioned function to 4.5n. This, in particular, implies that any symmetric function has
circuit size at most 4.5n + o(n). We will also present improved upper bounds for some other
symmetric functions.

In the second part we will present much simpler proofs of currently best known lower
bounds on Boolean circuit complexity. These are 3n− o(n) for the full binary basis [Blum,
1984] and 5n − o(n) for the binary basis where parity and its complement are excluded
[Iwama, Morizumi, 2002]. The properties of the functions under consideration allow us to
prove the stated lower bounds with almost no case analysis.
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3.13 Narrow Proofs May Be Maximally Long
Massimo Lauria (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
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We prove that there are 3-CNF formulas over n variables refutable in resolution in width w

that require resolution proofs of size nw. This shows that the simple counting argument that
any formula refutable in width w must have a proof in size nw is essentially tight. Moreover,
our lower bound extends even to polynomial calculus resolution (PCR) and Sherali-Adams,
implying that the corresponding size upper bounds in terms of degree and rank are tight as
well. In contrast, the formulas have Lasserre proofs of constant rank and size polynomial in
both n and w.

3.14 An Observation on Levin’s Algorithm and a New (?) Application
to Matrix Multiplication

Jochen Messner (Ulm, DE)

License Creative Commons BY 3.0 Unported license
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We present a simple observation on Levin’s algorithm which allows an efficient implementation
for example on Turing machines. Then we use Freyvald’s randomized matrix multiplication
test together with Levin’s method to obtain an optimal probabilistic matrix multiplication
algorithm.

3.15 Speedup and Noncomputability
Hunter Monroe (IMF, Washington, US)

License Creative Commons BY 3.0 Unported license
© Hunter Monroe

Speedup broadly is the nonexistence of an optimal algorithm under some partial order. The
presentation will consider whether speedup exists for “natural” computational problems
such as multiplying integers or matrices and not only for Blum’s artificially constructed
languages. The goal will be to direct attention toward nonexistence rather than existence of
optimal algorithms. The talk will: (1) consider worst case speedup for integer and matrix
multiplication; (2) note a connection with monotone-nonmonotone gap for Boolean circuits;
(3) examine possible infinitely often speedup for the complement of bounded halting (and
for coNP-complete languages and for proof systems) and whether better algorithms be
easily produced; and (4) discuss a possible relationship between the properties “has no best
algorithm” and “has no algorithm at all”.
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3.16 On Some Problems in Proof Complexity
Pavel Pudlák (Academy of Sciences, Prague, CZ)

License Creative Commons BY 3.0 Unported license
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We are interested in open problems about the relation of complexity and provability. For most
of these statements, it seems that one answer is more plausible than the other. Therefore we
rather talk about conjectures. A prototype of such a conjecture is the one that says that
there is no finitely axiomatized consistent theory S such that for every finitely axiomatized
consistent theory one can construct proofs of ConS(n) in polynomial time. Here ConS(n)
denotes the consistency of S restricted to proofs of length at most n. The conjectures
P 6= NP and NP 6= coNP can also be viewed as such conjectures, because they can be
stated in terms of propositional proof systems.

The conjecture that we studied so far can be classified in two ways: (1) determinist-
ic/nondeterministic, (2) universal/existential. The main universal conjectures are comparable
and so are the main existential conjectures. Thus the conjectures form two branches. We
introduce two new conjecture. One is the Σb

1 finite reflection principle, which is a natural
strengthening of finite consistency mentioned above. The second one is Herbrand consistency
search. The reason for introducing Herbrand consistency search is to get a conjecture related
to consistency also in the existential branch of conjectures.

The strongest conjecture in the universal branch is the conjecture saying that there is no
complete disjoint NP pair. Similarly, the strongest conjecture in the existential branch is
the conjecture saying that there is no complete disjoint coNP pair. We have not been able
to find a natural conjecture that would imply both conjectures.

3.17 On the AC0 Complexity of Subgraph Isomorphism
Benjamin Rossman (National Institute of Informatics, Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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Joint work of Rossman, Benjamin; Li, Yuan; Razborov, Alexander

Let P be a fixed graph (hereafter called a “pattern”), and let Subgraph(P ) denote the problem
of deciding whether a given graph G contains a subgraph isomorphic to P . We are interested
in AC0-complexity of this problem, determined by the smallest possible exponent C(P ) for
which Subgraph(P ) possesses bounded-depth circuits of size nC(P )+o(1). Motivated by the
previous research in the area, we also consider its “colorful” version Subgraphcol(P ) in which
the target graph G is V (P )-colored, and the average-case version Subgraphave(P ). Defining
Ccol(P ) and Cave(P ) analogously to C(P ), our main contributions can be summarized as
follows.

1. Ccol(P ) coincides with the tree-width of the pattern P within a logarithmic factor. This
shows that the previously known upper bound by Alon, Yuster, Zwick is almost tight.

2. We give a characterization of Cave(P ) in purely combinatorial terms within a multiplicative
factor of 2. This shows that the lower bound technique of Rossman is essentially tight,
for any pattern P whatsoever.

3. We prove that if Q is a minor of P then Subgraphcol(Q) is reducible to Subgraphcol(P ) via
a linear-size monotone projection. At the same time, we show that there is no monotone

14421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


64 14421 – Optimal Algorithms and Proofs

projection whatsoever that reduces Subgraph(M3) to Subgraph(P3 + M2) (P3 is a path
on 3 vertices, Mk is a matching with k edges, and “+” stands for the disjoint union). This
result strongly suggests that the colorful version of the subgraph isomorphism problem is
much better structured and well-behaved than the standard (worst-case, uncolored) one.

3.18 Characterizing the Existence of Optimal Proof Systems and
Complete Sets for Promise Classes

Zenon Sadowski (University of Białystok, PL)

License Creative Commons BY 3.0 Unported license
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We investigate the following two questions:

Q1: Do there exist optimal proof systems for a given language L?
Q2: Do there exist complete problems for a given promise class C?

For concrete languages (such as TAUT or SAT) and concrete promise classes (such as UP ,
disjoint NP -pairs etc.) these questions have been intensively studied during last years, and
a number of characterizations have been obtained. Here we provide new characterizations
for Q1 and Q2 that apply to almost all promise classes C and languages L, thus creating
a unifying framework for the study of these questions. More specifically, we introduce the
notion of a promise complexity class representable in a proof system (captured by a proof
system). We express the promise condition of a class in a language L and then use a proof
system for L to verify that a given Turing machine satisfies the promise.

3.19 Hierachies and Lower Bounds via Optimality: A Survey
Rahul Santhanam (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Rahul Santhanam

I survey work on hierarchy theorems and circuit lower bounds, which uses ideas from optimal
algorithms. This work includes hierarchy theorems for probabilistic time with advice due to
Barak and Fortnow & myself, and my work on circuit lower bounds for MA with advice.

3.20 Disjoint NP-Pairs and Propositional Proof Systems
Alan Selman (SUNY – Buffalo, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Glasser, Christian; Hughes, Andrew; Selman, Alan; Wisiol, Nils

This talk surveys results on disjoint NP-pairs, propositional proof systems, function classes,
and promise classes – including results that demonstrate close connections that bind these
topics together. We illustrate important links between the questions of whether these classes
have complete objects and whether optimal proof systems may exist.
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3.21 Examples of Heuristic Proofs
Dmitry Sokolov (Steklov Institute of Mathematics, St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© Dmitry Sokolov

Joint work of Sokolov, Dmitry; Itsykson, Dmitry

In this talk we consider heuristic proof systems and give non-trivial examples of proof systems
of this kind. We give an example of a distributional problem (Y, D) that is in the complexity
class HeurNP but if NP is not equal to coNP then Y is not in NP , and if (NP, PSamp)
is not contained in HeurBPP then (Y, D) is not in HeurBPP .

For a language L and a polynomial q we define a language Lq composed of pairs (x, r)
where x is an element of L and r is an arbitrary binary string of length q(|x|). If D = {Dn}
is an ensemble of distributions on strings, let [D, U ] be a distribution on pairs (x, r), where
x is distributed according to Dn and r is uniformly distributed on strings of length q(n).
We show that for every language L in AM there is a polynomial q such that for every
distribution D concentrated on the complement of L the distributional problem (Lq, [D, U ]q)
has a polynomially bounded heuristic proof system. Since graph non-isomorphism (GNI) is
in AM , the above result is applicable to GNI.

4 Open Problems

The seminar hosted two open problem sessions: the first immediately after the introduction
on Monday morning, thus giving participants the opportunity to state problems they would
like to discuss with others during the week, and the second one towards the end of the
workshop on Thursday evening, reflecting on material presented during the week. The
problems presented in these two sessions include:

1. Andrew Drucker
Let PC(ϕ) denotes a proof length of ϕ in some propositional proof system Π. Is there
a sequence of tautologies ϕ1(x1, . . . , xn), . . . , ϕt(x1, . . . , xn), s.t. PC(ϕ1, . . . , ϕt) =
ω(maxi PC(ϕi))?

2. Nicola Galesi
Can CP ∗ (cutting-plane proof system with polynomially bounded coefficients) refute
every unsatisfiable CNF using constant space?
Is it possible to refute every unsatisfiable CNF in CP with linear total space?
Devise better lower bounds for CP 2 (cutting-plane proofs with coefficients bounded
by 2).
Background information on these problems can be found in [5].

3. Andreas Goerdt
Prove that linear resolution does not p-simulate regular resolution.

4. Johan Håstad
Devise relations between monotone threshold circuits with bounded and unbounded
weights. Non-monotone question is described in [7].
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5. Alexander Kulikov
A function f : {0, 1}n → {0, 1} is called an affine disperser for dimension d, if for every
affine subspace S ⊆ {0, 1}n of dimension at least d, f is not constant on S. This means
that n− d linear substitutions of the form xi =

⊕
j 6=i xj · bj ⊕ b0, where bi ∈ {0, 1} do

not make the function constant.
Ben-Sasson and Kopparty, Shaltiel showed that there are affine dispersers for dimension
o(n) in P .
Let us consider the following extension of affine dispersers. Now we allow linear and
‘quadratic’ substitutions. We start with a function of n variables. Then we make a
substitution of the form xi =

⊕
j 6=i xj · bj ⊕ b0 or xi = (xj ⊕ bj) · (xk ⊕ bk) ⊕ b, s.t.

the substitution makes it a function of n− 1 variables (i.e., after substituting xi, it
will never appear in the subsequent substitutions). We make n− k substitutions as
above and require the resulting function of k variables to be non-constant. Using a
probabilistic argument one can show that these functions exist for dimension k = o(n).
My main question is whether it is possible to find dispersers of this kind for dimension
o(n) in NP?
Let C(AND, OR, XOR) denote the circuit complexity (over the full binary basis B2)
of a function f : {0, 1}n → {0, 1}3, such that f(x) = (AND(x), OR(x), XOR(x)).
It is known that 2n− 2 ≤ C(AND, OR, XOR) ≤ 2.5n. Is it possible to improve the
lower bound?

6. Massimo Lauria
There is a natural way to express in CNF form that a graph G = ([n], E) contains a
clique of size k (i.e., a set of k vertices pairwise connected by edges).
If G has no k-clique then the corresponding CNF formula has a refutation. Furthermore,
most algorithms to detect cliques in graphs would implicitly produce a resolution
refutation of the k-clique formula, when they look for a k-clique in a graph that does
not have any. The length of the refutation is proportional to the running time of the
algorithm.
For this reason it is interesting to determine how long is a refutation the k-clique
formula: nO(k) is an obvious upper bound. Is this tight? Does the k-clique formula
require a resolution refutation of size nΩ(k) for some graph family?
The CNF formulation of the clique formulas as well as further background can be
found in [1, 2].

7. Jochen Messner
Is there a ≤p

m-complete set among all sets with an optimal acceptor?
Does every set with an optimal acceptor have a p-optimal proof system?
Is there a set outside P that has a p-optimal proof system?
Some background information can be found in [4, 6].

8. Hunter Monroe
Can hard instances be generated in various settings (hard tautologies to prove or to
accept, hard inputs < N, x, 1t > to the complement of bounded halting) and given
that such a construction would imply P 6= NP, how could it circumvent the limits on
diagonalization identified by Baker, Gill, and Solovay?

9. Sebastian Müller
In Parity Games you can easily construct gadgets that, when adjoined to any game
graph, make the associated Parity Game trivial, but alteration of one specific edge,
vertex or priority makes the gadget useless and therefore the game on the graph with
the altered gadget is as hard to solve as the original one.
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As these gadgets can be constructed for most classes of graphs (planar is a weak
exception), it shows that most classes of game graphs over which Parity Games are
feasible are not closed under the above alterations.
What happens if we are concerned with random edges, vertices or priorities? Can
we construct a graph, where random alterations already lead to problems? Can we
posibly add this to an exisiting graph and infer something in the light of what I said
above? Also, what happens if we look at specific or random alterations on the random
graph (perceived as a game graph)?
Background information on these problems can be found in [9].

10. Rahul Santhanam
For a deterministic Turing machine M which halts on all inputs, let TM (n) be the
worst-case time complexity of M on inputs of length n. Consider the following ‘running
time estimation’ problem: given n in unary, compute TM (n). Is there an exponential
time-bounded machine M such that a polynomial-time solution to the running time
estimation problem for M has interesting complexity-theoretic consequences, eg., a
collapse of complexity classes?

11. Alexander Smal
The following are equivalent
a. There is an optimal propositional proof system.
b. TAUT has an almost optimal nondeterministic algorithm.
c. There is a nondeterministic algorithm that decides p-Halt> problem.

(Input of p-Halt> is a pair of nondeterministic Turing machine M and natural
number n in unary. The problem is “does every accepting run of M on the empty
input take more than n steps?”)

What is a heuristic analogue of this statement?
Some background information can be found in [3, 8].
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