
Report from Dagstuhl Seminar 14442

Symbolic Execution and Constraint Solving
Edited by
Cristian Cadar1, Vijay Ganesh2, Raimondas Sasnauskas3, and
Koushik Sen4

1 Imperial College London, GB, c.cadar@imperial.ac.uk
2 University of Waterloo, CA, vganesh@uwaterloo.ca
3 University of Utah, US, rsas@cs.utah.edu
4 University of California, Berkeley, US, ksen@cs.berkeley.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14442 “Symbolic
Execution and Constraint Solving”, whose main goals were to bring together leading researchers
in the fields of symbolic execution and constraint solving, foster greater communication between
these two communities and exchange ideas about new research directions in these fields.

There has been a veritable revolution over the last decade in the symbiotic fields of constraint
solving and symbolic execution. Even though key ideas behind symbolic execution were intro-
duced more than three decades ago, it was only recently that these techniques became practical
as a result of significant advances in constraint satisfiability and scalable combinations of concrete
and symbolic execution. Thanks to these advances, testing and analysis techniques based on sym-
bolic execution are having a major impact on many sub-fields of software engineering, computer
systems, security, and others. New applications such as program and document repair are being
enabled, while older applications such as model checking are being super-charged. Additionally,
significant and fast-paced advances are being made in research at the intersection of traditional
program analysis, symbolic execution and constraint solving. Therefore, this seminar brought
together researchers in these varied fields in order to further facilitate collaborations that take
advantage of this unique and fruitful confluence of ideas from the fields of symbolic execution
and constraint solving.

Seminar October 27–30, 2014 – http://www.dagstuhl.de/14442
1998 ACM Subject Classification D.2.4 Software/Program Verification (Formal methods), D.2.5

Testing and Debugging (Symbolic execution, Testing tools (e.g., data generators, coverage
testing), Tracing), B.2.3 Reliability, Testing, and Fault-Tolerance (Test generation)

Keywords and phrases Symbolic Execution, Software Testing, Automated Program Analysis,
Constraint Solvers

Digital Object Identifier 10.4230/DagRep.4.10.98

1 Executive Summary

Cristian Cadar
Vijay Ganesh
Raimondas Sasnauskas
Koushik Sen

License Creative Commons BY 3.0 Unported license
© Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen

Symbolic execution has garnered a lot of attention in recent years as an effective technique
for generating high-coverage test suites, finding deep errors in complex software applications,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Symbolic Execution and Constraint Solving, Dagstuhl Reports, Vol. 4, Issue 10, pp. 98–114
Editors: Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14442
http://dx.doi.org/10.4230/DagRep.4.10.98
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 99

and more generally as one of the few techniques that is useful across the board in myriad
software engineering applications. While key ideas behind symbolic execution were introduced
more than three decades ago, it was only recently that these techniques became practical
as a result of significant advances in constraint satisfiability and scalable combinations of
concrete and symbolic execution. The result has been an explosion in applications of symbolic
execution techniques in software engineering, security, formal methods and systems research.
Furthermore, researchers are combining symbolic execution with traditional program analysis
techniques in novel ways to address longstanding software engineering problems. This in turn
has led to rapid developments in both constraint solvers and symbolic execution techniques,
necessitating an in-depth exchange of ideas between researchers working on solvers and
symbolic techniques, best accomplished through dedicated workshops.

Hence, one of the main goals of this Dagstuhl seminar was to bring together leading
researchers in the fields of symbolic execution and constraint solving, foster greater commu-
nication between these two communities and discuss new research directions in these fields.
The seminar had 34 participants from Canada, France, Germany, Norway, Singapore, South
Africa, Spain, Switzerland, The Netherlands, United Kingdom and United States, from both
academia, research laboratories, and the industry. More importantly, the participants repres-
ented several different communities, with the topics of the talks and discussions reflecting
these diverse interests: testing, verification, security, floating point constraint solving, hybrid
string-numeric constraints, debugging and repair, education, and commercialization, among
many others.

14442

100 14442 – Symbolic Execution and Constraint Solving

2 Table of Contents

Executive Summary
Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 98

Overview of Talks
Automated White-Box Testing Beyond Branch Coverage
Sébastien Bardin . 102

Dynamic Symbolic Execution: State of the Art, Applications and Challenges
Cristian Cadar . 102

Reaching Verification with Systematic Testing
Maria Christakis . 103

Superoptimizing LLVM
Peter Collingbourne . 103

Experiences with SMT in the GPUVerify Project
Alastair F. Donaldson . 104

On the Challenges of Combining Search-Based Software Testing and Symbolic
Execution
Juan Pablo Galeotti . 104

Impact of Community Structure on SAT Solver Performance
Vijay Ganesh . 105

Combining FSM Modeling and Bit-Vector Theories to Solve Hybrid String-Numeric
Constraints
Indradeep Ghosh . 105

Symbolic Path-Oriented Test Data Generation for Floating-Point Programs
Arnaud Gotlieb . 106

Segmented Symbolic Analysis
Wei Le . 106

Commercial Symbolic Execution
Paul Marinescu . 107

Solving Non-linear Integer Constraints Arising from Program Analysis
Albert Oliveras . 107

Constraint Solving in Symbolic Execution
Hristina Palikareva . 108

Provably Correct Peephole Optimizations with Alive
John Regehr . 108

Symbolic Techniques for Program Debugging
Abhik Roychoudhury . 109

Generating Heap Summaries from Symbolic Execution
Neha Rungta . 109

MultiSE: Multi-Path Symbolic Execution using Value Summaries
Koushik Sen . 110

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 101

The Symbiosis of Network Testing and Symbolic Execution
Oscar Soria Dustmann . 110

Symbolic Execution and Model Counting
Willem Visser . 111

Feedback-Driven Dynamic Invariant Discovery
Lingming Zhang . 111

Thought-provoking Talks . 112

Programme . 112

Participants . 114

14442

102 14442 – Symbolic Execution and Constraint Solving

3 Overview of Talks

3.1 Automated White-Box Testing Beyond Branch Coverage
Sébastien Bardin (CEA LIST, FR)

License Creative Commons BY 3.0 Unported license
© Sébastien Bardin

Joint work of Bardin, Sébastien; Kosmatov, Nikolai; Delahaye, Mickaël; Chebaro, Omar
Main reference S. Bardin, N. Kosmatov, F. Cheynier, “Efficient Leveraging of Symbolic Execution to Advanced

Coverage Criteria,” in Proc. of the 2014 IEEE 7th Int’l Conf. on Software Testing, Verification and
Validation (ICST’14), pp. 173–182, IEEE, 2014.

URL http://dx.doi.org/10.1109/ICST.2014.30

Automated white-box testing is a major issue in software engineering. The last decade has
seen tremendous progress in Automatic test data generation thanks to Symbolic Execution
techniques. Yet, these promising results are currently limited to very basic coverage criteria
such as statement coverage or branch coverage, while many more criteria can be found in
the literature. Moreover, other important issues in structural testing, such as infeasible test
requirement detection, have not made so much progress.

In order to tackle these problems, we rely on a simple and concise specification mechanism
for (structural) coverage criteria, called labels. Labels are appealing since they can faithfully
encode many existing coverage criteria, allowing to handle all of them in a unified way. They
are the corner stone of FRAMA-C/LTEST, a generic and integrated toolkit for automated
white-box testing of C programs, providing automatic test generation and detection of
infeasible test requirements through a combination of static and dynamic analyzes.

We will overview the platform and focus our presentation on the following points: (1)
present a new and efficient Symbolic Execution algorithm dedicated to label coverage, and
(2) describe recent results on the sound detection of infeasible test requirements.

References
1 Sébastien Bardin, Nikolai Kosmatov, François Cheynier: Efficient Leveraging of Symbolic

Execution to Advanced Coverage Criteria. In: ICST 2014. IEEE (Los alamitos)
2 Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, Nikolai Kosmatov: An All-in-One

Toolkit for Automated White-Box Testing. In: TAP 2014. Springer (Heidelberg)

3.2 Dynamic Symbolic Execution: State of the Art, Applications and
Challenges

Cristian Cadar (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Cristian Cadar

In this talk, I start by presenting the state of the art in dynamic symbolic execution, including
its main enablers, namely mixed concrete/symbolic execution, better and faster constraint
solvers and novel path exploration algorithms. I then survey several applications of symbolic
execution, including bug finding, security, high-coverage test generation, software debugging,
patch and document recovery, etc. I finish the talk by discussing some of the ongoing
challenges in terms of path explosion, verification, concurrency and constraint solving.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICST.2014.30
http://dx.doi.org/10.1109/ICST.2014.30
http://dx.doi.org/10.1109/ICST.2014.30
http://dx.doi.org/10.1109/ICST.2014.30
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 103

3.3 Reaching Verification with Systematic Testing
Maria Christakis (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Maria Christakis

Joint work of Christakis, Maria; Godefroid, Patrice
Main reference M. Christakis, P. Godefroid, “Proving memory safety of the ANI Windows image parser using

compositional exhaustive testing,” in Proc. of the 16th Int’l Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’15), LNCS, Vol. 8931, pp. 370–389, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-662-46081-8_21

We describe how we proved memory safety of a complex Windows image parser written in
low-level C in only three months of work and using only three core techniques, namely (1)
symbolic execution at the x86 binary level, (2) exhaustive program path enumeration and
testing, and (3) user-guided program decomposition and summarization. As a result of this
work, we are able to prove, for the first time, that a Windows image parser is memory safe,
that is, free of any buffer-overflow security vulnerabilities, modulo the soundness of our tools
and several additional assumptions regarding bounding input-dependent loops, fixing a few
buffer-overflow bugs, and excluding some code parts that are not memory safe by design.

3.4 Superoptimizing LLVM
Peter Collingbourne (Google Inc. – Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Peter Collingbourne

Joint work of Collingbourne, Peter; Regehr, John; Sasnauskas, Raimondas; Taneja, Jubi; Chen, Yang; Ketema,
Jeroen

Compiler development, as with any engineering task, involves certain tradeoffs. In particular,
the tradeoff between the expected performance improvement of a specific optimization and
the engineer time required to implement it can be difficult to assess, especially given the long
tail of potential uncaught optimizations that may be lurking within a large codebase.

Souper is an open source superoptimizer based on LLVM which can automatically extract
potential peephole optimizations from real C and C++ programs, use a SMT solver to
verify their correctness, apply them automatically, and use static and dynamic profiling
to identify the most profitable optimizations. It pushes the state of the art in optimizer
development forward in two primary ways: directly, by instantly providing a way for users to
automatically apply a variety of previously unimplemented peephole optimizations to their
code; and indirectly, by allowing compiler developers to focus their energy on implementing
the most profitable optimizations in the baseline compiler.

This talk described Souper, giving details of the translation from LLVM to SMT predicates,
and results from compiling LLVM with Souper.

14442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
M. Christakis, P. Godefroid, ``Proving memory safety of the ANI Windows image parser using compositional exhaustive testing,'' in Proc. of the 16th Int'l Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI'15), LNCS, Vol.~8931, pp.~370--389, Springer, 2015.
M. Christakis, P. Godefroid, ``Proving memory safety of the ANI Windows image parser using compositional exhaustive testing,'' in Proc. of the 16th Int'l Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI'15), LNCS, Vol.~8931, pp.~370--389, Springer, 2015.
M. Christakis, P. Godefroid, ``Proving memory safety of the ANI Windows image parser using compositional exhaustive testing,'' in Proc. of the 16th Int'l Conf. on Verification, Model Checking, and Abstract Interpretation (VMCAI'15), LNCS, Vol.~8931, pp.~370--389, Springer, 2015.
http://dx.doi.org/10.1007/978-3-662-46081-8_21
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

104 14442 – Symbolic Execution and Constraint Solving

3.5 Experiences with SMT in the GPUVerify Project
Alastair F. Donaldson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alastair F. Donaldson

Joint work of Bardsley, Ethel; Betts, Adam; Chong, Nathan; Collingbourne, Peter; Deligiannis, Pantazis;
Donaldson, Alastair F.; Ketema, Jeroen; Liew, Daniel; Qadeer, Shaz

Main reference E. Bardsley, A. Betts, N. Chong, P. Collingbourne, P. Deligiannis, A. F. Donaldson, J. Ketema, D.
Liew, S. Qadeer, “Engineering a Static Verification Tool for GPU Kernels,” in Proc. of the 26th
Int’l Conf. on Computer Aided Verification (CAV’14), LNCS, Vol. 8559, pp. 226–242, Springer,
2014.

URL http://dx.doi.org/10.1007/978-3-319-08867-9_15

The GPUVerify project has investigated techniques for automatically proving freedom from
data races in GPU kernels, implemented in a practical tool. To achieve efficiency and a
relatively high degree of automation, we have put a lot of effort into designing encodings of
properties of GPU kernels into SMT formulas that avoid the use of quantifiers, which are
notoriously hard to reason about automatically. In our experiments with various encodings,
using the Z3 and CVC4 solvers, we have observed a great deal of variation in response
time between solvers, and across encodings with respect to a single solver. In this talk I
gave an overview of one SMT encoding of the data race-freedom property for GPU kernels,
and presented experimental results illustrating the variation in results we have observed.
The results demonstrate the need to evaluate optimizations to a verification technique with
respect to large set of benchmarks, and to evaluate SMT-based optimizations using multiple
solvers.

3.6 On the Challenges of Combining Search-Based Software Testing
and Symbolic Execution

Juan Pablo Galeotti (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Juan Pablo Galeotti

Joint work of Galeotti, Juan Pablo; Gordon Fraser; Andrea Arcuri; Matthias Höschele; Andreas Zeller
Main reference J. P. Galeotti, G. Fraser, A. Arcuri, “Improving search-based test suite generation with dynamic

symbolic execution,” in Proc. of the 2013 IEEE 24th Int’l Symp. on Software Reliability
Engineering (ISSRE’13), pp. 360–360, IEEE, 2013.

URL http://dx.doi.org/10.1109/ISSRE.2013.6698889

In recent years, there has been a tremendous advance in Search-Based Software Testing
and Symbolic Execution. Search-based testing (SBST) can automatically generate unit test
suites for object oriented code, but may struggle to generate specific values necessary to
cover difficult parts of the code. Symbolic execution (SE) efficiently generates such specific
values, but may struggle with complex datatypes, in particular those that require sequences
of calls for construction.

In this talk I will present a hybrid approach for automatic unit-test generation that
integrates the best of both worlds [1]. Also, I will focus on the challenges we recently faced
when applying SBST and SE to multi-layered software comprised of an object-oriented upper
layer and a native-platform dependent native layer [2].

References
1 Juan Pablo Galeotti, Gordon Fraser, Andrea Arcuri: Improving search-based test suite

generation with dynamic symbolic execution. In ISSRE 2013, pages 360–369
2 Matthias Höschele, Juan Pablo Galeotti, Andreas Zeller: Test generation across multiple

layers. In SBST 2014, pages 1–4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-08867-9_15
http://dx.doi.org/10.1007/978-3-319-08867-9_15
http://dx.doi.org/10.1007/978-3-319-08867-9_15
http://dx.doi.org/10.1007/978-3-319-08867-9_15
http://dx.doi.org/10.1007/978-3-319-08867-9_15
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ISSRE.2013.6698889
http://dx.doi.org/10.1109/ISSRE.2013.6698889
http://dx.doi.org/10.1109/ISSRE.2013.6698889
http://dx.doi.org/10.1109/ISSRE.2013.6698889

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 105

3.7 Impact of Community Structure on SAT Solver Performance
Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Vijay Ganesh

Joint work of Newsham, Zack; Ganesh, Vijay; Fischmeister, Sebastian; Audemard, Gilles; Simon, Laurent
Main reference Zack Newsham, V. Ganesh, S. Fischmeister, G. Audemard, L. Simon, “Impact of Community

Structure on SAT Solver Performance,” in Proc. of the 17th Int’l Conf. on Theory and
Applications of Satisfiability Testing (SAT’14), LNCS, Vol. 8561, pp. 252–268, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-09284-3_20

Modern CDCL SAT solvers routinely solve very large industrial SAT instances in relatively
short periods of time. It is clear that these solvers somehow exploit the structure of real-
world instances. However, to-date there have been few results that precisely characterise this
structure. In this paper, we provide evidence that the community structure of real-world
SAT instances is correlated with the running time of CDCL SAT solvers. It has been known
for some time that real-world SAT instances, viewed as graphs, have natural communities in
them. A community is a sub-graph of the graph of a SAT instance, such that this sub-graph
has more internal edges than outgoing to the rest of the graph. The community structure
of a graph is often characterised by a quality metric called Q. Intuitively, a graph with
high-quality community structure (high Q) is easily separable into smaller communities,
while the one with low Q is not. We provide three results based on empirical data which
show that community structure of real-world industrial instances is a better predictor of the
running time of CDCL solvers than other commonly considered factors such as variables
and clauses. First, we show that there is a strong correlation between the Q value and
Literal Block Distance metric of quality of conflict clauses used in clause-deletion policies
in Glucose-like solvers. Second, using regression analysis, we show that the the number of
communities and the Q value of the graph of real-world SAT instances is more predictive
of the running time of CDCL solvers than traditional metrics like number of variables or
clauses. Finally, we show that randomly-generated SAT instances with 0.05 ≤ Q ≤ 0.13 are
dramatically harder to solve for CDCL solvers than otherwise.

3.8 Combining FSM Modeling and Bit-Vector Theories to Solve
Hybrid String-Numeric Constraints

Indradeep Ghosh (Fujitsu Labs of America Inc. – Sunnyvale, US)

License Creative Commons BY 3.0 Unported license
© Indradeep Ghosh

Joint work of Ghosh, Indradeep; Li, Goudong
Main reference G.Li, I. Ghosh, “PASS: String Solving with Parameterized Array and Interval Automaton,” in

Proc. of the 9th Int’l Haifa Verification Conference (HVC’13), LNCS, Vol. 8244, pp. 15–31,
Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-319-03077-7_2

This talk focused on the challenges and techniques for solving hybrid String-Numeric con-
straints. These types of constraints arise as path conditions during symbolic execution of
industrial application, especially enterprise applications written in Java and JavaScript pro-
gramming languages. Two types of solving techniques were presented: Finite state machine
modeling of strings and Bit-vector models of strings. Their pros and cons were discussed and
ways to merge them using parameterized arrays and interval automaton were presented.

14442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-03077-7_2
http://dx.doi.org/10.1007/978-3-319-03077-7_2
http://dx.doi.org/10.1007/978-3-319-03077-7_2
http://dx.doi.org/10.1007/978-3-319-03077-7_2

106 14442 – Symbolic Execution and Constraint Solving

3.9 Symbolic Path-Oriented Test Data Generation for Floating-Point
Programs

Arnaud Gotlieb (Simula Research Laboratory – Lysaker, NO)

License Creative Commons BY 3.0 Unported license
© Arnaud Gotlieb

Joint work of Bagnara, Roberto; Carlier, Matthieu; Gori, Roberta; Gotlieb, Arnaud
Main reference R. Bagnara, M. Carlier, R. Gori, A. Gotlieb, “Symbolic path-oriented test data generation for

floating-point programs,” in Proc. of the 2013 IEEE 6th Int’l Conf. on Software Testing,
Verification and Validation (ICST’13), pp. 1–10, IEEE, 2013.

URL http://dx.doi.org/10.1109/ICST.2013.17

Verifying critical numerical software involves the generation of test data for floating-point
intensive programs. As the symbolic execution of floating-point computations presents
significant difficulties, existing approaches usually resort to random or search-based test data
generation. However, without symbolic reasoning, it is almost impossible to generate test
inputs that execute many paths with floating-point computations. Moreover, constraint
solvers over the reals or the rationals do not handle the rounding errors. In this paper, we
present a new version of FPSE, a symbolic evaluator for C program paths, that specifically
addresses this problem. The tool solves path conditions containing floating-point compu-
tations by using correct and precise projection functions. This version of the tool exploits
an essential filtering property based on the representation of floating-point numbers that
makes it suitable to generate path-oriented test inputs for complex paths characterized by
floating-point intensive computations. The paper reviews the key implementation choices in
FPSE and the labeling search heuristics we selected to maximize the benefits of enhanced
filtering. Our experimental results show that FPSE can generate correct test inputs for
selected paths containing several hundreds of iterations and thousands of executable floating-
point statements on a standard machine: this is currently outside the scope of any other
symbolic execution test data generator tool.

References
1 R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb. Symbolic path-oriented test data genera-

tion for floating-point programs. In Proc. of the 6th IEEE Int. Conf. on Software Testing,
Verification and Validation (ICST’13), Luxembourg, Mar. 2013.

2 B. Botella, A. Gotlieb, and C. Michel. Symbolic execution of floating-point computations.
Software Testing, Verification and Reliability (STVR), 16(2):97–121, June 2006

3.10 Segmented Symbolic Analysis
Wei Le (Iowa State University – Ames, US)

License Creative Commons BY 3.0 Unported license
© Wei Le

Main reference W. Le, “Segmented Symbolic Analysis,” in Proc. of the 2013 35th Int’l Conf. on Software
Engineering (ICSE ’13), pp. 212–221, IEEE, 2013.

URL http://dx.doi.org/10.1109/ICSE.2013.6606567

Symbolic analysis is indispensable for software tools that require program semantic informa-
tion at compile time. However, determining symbolic values for program variables related to
loops and library calls is challenging, as the computation and data related to loops can have
statically unknown bounds, and the library sources are typically not available at compile
time. In this talk, I present segmented symbolic analysis, a hybrid technique that enables
fully automatic symbolic analysis even for the traditionally challenging code of library calls

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICST.2013.17
http://dx.doi.org/10.1109/ICST.2013.17
http://dx.doi.org/10.1109/ICST.2013.17
http://dx.doi.org/10.1109/ICST.2013.17
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSE.2013.6606567
http://dx.doi.org/10.1109/ICSE.2013.6606567
http://dx.doi.org/10.1109/ICSE.2013.6606567

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 107

and loops. The novelties of this work are threefold: 1) we flexibly weave symbolic and
concrete executions on the selected parts of the program based on demand; 2) dynamic
executions are performed on the unit tests constructed from the code segments to infer
program semantics needed by static analysis; and 3) the dynamic information from multiple
runs is aggregated via regression analysis. We developed the Helium framework, consisting
of a static component that performs symbolic analysis and partitions a program, a dynamic
analysis that synthesizes unit tests and automatically infers symbolic values for program
variables, and a protocol that enables static and dynamic analyses to be run interactively
and concurrently. Our experimental results show that by handling loops and library calls
that a traditional symbolic analysis cannot process, segmented symbolic analysis detects 5
times more buffer overflows. The technique is scalable for real-world programs such as putty,
tightvnc and snort.

3.11 Commercial Symbolic Execution
Paul Marinescu (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Paul Marinescu

Symbolic execution is a powerful automatic testing technique which recently received a lot of
attention in academic circles, but has not found its way into mainstream software engineering
because reaching a balance between usability, effectiveness and resource requirements has
proved elusive thus far. This talk looks at the challenges that need to be overcome to make
symbolic execution a commercial success, comparing it with static analysis-based commercial
solutions.

3.12 Solving Non-linear Integer Constraints Arising from Program
Analysis

Albert Oliveras (Polytechnic University of Catalonia, ES)

License Creative Commons BY 3.0 Unported license
© Albert Oliveras

Joint work of Larraz, Daniel; Oliveras, Albert; Rodriguez-Carbonell, Enric; Rubio, Albert
Main reference D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio,“Minimal-Model-Guided Approaches to

Solving Polynomial Constraints and Extensions,” in Proc. of the 17th Int’l Conf. on Theory and
Applications of Satisfiability Testing (SAT’14), LNCS, Vol. 8561, pp. 333-350, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-09284-3_25

We present new methods for deciding the satisfiability of formulas involving integer polynomial
constraints. In previous work we proposed to solve SMT(NIA) problems by reducing them
to SMT(LIA): non-linear monomials are linearized by abstracting them with fresh variables
and by performing case splitting on integer variables with finite domain. When variables do
not have finite domains, artificial ones can be introduced by imposing a lower and an upper
bound, and made iteratively larger until a solution is found (or the procedure times out).
For the approach to be practical, unsatisfiable cores are used to guide which domains have
to be relaxed (i.e., enlarged) from one iteration to the following one. However, it is not clear
then how large they have to be made, which is critical.

14442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-09284-3_25
http://dx.doi.org/10.1007/978-3-319-09284-3_25
http://dx.doi.org/10.1007/978-3-319-09284-3_25
http://dx.doi.org/10.1007/978-3-319-09284-3_25

108 14442 – Symbolic Execution and Constraint Solving

Here we propose to guide the domain relaxation step by analyzing minimal models
produced by the SMT(LIA) solver. Namely, we consider two different cost functions: the
number of violated artificial domain bounds, and the distance with respect to the artificial
domains. We compare these approaches with other techniques on benchmarks coming from
constraint-based program analysis and show the potential of the method. Finally, we describe
how one of these minimal-model-guided techniques can be smoothly adapted to deal with
the extension Max-SMT of SMT(NIA) and then applied to program termination proving.

3.13 Constraint Solving in Symbolic Execution
Hristina Palikareva (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Hristina Palikareva

Joint work of Palikareva, Hristina; Cadar, Cristian
Main reference H. Palikareva, C. Cadar, “Multi-solver Support in Symbolic Execution,” in Proc. of the 25th Int’l

Conf. on Computer Aided Verification (CAV’13), LNCS, Vol. 8044, pp. 53–68, Springer, 2013;
pre-print available from author’s webpage.

URL http://dx.doi.org/10.1007/978-3-642-39799-8_3
URL http://srg.doc.ic.ac.uk/files/papers/klee-multisolver-cav-13.pdf

Dynamic symbolic execution is an automated program analysis technique that employs an
SMT solver to systematically explore paths through a program. It has been acknowledged
in recent years as a highly effective technique for generating high-coverage test suites as
well as for uncovering deep corner-case bugs in complex real-world software, and one of
the key factors responsible for that success are the tremendous advances in SMT-solving
technology. Nevertheless, constraint solving remains one of the fundamental challenges of
symbolic execution, and for many programs it is the main performance bottleneck.

In this talk, we will present the results reported in our CAV 2013 paper on integrating
support for multiple SMT solvers in the dynamic symbolic execution engine KLEE. In
particular, we will outline the key characteristics of the SMT queries generated during
symbolic execution, describe several high-level domain-specific optimisations that KLEE
employs to exploit those characteristics, introduce an extension of KLEE that uses a number
of state- of-the-art SMT solvers (Boolector, STP and Z3) through the metaSMT solver
framework, and compare the solvers’ performance when run on large sets of QF_ABV queries
obtained during the symbolic execution of real-world software. In addition, we will discuss
several options for designing a parallel portfolio solver for symbolic execution tools. We will
conclude the talk by proposing the introduction of a separate division at the annual SMT
competition targeted specifically at symbolic execution tools.

3.14 Provably Correct Peephole Optimizations with Alive
John Regehr (University of Utah, US)

License Creative Commons BY 3.0 Unported license
© John Regehr

Compilers should not miscompile. Our work addresses problems in developing peephole
optimizations that perform local rewriting to improve the efficiency of LLVM code. These
optimizations are individually difficult to get right, particularly in the presence of undefined
behavior; taken together they represent a persistent source of bugs. This paper presents Alive,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-39799-8_3
http://dx.doi.org/10.1007/978-3-642-39799-8_3
http://dx.doi.org/10.1007/978-3-642-39799-8_3
http://dx.doi.org/10.1007/978-3-642-39799-8_3
http://srg.doc.ic.ac.uk/files/papers/klee-multisolver-cav-13.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 109

a domain-specific language for writing optimizations and for automatically either proving
them correct or else generating counterexamples. Furthermore, Alive can be automatically
translated into C++ code that is suitable for inclusion in an LLVM optimization pass. Alive
is based on an attempt to balance usability and formal methods; for example, it captures–but
largely hides–the detailed semantics of three different kinds of undefined behavior in LLVM.
We have translated more than 300 LLVM optimizations into Alive and, in the process, found
that eight of them were wrong.

3.15 Symbolic Techniques for Program Debugging
Abhik Roychoudhury (National University of Singapore, SG)

License Creative Commons BY 3.0 Unported license
© Abhik Roychoudhury

Joint work of Roychoudhury, Abhik; Chandra, Satish
URL http://www.slideshare.net/roychoudhury/abhik-satishdagstuhl-40988809

In recent years, there have been significant advances in symbolic execution technology, driven
by the increasing maturity of SMT and SAT solvers as well as by the availability of cheap
compute resources. This technology has had a significant impact in the area of automatically
finding bugs in software. In this tutorial, we review ways in which symbolic execution can be
used not just for finding bugs in programs, but also in debugging them! In current practice,
once a failure-inducing input has been found, humans have to spend a great deal of effort in
determining the root cause of the bug. The reason the task is complicated is that a person
has to figure out manually how the execution of the program on the failure-inducing input
deviated from the "intended" execution of the program. We show that symbolic analysis can
be used to help the human in this task in a variety of ways. In particular, symbolic execution
helps to glean the intended program behavior via analysis of the buggy trace, analysis of
other traces or other program versions. Concretely, the tutorial provides a background in
symbolic execution, and then covers material from a series of recent papers (including papers
by the authors) on determination of root cause of errors using symbolic techniques.

3.16 Generating Heap Summaries from Symbolic Execution
Neha Rungta (NASA – Moffett Field, US)

License Creative Commons BY 3.0 Unported license
© Neha Rungta

Joint work of Hillery, Ben; Mercer, Eric; Rungta, Neha; Person, Suzette

A fundamental challenge of using symbolic execution for software analysis has been the
treatment of dynamically allocated data. State-of-the-art techniques have addressed this
challenge through either (a) use of summaries that over-approximate possible heaps or (b) by
materializing a concrete heap lazily during generalized symbolic execution. In this work, we
present a novel heap initialization and analysis technique which takes inspiration from both
approaches and constructs precise heap summaries lazily during symbolic execution. Our
approach is 1) scalable: it reduces the points of non-determinism compared to generalized
symbolic execution and explores each control-flow path only once for any given set of
isomorphic heaps, 2) precise: at any given point during symbolic execution, the symbolic
heap represents the exact set of feasible concrete heap structures for the program under

14442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.slideshare.net/roychoudhury/abhik-satishdagstuhl-40988809
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

110 14442 – Symbolic Execution and Constraint Solving

analysis, and 3) expressive: the symbolic heap can represent recursive data structures. We
demonstrate the precision and scalability of our approach by implementing it as an extension
to the Symbolic PathFinder framework for analyzing Java programs.

3.17 MultiSE: Multi-Path Symbolic Execution using Value Summaries
Koushik Sen (University of California, Berkeley)

License Creative Commons BY 3.0 Unported license
© Koushik Sen

Joint work of Sen, Koushik; Necula, George; Gong, Liang; Choi, Wontae
Main reference K. Sen, G. Necula, L. Gong, P.W. Choi, “MultiSE: Multi-Path Symbolic Execution using Value

Summaries,” Technical Report, UCB/EECS-2014-173, University of California, Berkeley, 2014.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-173.html

Concolic testing of dynamic symbolic execution (DSE) has been proposed recently to effect-
ively generate test inputs for real-world programs. Unfortunately, concolic testing techniques
do not scale well for large realistic programs, because often the number of feasible execution
paths of a program increases exponentially with the increase in the length of an execution
path.

In this talk, I will describe MultiSE, a new technique for merging states incrementally
during symbolic execution, without using auxiliary variables. The key idea of MultiSE is
based on an alternative representation of the state, where we map each variable, including
the program counter, to a set of guarded symbolic expressions called a value summary.
MultiSE has several advantages over conventional DSE and state merging techniques: 1)
value summaries enable sharing of symbolic expressions and path constraints along multiple
paths, 2) value-summaries avoid redundant execution, 3) MultiSE does not introduce auxiliary
symbolic values, which enables it to make progress even when merging values not supported
by the constraint solver, such as floating point or function values.

We have implemented MultiSE for JavaScript programs in a publicly available open-source
tool. Our evaluation of MultiSE on several programs shows that MultiSE can run significantly
faster than traditional symbolic execution.

3.18 The Symbiosis of Network Testing and Symbolic Execution
Oscar Soria Dustmann (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
© Oscar Soria Dustmann

Creating new adaptive Internet technologies as envisioned by the MAKI project requires
the interaction of a plethora of different modules, submodules and hardware platforms.
Implementation-defined behaviour and the inherent concurrency and communication delay of
these systems are the primary sources of many potential types of errors. As can already be
observed in current highly distributed systems such errors tend to hide in sometimes quite
obscure corner-cases. For example, a catastrophic protocol lock-up might manifest only for
an unlikely, unexpected packet reordering. In addition, incompatibilities stemming from the
heterogeneity of subsystems, demand further attention for testing approaches. This work
aims at devising methodologies that address particularly timing and heterogeneity related
issues in distributed and networked systems, with a focus on event-driven software.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-173.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-173.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-173.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 111

3.19 Symbolic Execution and Model Counting
Willem Visser (Stellenbosch University – Matieland, ZA)

License Creative Commons BY 3.0 Unported license
© Willem Visser

Joint work of Visser, Willem; Filieri, Antonio; Pasareanu, Corina; Dwyer, Matt; Geldenhuys, Jaco
Main reference A. Filieri, C. S. Păsăreanu, W. Visser, J. Geldenhuys, “Statistical symbolic execution with informed

sampling,” in Proc. of the 22nd ACM SIGSOFT Int’l Symp. on Foundations of Software
Engineering (FSE’14), pp. 437–448, ACM, 2014.

URL http://dx.doi.org/10.1145/2635868.2635899

Symbolic execution has become a very popular means for analysing program behaviour.
Traditionally it only considers whether paths are feasible or not. We argue there is a wealth
of interesting new research directions that open up when we also consider how likely it is that
a path is feasible. We show that by using the notion of model counting (how many solutions
there are rather than just whether there is a solution to a constraint) we can calculate how
likely an execution path through the code is to be executed. We show how this can be used
to augment program understanding, calculate the reliability of the code and also as a basis
for test coverage calculations. In order to speed up calculations we use the Green framework
and will give a quick primer on how to use Green. Green is a framework to allow one to
reuse results across analysis runs. It speeds up satisfiability checking and model counting at
the moment, but can do anything you like in a flexible framework.

3.20 Feedback-Driven Dynamic Invariant Discovery
Lingming Zhang (University of Texas at Dallas, US)

License Creative Commons BY 3.0 Unported license
© Lingming Zhang

Joint work of Zhang, Lingming; Yang, Guowei; Rungta, Neha; Person, Suzette; Khurshid, Sarfraz
Main reference L. Zhang, G. Yang, N. Rungta, S. Person, S. Khurshid, “Feedback-driven dynamic invariant

discovery,” in Proc. of the 2014 International Symposium on Software Testing and Analysis
(ISSTA’14), pp. 362–372, ACM, 2014.

URL http://dx.doi.org/10.1145/2610384.2610389

Program invariants can help software developers identify program properties that must be
preserved as the software evolves, however, formulating correct invariants can be challenging.
In this work, we introduce iDiscovery, a technique which leverages symbolic execution to
improve the quality of dynamically discovered invariants computed by Daikon. Candidate
invariants generated by Daikon are synthesized into assertions and instrumented onto the
program. The instrumented code is executed symbolically to generate new test cases that are
fed back to Daikon to help further refine the set of candidate invariants. This feedback loop is
executed until a fix-point is reached. To mitigate the cost of symbolic execution, we present
optimizations to prune the symbolic state space and to reduce the complexity of the generated
path conditions. We also leverage recent advances in constraint solution reuse techniques
to avoid computing results for the same constraints across iterations. Experimental results
show that iDiscovery converges to a set of higher quality invariants compared to the initial
set of candidate invariants in a small number of iterations.

14442

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2635868.2635899
http://dx.doi.org/10.1145/2635868.2635899
http://dx.doi.org/10.1145/2635868.2635899
http://dx.doi.org/10.1145/2635868.2635899
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2610384.2610389
http://dx.doi.org/10.1145/2610384.2610389
http://dx.doi.org/10.1145/2610384.2610389
http://dx.doi.org/10.1145/2610384.2610389

112 14442 – Symbolic Execution and Constraint Solving

4 Thought-provoking Talks

In addition to the regular 25-minutes conference-style presentations, we encouraged the
attendees to give 5-minutes talks on thought-provoking ideas. A key goal behind these short
talks was to promote discussions among the attendees and to rethink our future research
directions on symbolic execution and constraint solving. We got warm participation from
the speakers and the audience. The topics discussed in these short talks include

the application challenges of symbolic execution,
the challenges in processing the test cases during symbolic execution of networked code,
the idea of bringing static analysis and symbolic execution techniques together, and
the application of symbolic execution in security.

Overall, we found these short-talk sessions to be engaging and fun. We encourage future
workshop organizers to include similar sessions in their meetings.

5 Programme

Programme for Tuesday 28th of October
Organizers: Welcome and introductions
Cristian Cadar: Dynamic Symbolic Execution: State of the Art, Applications and
Challenges
Willem Visser: Symbolic Execution and Model Counting
Koushik Sen: MultiSE: Multi-Path Symbolic Execution using Value Summaries
Wei Le: Segmented Symbolic Analysis
Peter Collingbourne: Superoptimizing LLVM
John Regehr: Provably Correct Peephole Optimizations with Alive
Arnaud Gotlieb: Symbolic Path-Oriented Test Data Generation for Floating-Point
Programs
Thought-provoking talks & discussions
Indradeep Ghosh: Combining FSM Modeling and Bit-Vector Theories to Solve Hybrid
String-Numeric Constraints
Thought-provoking talks & discussions

Programme for Wednesday 29th of October
Abhik Roychoudhury and Satish Chandra: Symbolic Techniques for Program Debugging
Thought-provoking talks & discussions
Vijay Ganesh: Impact of Community Structure on SAT Solver Performance
Albert Oliveras: Solving Non-linear Integer Constraints Arising from Program Analysis
Alastair F. Donaldson: Experiences with SMT in the GPUVerify Project
Hristina Palikareva: Constraint Solving in Symbolic Execution
Juan Pablo Galeotti: On the Challenges of Combining Search-Based Software Testing
and Symbolic Execution
Paul Marinescu: Commercial Symbolic Execution
Maria Christakis: Reaching Verification with Systematic Testing
Thought-provoking talks & discussions

Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen 113

Programme for Thursday 30th of October
Neha Rungta: Generating Heap Summaries from Symbolic Execution
Oscar Soria Dustmann: The Symbiosis of Network Testing and Symbolic Execution
Lingming Zhang: Feedback-Driven Dynamic Invariant Discovery
Istvan Haller: Symbolic execution in the field of security
Sébastien Bardin: Automated White-Box Testing Beyond Branch Coverage
Nicky Williams: Introduction to PathCrawler

14442

114 14442 – Symbolic Execution and Constraint Solving

Participants

Sébastien Bardin
CEA LIST – Paris, FR

Earl Barr
University College London, UK

Cristian Cadar
Imperial College London, UK

Satish Chandra
Samsung Electronics –
San Jose, US

Maria Christakis
ETH Zürich, CH

Peter Collingbourne
Google Inc. –
Mountain View, US

Jorge R. Cuéllar
Siemens AG – München, DE

Morgan Deters
New York University, US

Alastair F. Donaldson
Imperial College London, UK

Juan Pablo Galeotti
Universität des Saarlandes –
Saarbrücken, DE

Vijay Ganesh
University of Waterloo, CA

Indradeep Ghosh
Fujitsu Labs of America Inc. –
Sunnyvale, US

Arnaud Gotlieb
Simula Research Laboratory –
Lysaker, NO

Istvan Haller
Free Univ. of Amsterdam, NL

Wei Le
Iowa State Univ. – Ames, US

Paul Marinescu
Imperial College London, UK

Benjamin Mehne
University of California –
Berkeley, US

Martin Ochoa
TU München – DE

Albert Oliveras
Polytechnic University of
Catalonia – Barcelona, SP

Hristina Palikareva
Imperial College London, UK

Ruzica Piskac
Yale University – New Haven, US

John Regehr
University of Utah – Salt Lake
City, US

Abhik Roychoudhury
National University of
Singapore – SG

Neha Rungta
NASA – Moffett Field, US

Raimondas Sasnauskas
University of Utah – Salt Lake
City, US

Koushik Sen
University of California –
Berkeley, US

Oscar Soria Dustmann
RWTH Aachen, DE

Nikolai Tillmann
Microsoft Corporation –
Redmond, US

Willem Visser
Stellenbosch University –
Matieland, ZA

Klaus Wehrle
RWTH Aachen, DE

Nicky Williams
CEA LIST – Paris, FR

Christoph M. Wintersteiger
Microsoft Res. – Cambridge, UK

Lingming Zhang
University of Texas at Dallas, US

	Executive Summary Cristian Cadar, Vijay Ganesh, Raimondas Sasnauskas, and Koushik Sen
	Table of Contents
	Overview of Talks
	Automated White-Box Testing Beyond Branch Coverage Sébastien Bardin
	Dynamic Symbolic Execution: State of the Art, Applications and Challenges Cristian Cadar
	Reaching Verification with Systematic Testing Maria Christakis
	Superoptimizing LLVM Peter Collingbourne
	Experiences with SMT in the GPUVerify Project Alastair F. Donaldson
	On the Challenges of Combining Search-Based Software Testing and Symbolic Execution Juan Pablo Galeotti
	Impact of Community Structure on SAT Solver Performance Vijay Ganesh
	Combining FSM Modeling and Bit-Vector Theories to Solve Hybrid String-Numeric Constraints Indradeep Ghosh
	Symbolic Path-Oriented Test Data Generation for Floating-Point Programs Arnaud Gotlieb
	Segmented Symbolic Analysis Wei Le
	Commercial Symbolic Execution Paul Marinescu
	Solving Non-linear Integer Constraints Arising from Program Analysis Albert Oliveras
	Constraint Solving in Symbolic Execution Hristina Palikareva
	Provably Correct Peephole Optimizations with Alive John Regehr
	Symbolic Techniques for Program Debugging Abhik Roychoudhury
	Generating Heap Summaries from Symbolic Execution Neha Rungta
	MultiSE: Multi-Path Symbolic Execution using Value Summaries Koushik Sen
	The Symbiosis of Network Testing and Symbolic Execution Oscar Soria Dustmann
	Symbolic Execution and Model Counting Willem Visser
	Feedback-Driven Dynamic Invariant Discovery Lingming Zhang

	Thought-provoking Talks
	Programme
	Participants

