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Abstract
Increasingly, modern cryptography (crypto) has moved beyond the problem of secure communica-
tion to a broader consideration of securing computation. The past thirty years have seen a steady
progression of both theoretical and practical advances in designing cryptographic protocols for
problems such as secure multiparty computation, searching and computing on encrypted data,
verifiable storage and computation, statistical data privacy, and more.

More recently, the programming-languages (PL) community has begun to tackle the same
set of problems, but from a different perspective, focusing on issues such as language design
(e.g., new features or type systems), formal methods (e.g., model checking, deductive verification,
static and dynamic analysis), compiler optimizations, and analyses of side-channel attacks and
information leakage.

This seminar helped to cross-fertilize ideas between the PL and crypto communities, exploit-
ing the synergies for advancing the development of secure computing, broadly speaking, and
fostering new research directions in and across both communities.
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1 Executive Summary

Michael Hicks
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The seminar schedule consisted of three components: short, two minute introduction talks
(one for each participant), longer technical talks (Section 3) and open discussions on four
different subjects. The first two days consisted of the introduction talks, followed by most of
the technical talks. The seminar attendees had a mix of backgrounds, with one half (roughly)
leaning heavily toward the PL (programming languages) side, and the other half leaning
more towards the crypto side. The diversity of talks reflected this diversity of backgrounds,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

The Synergy Between Programming Languages and Cryptography, Dagstuhl Reports, Vol. 4, Issue 12, pp. 29–47
Editors: Gilles Barthe, Michael Hicks, Florian Kerschbaum, and Dominique Unruh

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14492
http://dx.doi.org/10.4230/DagRep.4.12.29
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de


30 14492 – The Synergy Between Programming Languages and Cryptography

but there was much opportunity to meet in the middle and discuss open problems. The
latter days mixed some remaining technical talks with open discussion sessions focusing
on various problems and topics.1 In particular, participants voted to select four breakout
sessions: Secure Computation Compilers, Crypto verification, Obfuscation, and Verified
implementations.

This section summarizes some interesting discussions from the seminar, in three parts.
First, we consider the activities involved in developing programming languages the interface
with cryptography, and surveying the research of the seminar participants. Second, we
explore how reasoning in PL and Crypto compare and contrast, and how ideas from one
area might be relevant to the other. Finally, we survey open problems identified during the
discussions.

Programming languages for cryptography
One connection emerged repeatedly in the talks and discussions: the use of programming
languages to do cryptography, e.g., to implement it, optimize it, and prove it correct.

Programming languages can be compiled to cryptographic mechanisms

Programming languages can make cryptographic mechanisms easier to use. For example, the
systems Sharemind, ShareMonad, CBMC-GC, and Wysteria are all designed to make it
easier for programmers to write secure multiparty computations (SMCs).

In an SMC, we have two (or more) parties X and Y whose goal is to compute a function
F of their inputs x and y, whereby each party only learns the output F (x, y), but does not
“see” the inputs. Cryptographers have developed ways to compute such functions, such as
garbled circuits2 and computing on secret shares3, without need of a trusted third party.
These systems shield the programmer from the workings of these mechanisms, compiling
normal-looking programs to use the cryptography automatically. The languages can also
provide additional benefits, such compiler-driven optimization.

This line of work is motivated by privacy- and/or integrity-preserving outsourcing of
computation, e.g., as promised by The Cloud. Programming languages have been designed to
compile to other kinds of crypto aside from SMC, like zero-knowledge proofs and authenticated
data structures. Examples include Geppetto4, SNARKs for C5 and LambdaAuth6.

Combinations also exist, such as compiling to support Authenticated SNARKs.

Programming languages for implementing cryptography

The above languages aim to make computations secure through the use of cryptography, intro-
duced by the language’s compiler. We are also interested in implementing the cryptographic
algorithms themselves (e.g., for symmetric or public key encryption). The implementation

1 As a break from the technical program, we went on a group outing to Trier on Wednesday afternoon,
where we enjoyed a guided historical tour and enjoyed the city’s Christmas market.

2 https://www.usenix.org/legacy/event/sec11/tech/full_papers/Huang.pdf
3 http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/GMW87/GMW87.pdf
4 https://eprint.iacr.org/2014/976.pdf
5 http://eprint.iacr.org/2013/507
6 http://amiller.github.io/lambda-auth/
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task could be made easier, more efficient, or more secure by employing a special-purpose lan-
guage. Two representatives in this space are CAO7 and Cryptol8. Both are domain-specific,
and both make it easier to connect implementations to tools for automated reasoning. The
Seminar also featured work on synthesizing cryptography (block ciphers) from constraint-
based specifications.9

Programming languages methods to prove security of cryptographic protocols and/or
their implementations

When a cryptographer defines a cryptographic protocol, she must prove it is secure. Pro-
gramming languages methods can be used mechanically confirm that a proof of security
is correct. Systems like ProVerif10, CryptoVerif11, EasyCrypt12 and CertiCrypt13 support
cryptographic protocol verification, with varying kinds of assurance. These systems build on
ideas developed in general verification systems like Coq or Isabelle.

Likewise, when a programmer implements some cryptography (in a language like C),
she would like to formally verify that the implementation is correct (no more Heartbleed!).
For example, we’d like to know that an implementation does not have side channels, it
uses randomness sufficiently, it has no buffer overflows, etc. Once again, verification can be
achieved using tools that are underpinned by PL methods developed in formal verification
research. Frama-C14 and Fstar15 have been used to verify implementations.

Formal reasoning for PL and Crypto
Beyond using PLs as a tool for easier/safer use of Crypto, there is an opportunity for
certain kinds of thinking, or reasoning, to cross over fruitfully between the PL an Crypto
communities. In particular, both communities are interested in formalizing systems and
proving properties about them but they often use different methods, either due to cultural
differences, or because the properties and systems of interest are simply different. During
the seminar we identified both analogous, similar styles of reasoning in two communities and
connection points between the different styles of reasoning.

Analogies between PL and Crypto reasoning

The Ideal/Real paradigm was first proposed by Goldreich, Micali, and Widgerson in their
work on Secure Multiparty Computation (SMC) [3, 4], and further developed by Canetti in
his universal composability (UC) framework16. The basic idea is to treat a cryptographic
computation among parties as if it were being carried out by a trusted third party (the
“ideal”), and then prove that the actual implementation (the “real”) emulates this ideal, in

7 http://haslab.uminho.pt/mbb/software/cao-domain-specific-language-cryptography
8 https://galois.com/project/cryptol/
9 https://eprint.iacr.org/2014/774
10 http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
11 http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/
12 https://www.easycrypt.info/trac/
13 http://certicrypt.gforge.inria.fr/
14 http://frama-c.com/
15 http://research.microsoft.com/en-us/projects/fstar/
16 https://eprint.iacr.org/2000/067.pdf
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that the parties can learn nothing more than they would in a protocol involving a trusted
party. (The paradigm also handles correctness, robustness, and other emergent properties.)

This is a classic kind of abstraction also present in formal verification: If a program P

uses a module M that implements specification S, then relinking P to use M ′, which also
implements S, should preserve the correct execution of P . One talk, by Alley Stoughton,
made the interesting observation that the Real/Ideal notion might be a suitable organizing
principle around which to verify software is secure, essentially by using the Ideal as a richer
kind of security property than is typical in PL (which often looks at properties like information
flow control), and using abstraction in key ways to show it is enforced.

In the Crypto setting, the Real-to-Ideal connection is established probabilistically, consid-
ering a diminishing likelihood that a computationally bounded adversary would be able to tell
the difference between the Real and Ideal. In the PL setting, the specification-implementation
connection is established using methods of formal reasoning and logic, and usually without
considering an adversary.

However, a notion of adversary does arise in PL-style reasoning. In particular, an
adversary can be expressed as a context C[·] into which we place a computation e of interest
that is subject to that adversary; the composition of the two is written C[e]. One PL property
in this setup with a Crypto connection is contextual equivalence, which states that e and e′

are equivalent iff for all contexts C the outcome of running C[e] is the same as running C[e′]
– e.g., both diverge or evaluate to the same result. In a PL setting this property is often of
interest when proving that two different implementations of the same abstract data type
have the same semantics (in all contexts). In a security setting we can view the contexts as
adversaries, and e and e′ as the Real and Ideal.

Another useful property is full abstraction.17 This property was originally introduced to
connect an operational semantics to a denotational semantics – the former defines a kind of
abstract machine that explains how programs compute, while the latter denotes the meaning
of a program directly, in terms of another mathematical formalism (like complete partial
orders). Both styles of semantics have different strengths, and full abstraction connects them:
it requires that e and e′ are observationally equivalent (according to the operational semantics)
if an only if they have the same denotation (according to the denotational semantics).

In a Crypto setting, we might view the operational semantics as the Ideal and the
denotational semantics as the Real, and full abstraction then states that despite the added
observational power of the Real setting, an adversary cannot distinguish any more programs
(i.e., learn any additional information) than he could in the Ideal setting. As a recent
example of its use, Abadi and Plotkin used full abstraction to reason about the effectiveness
of address space randomization. Another recent result is a fully abstract compiler from a
type-safe high-level language to Javascript18; the compiler effectively defines the denotational
semantics, and the fact that it is fully abstract means that the added adversarial power that
Javascript provides cannot violate the source language’s semantics.

Connections between PL and Crypto

The seminar also brought out ways that PL-style reasoning can be connected to Crypto-style
reasoning for stronger end-to-end assurance of security. One connection point was at the
Real/Ideal boundary. In particular, for privacy-preserving computation (or computation

17 http://users.soe.ucsc.edu/~abadi/Papers/paper-csf-long.pdf
18 http://research.microsoft.com/en-us/um/people/nswamy/supp/full-abstraction.html
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preserving some other security property), Crypto-style reasoning can first be used to establish
that the Real emulates the Ideal, and then PL-style reasoning can consider the security of
the Ideal itself.

For example, consider the setting of SMC. Here, we have two (or more) parties X and
Y that wish to compute a function F of their inputs x and y, whereby each party only
learns the output F (x, y), but does not “see” the inputs. That is, the security goal is to
establish that the Real computation of F (x, y) is indistinguishable from the Ideal model
of executing F at a trusted third party. While Crypto can establish that a technique like
garbled circuits effectively emulates a trusted third party, it does not establish that the
output of F , even when computed by the Ideal, does not reveal too much information. For
example, if F (x, y) = y then X learns Y ’s value y directly. More subtly, if F (x, y) = x > y,
then if x = 1, an output of TRUE tells X that Y ’s value y = 0. PL-style reasoning can
be applied to functions F to establish whether they are sufficiently private, e.g., by using
ideas like knowledge-based reasoning19 or type systems for differential privacy.20 PL-style
reasoning about knowledge can also be used to optimize SMCs by identifying places where a
transformation would not affect security (e.g., no more is learned by an adversary observing
the transformed program), but could improve performance.21

Another way to connect PL to Crypto is to factor security-sensitive computations into
general-purpose and cryptographic parts. Then PL-style methods can be used to specify
the overall computation with the Crypto parts carefully abstracted out. The proof of
security then follows a PL approach, assuming guarantees provided by the Crypto parts,
which are separately proved using Crypto techniques. In a sense we can think of the PL
techniques as employing syntactic/symbolic reasoning, and the Crypto techniques employing
computational/probabilistic reasoning.

This is the approach taken in LambdaAuth, a language extension for programming
authenticated data structures (in the style of Merkle trees), in which the key idea involving the
use of cryptographic hashes was abstracted into a language feature, and the proof of security
combined a standard PL soundness proof along with a proof of the assumption that hash
collisions are computationally difficult to produce. Recent work by Chong and Tromer on
proof-carrying data similarly considers a language-level problem and proves useful guarantees
by appealing to abstracted cryptographic mechanisms.22 Likewise, work on Memory Trace
Obliviousness reasons about Oblivious RAM abstractly/symbolically in a PL setting to prove
that the address trace of a particular program leaks no information.23

Open problems
Beyond work that is being done, one goal of the seminar was to identify possible collaborations
on future work. PL researchers and cryptographers work on common problems from different
points of view, so one obvious next step is to collaborate on these problems.

One relevant problem is side channels. Cryptographers are concerned with side channels
in their implementations, e.g., to make sure the time, space, or power consumption during

19 http://www.cs.umd.edu/~mwh/papers/mardziel12smc.html
20 http://www.cis.upenn.edu/~ahae/papers/dfuzz-popl2013.pdf
21 http://www.cs.umd.edu/~mwh/papers/rastogi13knowledge.html
22 https://eprint.iacr.org/2013/513
23 http://www.cs.umd.edu/~mwh/papers/liu13oblivious.html
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an encryption/decryption operation does not reveal anything about the key. Likewise, PL
folk care about side channels expressed at the language level, e.g. work by Andrew Myers’
group on timing channels24. Both groups bring a useful perspective.

Another common problem is code obfuscation. It was cryptographers that proved
that virtual black box (VBB) obfuscation is impossible25, and proposed an alternative
indistinguishability-based definition. PL researchers, on the other hand, have looked at
language-oriented views of obfuscation effectiveness, e.g., based on abstract interpretation26.
Just as the halting problem is undecidable, but practical tools exist that prove termination.27
I believe that there is an opportunity here to find something useful, if not perfect.

Finally, the question of composability comes up in both Crypto and PL: Can we take
two modules that provide certain guarantees and compose them to create a larger system
while still ensuring properties proved about each module individually? Each community has
notions for composability that are slightly different, though analogous, as discussed above.
Can we make precise connections so as to bring over results from one community to the other?
Crypto currencies, exemplified by BitCoin, are an area of exploding interest. An interesting
feature about these currencies is that they provide a foundation for fair, secure multiparty
computation, as demonstrated by Andrychowicz, Dziembowski, Malinowski, and Mazurek
in their best paper at IEEE Security and Privacy 2014 [1, 2]. Could PL-style reasoning
be applied to strengthen the guarantees provided by such computations? Cryptographic
properties are often proved by making probabilistic statements about a system subject to a
computationally bounded adversary. Could program analyses be designed to give probabilistic
guarantees, drawing on the connection between adversary and context mentioned above,
to thus speak more quantitatively about the chances that a property is true, or not, given
the judgment of an analysis? How might random testing, which has proved highly useful in
security settings, be reasoned about in a similar way?

Acknowledgements. We would like to thank Jonathan Katz for his initial involvement in
organizing the seminar and Matthew Hammer for his help in preparing this report.
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3 Talk Abstracts

3.1 SNARKs on Authenticated Data
Manuel Barbosa (University of Minho – Braga, PT)

License Creative Commons BY 3.0 Unported license
© Manuel Barbosa

Joint work of Barbosa, Manuel;Backes, Michael;Fiore, Dario; Reischuk, Raphael;
Main reference M. Backes, M. Barbosa, D. Fiore, R. Reischuk, “ADSNARK: Nearly Practical and

Privacy-Preserving Proofs on Authenticated Data,” Cryptology ePrint Archive, Report 2014/617,
2014.

URL http://eprint.iacr.org/2014/617

Presentation of joint work with M. Backes, D. Fiore and R. Reischuk, available on ePrint. We
discuss the problem of privacy-preserving proofs on authenticated data, where a party receives
data from a trusted source and is requested to prove computations over the data to third
parties in a correct and private way, i.e., the third party learns no information on the data
but is still assured that the claimed proof is valid. We formalize the above three-party model,
discuss concrete application scenarios, and then we design, build, and evaluate ADSNARK,
a nearly practical system for proving arbitrary computations over authenticated data in a
privacy-preserving manner. ADSNARK improves significantly over state-of-the-art solutions
for this model. For instance, compared to corresponding solutions based on Pinocchio
(Oakland’13), ADSNARL achieves up to 25x improvement in proof-computation time and a
20x reduction in prover storage space.

3.2 Introduction to computer-aided cryptographic proofs
Gilles Barthe (IMDEA Software – Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Gilles Barthe

In this tutorial I will present some recent developments in computer-aided cryptography.

3.3 From CryptoVerif Specifications to Computationally Secure
Implementations of Protocols

Bruno Blanchet (INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Bruno Blanchet

Joint work of Cadé, David; Blanchet, Bruno
Main reference D. Cadé, B. Blanchet, “Proved Generation of Implementations from Computationally-Secure

Protocol Specifications,” in Proc. of the 2nd Int’l Conf. on Principles of Security and Trust
(POST’13), LNCS, Vol. 7796, pp. 63–82, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-642-36830-1_4

This talk presents a novel technique for obtaining implementations of security protocols,
proved secure in the computational model. We formally specify the protocol to prove, we
prove this specification secure using the computationally-sound protocol verifier CryptoVerif,
and we automatically translate it into an implementation in OCaml using a new compiler
that we have implemented. We proved that our compiler preserves security. We applied
this approach to the SSH Transport Layer protocol: we proved the authentication of the

14492

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://eprint.iacr.org/2014/617
http://eprint.iacr.org/2014/617
http://eprint.iacr.org/2014/617
http://eprint.iacr.org/2014/617
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-36830-1_4
http://dx.doi.org/10.1007/978-3-642-36830-1_4
http://dx.doi.org/10.1007/978-3-642-36830-1_4
http://dx.doi.org/10.1007/978-3-642-36830-1_4


38 14492 – The Synergy Between Programming Languages and Cryptography

server and the secrecy of the session keys in this protocol and verified that the generated
implementation successfully interacts with OpenSSH. The secrecy of messages sent over the
SSH tunnel cannot be proved due to known weaknesses in SSH with CBC-mode encryption.
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3.4 A two-level approach for programming secure multi-party
computing

Dan Bogdanov (Cybernetica AS – Tartu, EE)
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The implementation of secure multi-party computation applications needs specialized pro-
gramming tools to hide the complexity of cryptography from the developer. Furthermore,
secure multi-party computation seems to fit naturally into shared data analysis. We need
tools that keep development simple, while preserving optimization opportunities and allowing
formal security analyses.

Our solution is to separate the development into two layers. First, a high-level imperative
language is used by the IT system developer to implement the algorithms and business logic.
This language is independent of the underlying cryptographic protocols and the number
of parties used in the execution. It emits bytecode that is interpreted by a specific virtual
machine.

Second, a lower level language is used to implement the atomic secure operations in this
virtual machine. This language is used by experts in secure computation to implement the
protocols. Thus, it knows about parties, network channels and other necessary primitives.
The language can be functional in order to simplify optimization and security analysis.

We have implemented this model in the Sharemind secure multi-party computation
system with good results. The high-level language SecreC is used by non-cryptographers to
implement real-world applications and it has a standard library of over 25 000 lines of code.
For the lower layer, we have two options. Our own protocol DSL is a functional language for
implementing protocols based on secret sharing. But we also support protocols generated by
the CBMC-GC compiler as Boolean circuits.
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3.5 CBMC-GC: Secure Two-Party Computations in ANSI C
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Secure two-party computation (STC) is a computer security paradigm where two parties can
jointly evaluate a program with sensitive input data, provided in parts from both parties.
By the security guarantees of STC, neither party can learn any information on the other
party’s input while performing the STC task. For a long time thought to be impractical, until
recently, STC has only been implemented with domain-specific languages or hand-crafted
Boolean circuits for specific computations. Our open-source compiler CBMC-GC is the first
ANSI-C compiler for STC. It turns C programs into Boolean circuits that fit the requirements
of garbled circuits, a generic STC approach based on circuits. Here, the size of the resulting
circuits plays a crucial role since each STC step involves encryption and network transfer
and is therefore extremely slow when compared to computations performed on modern
hardware architectures. We report on newly implemented circuit optimization techniques
that substantially reduce the circuit sizes compared to the original release of CBMC-GC.
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3.6 Enforcing Language Semantics Using Proof-Carrying Data
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Sound reasoning about the behavior of programs relies on program execution adhering to the
language semantics. However, in a distributed computation, when a value is sent from one
party to another, the receiver faces the question of whether the value is well-traced: could it
have been produced by a computation that respects the language semantics? If not, then
accepting the non-well-traced value may invalidate the receiver’s reasoning, leading to bugs
or vulnerabilities.
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Proof-Carrying Data (PCD) is a recently-introduced cryptographic mechanism that allows
messages in a distributed computation to be accompanied by proof that the message, and
the history leading to it, complies with a specified predicate. Using PCD, a verifier can
be convinced that the predicate held throughout the distributed computation, even in the
presence of malicious parties, and at a verification cost that is independent of the size of the
computation producing the value. Unfortunately, previous approaches to using PCD required
tailoring a specialized predicate for each application, using an inconvenient formalism and
with little methodological support.

We connect these two threads by introducing a novel, PCD-based approach to enforcing
language semantics in distributed computations. We show how to construct an object-oriented
language runtime that ensures that objects received from potentially untrusted parties are
well-traced with respect to a set of class definitions. Programmers can then soundly reason
about program behavior, despite values received from untrusted parties, without needing to
be aware of the underlying cryptographic techniques.

3.7 Secure composition of protocols
Veronique Cortier (LORIA – Nancy, FR)
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Consider your favorite key-exchange protocol. Assume it is secure. Is it possible to use it to
implement a secure channel?

In all generality, the answer is no, In this talk, we review techniques for securely composing
protocols, for various notions of composition.

3.8 Wysteria: A Programming Language for Generic, Mixed-Mode
Multiparty Computations

Matthew A. Hammer (University of Maryland, US)
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In a Secure Multiparty Computation (SMC), mutually distrusting parties use cryptographic
techniques to cooperatively compute over their private data; in the process each party
learns only explicitly revealed outputs. In this paper, we present Wysteria, a high-level
programming language for writing SMCs. As with past languages, like Fairplay, Wysteria
compiles secure computations to circuits that are executed by an underlying engine. Unlike
past work, Wysteria provides support for mixed-mode programs, which combine local,
private computations with synchronous SMCs. Wysteria complements a standard feature
set with built-in support for secret shares and with wire bundles, a new abstraction that
supports generic n-party computations. We have formalized Wysteria, its refinement
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type system, and its operational semantics. We show that Wysteria programs have an
easy-to-understand single-threaded interpretation and prove that this view corresponds to
the actual multi-threaded semantics. We also prove type soundness, a property we show has
security ramifications, namely that information about one party’s data can only be revealed
to another via (agreed upon) secure computations. We have implemented Wysteria, and
used it to program a variety of interesting SMC protocols from the literature, as well as
several new ones. We find that Wysteria’s performance is competitive with prior approaches
while making programming far easier, and more trustworthy.

3.9 Compiling SQL for encrypted data
Florian Kerschbaum (SAP AG – Karlsruhe, DE)
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We present a problem in processing SQL over encrypted data. Encrypted database enable
outsourcing to the cloud, but require adapting the encryption scheme to the SQL operation. A
problem arises when one operator requires a different encryption scheme than its predecessor.
Most notably sorting of (or range queries on) homomorphically encrypted data is not possible.
A query like “SELECT TOP 3 zipcode GROUP BY zipcode ORDER BY SUM(revenue)”
cannot be performed on encrypted data. The solution to this problem is deeper query analysis
and compilation. We build the operator tree (relational algebra) bof the SQL query, split it
at the bottom most conflict and execute one part on the database and one part on the client.
This implies a performance penalty for transferring more data to the client for some queries
and always for query analysis, but enables full SQL functionality and policy configuration of
the encryption (and hence potentially increasing security).
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3.10 Rational Protection Against Timing Attacks
Boris Köpf (IMDEA Software – Madrid, ES)
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We present a novel approach for reasoning about the trade-off between security and perform-
ance in timing attacks, based on techniques from game theory and quantitative information-
flow analysis. Our motivating example is the combination of input blinding and discretization
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of execution times, for which the trade-off between security and performance can be cast
formally.

We put our techniques to work in a case study in which we identify optimal countermeasure
configurations for the OpenSSL RSA implementation. We determine situations in which
the optimal choice is to use a defensive, constant-time implementation and a small key, and
situations in which the optimal choice is a more aggressively tuned (but leaky) implementation
with a longer key.
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3.11 Proving the TLS Handshake Secure (as it is) – and will be
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The TLS Internet Standard features a mixed bag of cryptographic algorithms and construc-
tions, letting clients and servers negotiate their use for each run of the handshake.

I present an analysis of the provable security of the TLS handshake, as it is implemented
and deployed. To capture the details of the standard and its main extensions, it relies on
miTLS, a verified reference implementation of the protocol. This motivates the use of new
agile security definitions and assumptions for the signatures, key encapsulation mechanisms
(KEM), and key derivation algorithms used by the TLS handshake. To validate the model of
key encapsulation, the analysis shows that the KEM definition is satisfied by RSA ciphersuites
under the plausible assumption that PKCS#1v1.5 ciphertexts are hard to re-randomize.

I also touch on the need to adapt our KEM model to support the recent session hash and
extended master secret draft TLS extension that binds TLS master secrets to the context in
which they were generated.

3.12 Automated Analysis and Synthesis of Modes of Operation and
Authenticated Encryption Schemes

Alex Malozemoff (University of Maryland, US)
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In this talk, we present two approaches to synthesizing encryption schemes. We first discuss
a work published at CSF 2014, where we synthesize block-cipher modes of operations, which
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are mechanisms for probabilistic encryption of arbitrary length messages using any underlying
block cipher. We propose an automated approach for the security analysis of block-cipher
modes of operation based on a "local" analysis of the steps carried out by the mode when
handling a single message block. We model these steps as a directed, acyclic graph, with
nodes corresponding to instructions and edges corresponding to intermediate values. We then
introduce a set of labels and constraints on the edges, and prove a meta-theorem showing
that any mode for which there exists a labeling of the edges satisfying these constraints is
secure (against chosen-plaintext attacks). This allows us the reduce security of a given mode
to a constraint-satisfication problem, which in turn can be handled using an SMT solver. We
couple our security-analysis tool with a routine that automatically generates viable modes;
together, these allow us to synthesize hundreds of secure modes.

In the second part of the talk, we discuss recent work extending this approach to
authenticated encryption schemes, which both encrypts and authenticates arbitrary-length
messages using a block-cipher as a building block.

3.13 Crash Course on Cryptographic Program Obfuscation
Alex Malozemoff (University of Maryland, US)

License Creative Commons BY 3.0 Unported license
© Alex Malozemoff

Joint work of Apon, Daniel; Huang, Yan; Katz, Jonathan; Malozemoff, Alex
Main reference D. Apon, Y. Huang, J. Katz, A. J. Malozemoff, “Implementing Cryptographic Program

Obfuscation,” Cryptology ePrint Archive, Report 2014/779, 2014.
URL https://eprint.iacr.org/2014/779

In this talk, we give a brief overview of cryptographic program obfuscation, discussing the
definitions, a high-level description of the main construction, and some performance results.

3.14 A Practical Testing Framework for Isolating Hardware Timing
Channels

Sarah Meiklejohn (University College London, GB)
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This work identifies a new formal basis for hardware information flow security by providing a
method to separate timing flows from other flows of information. By developing a framework
for identifying these different classes of information flow at the gate level, one can either
confirm or rule out the existence of such flows in a provable manner.
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3.15 Deéjà Q: Using Dual Systems to Revisit q-Type Assumptions
Sarah Meiklejohn (University College London, GB)
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After more than a decade of usage, bilinear groups have established their place in the
cryptographic canon by enabling the construction of many advanced cryptographic primitives.
Unfortunately, this explosion in functionality has been accompanied by an analogous growth
in the complexity of the assumptions used to prove security. Many of these assumptions
have been gathered under the umbrella of the “uber-assumption,” yet certain classes of these
assumptions– namely, q-type assumptions – are stronger and require larger parameter sizes
than their static counterparts. In this paper, we show that in certain groups, many classes
of q-type assumptions are in fact implied by subgroup hiding (a well-established, static
assumption). Our main tool in this endeavor is the dual-system technique, as introduced
by Waters in 2009. We show that q-type assumptions are implied– when instantiated in
appropriate groups– solely by subgroup hiding.
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3.16 A Computational Model including Timing Attacks
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Cryptographic proofs about security protocols typically abstract from timing attacks. For
some security protocols, however, timing attacks constitute the most effective class of attacks,
such as the anonymous communication protocol Tor. We present TUC (for Time-sensitive
Universal Composability): the first universal composability framework that includes a
comprehensive notion of time. TUC, in particular, includes network-based timing attacks
against multi-party protocols (e.g., Tor). We, furthermore, discuss how system-level can be
modelled in TUC.
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3.17 Proving the Security of the Mini-APP Private Information
Retrieval Protocol in EasyCrypt

Alley Stoughton (MIT Lincoln Laboratory – Lexington, US)
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Mini-APP is a simple private information retrieval (PIR) protocol involving a very simple
kind of database. It’s my simplification of a PIR protocol developed by cryptographers at
the University of California, Irvine, as part of IARPA’s APP (Advanced Privacy Protection)
program. I will describe the Mini-APP protocol, define its security using the real/ideal
paradigm, and give a high level explanation of how I proved its security using the EasyCrypt
proof assistant.

3.18 Using the Real/Ideal Paradigm to Define Program Security
Alley Stoughton (MIT Lincoln Laboratory – Lexington, US)
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I present an example of how the real/ideal paradigm of theoretical cryptography can be
used as a framework for defining the security of programs that don’t necessarily involve any
cryptographic operations, and in which security is enforced using programming language
abstractions. Our example is the two player board game Battleship, and we’ll consider an
implementation of Battleship in the concurrent functional programming language Concurrent
ML, giving an informal argument as to why its players are secure against possibly malicious
opponents.

3.19 Enforcing Language Semantics Using Proof-Carrying Data
Eran Tromer (Tel Aviv University, IL)
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Sound reasoning about the behavior of programs relies on program execution adhering to the
language semantics. However, in a distributed computation, when a value is sent from one
party to another, the receiver faces the question of whether the value is well-traced: could it
have been produced by a computation that respects the language semantics? If not, then
accepting the non-well-traced value may invalidate the receiver’s reasoning, leading to bugs
or vulnerabilities.
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Proof-Carrying Data (PCD) is a recently-introduced cryptographic mechanism that allows
messages in a distributed computation to be accompanied by proof that the message, and
the history leading to it, complies with a specified predicate. Using PCD, a verifier can
be convinced that the predicate held throughout the distributed computation, even in the
presence of malicious parties, and at a verification cost that is independent of the size of the
computation producing the value. Unfortunately, previous approaches to using PCD required
tailoring a specialized predicate for each application, using an inconvenient formalism and
with little methodological support.

We connect these two threads by introducing a novel, PCD-based approach to enforcing
language semantics in distributed computations. We show how to construct an object-oriented
language runtime that ensures that objects received from potentially untrusted parties are
well-traced with respect to a set of class definitions. Programmers can then soundly reason
about program behavior, despite values received from untrusted parties, without needing to
be aware of the underlying cryptographic techniques.

3.20 Information leakage via side channels: a brief survey
Eran Tromer (Tel Aviv University, IL)
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Security of modern computer systems relies on the ability to enforce separation between
mutually-untrusting processes or virtual machines. The communication between these
processes/VMs is supposedly controlled by the platform (OS, VMM and hardware) according
to a policy. Alas, information flow is a fickle thing: subtle and unexpected interaction
between processes through the underlying hardware can convey information, and thereby
violate enforcement of separation. Such “side channels” have long been the bane of secure
system partitioning. In recent years, they have been recognized as especially dangerous
in the age of multitenancy in cloud computing. Analogous challenges arise for corruption
of computation and data by induced faults. This talk briefly surveys the challenge, and
approaches to mitigating such attacks at the levels of engineering, algorithms, software and
program analysis.

3.21 Verification of Quantum Crypto
Dominique Unruh (University of Tartu, EE)
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We discussed the challenge of verifying post-quantum secure cryptography, and argue that
support for such verification might be achievable at little extra cost in tools like EasyCrypt,
both for the implementer of the tool, as well as for the user who writes the proof.

Follow-up discussions have already led to active and fruitful collaboration with the
developers of EasyCrypt (specifically Gilles Barthe, François Dupressoir, Pierre-Yves Strub)
on this topic.
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