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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15021 “Concurrent
computing in the many-core era”. This seminar is a successor to Dagstuhl Seminars 08241 “Trans-
actional memory: From implementation to application” and 12161 “Abstractions for scalable mul-
ticore computing”, respectively held in June 2008 and in April 2012. The current seminar built on
the previous seminars by notably (1) broadening the scope to concurrency beyond transactional
memory and shared-memory multicores abstractions, (2) focusing on the new challenges and
potential uses of emerging hardware support for synchronization extensions, and (3) considering
the increasing complexity resulting from the explosion in heterogeneity.
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Context and Motivations
Thirty years of improvement in the computational power of CMOS uniprocessors came
to an end around 2004, with the near-simultaneous approach of several limits in device
technology (feature scaling, frequency, heat dissipation, pin count). The industry has
responded with ubiquitous multi-core processors, but scalable concurrency remains elusive
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2 15021 – Concurrent Computing in the Many-core Era

for many applications, and it now appears likely that the future will be not only massively
parallel, but also massively heterogeneous.

Ten years into the multi-core era, much progress has been made. C and C++ are
now explicitly parallel languages, with a rigorous memory model. Parallel programming
libraries (OpenMP, TBB, Cilk++, CnC, GCD, TPL/PLINQ) have become mature enough for
widespread commercial use. Graphics Processing Units support general-purpose data-parallel
programming (in CUDA, OpenCL, and other languages) for a widening range of fields.
Transactional memory appears likely to be incorporated into several programming languages.
Software support is available in multiple compilers, and hardware support is being marketed
by IBM and Intel, among others.

At the same time, core counts are currently lower than had once been predicted, in part
because of a perceived lack of demand, and the prospects for increased core count over time
appear to be constrained by the specter of dark silicon. Parallel programming remains difficult
for most programmers, tool chains for concurrency remain immature and inconsistent, and
pedagogical breakthroughs for the first- and second-year curriculum have yet to materialize.
Perhaps most troublesome, it seems increasingly likely that future microprocessors will
host scores or even hundreds of heterogeneous computational accelerators, both fixed and
field-programmable. Programming for such complex chips is an exceptionally daunting
prospect.

The goal of this Dagstuhl research seminar was to bring together leading international
researchers from both academia and industry working on different aspects of concurrent
computing (theory and practice, software and hardware, parallel programming languages,
formal models, tools, etc.) in order to:

assess the state of the art in concurrency, including formal models, languages, libraries,
verification techniques, and tool chains;
explore the many potential uses of emerging hardware support for transactional memory
and synchronization extensions;
envision next-generation hardware mechanisms;
consider potential strategies to harness the anticipated explosion in heterogeneity; and
investigate the interaction of synchronization and consistency with emerging support
for low-latency byte-addressable persistent memory. (This last goal emerged late in the
planning process, but became a major topic of discussion.)
Participants came from a wide variety of research communities, which seldom have

the opportunity to meet together in one place. The seminar therefore provided a unique
opportunity to focus diverse expertise on a common research agenda for concurrent computing
on new generations of multi- and many-core systems.

Research Challenges
As part of this seminar, we specifically addressed the following challenges and open re-
search questions, which are the focus of substantial investigation both in academia and in
industry. These issues were addressed during the discussion at the workshop from the various
perspectives of theory, concurrent algorithms, systems software, and microarchitecture.

The Future of Transactional Memory

With the introduction this past year of TM-capable commodity processors from IBM and
Intel, TM research is increasingly turning to the question of how best to use the new hardware.
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What can and cannot be accomplished with the simple interfaces currently available? What
might be accomplished with the addition of non-transactional loads and/or stores within
transactions? (And how should such stores behave?) What support might be needed for
nested transactions or nested parallelism?

Given that machines without TM will exist for many years, and that HTM will remain
bounded by constraints on capacity, associativity, etc., how should hardware and software
transactions interact? What hardware extensions might facilitate the construction of hybrid
systems? Can hardware transactions be used to accelerate STM? Is TM hardware useful for
purposes other than TM?

Beyond these basic questions, how do we integrate TM into the concurrency tool chain?
How does one debug a black-box atomic operation? How should TM be embedded into
programming languages? Should speculation be visible to the programmer, or should it
be hidden within the implementation? How large can transactions reasonably become?
Should they remain primarily a means of building concurrent data structures, or should they
expand to encompass larger operations-even system-level functions like I/O, thread/process
interactions, and crash recovery? As implementations proliferate, are there reasonable
models of correctness that move beyond opacity? How should we benchmark TM code?
What performance counters should future TM hardware provide to profilers? What kind of
infrastructure is needed to perform regression testing of transactional code?

Heterogeneity

GPUs are increasingly regarded as general-purpose computational resources, in platforms
ranging from cell phones to supercomputers. Cell phones commonly include additional
accelerators as well, for (de)compression, (de)encryption, and media transcoding. These
and other accelerators (e.g., for linear algebra, pattern matching, XML parsing, or field-
programmable functions) are likely to appear across the computing spectrum over the next
few years.

In contrast to traditional (e.g., vector or floating-point) functional units, whose operations
are uniformly short, and to traditional I/O devices, whose operations are uniformly long,
accelerators can be expected to display a very wide range of response times. Long and
variable response times suggest the need for resource management, to promote fair use
across threads and applications. Short response times suggest the need for direct, user-level
access-as already provided by GPU drivers from nVidia and (soon) AMD.

The prospect of contention for shared accelerators, accessed directly from user-level
code, raises a host of questions for concurrent programming. How do we arbitrate shared
access? Can traditional notions of locality be extended to accommodate heterogeneity? What
happens to the tradeoff between local and remote computation when the alternatives use
different instruction sets? What abstract models of progress/performance/time complexity are
appropriate? Can operations that employ shared accelerators ever be considered non-blocking?
How should we benchmark code that makes use of accelerators? What performance measures
should heterogeneous architectures should provide to profilers? What kind of infrastructure
is needed to perform regression testing in the face of heterogeneity?

Persistence

Exceptions like magnetic core and battery-backed RAM notwithstanding, mainstream com-
puting has long maintained a firm separation between fast, volatile working memory and
slow, non-volatile (persistent) storage. Emerging low-latency, byte-addressable technologies
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like phase-change memory, memristors, and spin-torque-transfer memory bring this tradition
into question. While near-term implementations may simply use low-latency nonvolatile
memory as an accelerator for conventional file systems, alternative APIs may prove attractive.
Specifically, it seems likely that future systems will give programmers the option of computing
directly on persistent state, rather than reading it into working memory, using it there, and
writing it out again. This possibility raises variants of many of the issues that have long
concerned the concurrency community – consistency and atomicity in particular.

How should pointer-rich, non-file-based data be managed? Will we need automatic
garbage collection? What will be the persistent analogues of nonblocking concurrent data
structures? How will we ensure linearizability? Composability? A seemingly obvious option
would add the ‘D’ (durability) to transactional memory’s ACI (atomicity, consistency, and
isolation). With little near-term prospect for integration of persistence and hardware TM,
how will we minimize the overheads of persistent STM? What will the tradeoffs look like
with respect to lock-based Lock-based programming models? What will be the division of
labor between the operating system, runtime, and compiler? What will be the complexity
models? Will we count “persistent accesses” the way we currently count remote memory
accesses for concurrent objects in memory?

Pedagogy

Once upon a time, concurrency was a specialized topic in the undergraduate curriculum,
generally deferred to the operating systems course, or to an upper-level elective of its
own. Now it is an essential part of the training of every computer scientist. Yet there is
surprisingly little consensus on where it belongs in the curriculum, and how it ought to be
taught. Alternatives range from “concurrency first,” to infusion throughout the curriculum,
to more extensive coverage in a more limited number of courses.

While the principal focus of the seminar was on research issues, participants had the
opportunity to share both intuition and experience in the teaching of concurrency, during a
dedicated panel session and as part of informal discussions. The following questions were
notably discussed. What works, for which kinds of students? What languages and tool
chains should we use? What textbooks do we need? What role (if any) should be played
by deterministic parallel languages and constructs? Are there approaches, particularly for
introductory students, that can offer parallel speedup for important applications, without
the full complexity of the general case? Can these approaches reasonably be “staged” into
intro-level courses?

Organization of the Seminar
The seminar lasted 5 days, each composed of short scientific presentations, with ample time for
discussions, and break-out sessions during which various open questions were discussed in sub-
groups. The first day of the seminar started with a general introduction and forward-looking
presentations on concurrency and the challenges raised by heterogeneity and virtualization.

Ten technical sessions, with short presentations from the participants, took place during
the seminar on:

locks and TM;
C++ status and standards;
memory models;
memory management and persistence;
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performance tuning and verification;
distributed concurrency and fault-tolerance;
thoughts on concurrency and parallelism;
HW and portability;
compilers, runtimes, and libraries; and
languages and systems.

They were complemented by break-out sessions on “dealing with heterogeneity”, the
“future of TM”, and “persistence”, as well as a plenary discussion on “virtualization”. Finally,
a panel discussion was organized on the topic of “teaching concurrency”. The seminar
concluded with an open discussion on the future of concurrency and the challenges that will
need to be adddressed in coming years.

The topic of the sessions and their diversity illustrate the complexity of the challenges
raised by concurrent computing on multi- and many-core systems. As one can expect
from such prospective seminars, the discussions raised almost as many new questions as
they provided answers on the addressed research challenges. Indeed, while there has been
significant advances since the previous seminars (08241 and 12161), notably in terms of
hardware support, few of the outstanding problems have been completely solved and new
ones have emerged. For instance, hardware support for TM is now available in consumer
CPUs but it cannot be used straightforwardly in real applications without relying on hybrid
software/hardware strategies, notably to deal with the lack of progress guarantees and the
possibility of spurious aborts.

As detailed in the rest of this report, the seminar has allowed the community to make
significant progress on a number of important questions pertaining to concurrent computing,
while at the same time defining a research agenda for the next few years. Participants
provided very positive feedback following the seminar and expressed strong interest in
follow-up events. Organizers strongly support the continuation of this series of seminars on
concurrent computing, one of the most important and challenging fields in the era of multi-
and many-core systems.
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3 Jump-Start Talks

3.1 Heterogeneous Concurrency
Michael L. Scott (University of Rochester, US)

License Creative Commons BY 3.0 DE license
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It appears increasingly likely that future multi-/many-core processors will be highly hetero-
geneous, with cores that differ not only in average performance and energy consumption,
but also in purpose, with instruction sets and micro-architecture specialized for such tasks
as vector computation, compression, encryption, media transcoding, pattern matching, and
XML parsing. We may even see ubiquitous FPGAs on-chip.

The time appears to be ripe for concurrency researchers to explore open questions in
this area. How will we write programs for highly heterogeneous machines? Possible issues
include:

What will be the policies and mechanisms to allocate and manage resources (cycles,
scratchpad memory, bandwidth)?
Will we continue to insist on monolithic stacks, or will it make sense to allocate frames
dynamically (sometimes, perhaps, in local scratchpad memory)?
How will we dispatch work to other cores? Hardware queues? Flat combining?
How will we wait for the completion of work on other cores? Spin? Yield? De-schedule?
Perhaps we shouldn’t wait at all, but rather ship continuations?
When work can be done in more than one place, how will we choose among cores with
non-trivial tradeoffs (in power, energy, time, or load)? How will we generate code for
functions that may use different ISAs depending on where they run?
What is the right division of labor between the programming language, the run-time
system, the OS, and the hardware?
What features would we like architects to build into future machines?

Notes (collected by members of the audience)

The purpose of this talk is to jump-start conversation.

Background: Why don’t we have 1000-core multi-cores? Because they would melt (at
least if you used all the cores at the same time). As a result, we’re looking at a future
with billions of transistors on the chip, but many of them will have to be turned off
(“dark silicon”). ([Charles E. Leiserson]: Or you could clock them down.) One way of
dealing with dark silicon is to build special-purpose, customized circuits. Anything that
is a non-trivial portion of execution time could have a specialized circuit. This is already
happening in mobile, where we may also have cores with different computational/energy
tradeoffs.
Future programs may have to “hop” between cores. There’s a progression of function-
ality: (1) FPU: pure, simple function (e.g., arctan); protection is not really an issue.
(2) GPU: fire-and-forget rendering. (3) GPGPU: compute and return (with memory
access); direct access from user space; one protection domain at a time. (4) First-class
core: juggle multiple contexts safely (really not an accelerator anymore); preemption,
multiprogramming.
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Challenges with these heterogeneous cores: (1) How do we arbitrate access to resources
(cycles, scratchpad memory, bandwidth)? (2) How do we choose among cores – e.g., the
faster core or the more efficient one? (3) How do we get access to systems services on
“accelerators”? (4) How do we handle data movement? The “best” core may not be best
if we have to move data between cores, or if the “best” core may be overloaded with other
computation. (5) How do we manage heterogeneous ISAs?
Challenges for concurrency: (1) How do I dispatch across cores? (HW queues? flat
combining?) (1) GPGPU accesses are not mediated by the operating system! (2) How
do we manage stacks? (contiguous stacks? linked frames instead?) (3) How should we
envision accelerator-based computing? Call function and get result back? Or do we want
to think of this as shipping continuations? (4) What language support do we need? It
would be nice to avoid writing code in a different language for every accelerator. (5) How
do we manage signaling across cores? Wake up threads, etc.?
Unsupported hypotheses: The traditional kernel interface is not going to last. It cannot
capture everything as a pthread anymore. We’re already heading in this direction, with
extensions for user-space threads, etc. We really need to rethink how an OS supports
threads. Contiguous stacks may need to be replaced with chains of dynamically allocated
frames. That will need compiler support. Accelerator cores are going to need first-class
status, with direct access to OS services. A tree-structured dynamic call graph will be
too restrictive. Rather than assume call and return, the accelerator may need to decide
what to do with the result, and where to run the current context next.
Discussion:
[David F. Bacon]: We may be over-generalizing lessons from GPUs. Many accelerators
may be “fixed-function.” An FPU-like model may be easier for managing complexity.
IBM has a coherent accelerator interface for access to FPGAs, etc. My view is that I
don’t necessarily want to use coherent memory on an FPGA. Please have cores use the
same ISA.
[Michael L. Scott]: There may be important differences between an “encryption accelerator”
with a standard encryption algorithm and an engine that knows how to do XSLT that
can apply arbitrary function at each node of a tree.
[Stephan Diestelhorst]: Jumping off single ISA thought. ARM has Big/Little. Sometimes
there is a functional block that you want to leave out of the “small” ISA – e.g., the vector
unit. So you have mostly the same ISA, but a “wimpy” core may not implement big
instructions.
[David F. Bacon] & [Michael L. Scott]: You can use microprogramming to implement
“beefy” instructions – e.g., serializing vector instructions. That’s the standard way to
provide ISA compatibility.
[Stephan Diestelhorst]: Would you want the support to be OS-visible?
[David F. Bacon]: I want as much compatibility as possible. Heterogeneity is giving you
so much hassle already; anything you can do to minimize this is worth doing.
[Charles E. Leiserson]: Much depends on what you’re trying to do. There’s already a lot
of difference between multi-/many-core/desktop computing vs. embedded. Over time,
there may be even more separation among these sorts of things. A cell phone does a lot
more specialized computing than a laptop does. In the cloud, there is more of a push
for things to be homogeneous – e.g., Amazon Web Services turns off clock-frequency
changing.
[Michael L. Scott]: On the other hand, AWS will provide you a CUDA engine if you ask
for it. As a general principle, answers may be different in different contexts. I tend to see
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more convergence, rather than divergence. Embedded and general-purpose computing
may be getting more similar, rather than different.
[Charles E. Leiserson]: Maybe at some point we’ll have cloud-specialized processors?
[Michael L. Scott]: I would guess that we’d get even more specialized options – a menu –
of possible processor choices.
[Charles E. Leiserson]: But that’s hard to manage. AWS offers different kinds of machines,
but they’re concerned with keeping the number of offerings small.
[J. Eliot B. Moss]: If you offer a uniform ISA, you’ve “solved” the compiler problem. This
becomes more of a scheduling/processor binding problem. It makes it easier to migrate
threads between processors – and thus no different at the level of writing a program.
[David F. Bacon]: Maybe I’m not saying that all processors have same ISA, but you do
want to minimize ISA heterogeneity.
[Torvald Riegel]: ISA is one layer of complexity, but not the only one. Performance
differences still call for different types of code. It doesn’t matter if every core supports
vector instructions: if an accelerator is slow at vector code, you may still use a completely
different kind of code. ISA uniformity just pushes the problem up to a different layer of
the stack.
[J. Eliot B. Moss]: Note that performance heterogeneity is the whole reason for hetero-
geneity in the first place, so ultimately that’s something you can’t hide.
[Sven-Bodo Scholz]: Having a homogeneous ISA does not really make compiler people’s
lives easier. If the compiler is the place where you choose whether you use a vector
instruction or not, the compiler still needs to know how fast the instruction is. If the
compiler knows about heterogeneity it may be easier to produce good code than it is
with “simulated” homogeneity (of the ISA) that under the hood turns out not to be
homogeneous.
[Michael L. Scott]: I’m curious about whether contiguous stacks are an albatross.
[Charles E. Leiserson]: Absolutely. There was an opportunity when we went to a 64-bit
software stack where we could have made a change, but we didn’t. Current calling
conventions are even more optimized for linear stacks than previous generations.
[J. Eliot B. Moss]: There are existing, widely used systems that do linked stack-chunks.
Not at an individual frame level, but we don’t always have fully-linear stacks.
[Hans-J. Boehm]: GCC supports discontiguous stacks?
[Torvald Riegel]: Mostly, but it’s not that fine grained. You just don’t have to reserve
everything up front. But I don’t think that contiguous stacks are the problem here. We
need to start at the language level. What if we have execution agents that are not full
pthreads (with scheduler guarantees, etc.) Looking at this from the languages/libraries
side of things may be more productive.
[Stephan Diestelhorst]: Go has discontiguous stacks, threadlets, etc. These concepts may
exist at the language level, but we may still need to do something at lower levels to make
them faster.
[Dave Dice]: We’ve tried split chunk stacks in the JVM, but it’s hard to get it to work
across multiple platforms. We tried to do it for 32-bit code because it’s faster, but we ran
out of stack space. The JIT may be able to optimize out checks to see if there’s enough
space in current stack chunks. The big problem is that JVM interacts with C code, so
the thread model/execution model must somewhat mirror the pthreads world.
[David F. Bacon]: We saw the same thing in Jikes. It’s easier in a single-language
environment.
[Charles E. Leiserson]: Cilk did linked frames for everything 15 years ago. Overhead in
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GCC was only 1–2%. But that stuff is better optimized today, so overheads might be
much higher. At the same time, the flexibility it gives you is so great, it may be worth
the tradeoff.
[J. Eliot B. Moss]: Maybe part of the performance issue is not the number of instructions
but what happens in the cache.
[Charles E. Leiserson]: I don’t think cache is a big issue. Stacks may have more of an
effect on the TLB. Even if you’re allocating stack frames off the heap, if you’re using
the memory in a stack-like manner, you still get pretty good cache locality. C and C++
work well with malloc, because when you free something, that’s what you allocate next,
while managed languages don’t give you this benefit.
[David F. Bacon]: This is really an architectural artifact, because we can’t say that stuff
we’re freeing doesn’t need to be in the cache.

3.2 Concurrency in Virtual Machines
J. Eliot B. Moss (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 DE license
© J. Eliot B. Moss

Consider the problem faced by a designer of a virtual machine (instruction set and related
facilities) intended to support a wide range of programming languages (static and dynamic,
“low” level like C and “high” level like Haskell) on a range of hardware platforms. It is
challenging enough to provide integer and floating point operations and basic control flow
(compare, branch, call, return, exceptions). The situation is made rather more difficult with
respect to concurrency. Not only is there variety around single-word atomic accesses and
ordering of memory accesses, but “larger” abstractions such as messaging, block/wakeup,
threads, and especially transactions, make it difficult to devise a suitable common denominator.
We hope that discussion at this workshop will help advance our thinking about what a good
collection of building blocks might be.

Notes (collected by members of the audience)

Goal: define a language-independent and HW-independent intermediate representation
(IR) that deals well with concurrency.
“I have a very practical need to worry about this topic, because Tony Hosking and I are
working on a new grant on building a new VM that deals well with concurrency. Problem
setting: Language-level virtual machine that abstracts away hardware detail. Below the
programming language – target representation for compilers. Would like to support a
wide variety of languages. Similar to LLVM, but more targeted to managed languages.
Similar to CLR. Want something close to JVM, but one that is less language-centric.
Hard to target new languages to JVM, because you have to “bend over backwards” to
fit things into JVM model. Support GC, threads, etc. Starting point: what should
the instruction set/IR for the virtual machine look like? Points of agreement: arith-
metic/logical instructions, primitive data types, call/return. But there’s a lot we don’t
agree on.” Assuming we do not want to impose specific high-level semantics such as
race-freedom or a particular transaction model, what primitives or building blocks should
we provide to the language implementer to allow them to roll their own and achieve
good performance on various hardware? “Things nice to have for concurrency: some
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single-word atomic primitives (CAS), guaranteed progress (FetchAndAdd) What about
multi-word operations/transactions? No agreed-upon semantics in the languages, no
standard support in hardware. So what primitives should a VM support? Goal: what
are the key building blocks to build STM or exploit HTM.” [Charles E. Leiserson]: This
is not really VM specific: really common to any IR design problem.
Some quick thoughts: (1) Support grouping operations together (some notion of “trans-
actions”), (2) Should deal with ordering, (3) Should deal with policy (contention manage-
ment), (4) Should handle multiple scales: single thread, hyperthreads, same socket, same
box, more distributed.
Q[Jose Nelson Ameral]: What do you have in mind when you say should deal with
ordering? Is it TLS-style support, with single sequential order? A: Some notion of
ordering between transactions. May want to specify a specific order in which transactions
may commit. But may want to support general messaging, too. [Hans-J. Boehm]: If
transactions are exposed at language level, also need to worry about memory visibility
ordering between transactional code and non-transactional code. Q[Michael L. Scott]: Is
it always the case that if B is ordered after transaction A, is it always the case that B
will see every non-transactional operation that happens-before transaction A? Q[Torvald
Riegel]: Are you adopting a data-race free requirement? Has implications for optimization.
A: May be a good requirement. [Hans-J. Boehm]: But then you can’t handle Java in its
current form.
Would also like to support semantics not just memory. Semantic conflicts, semantic
undo/redo (open nesting, boosting, etc.). Not in hardware, but how can we integrate it
into a system that perhaps uses HTM or other hardware support? How do we generate
concurrency? What are the primitives? Fork/join? Do-across/Do-all? Communica-
tion/ordering? Wait/signal? Futures? If we put these things into a VM, could help
support multiple languages. Though current project is not intended to support multiple
languages simultaneously, due to library requirements. Scope: Tightly connected (cache
coherent) to Loosely connected (distributed). How much can we assume is being handled
in hardware vs. how much has to be managed by software. Likely to see less coherence in
heterogeneous world. In summary, as a (language VM implementer): What should I offer
to language implementers? As an abstraction of current/future hardware? To support
current and future languages? [Michael L. Scott]: And what features should we suggest
to architects?
Q[Pascal Felber]: Do we want to have primitives for message passing in VM? Q[Maurice
Herlihy]: What about existing languages? Common intersection between Ruby/ Py-
thon/Scala is difficult. A: Think more union, rather than intersection. [Michael L.
Scott]: There is a lot to learn from CLR. Asked a lot of questions about how to support
multiple languages. [Hans-J. Boehm]: Just don’t copy the memory model! [Michael L.
Scott]: Right. Learn from their mistakes, too. A: Worried that a model like CLR is
mired in a past era of languages and hardware, rather than being more forward looking.
[Michael L. Scott]: Useful mistake to learn from: wound up abandoning attempt to build
managed language runtime on top of CLR. [Antony Hoskin]: My impression of CLR is
that languages supported by CLR have a lot of commonality. I would worry that CLR
constrains classes of languages that can be implemented. A: As an example of problems:
what if VM allows arbitrary “pinning” of memory. That doesn’t play well with some
sorts of garbage collection. Would like to avoid that sort of hassle. [David F. Bacon]: Go
allows interior pointers, which places a lot of limitations on what a VM can do. A: We
support some limited use of interior pointers. But can’t store them in arbitrary places,
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send them around. Current VM supports something like structs, but anything higher
level is supported more at the compiler/runtime level, instead of being baked in to IR.
[Daniele Donetta]: Working on a similar project called Truffle. Attempt from Oracle to
answer same questions. Support Java, JavaScript, Ruby, Python, R. But not focusing
on interoperability. We answered first question (what to offer language implementers)
offered API to language implementer. API is basically to write AST interpreter. But
dealing with same problems of concurrency. A: We support “tagged” data type, and can
implement optimizations where once the tag is tested, and you know what the type is, can
generate specific code. [Pascal Felber]: Is there any idea of how much of a performance
hit you would take by supporting multiple languages? The more general you are, the
more compromises you have to make on performance/code generation. A: We would like
to give “reasonable” performance, but not necessarily the best performance. The project
is not trying to do the best JIT ever for a given IR. But the goal is for the IR to not
substantially inhibit achieving good performance. Part of the project is to look at loop
kernels and make sure that performance is within a few percent of GCC performance.
Just because we support dynamic types doesn’t mean that you have to use those dynamic
types. [Antony Hoskin]: Idea is to regenerate new JIT-ed code as language-level compiler
learns more about types. A: Different starting point than LLVM. Not looking at backend
for heavily-optimized language. Instead, we’re looking at situations where you’re throwing
new IR at VM (more-refined version of functions). [Charles E. Leiserson]: Right now,
do-all is implemented as syntactic sugar on top of library code, so don’t get the same
optimizations as real for loops. How does that problem get solved in this context? What
you want to do is optimize it as a real for loop, and then afterwards say “oh, this is parallel,
so use language-specific parallelism construct to implement it.” A: One way to phrase this
question: how much of the optimization needs to happen before IR (language specific)
and how much are we leaning on the language-independent JIT. [Charles E. Leiserson]:
What you would want is some sort of callback: JIT implements strength-reduction/ code
motion, then calls back to compiler for actual parallel language construct. A: Could
imagine some sort of step-wise refinement. I see that it’s only an integer, so I’ll generate
code with a test at the top, and if it turns out I get a non-integer, I’ll call back to the
language-level compiler. Q[Michael L. Scott]: One of the basic questions you have for a
parallel for loop is whether the iterations are themselves schedulable tasks? Or are they
units of work that you pass off to schedulable things? [Antony Hoskin]: We have some
primitives for constructing schedulable things. We view this as a language-level issue.

3.3 Concurrency and Transactional Memory in C++: 50000 foot view
Hans-J. Boehm (Google – Palo Alto, US)

License Creative Commons BY 3.0 DE license
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The 2011 C++ standard first added explicit thread support and a corresponding memory
model to the language. This was refined in relatively minor ways in the 2014 version of the
standard. This represents significant progress, but some difficult problems, mostly related to
the definition of weak memory orders, remain.

Recent work of the committee has focused on the development of more experimental
technical specifications. Specifications nearing completion include one for transactional
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memory and one specifying a parallel algorithms library. The design of transactional memory
constructs was described.

Notes (collected by members of the audience)

Concurrency Study Group (ISO JTC1/SC22WG21/SG1); transactional memory is separ-
ate (SG5).
Tend to be inventive; goal is technical specification capturing community consensus. It
describes C++ language semantics, not implementation rules or allowable optimizations.
It is not a formal mathematical specification or textbook.
C++11: added threads API (benefits from lambda expressions), an atomic operations
library that relaxes SC through specifying weaker models, and specifies memory model,
that is shared variable semantics. Three important aspects are (1) sequential consistency
for data-race-free programs, (2) undefined semantics otherwise, and (3) trylock() and
wait() may spuriously fail/return – wait() (aside from lock release and re-acquisition)
and failed trylock() do not have synchronization behavior. Q: How fast is the standard
adapted by compilers? A: Rather fast, major compilers already comply to it before it
gets standardized. Q: Is atomic limited in any way? A: Standardized optimizations for
different base types, otherwise should be implementable with a lock.
C++14: added rwlock, shared_timed_mutex, and some hand waving for known issues.
There are a number of conspicuous holes: (a) memory_order_relaxed probably imple-
mented correctly, but needs proper spec (out-of-thin-air is the problem with circular
dependencies, but it is unclear what a dependency is) (b) memory_order_consume needs
work, (c) async() beginner thread creation facility has a serious design flaw, (d) no
concurrent data structures, and (e) incomplete synchronization library.
Two optional additions to the standard may become candidates for inclusion: paral-
lel/vector algorithms (STL plus a bit) and miscellaneous concurrency extensions: exten-
dedfutures, latches, (OpenMP-style) barriers, atomic smart pointers.
Longer-term: fix async(), fork-join parallelism, asynchronous computation without explicit
continuations (“resumable functions”), low level waiting API: synchronic<T> to wait for
a specific value change of a specific variable, more general vector parallelism, and various
concurrent data structures.
Further out: fix memory order spec, mix atomic and non-atomic operations on the same
location, better specification of execution agents (beyond bare OS threads) and progress
properties.
Transactional Memory: Tech spec out for balloting. It is experimental: where SG could
not decide, both options are included. In C++11 locks require lock ordering, but that’s
intractable with call backs and hard to define in heavily templatized environments. Use
TM as a syntactical way to drop lock-order issues, not a performance point. Syntax:
special basic block types synchronized . . . atomic_noexcept/cancel/commit . . . . Not a full
replacement for mutexes. Interaction with condition variables is open question. atomic_*
act the same in absence of non-transactional accesses or exceptions. TM-semantics:
behave as if a global lock was held (but performance expected to be better).
Different flavors: synchronized allows non-txn synchronization nested (including IO).
(This is useful where a lock needs to be acquired inside the transaction in a rare case.)
atomic_* has no support for non-tx synchronization. Shared semantics: no nesting, no
exceptions; thus single-global lock semantics. Strongly atomic in the absence of data
races. Issues around what synchronization is allowed within a transaction. atomic_*
have different behavior when an exception is thrown inside the tx. atomic_commit
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commits if exception is thrown; atomic_cancel unrolls on a throw (but hard to get the
state right): exception is propagated from inside the transaction, but state is rolled back;
needs closed nesting due to aborted inner child. atomic_noexcept disallows exceptions.
Aborts are problematic. Synchronized vs. atomic_commit: same if code is compatible,
but atomic_commit has the compiler check the synchronization freedom of the body
(compiler can make stronger static guarantees). tx-safety is part of type. Functions can
be declared transaction_safe to be included in atomic blocks.
Remaining concerns: Optimization/synchronization removal: prove that single thread-
local modification can drop the transaction (empty transactions have stronger semantics
than no-op, idea to “lock” accessed objects rather); Should transactions logically lock
individual objects rather than a single global lock? (Under the single global lock model, an
empty transaction still has a semantic effect); Interesting cases: statics, memory allocation
is legal inside of transactions in spite of synchronization, some dynamic checking remains
for virtual functions.
Specification keeps growing; more work needed in library interaction. There will be
changes. Comments welcome on the draft specification: https://groups.google.com/a/
isocpp.org/forum/#!forum/tm

4 Overview of Talks, sorted alphabetically by Speaker

4.1 Tuning X Choice of Serialization Policies
Jose Nelson Amaral (University of Alberta, CA)

License Creative Commons BY 3.0 DE license
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Best-Effort Hardware Transactional Memory (BE-HTM) systems require non-speculative
fallback policies, or serialization managers, in order to provide a guarantee of forward progress
to each transaction. There are several choices of serialization managers that can be used to
build a BE-HTM system and most serialization managers have one or more parameters that
change their behavior. Several published studies compare two or more alternative serialization
managers, but do not explore the tuning of these manager parameters. In this talk I will
present evidence, based on experimentation with the IBM Blue Gene/Q machine, to support
the claim that the tuning of parameters for a serialization manager is very important and
that (1) a fair comparison of serialization managers must explore their tuning; and (2) tuning
is essential for each new HTM design point and for each type of application target.

Notes (collected by members of the audience)

A number of papers compare TM policies
Information about Blue Gene packaging and HTM policy
16 cores on a chip; L1 16 Kb; L2 32 Mb (where the magic happens!); most of the rest is
not TM aware.
Two modes: short-run and long-run modes; L2 must be aware of all accesses in a txn, so
have writes bypass L1; long-run mode invalidates/flushes L1 completely before txn starts;
associate a speculative ID with a running txn (there are a limited number of these: 128,
may be more than hardware threads). Note: txns can survive OS calls, so this can be an
issue in some applications; BG/Q supports orders of magnitude more speculative write
state than other implementations.
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Failure modes (transaction conflict, capacity overflow, attempt to perform an irrevocable
action, design space); conflict detection granularity vs. storage available for speculative
state. (Blue Gene allows unusually large transactions at finer granularity than many
systems).
Contention managers x Serialization managers
If HTM fails, it doesn’t tell you who you conflicted with, hence at some point need to use
serial execution.
Simplest policy: go serial if the number of retries exceeds a threshold. Some apps are not
sensitive to the threshold, especially in short mode; some performance better (with sharp
break points) with larger thresholds, some degrade.
MaxRetry Policy: Serialize once a certain number of retries is exceeded.
LimitMeanST policy: favor thread that does the most work, based on karma. Hard to do
directly in HW, so track time spent in txn, and serialize if you exceed your max time
budget. This often gives a sweet spot for long-run mode, but some apps still degrade,
and short-run mode is perhaps more variable. Does any serialization manager dominate
the others? No, depends on tuning parameter.

4.2 Complexity Implications of Memory Ordering
Hagit Attiya (Technion – Haifa, IL)
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Joint work of Attiya, Hagit; Guerraoui, Rachid; Hendler, Danny; Kuznetsov, Petr; Levy, Smadar; Michael,
Maged; Vechev, Martin; Woelfel, Philipp

Main reference H. Attiya, D. Hendler, P. Woelfel, “Trading Fences with RMRs and Separating Memory Models,”
submitted.

Compiler optimizations that execute memory accesses out of (program) order often lead to
incorrect execution of concurrent programs. These re-orderings are prohibited by inserting
costly fence (memory barrier) instructions. The inherent Fence Complexity is a good estimate
of an algorithm’s time complexity, as is its RMR complexity: the number of Remote Memory
References the algorithm must issue.

Ensuring the correctness of objects supporting strongly non-commutative operations (e.g.,
stacks, sets, queues, and locks) requires to insert at least one read-after-write (RAW) fence.
When write instructions are executed in order, as in the Total Store Order (TSO) model,
it is possible to implement a lock (and other objects) using only one RAW fence and an
optimal O(n log n) RMR complexity. However, when store instructions may be re-ordered,
as in the Partial Store Order (PSO) model, there is an inherent tradeoff between fence and
RMR complexities.

In addition to the main reference above, this talk is also based on [1, 2].

References
1 Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael,

and Martin Vechev. Laws of order: Expensive synchronization in concurrent al-
gorithms cannot be eliminated. In Proc. of the 38th Annual ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL’11), pp. 487–498, ACM, 2011.
DOI: 10.1145/1926385.1926442.

2 Hagit Attiya, Danny Hendler, and Smadar Levy. An o(1)-barriers optimal RMRs
mutual exclusion algorithm: Extended abstract. In Proc. of the 2013 ACM Symp.
on Principles of Distributed Computing (PODC’13), pp. 220–229, ACM, 2013. ACM.
DOI: 10.1145/2484239.2484255.
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Notes (collected by members of the audience)

Talk models processor influence on shared memory with a reordering buffer located
between each processor and the memory.
Out-of-order execution avoided with fences & atomic operations. Memory model gives
abstract conditions on how reordering can happen. Many models and sets of models
have been proposed – e.g., Sun’s sequential consistency (SC), TSO, PSO, RMO hierarchy.
Customary to think of SC as “the good one.”
First result: a mutex algorithm must include a R-W fence (= flush of the reordering
buffer) or equivalent atomic operation [1]. Holds for various other non-commutative ops
(queues, counters, . . . ).
Not all memory accesses are equal – for example, the Bakery Algorithm needs O(1) fences
but O(n) accesses, which unfortunately must be remote, that is, served from the shared
memory, not a local cache, i.e., with global communication.
Tournament tree gives O(log n) fences and remote references.
Without store reordering, one can get by with O(log n) RMRs and O(1) fences [2]. Uses
a tree to combine processes into a queue for the lock.
With store reordering (e.g., PSO), one cannot optimize both RMRs and fences. We
can illustrate this with a tree of varying fan-out. The number of levels f determines the
number of fences. The fan-out times the number of levels determines the number of
RMRs.
One can prove this is optimal: when stores can be reordered, any mutex algorithm
has an execution E (one in which every process gets through the CS once) in which
FElog(RE/FE) ∈ Ω(nlogn) The proof uses an encoding argument, which captures the
order in which processes enter the critical section [Attiya, Hendler, and Woelfel, submitted].
A nice corollary of this work: there is a complexity separation between TSO and PSO.
This suggests that TSO is “nice” in a strong way – analogous to how we have traditionally
thought of SC as “nice”.
Also F log (R/F) is Θ(nlogn), where F is the number fences and R is the number of
remote references; this cost is for all n processes to acquire the mutex once.
Lower bound was instructive in finding the algorithm that meets it.
Q[Nir Shavit]: How much of this translates to search trees? A: Not yet clear. We could
use a sharper definition of the objects to which the theorem applies.

4.3 Heterogeneous Computing: A View from the Trenches
David F. Bacon (Google – New York, US)
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Based on experiences with the Liquid Metal project at IBM Research, I describe the
challenges ahead for heterogeneous computing. While compiler and run-time technologies
can significantly reduce the complexities, radically different hardware organizations will still
require fundamentally different algorithms. This will limit improvements in programmer
productivity and keep costs of heterogeneous systems significantly higher. Nevertheless, over
the long term heterogeneity will inevitably pervade computing systems.
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Notes (collected by members of the audience)

Various kinds of heterogeneity (ISA, scale,performance (thin vs. fat cores), fundamental
organization (e.g., CPU vs. GPU), implementation technology, interconnect, language/lib-
rary, algorithm)
What users want: single language, compiler deals with platforms transparently, run-time
handles variations, code migrates between platforms and responds (dynamically?) to load
/ grain / input variations.
IBM Liquid Metal project

Single language Lime: Java-like, integration of a degree of static-ness in a dynamic
language, data-parallel operators, stream graphs of isolated tasks, fine-grained primitive
types, compile-time evaluation, exclusion on a per-platform basis (certain features not
implemented on certain platforms), common run-time.
Transparent loading and data movement
Dynamic replacement

Reality check
Organization tends to dictate the algorithm. So multiple implementations needed even
in a single language.
Scientific comparison impractical
More heterogeneity tends to lead to lower utilization
HW specialization subject to obsolescence
More specialization = more total cost of operation = lower value

Example of a challenging situation: Arrays in registers (via scalar replacement) versus an
indexed block RAM
Whither heterogeneity: Dark silicon is our friend; adoption will be slow, due to external
factors; algorithmic heterogeneity is inescapable; pressure to minimize variants will remain;
things look good with a 30-year horizon.
Overarching experience: heterogeneity is really hard to manage; worth our while to avoid
it wherever possible, and shield application-level programmers from it wherever possible.

4.4 Scalable consistency in distributed systems
Annette Bieniusa (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 DE license
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Joint work of Bieniusa, Annette; Shapiro, Marc; Preguica, Nuno; Zawirski, Marek; Baquero, Carlos
URL https://syncfree.lip6.fr

Replicating dynamically updated data is a principal mechanism in large-scale distributed
systems, but it suffers from a fundamental tension between scalability and data consistency.
Eventual consistency sidesteps the synchronization bottleneck, but remains ad-hoc, error-
prone, and difficult to prove correct.

In this talk, I introduced a promising approach to synchronization-free sharing of mut-
able data: consistent replicated data types (CRDTs). Complying to simple mathematical
properties (namely commutativity of concurrent updates, or monotonicity of object states
in a semi-lattice), any CRDT provably converges, provided all replicas eventually receive
all operations. A CRDT requires no blocking synchronization: an update can execute
immediately, irrespective of network latencies, faults, or partitioning; the approach is highly
scalable and implies fault-tolerance.
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Notes (collected by members of the audience)

Problem: Data is replicated, failures are common, latency is high. With software
transactional memory, the approach is to restart, while in this distributed setting, such
rollbacks are more difficult.
Solution: Instead of conflict detection, this work performs correct conflict resolution.
One technique they suggest us to use Replicated Data Types (RDTs) of which there are
two kinds: convergent and commutative. These are standard objects with the restriction
that all modification operations must commute, or if they do not, one has to define a
conflict resolution policy (e.g., to reconcile the effect of 2 add’s into a set performed
at different places that now need to be merged). Hence, they need to manually define
semantics of merging when there is a conflict. Another restriction on the APIs of the
RDT is that the API cannot both modify the structure and return an observed result at
the same time (e.g., add(k)/r interface is not allowed). A specific example of an RDT
that was presented is the observe-remove Set (ORset).
The correctness condition is defined w.r.t a particular data type (i.e., the correctness
condition is specific to the data structure). For the ORset, the condition has the
form “for all , there exists”, which is expensive to check. The work did not present a
general correctness condition and it was unclear how to obtain such a condition (say to
non-commutativity). They mentioned that they performed dynamic test generation of
replicated data types and have done some work in formalizing the different data type
implementations.
Large scale sharing involves data replication which is easy for immutable data but hard
for mutable data. Assume: distributed, large-scale, heterogeneous, partial replication,
high latency, failures, . . . Conflict detection or prevention does not scale – need conflict
resolution. Could use only commutative/convergent data types, also called confluent,
etc. Primarily data types for containers, but also things like counters and editing of a
sequence – point is to achieve conflict freedom by design. Eventual consistency: replicas
that have seen the same updates achieve the same state. Discussion of possible semantics
for sets, and what happens when different nodes perform add and remove on the same
element. Work on defining semantics based on causal history. Many interesting follow-up
issues: composing these data types; What about transactions? What semantics? Dataflow
programming model; partial replication; bounding divergence.
Q: How generic is the approach that you proposing? The specifications are object-
dependent? A: There are some fundamental rules that can be abstracted, but the
semantics of the objects need to be taken into account.
Q: What is the relation between linearizability and the specification of the CRDT set?
A: There are some similarities in the definition but it is clearly not equivalent.
Q[Michael L. Scott]: It seems that the way you define the semantics for dealing with
concurrent updates, affect the actual probability of serializing updates? A: This is actually
true, but it cannot really be avoided.
Q: What is the state of the art for checking the correctness of CRDTs? A: Some work
on static checking, not dynamic. The problem of dynamic testing in distributed settings
is actually quite complicated. The problem here does not appear to be significantly
different.
Q: What are the overheads that you need to pay? It seems that you need to transmit a
large amount of information capturing chains of updates applied by all replicas among
which interactions have occurred. A: This can be an issue in fact. There are however
solutions that try to address precisely this issue, e.g., (dotted) version vectors.
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4.5 Remaining foundational issues for thread semantics
Hans-J. Boehm (Google – Palo Alto, US)

License Creative Commons BY 3.0 DE license
© Hans-J. Boehm

Shared memory parallel machines have existed since the 1960s and programming them
has become increasingly important. Nonetheless, some fairly basic questions about parallel
program semantics have not been addressed until quite recently. Multi-threaded programming
languages are on much more solid ground than they were as recently as a decade ago. However
a number of foundational issues have turned out to be surprisingly subtle and resistant to
easy solutions. We briefly look at a few such issues focusing on finalization in Java, and on
issues related to detached threads and std::async in C++.

Notes (collected by members of the audience)

Specifications for multi-threaded languages have improved but there are remaining prob-
lems: Out-of-thin-air (OoTA), managed languages and finalization, and C++ detached
threads and object destruction.
Java finalization is problematic. The method finalize() runs after object found unreachable
by GC. Java.lang.ref helps but does not fix everything. Only way to work around absence
of finalization is to reimplement GC in user code. Problem comes up for example in mixed
language case, where Java finalizer frees corresponding C++ object: Finalizable object
can be collected while method operating on object is still running, but “this” pointer is no
longer live resulting in call to native method on native pointer field with dangling pointer.
Various dubious and awkward solutions; synchronized (this) prevents compiler from
eliminating dead references. These don’t seem viable. Possible solution: “KeepAlive”-
decoration. Alternative solution: annotation that prevents compiler elimination of dead
references to the type; current favored solution; Rule: annotate if field is invalidated by
finalization or reference queue processing.
Issues of detached threads (= a thread that can no longer be waited for by joining it) and
object destruction. Thread is no longer joinable, so resources could be reclaimed when
thread terminates. Problem: there is almost no way to guarantee that a detached thread
finished before objects it needs are destroyed. No way to guarantee that a detached thread
completes before objects it needs are destroyed. More of an C++ issue. Recommendation:
do not use detached threads.
(Reflects insights from many WG21 committee members.) Related issues with async and
futures: accidentally detached threads. C++11/14 provides blocking futures only through
async. Another issue: async(f); async(g) runs serially. Future’s thread can possibly
try to refer to stack allocated object which can go away. Various fixes with unintended
consequences. Std::async() was a mistake, hoping to fix in C++17. For example by
means of separate handles on results and underlying execution agent. (Reflects insights
from many WG21 committee members.)
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4.6 Parallel JavaScript in Truffle
Daniele Bonetta (Oracle Labs – Linz, AT)

License Creative Commons BY 3.0 DE license
© Daniele Bonetta

In this talk I presented the support for parallel execution in the Truffle/JS JavaScript engine.
Truffle/JS is a JavaScript engine developed using Truffle, a multi-language development
framework based on the GraalVM Virtual Machine.

Parallel execution in Truffle/JS is enabled through a combination of compiler optimizations
and a built-in runtime based on Transactional Memory. The work leads to several research
questions about parallel programming models and runtimes for popular dynamic languages
with none or very limited support for parallel execution such as JavaScript, Ruby, and
Python.

Notes (collected by members of the audience)

Truffle is a framework for writing high-performance language runtimes in Java. Truffle
separates the language implementation from the optimizing system. So, for JavaScript,
the language runtime is an AST interpreter using the Truffle API. The interface between
the language (e.g., JavaScript) and Truffle is AST nodes and compiler directives: the
language implementer has to write an AST interpreter in Java, using the API provided
by Truffle. On ordinary Java VMs the language runtime will be executed as a regular
Java application. When run using the Graal VM, the AST interpreter will benefit from
automatic partial evaluation and improved performance. Wide range of languages are
already implemented in Truffle (e.g., JavaScript, Ruby, R, Python). The AST interpreter
self-optimizes its nodes to improve them, for instance by determining and propagating
type information, inserting appropriate guard nodes, profiles, assumptions (create, check
and invalidate, . . . ). Correct usage of the Truffle API is responsibility of the language
implementer. The Graal VM takes care of automatic compilation, de-optimization to
interpreter, and re-compilation of the ASTs.
The JavaScript implementation is quite solid: runs all the ECMAScript 5 standard tests
and has increasing support for ECMA 6. It also supports many extensions, including
most of Node.JS (i.e., JavaScript for server-side code). Performance of Truffle/JS is
comparable to V8.
Parallelism in JavaScript is important because of the language’s popularity. However,
the language is single-threaded, and developers are not familiar with threading and
synchronization primitives such as locks. We take a simple approach: exposing parallelism
via an API with sync/async patterns. The API should be safe (i.e., semantics same as
single-threaded JavaScript) and the runtime implementation should be fast (i.e., never
slower than sequential). In particular, it should do well on read-dominated, functional, or
scope-local workloads. The operation “map” is a simple example for such API.
We use Truffle to enable parallelization of JavaScript functions by adding to their AST
specific synchronization barriers. In this way, dynamic conflict checks are used to back
out to sequential implementation. Functions can also be executed in SW transactions to
resolve potential conflicts. In this case, the runtime initially assumes that all accesses
are read-only or local to a transaction, and Truffle produces optimized code for this case.
Guards are used to check when the workload is not read-only or tx-local.
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There is some interesting related work concerning dynamic language runtimes that shares
some aspects with our approach. Examples are ASM.JS, PyPy STM, Concurrent Ruby
(with STM), and RiverTrail.
There also are some open Q: How can we improve best effort performance of our runtime?
How can we generalize the run-time to work with other languages? What VM-level
concurrency mechanisms do we need in such a multi-language scenario?

4.7 Robust abstractions for replicated shared state
Sebastian Burckhardt (Microsoft Corp. – Redmond, US)

License Creative Commons BY 3.0 DE license
© Sebastian Burckhardt

Joint work of Burckhardt, Sebastian; Leijen, Daan; Fahndrich, Manuel

Concurrent programming relies on a shared-memory abstraction that does not perform
well in distributed systems where communication is slow or sporadic and failures are likely
(such as for geo-replicated storage, or for mobile apps that access shared state in the cloud).
Asynchronous update propagation (a.k.a. eventual consistency) is better suited for those
situations, but is challenging for developers because it requires dealing with weak consistency
and conflict resolution. In this talk I explain GSP (global sequence protocol), a simple
operational model for shared data using asynchronous update propagation. GSP is similar
in name and mechanism to the TSO memory model, but is suitable for use in a distributed
system where communication and nodes may fail.

GSP supports synchronization primitives sufficient for on-demand strong consistency and
update transactions. Moreover, GSP is expressive: all replicated data types and conflict
resolution policies we know of (including OT, operational transformations) can be layered on
top of it.

Notes (collected by members of the audience)

Problem: Client-cloud shared storage where one has persistence, replication and failure.
Difficult to program distributed applications in this setting yet used in say mobile
computing (e.g., TouchDevelop).
Solution: Adopt a replicated shared state model (client has virtual copy of entire state):
easier to program against than say message passing, but then one needs to relax the
consistency model, due to the CAP theorem. The particular work proposes a programming
model which adapts the TSO weak memory model to distributed systems (the motivation
is that this model is best understood and formalized so far). The new model is called
GSP: here reads are not synchronous, unlike in TSO. In GSP, there are 2 kinds of stores:
confirmed and unconfirmed stores. The system propagates stores to the confirmed buffers
of other processes. The runtime system also performs combining of the effects of different
operations (stores) performed on the data type (e.g., add(1) + add(1) become add(2)).
The approach defines types (called cloud types) which can be used to program with the
GSP model and which also avoid running arbitrary server code.
Multiple users, variety of devices, access to my workspace from all devices (and ability to
run code on all these devices). Programming these things is a mess – distinguish between
RAM and GUI state, persistent state, decompose into parts that run on stateless server
and with persistent storage back-end.
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Lowest level: message passing (actors); next level: shared state: stateless cloud server
accessing cloud storage; highest level: replicated shared state: sync when connected, etc.
Ladder of consistency models: linearizability, sequential consistency, causal consistency,
eventual consistency, quiescent consistency. Last three are about asynchronous updates.
See his book on Eventual Consistency.
How close can we get to strong consistency (earlier in the ladder)? Compare with memory
models: Not a good match since memory models are for fast communication and no
failures; analog of TSO perhaps?; coherent shared memory; store buffer that drains to
shared memory when it can; stores asynchronous but reads synchronous; maybe more
that local replicas with reliable total order broadcast?; this moves to a view of “memory”
as a log of operations, and may need more general view of operations – not just read and
write, but can usually be partitioned into reading and updating operations.
Leads to model with: globally confirmed updates (a sequence), local unconfirmed updates
(also a sequence). Can answer local queries from unconfirmed updates but can receive
global confirmed items that precede my unconfirmed updates. State when issuing an
update may be different from the state when the update takes effect. Can get used to
this, but it can also bite you! May need to add various atomic operations (describe as a
(pure) update; key trick, since not referring to the state).
Invented a fixed set of Cloud Types, suitable for this kind of computing. Example: Cloud
Table = ordered sequence of rows; can append at end, delete anywhere, and ask whether
a row is confirmed. Can implement something like a bank account. Handles editing via
entering a row describing the state change and applying a three-way merge operation.
Reduction = a process of reducing the prefix of a log to a small state; Transactions =
explicit push, pull, and confirmed property.
Q: Why not using transactions? A: You may use transactions but this is an alternative
mechanism. Q: There are still some anomalies that can occur in this model. If you
observe the state of something in your buffer, you may observe state that can then later
on be updated by a remote update.

4.8 The Adaptive Priority Queue with Elimination and Combining
Irina Calciu (Brown University, US)

License Creative Commons BY 3.0 DE license
© Irina Calciu

Joint work of Calciu, Irina; Mendes, Hammurabi; Herlihy, Maurice
Main reference I. Calciu, H. Mendes, M. Herlihy, “The adaptive priority queue with elimination and combining,”

in Proc. of the 28th Int’l Symp. on Distributed Computing (DISC’14), LNCS, Vol. 8784,
pp. 406–420, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-662-45174-8_28

Priority queues are fundamental abstract data structures, often used to manage limited
resources in parallel programming. Several proposed parallel priority queue implementations
are based on skiplists, harnessing the potential for parallelism of the add() operations. In
addition, methods such as Flat Combining have been proposed to reduce contention by
batching together multiple operations to be executed by a single thread. While this technique
can decrease lock-switching overhead and the number of pointer changes required by the
removeMin() operations in the priority queue, it can also create a sequential bottleneck and
limit parallelism, especially for non-conflicting add() operations.
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We describe a novel priority queue design, harnessing the scalability of parallel insertions
in conjunction with the efficiency of batched removals. Moreover, we present a new elimination
algorithm suitable for a priority queue, which further increases concurrency on balanced
workloads with similar numbers of add() and removeMin() operations. We implement
and evaluate our design using a variety of techniques including locking, atomic operations,
hardware transactional memory, as well as employing adaptive heuristics given the workload.

Notes (collected by members of the audience)

Review of prior techniques, report on work presented at DISC 2014. Elimination (get rid
of ops that “cancel out”), delegation (server thread does work on behalf of others), and
flat combining (does both, with threads taking turns as server).
Implementation is based on skip list. removeMin is a challenge: little concurrency, flat
combining good for this. The operation “add” parallelizes nicely but not so great for flat
combining.
Can we put this together and get best of both worlds? Use typical add for “large” values.
Use elimination on smaller values (near removeMin active region). Small values posted to
an elimination array, larger ones go straight to skip list. So, in effect have two skip lists,
one for smaller values, one for larger. Must adaptively adjust the boundary, in either
direction. Boundary movement is done with a reader/writer lock.
Better scalability than previous methods. If removeMin not as common, scalability can
suffer, apparently because of RW lock.
What about using HTM on that? Simplistic approach has too many conflicts. But when
done sensibly (put all CAS for a given add into a single transaction), obtains better
speedup. On 8-thread Haswell machine, get maybe 30% better throughput.

4.9 Concurrency Restriction Via Locks
Dave Dice (Oracle Corporation – Burlington, US)

License Creative Commons BY 3.0 DE license
© Dave Dice

URL https://blogs.oracle.com/dave/resource/Dagstuhl-2015-Dice-ConcurrencyRestriction-Abr.pdf

As multi-/many-core applications mature, we now face situations where we have too many
threads for the hardware resources available. This can been seen in component-based
applications with thread pools, for instance. Often, such components have contended locks.
This talk shows how we can leverage such locks to restrict the number of threads in circulation
in order to reduce destructive interference in last-last caches, as well as in other shared
resources.

Notes (collected by members of the audience)

Scalability collapse (often because of locks). Difficult to choose best number of threads
since adding more degrades performance after a certain point.
Describes a synthetic benchmark demonstrating performance of various kinds of locks.
Solution approach: constrain concurrency at any given lock.
The scalability collapse point may be at more threads than the best-performance point!
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Improvement may come for subtle reasons, such as improved cache miss behavior in the
critical section when fewer threads are running. Competition can be for a variety of
different resources, even in hardware. Effects are amplified with transactions because of
transaction aborts’ wasted work.

4.10 Why can’t we be friends? Memory models – A tale of sitting
between the chairs

Stephan Diestelhorst (ARM Ltd. – Cambridge, GB)

License Creative Commons BY 3.0 DE license
© Stephan Diestelhorst

With my relatively recent transition from a strong memory model (AMD64, similar to TSO)
to a weakly ordered architecture (ARM), and some exposure to software while working in
a HW company, I would like to put out some points for discussion on why useful weak
HW models cannot keep their reasonable properties once they are lifted to a language
level programming model without causing prohibitive amounts of fences or other ordering
primitives (such bogus branches) behind every global memory access.

I think in the many-core programming world, we can make coherence stay, but I would
argue that keeping a strong memory model might not be possible. Therefore, we ought to
see what makes using weak memory models hard on today’s and tomorrow’s weakly ordered
machines and fix the semantics for future architectures.

Notes (collected by members of the audience)

Stephan recently moved from AMD to ARM, and thus from a strong to a weak memory
model. ARM has weak ordering and no store atomicity (some processors may see a store
while other do not yet). At the same time: address dependency preserves order, data
dependency preserves order, and control dependency orders subsequent writes.
The dependencies prevent (at least certain) out-of-thin-air cases, but compiler optimiza-
tions can change or remove dependencies! Naive examples violate intuition, but one can
modify the examples in ways that make the intuition go away, and thus help to illustrate
why the Java memory model has been so difficult to nail down. Can’t afford to make
every read/write “sacred”, so role of compiler, language definition and CPU spec all gets
complicated. (We see a 3-way dance between architecture, language, and compiler.)
Hard to fix at any single point of language, compiler, and architecture. Architecture isn’t
likely to change. For ARM, “fixes” would mess with goal to be small, fast, and energy
efficient. Compilers are unlikely to change either [slides skipped for time].
Hypothesis: we need to fix the languages. But how? Force a function to implement
dependence of all output on all inputs? Probably not: can’t implement Haskell or R or
anything else that wants to avoid fully evaluating everything. Force a fence or conditional
branch after every load? Use use ARM v8 ld.acq a lot?
Q[Charles E. Leiserson]: What about “observer functions”? These indicate, at every
point, what write you’d see if you chose to read [Frigo & Luchangco]. They’re dependency-
based. They avoids anomalies where threads A and B go through a common state (and
thus should have equated views) but didn’t actually look at anything – Heisenberg-ish.
A: Dependences serve to break “cycles of self fulfillment” in out-of-thin-air examples.
Q[Torvald Riegel]: It’s not clear you can fix everything at the language level: the compiler
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wants to “change the program”. Q[J. Eliot B. Moss]: And even if the language is “right”,
programmers get it “wrong”. Q[Hans-J. Boehm]: The real problems arise when the
program fails to specify enough. What are the semantics then? A: It would be really
useful to have compelling “real world” examples – things architects would accept as “more
real” than the usual “brain teaser” examples.

4.11 Application-Directed Coherence and A Case for Asynchrony
(Data Races) and Performance Portability

Sandhya Dwarkadas (University of Rochester, US)

License Creative Commons BY 3.0 DE license
© Sandhya Dwarkadas

Joint work of Dwarkadas, Sandhya; Shriraman, Arrvindh; Zhao, Hongzhou
Main reference A. Shriraman, H. Zhao, S. Dwarkadas, “An application-tailored approach to hardware cache

coherence,” Computer, Special Issue on Multicore Coherence, 46(10):40–47, 2013.
URL http://dx.doi.org/10.1109/MC.2013.258

I described an application-tailored approach to supporting coherence in hardware at large
core counts and present two complementary approaches to scaling a conventional hardware
coherence protocol. SPACE is a directory implementation that reduces directory storage
requirements by recognizing and storing only one copy of the subset of sharing patterns
dynamically present at any given instant of time in an application. Protozoa is a family
of coherence protocols designed to adapt the data transfer and invalidation granularity to
match the spatial access granularity exhibited by the application. Compared to conventional
one-size-fits-all approaches, these designs match coherence metadata needs and traffic to an
application’s sharing behavior, allowing an application’s inherent scalability to be leveraged.

I also showed empirical data to make a case for architectures, runtimes systems, and
parallel programming paradigms to allow applications to tolerate data races (operate asyn-
chronously) where desired and to design for performance portability. I discussed our efforts
at the operating system, runtime, and programming paradigm level to enable automated
techniques incorporating both application and hardware knowledge of sharing and memory
access behavior for resource-commensurate performance.

Notes (collected by members of the audience)

The talk is concerned with different ways of implementing coherence. Whether it is done
in SW or HW is, at least in principle, irrelevant. User-defined consistency can be useful.
Distributed domains often do not require strong consistency.
Scalability enhanced by metadata storage compression. Conventional Full Map Directory
is rather large as you need 1 bit per cache line. 1 bit per processor per line, 64 byte line,
128 cores, means directory is 1/4 of shared cache size. Compression: multiple blocks
may have same sharing pattern. Compress the information in application-specific ways.
Limited number of sharing patterns allow compression in a directory Decouple sharing
patterns from cache blocks for smaller directory. Experiments on benchmarks shaw very
high rates of sharing. Uses only patterns found in the applications. Sharing PAttern-based
CoherncE (SPACE): n to log n bits to describe sharing. Sublinear scaling. 57 % area, 50
times energy cost at 16 cores. Can be a lot of waste in cache lines – perhaps as low as
21% of a 64 byte line is accessed. An alternative to SPACE are “shadow tags” that are
similarly compressed but are more energy costly. Want adaptive granularity.
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Communication efficiency. Key to a good communication efficiency is granularity control.
The Protozoa adaptive coherence granularity protocol reduces the communication demand
significantly. Adapt coherence traffic to sharing behavior. Eliminate read-write and write-
write false sharing. Metadata storage comparable to conventional schemes. Reduces
on-chip traffic by 26%, traffic 37% across 28 benchmarks. Overhead is a function of
application behavior.
Case for data races. Some applications converge despite data races. Asynchronous
algorithms. Successive over-relaxation, SVM. Converges even in the presence of data races.
Here the case is being made that the compiler needs to allow for having racing reads and
writes without enforcing consistency. This enables noticeable speedups. Synchronization
needed to know whether data is current round or previous can be eliminated.
Genome analysis: When looking at clusters of multi- or many-cores, overall performance
very much relies on locality as can be enforced through pinning. Need to allow programmer
to say this and have it carried out efficiently. Can detect sharing and adjust things in the
OS to improve scalability. Performance portability remains a challenge. Proposed Linux
runtime monitor detects sharing in applications.

4.12 Future of Hardware Transactional Memory
Maurice Herlihy (Brown University, US)

License Creative Commons BY 3.0 DE license
© Maurice Herlihy

Maurice Herlihy led a discussion of the future of hardware transactional memory (HTM)
focused around three questions.

First, are progress guarantees a prerequisite for widespread adaptation of HTM? Opinion
was divided: some felt that such guarantees were necessary, but many felt that lock elision
provided enough of an alternative that stronger guarantees were not necessary.

Second, is the ability to issue non-speculative instructions from a hardware transaction
essential to constructing hybrid schemes that combine hardware and software? Here, the
opinion was mixed. IBM’s Power architecture provides the ability to suspend a transaction
to execute a limited set of non-transactional operations, but there was some question whether
that mechanism was to inefficient to use.

Third, there was a broad consensus that lock elision was an effective technique, but only
if the application programmer could control the retry policy, implying the Haswell’s built-in
lock elision mechanism was too inflexible.

Finally, there was widespread agreement that better debugging support was needed.

Notes (collected by members of the audience)

Is HTM doomed without progress guarantees? Too many code paths: fast path HTM,
slow path on HTM abort, slow-slow STM-only version. How would you state a guarantee?
Different systems may need different design points.
Did the Haswell bug ruin everything? Is HTM just too hard to get right? No correctness
bugs reported for IBM implementations.
Is Hybrid TM hopeless without non-transactional operations? But then what do non-
transactional writes mean? (We could argue for a decade!) Immediate NT reads,
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immediate NT writes, and delayed (on-commit attempt) writes are all possibilities.
Maybe logging read/write sets would be better HW primitive?
What should our HW “ask” be?
HTM and memory management? Hazard pointers make the common case expensive
(because of memory barrier at each traversal). May choose transaction size adaptively to
match appropriate degree of speculation - do multiple state transitions as a single one,
speculatively.
Is lock elision unloved? Customers want to code their own retry policies . . .

4.13 On verifying concurrent garbage collection for x86-TSO
Antony Hosking (Purdue University, US)

License Creative Commons BY 3.0 DE license
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Joint work of Peter Gammie; Hosking, Antony; Kai Engelhardt

I reported on the machine-checked verification of an on-the-fly, concurrent, mark-sweep
garbage collector in Isabelle/HOL. The collector is state-of-the-art in that it is designed for
multi-/many-core architectures with weak memory consistency. The proof explicitly accounts
for both of these features, incorporating the x86-TSO model for relaxed memory semantics
on x86 multiprocessors. To our knowledge, this is the first fully machine-checked proof of
such a garbage collector. We couch the proof in a framework that system implementers will
find appealing, with the fundamental components of the system specified in a simple and
intuitive programming language. The framework is sufficiently detailed that correspondence
between abstract model and assembly coded implementation is straightforward so as to allow
formal refinement from model to implementation.

Notes (collected by members of the audience)

Proved essentially that garbage collector on multi-/many-core architecture doesn’t collect
non-garbage (i.e., correctness). Concurrent, on-the-fly mark&sweep collector that does
not compact. Fragmentation tolerant (cache line size fragments). Schism CMR RTGC.
Challenges: Concurrent system; memory is not sequentially consistent (Sewell et al.’s x86
TSO model); mutators are not data race free; model is fairly realistic; and formulating
model and invariants in a manner friendly to systems people.
Model: mutator processes, collector process, system component (handles the HW memory
model). Tricolor abstraction used; marking propagates a grey wavefront across the
reachable heap.
Collector techniques: insertion barrier incremental update; deletion barrier snapshot;
white allocation when not marking; black allocation when marking.
Collector code structures: Series of initial handshakes that establish some invariants;
mutators put roots into a worklist; collector processes worklist, inserting new objects as
necessary; termination check phase (grab any more fodder from mutators); reclamation
sweep phase.
Marking: use a CAS to mark (and claim) an object, then add to worklist.
Modeling x86-TSO: from Sewell et al.; Buffers writes in order; reads from the buffer; bus
lock for larger atomic operations.
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Proved correctness of model of the code. Boundedness of TSO buffers was discussed.
They are not. Proof has to consider reachability of pointers in TSO buffers. The roots
may be in the write buffer. Snapshot ensures reachable white objects are reachable from
a grey object. Write barriers insure greying, and the CAS causes an immediate effect.
Model TSO via message processing to system process. Proof uses Lamport-like techniques
from 70s and 80s.
Modeling language: imperative language with message passing, CIMP. Original code
turns into something very similar in CIMP.
Invariants: Universal – only data; Local – talk explicitly about control locations (“pc
values”); at_p l s – process p is at label l with state s. Push all invariants across all
transitions (in practice some things end up being local invariants; can use full HOL in
doing the proof).
Constructing the invariants: Track what the mutators know about the current GC phase;
order of writes to different variables mostly doesn’t matter. It can slice the system and
get small relations over smaller parts. Worst operation is marking (of course!). TSO
subtlety: deletion barrier marks a reference that is read, so what exactly is read? Finally
use tricolor invariants.
Proof technique: monster induction over all states. Tactics eliminate the trivial cases,
allowing focus on the interesting parts. Annoying thing: have to “carry” invariants across
the TSO buffer to memory, i.e., invariants get stated twice, once in a local form and again
universally.
Intended to eventually also model ARM Power. Feasibility not yet clear. Lack of store
atomicity on ARM is likely to complicate matters. Similar proof for C11 model possible?
Result takes 2 CPU hours of proof. Only a safety property. Liveness not yet proven.
Would like to eventually prove that all objects are eventually collected. This model does
not really allow thinking about performance, only correctness.
Q: Do redundant work instead of CAS when marking? A: Probably wouldn’t require
much additional work.

4.14 Efficiently detecting cross-thread dependences to enforce
stronger memory models

Milind Kulkarni (Purdue University, US)

License Creative Commons BY 3.0 DE license
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Joint work of Kulkarni, Milind; Bond, Michael; Sengupta, Aritra; Biswas, Swarnendu; Zhang, Minjia; Cao, Man;
Salmi, Meisam Fathi; Huang, Jipeng

Main reference M.D. Bond, M. Kulkarni, M. Cao, M. Zhang, M. Fathi Salmi, S. Biswas, A. Sengupta, J. Huang,
“OCTET: Capturing and controlling cross-thread dependences efficiently,” in Proc. of the 2013
ACM SIGPLAN Int’l Conf. on Object Oriented Programming Systems Languages & Applications
(OOPSLA’13), pp. 693–712, ACM, 2013.

URL http://dx.doi.org/10.1145/2544173.2509519

In this talk, I discussed two results from an ongoing project.
First, I described a system called Octet, that provides detection of dependences between

threads. Octet operates by associating a thread ownership state with every object. Prior to
accessing an object, Octet checks the state of the object; an access incompatible with the
object’s state implies a potential cross-thread dependence. Octet uses an optimistic protocol
for managing these ownership states: most accesses do not require state changes, and Octet
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requires no synchronization for these accesses; synchronization is only required when the
state must change.

Second, I described how we use Octet to enforce a stronger memory model, statically
bounded region serializability. The memory model considers each thread to be a sequence of
statically-bounded regions; execution appears to be some serial interleaving of these regions.
We implement this memory model through a combination of Octet to provide two-phase
locking (ensuring region atomicity) and compiler transformations to support region rollback
to avoid deadlock.

Notes (collected by members of the audience)

Safely and efficiently detecting cross-thread dependences (think: ownership tracking). At
least two threads accessing an object and at least one writes to the object. Safely: time
of check vs. time of update of the meta data; Efficiency: need to protect the meta data.
Safe to do an atomic operation on an object’s metadata before each use. But that gives a
3x slow down. Q[Charles E. Leiserson]: Is 3x slowdown is reasonable for debugging? A:
It is, but if I want to do record/replay or use it for STM, I want it to be faster.
Octet protocol: Fast path checks current ownership (meta data is already in a “good
state”), and if ok, proceed without expensive synchronization operations. But if state
is not what I need, there is a more complex, instrumented, bias-locking slow path
(presumably rare). The slow path causes a thread to wait until the object’s current owner
reaches a safe point.
Proposal is Statically Bounded Region Serializability (SBRS). Optimize heavily within a
region. Static bounding is not a limitation: dynamic regions do not lead to larger regions
in practice.
Capturing of dependencies can be be used for atomicity checking, STM, record & replay.
Example: implementing a stronger memory model (using Octet) using a 2PL approach
and combined with some rollback mechanism. Overhead of benchmarks: 13% cost for
Octet with no coordination, 26% with coordination, 30% for SBRS.
Slide 9: Q[Stephan Diestelhorst]: What is the initial state of an object? A: Could be
invalid. Could be owned by the allocator.
Slide 11: Q[Michael L. Scott]: Is this like asymmetric/biased locks? A: Yes. Essentially,
biased read/write locks on every object.
Slide 13: Q[Stephan Diestelhorst]: Do you require thread 1 to wait until it gets to the
safe point? A: Thread 1 does not have to do unconditional wait. There is a potential
for deadlock. Trick: while a thread is spinning, it can give access to other threads. This
scales. T1 does not need to know which object it needs to access. [J. Eliot B. Moss]:
Moss: T2 must know that T1 is still the youngest. The CAS serves the function of saying
“I need this object no other thread should have access to it” Q[Martin T. Vechev]: Can I
encode arbitrary state transition, such as type state? A: Yes, we believe we can encode
other types of state. Q[Martin T. Vechev]: Is the protocol specific to this automata?
A: It is not specific to this automata. Coordinate with a share state requires you to
coordinate with all other threads.
Slide 18: Q[Stephan Diestelhorst]: Are function calls allowed in a region? Q[Jose Nelson
Ameral]: Does inline changes the atomicity properties of the program? If the programmer
writes a set of statements into a function expecting those to be atomic, then after the
compiler inlines that function the atomicity property would be lost. A: You can use
synchronization annotations to ensure that the atomicity is enforced.
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4.15 Hardware Transactional Memory on Haswell-EP
Viktor Leis (TU München, DE)

License Creative Commons BY 3.0 DE license
© Viktor Leis

Intel’s Hardware Transactional Memory feature TSX was initially launched for Haswell
desktop CPUs with 4 cores. Only recently, systems based on Intel’s mid-level server platform
Haswell-EP became available. Haswell-EP supports two sockets and up to 72 hardware
threads. On such many-core systems, transactional memory is both more desirable and more
challenging.

In this talk, I will present a number of experiments on a dual-socket Haswell-EP system
with 28 cores. The results show that TSX can indeed achieve good performance and scalability
on NUMA systems with many cores. However, there are a number of non-obvious pitfalls
that must be avoided.

Notes (collected by members of the audience)

The talk is concerned with performance evaluation of HTM in the context of data bases.
Server-class Haswell is Intel’s mid-level server platform. It comes with up to 18 cores per
socket, 72 HW threads with 2 sockets, and supports TSX (must be explicitly enabled,
due to “the bug”).
Experimental setup: global fallback lock using Hardware Lock Elision (HLE); Alternative:
implemented by RTM (still lock elision); Workload: (a) adaptive radix trie (fanout 2-256),
as for a main memory DB, (b) random lookups in 64M entry trie, (c) 64M random
inserts into initially empty trie (hard to turn into a totally non-blocking data structure;
typically touches 10 to 12 cache lines; should not lead to capacity issues in most cases).
Measurements on Intel Xeon E5-2697 v3 on 2 sockets 14 cores each 2 HW threads each
system. (One interconnect ring per 7 cores, two rings are linked, then those are linked
across socket with QPI, rw_spin_lock totally does not scale, no sync does).
A conflict-free look-up benchmark with locking test shows bad speedup with read-write
spin lock. The theoretical peak is almost 100M ops/s locks bring it down to less than
25M. An atomic counter does not do much better. Built-in HLE does not speed up, but
customized HTM performs much better, but sensitive to the restart policy. If you are
willing to do enough restarts, get speedup almost as good as no sync. The more restarts,
the better. 7 or more restarts is scalable. Why? In this case, aborts are mostly spurious,
so fallback is harmful.
For random inserts, which do have conflicts, the scalability was dominated by the memory
allocation policy, with malloc the worst (no speedup), tcmalloc better (scaling stops at 28
threads), with a combination of memory pre-allocation and zeroing out doing the best.
The NUMA behavior was tested by placing threads on 1 cluster, 1 socket, and 2 sockets.
Speedups were roughly the same, even though the actual time was faster for more local
setups. (Lookup: better speedup by spreading threads around, both across clusters and
across sockets; Insert: same effects). Overall rate better when memory being used is
restricted to unit running the threads. The more local the threads are the better the
performance is; the scalability stays the same, though. HTM works over NUMA.
Conclusions: HTM scales to NUMA, built-in HLE does not scale. Despite very few
collisions, or maybe because of very few infrequent collisions, large restart numbers (>20)
seem essential. Kernel traps within the transactions have deadly effects.
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4.16 What the $#@! Is Parallelism? (And Why Should Anyone Care?)
Charles E. Leiserson (MIT – Cambridge, US)

License Creative Commons BY 3.0 DE license
© Charles E. Leiserson

Many people bandy about the notion of “parallelism,” saying such things as, “This op-
timization makes my application more parallel,” with only a hazy intuition about what
they’re actually saying. Others cite Amdahl’s Law, which provides bounds on speedup due
to parallelism, but which does not actually quantify parallelism. In this talk, I reviewed a
general and precise quantification of parallelism provided by theoretical computer science,
which every computer scientist and parallel programmer should know. I argued that parallel-
programming models should eschew concurrency and encapsulate nondeterminism. Finally, I
discussed why the impending end of Moore’s Law – the economic and technological trend
that the number of transistors per semiconductor chip doubles every two years – will bring
new poignancy to these issues.

Notes (collected by members of the audience)

Parallelism: simple model of parallel computation: DAGs. Strand is a serial chain of
executed instructions. Dependency is a necessary ordering relationship. Usual notion
of forks and joins in the DAG. Programming language can express these. Can schedule
dynamically at run time. Amdahl’s Law – it does not of itself quantify parallelism, only
potential speedup. Can model the time required on P processors using the task DAG.
Work Law: longest path gives min time required. Span Law: largest number at once gives
max speedup. Theoretical model says super-linear speedup is not possible; in reality, other
effects can sometimes produce super-linear speedup. Still, can describe max (theoretical)
speedup as ratio of time required for one processor to time required by an unbounded
number of processors. If you use more processors, they cannot be fully utilized. Can
prove that Cilk’s scheduler gets near perfect linear speedup if the parallelism substantially
exceeds the number of processors available. Enables a straightforward scientific approach
to speeding up your programs.
Concurrency: Situation is much more complex. Concurrency introduces interactions
between threads that often reduce available parallelism. Theoretical models not very
strong. Should eschew concurrency on most programming. Need to move away from
concurrency toward determinism. Concurrency essential to implementing the platform.
But best done by experts, once. Historical analogy to “Goto Considered Harmful”, which
led to structured control constructs (arguably “complicated” things: goto is “simple” –
but it was good in the end).
Why care? Moore’s Law. At 14nm now; will get down to 5nm but likely not much more
(at least not economically). Limit about 2020 or 2022 according to Bob Colwell. Solution:
replacement technologies can still help, but they’re going to be software technologies:
computer science.
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4.17 Bringing concurrency to the people (or: Concurrent executions of
critical sections in legacy code)

Yossi Lev (Oracle Labs., US)

License Creative Commons BY 3.0 DE license
© 2015, Oracle and/or its affiliates. All rights reserved.

In this presentation I have discussed a few of the challenges that people are likely to encounter
when making critical sections in legacy code executed concurrently (e.g. using transactional
memory), and provide some examples of how some of the data structure and infrastructure
work we’ve been doing in the last few years can help addressing these challenges.

Notes (collected by members of the audience)

How do we make HTM useful to as many people as possible in the near term (as well as
the long term)? Need near-term benefits to motivate vendors to keep investing.
Code in most critical sections was not designed to run concurrently! Need to avoid writing
same value: turn x = v; into if (x != v) x = v; , if it is likely that x==v will hold in
most cases. Clearly, we do not want all writes to become conditional, but for some writes
this can be very effective, esp. for variables whose types have a small number of values –
booleans, node color in RB tree, phase indicators, . . .
Minimize time period from a write to the end of the critical section – will reduce
conflicts/aborts; pad data that frequently changes, to avoid false conflicts;
Counters: shared counters in critical sections are common and are often the cause for
failure of optimistic approaches (such as HW transactions). Per-thread counters may
lead to bad performance if the total value (i.e., the sum of these counters) needed to be
calculated frequently; per-core/node counters work better, as there is only a small set of
counters to read, and this set is known upfront. In some cases the update to the counter
dos not have to happen atomically with the rest of the critical section operation, in which
case a separate fetch-and-add outside of the critical section, can help. Can sometime
also use a solution that increments counters probabilistically, if approximation will do [1].
Finally, sometimes you do not have to know the exact value of the counter, but simply
some property of it – e.g., use SNZI: Scalable Non-Zero Indicator, to only know if it is 0
versus not-0. SNZI works quite well with HTM.
Q[Hans-J. Boehm]: May want to get compilers to do many of these optimizations. Also
need to prevent compiler from undoing them if you’ve done them by hand. A: Declaring
variables “volatile” helps prevent the compiler from undoing, but at the longer term we
want compilers to optimize code that is executed inside a transaction differently.

References
1 Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In Proceedings of

the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA’13, pages 43–52, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1572-2. DOI
10.1145/2486159.2486182.
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4.18 Towards Automated Concurrent Memory Reclamation
Alexander Matveev (MIT – Cambridge, US)

License Creative Commons BY 3.0 DE license
© Alexander Matveev

Joint work of Alistarh, Dan ; Eugster, Patrick; Herlihy, Maurice; Leiserson, William M.; Matveev, Alexander;
Shavit, Nir

Main reference D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, N. Shavit, “StackTrack: An automated
transactional approach to concurrent memory reclamation,” in Proc. of the 9th European Conf. on
Computer Systems (EuroSys’14), pp. 25:1–25:14, ACM, 2014.

URL http://dx.doi.org/10.1145/2592798.2592808

The concurrent memory reclamation problem is that of devising techniques to allow a
deallocating thread to verify that no other concurrent threads, in particular ones executing
read-only traversals, have a reference to the block being deallocated. To date, there is no
satisfactory solution to this problem: existing tracking methods like hazard pointers, reference
counters, or epoch-based RCU, are either prohibitively expensive or require significant
programming expertise, to the extent that using them is worthy of a conference paper. None
of the existing techniques are automatic or even semi-automated.

This research project will take a new approach to concurrent memory reclamation:
instead of manually tracking access to memory locations as done in techniques like hazard
pointers, or restricting accesses to specific methods as in RCU, we plan to use the operating
system and modern hardware’s transactional memory tracking mechanisms to devise ways
to automatically detect which memory locations are being accessed, and allow accesses in
any point in the code. This will allow to design and implement a new class of automated
concurrent memory reclamation frameworks, making them relatively easy to use and allowing
them to scale, so that the design of such structures can become more accessible to the
non-expert programmer.

Notes (collected by members of the audience)

Consider case of logical-then-physical deletion in a (concurrent) linked list. Hand-over-
hand locking has too much overhead therefore use unsynchronized traversals. But that
complicates memory reclamation. How do we know when a node can be reclaimed? Need
to track both thread-local (stack) references and global references, e.g., passed through
task queues in the heap.
Current solutions: reference counting, hazard pointers [Maged Michael, Herlihy et al.,
Braginsky et al.] or epoch/RCU-based.
Traditional approaches worry only about the thread-local case. “Extended memory
reclamation” addresses the global exchange references as well – things that point to nodes
that have been removed from a shared abstraction but are not gone from the system
(and might be added back in), and thus should not be reclaimed. Need to distinguish
“permanent” references between node of a data structure.
Stack Track system uses HTM to scan thread stacks for transient references. Automatically
adapt and split these into smaller transactions when capacity aborts are detected. If this
is not an option (no HTM, or too size-restricted), can emulate in SW. Do stack scan of a
thread to find interesting pointers. Software StackTrack as fallback for HTM StackTrack.
Doesn’t have a general solution yet for global exchange variables. Currently using a visible
pool of global references. Change mappings on pages to prevent concurrent changes.
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4.19 Portability Issues in Hardware Transactional Memory
Implementations

Maged M. Michael (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 DE license
© Maged M. Michael

Recent hardware transactional memory implementations that became commercially available
in recent years have differences in their architectural and performance features. These
differences can lead to programming pitfalls and raise functional and performance portability
issues. There is a risk that HTM users learn the wrong lessons about HTM in this early
stage of its commercial availability, and influence future HTM designs and uses based on
such lessons. In this talk, I discussed differences among HTM implementations and potential
pitfalls.

Notes (collected by members of the audience)

This talk presents an overview of current HTM designs and discusses interfacing issues.
Differences between main architectures.
Z: has constrained transactions that restrict the operations that can occur within a
transaction – the other systems don’t. An obstruction-free transaction. If you follow
certain constraints, then in the absence of conflicts, the transaction will eventually
complete. No need for failure handler. Not portable to Intel or Power8. In effect, really
small txns.
Haswell: has built-in hardware lock elision – the others don’t. Backwards compatible.
Library may not have a standard “I’m free” value. Hazard: reading lock bit in critical
section can see unexpected unlocked value. RTM does not impose many unique constraints
on coding.
Power8: Power8 has suspend/resume. Allows even system calls within the transactions.
Suspends current transaction, allows non-transactional execution until resume. Some
restrictions: while suspended, cannot write to memory read by transactions. Can check for
transaction failure while suspended, but handlers called only on resume. Non-transactional
loads good for loop parallelization, hybrid TM, reducing read set. Non-transactional
stores good for debugging, conflict resolution, must be used with care. Read and write
sets can be explicitly controlled through switches between suspend and resume states.
Resolution is explicit. Nested entry primitives can lead to stack corruptions upon abort.
This requires explicit programming support.
(Non-)Portability examples: (a) TLE does not work well with indiscriminate non-
transactional stores (e.g., to thread stack). Start in function, then return before the end
of the transaction, pop stack, write to stack frame non-speculatively. If the transaction
fails, we end up with a corrupted stack. Z supports non-transactional stores. Invisible
to other threads until the transaction ends. They become visible even if the transac-
tion aborts. Useful for debugging, not for communication. (b) Power8 Rollback only
transactions. Single-thread speculation, no shared data, no conflict detection, no order
guarantees. Rollback Only Transactions does not do any conflict detection; that are
intended for single threaded speculation only. However, they can be interleaved with
regular transactions. In that case they are treated as atomics. (c) XEND/TEND outside
of transactions: some processors fault, others don’t, so not convenient for portability.
Cannot call Haswell XEND outside transaction (must check first), but ok to call TEND
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in Z and Power8. (d) Big variation in capacity. Encourages different programming styles.
(e) HTM caching policies also important and different across systems, but hidden from
programmers. (Handling for Power8 depends on the mode but it typically bypasses L1.)
(f) Variation in overhead of using transactions (compared with atomic ops). Depending
on the application circumstances, the overhead can easily be around 50%. Different
conditions on different systems.

4.20 Local Combining on Demand
Erez Petrank (Technion – Haifa, IL)

License Creative Commons BY 3.0 DE license
© Erez Petrank

Main reference D. Drachsler-Cohen, E. Petrank, “LCD: Local Combining on Demand,” in Proc. of the 18th Int’l
Conf. on Principles of Distributed Systems (OPODIS’14), LNCS, Vol. 8878, pp. 355–371, Springer,
2014.

URL http://dx.doi.org/10.1007/978-3-319-14472-6_24

Combining methods are highly effective for implementing concurrent queues and stacks.
These data structures induce a heavy competition on one or two contention points. However,
it was not known whether combining methods could be made effective for parallel scalable
data structures that do not have a small number of contention points. In this paper, we
introduce local combining on-demand, a new combining method for highly parallel data
structures. The main idea is to apply combining locally for resources on which threads
contend. We demonstrate the use of local combining on-demand on the common linked-list
data structure. Measurements show that the obtained linked-list induces a low overhead
when contention is low and outperforms other known implementations by up to 40% when
contention is high.

Notes (collected by members of the audience)

Lock Combining = Threads help each other instead of contention on a single lock.
Combining waiting pushes and pops: one thread grabs the lock then does all the pending
operations. Known to speed up stacks and queues.
Lock combining for sorted linked list implementation of set. Effective combing when
there is contention: elimination of inserts and removing of duplications (same key). Locks
on individual nodes, but designed so that contains and search do not need to lock. Apply
combining on contended locks: holder does all operations that queue on the same lock;
can also eliminate complementary operations (interestingly, regardless of order (because
order isn’t really defined)). When a waiter wakes up, may need to check the situation;
the combiner could also wake him up earlier, telling him that he needs a different lock.
Doing this on demand, i.e., only when there is contention. Don’t do combining if you get
the lock immediately. Combining is local: happens only on the contended lock.
What about operations that require multiple locks (such as remove)? Split into separate
sub-operations, each acquiring one lock. Note that first lock remains held while second
lock is acquired and its sub-operation done. Need to preserve serializability. Preserve two
phase locking.
Have integrated this with reentrant Java locks [Doug Lea]: use the waiting-thread list of
the lock instead of duplicating the wait queue.
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Performance comparison with other implementations of same data structure on machine
with 64 HW threads; lock-free list eventually wins at high contention, lock combining list
is competitive or dominant in lower/moderate contention situation. Lock-free does better
for high thread counts. Better than combining with single global lock.
[Yossi Lev]: Skip lists would be an interesting candidate. [Martin T. Vechev]: There are
variants that don’t use the deleted bit. May be easier.

4.21 Current GCC Support for Parallelism & Concurrency
Torvald Riegel (Red Hat GmbH – Grassbrun, DE)

License Creative Commons BY 3.0 DE license
© Torvald Riegel

I gave an overview of the new features related to parallelism and concurrency in the upcoming
release 5 of the GNU Compiler Collection.

Notes (collected by members of the audience)

Presentation refers to GCC 5 which is in stabilization phase, get from SVN.
Parallelism in C++: OpenMP4 support (including offload to Xeon Phi and Nvidia PTX
back end), OpenACC, and Cilk Plus ([Charles E. Leiserson]: metadata is missing. Intel
mostly working on it.)
C/C++ memory model fairly well supported. C++11 memory model is complete, frontend
parses everything; testing of the front-end is done.
TM support in C++ experimental. Older version of the TM for C++ spec is implemented.
_transaction_atomic = atomic_commit and _transaction_relaxed = synchronized. Some
additional attributes for the tm-safety annotations; additional control for bypassing instru-
mentation, and manually specifying both versions directly; new feature: multiple/different
code paths for instrumented and non-instrumented code, possible to plug-in custom
libraries.
TM Runtime library libitm supporting different STMs and HTM for a few architectures.
STM: various algorithms, running on most ISAs, including ARM, Aarch64. HTM version
for Power8, s390, and Intel HTM.
Q: Any users of this out there? A: Not aware of users outside of experimentation or
research; but that does not mean there are none. Q: What is transaction safe, list
of functions from the standard library? A: ISO C++ study group 5 members are
going through the API, marking things as safe. Problem: Claiming functions to be
transaction_safe might restrict future implementations.

4.22 Forward progress requirements for C++
Torvald Riegel (Red Hat GmbH – Grassbrun, DE)

License Creative Commons BY 3.0 DE license
© Torvald Riegel

I presented forward progress requirements for C++ implementations that I have proposed
to the ISO C++ committee. These requirements define what progress means in C++ and
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what the differences are between, for example, OS threads and parallel tasks running on a
bounded thread pool.

Notes (collected by members of the audience)

“Execution agents” (EA) proposed for a Technical Specification (TS) (potential inclusion
in a future versions of C++). EAs are threads of execution with different execution
properties (e.g., light-weight threads, OS threads, etc.).
Problem: Current spec reads “every unblocked process eventually makes progress”. But
it is open what “progress” and “unblocked” mean.
EAs needed to talk about and specify forward progress, but with potentially weaker
guarantees than OS thread. Talk describes EAs on an abstract level. Classes of progress:
concurrent, parallel, and weakly parallel. Bootstrapping progress: “boost-blocking”.
C++ semantics defined in terms of an abstract machine. As-if rule = must act observably
the same as the abstract machine. Progress defined in terms of steps, resulting in
termination, access/change to a volatile object, or sync/atomic operation. Progress means
executing a step. Also delimits what compiler writers can elide. Blocking operations
and IO may be conceptually implemented as busy-waiting on a condition. Q[Michael L.
Scott]: When writing while(); (infinite loop), would that make progress? A: undefined
behavior.
Flavors of EAs, i.e., classes of progress: Concurrent = every EA will progress; Parallel
= every EA will progress once it has executed its first step (this allows bounded thread
pools as implementation); Weakly parallel = no guarantee, but see boost-blocking (this
allows non-preemptive execution and lock-step execution (such as SIMD)).
Boosting progress: form groups of agents, if P uses boost-blocking to wait on a group of
agents G, then agents in G will have at least one boosted to P’s level of guarantee, if it is
higher. Boost blocking vaguely like priority inheritance with transitivity.
Example implementation: Concurrent EA = one OS thread for each EA plus round-robin
OS scheduler.

4.23 Self-tuning Hardware Transactional Memory
Paolo Romano (INESC-ID – Lisboa, PT)

License Creative Commons BY 3.0 DE license
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Joint work of Romano, Paolo; Diegues, Nuno
Main reference N. Diegues, P. Romano, “Self-tuning Intel transactional synchronization extensions,” in Proc. of

the 11th Int’l Conf. on Autonomic Computing (ICAC’14), pp. 209–219, USENIX Association, 2014.
URL https://www.usenix.org/conference/icac14/technical-sessions/presentation/diegues

Efficiency of best-effort HTM (like Intel TSX) is strongly dependent on the efficiency of the
policies used to regulate the usage of software the fall-back path.

In this talk, I will first present experimental data highlighting the relevance of designing
self-tuning mechanisms aimed to dynamically adapt the HTM fall-back policy. Then I will
discuss recent and ongoing work aimed at pursuing this goal by exploiting lightweight on-line
reinforcement learning algorithms.
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Notes (collected by members of the audience)

How many retries until going to fall back to lock/STM? How to cope with capacity
aborts? Does capacity abort count as just one retry? Could: give up (drop all retries
left), half (drop half of retries left), or stubborn (reduce retry count by one). How to
implement fall back synchronization: single global lock, none (retry), aux (serialize on an
auxiliary lock). How well does static tuning work? Compared a heuristic (as suggested
by Intel) and gcc.
There is room for improvement over these two policies. No single policy dominates.
Results vary with benchmark and number of threads. Not all the optimization dimensions
are relevant: it turns out that wait and aux are similar and none is rarely better (and
not by much), so that dimension can be dropped. One size doesn’t fit all.
Adaptive self-tuning approach needed. How should parameters be learned, off-line or
on-line? On-line seems reasonably feasible (affordable cost). Chose particular lightweight
reinforcement learning methods: upper confidence bounds (for capacity aborts) and
gradient descent (for number of retries in HW). At what granularity should we adapt?
Per-thread and atomic block, or whole application?
What metrics should we optimize for? Performance, power, or combination? Are they
correlated? On average 0.81 correlation. But much stronger between optimal configuration
for each target: 0.98. So go for time (since easier and cheaper to measure than energy).
Two tuners (fine and coarse grain): one per thread per Atomic block, the other global.
Integrated into gcc. Speedups relative to single-threaded, non-instrumented. Auto-tune
works well (speedup around 4 for 8 threads for both SG and NoRec), the gains largely
outweigh exploration cost. Gradient descent can get stuck in local maxima. Use random
jumps to get unstuck. Sometimes it pays to rerun transaction on capacity abort.

4.24 How Vague Should a Program be?
Sven-Bodo Scholz (Heriot-Watt University Edinburgh, GB)

License Creative Commons BY 3.0 DE license
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For many well researched problems there exist several alternative algorithms that compute
solutions. Which alternative is best suited does not only depend on the overall goal but it
typically also depends on many other factors, such as the actual data, the executing hardware
or the way the algorithm is actually mapped onto that hardware. The choices that need to
be made in this context are always a mix of decisions made by the programmer and decisions
made by the tool chains that are being used.

In particular in the light of the ubiquitous availability of increasingly heterogeneous
many-core systems implementation choices do not only become more complex, but the
impact of the choices made are also becoming much more pronounced. With programmer
productivity in mind it seems that shifting the decision making progress towards increasingly
sophisticated tool chains is the only economically viable way to go. Although a lot of progress
in that direction has been achieved over the last few decades, pushing this agenda further
raises many rather fundamental questions such as (a) If our programs provide increasing
freedom to the tool chain to adjust the programs for parallel execution, what is the notion of
an algorithm? (b) Is it enough to specify one algorithm as a problem solution; or should we
provide several a la peta-bricks? (c) What happens with determinism or provable properties
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if we allow for more than one alternative? (d) Does a discussion about complexities still make
sense? (e) Do we have mechanisms that allow tool chains to choose the “best” hardware to
execute on?

Notes (collected by members of the audience)

Problem: too many programming paradigms for parallelism; huge challenge for scientific
practitioners. Desire: raise the level of abstraction. Particularly challenging in the
multi-/many-core situation (consider programming GPGPUs)
Single-Assignment C = like C without pointers and with N-dimensional arrays. Declar-
ative/functional programming, backed with aggressive compiler optimizations. Map to
lambda calculus. Tools to generate it from a variety of front-end languages, including
things like MatLab.
Pure functional intermediate form reveals many opportunities for high performance
parallelism optimizations. In particular, allows major restructuring for different platforms
without having to restructure source code. Allows more flexible choice of what gets
translated onto special multi-cores (such as GPGPUs).
Significant empirical evidence of viability of this approach. Can even beat hand-written
CUDA code – e.g., on Anisotropic Diffusion image processing benchmark.
Difficulty of comparing approaches. Could have multiple implementations – multiple
algorithms – from which to choose. But then, what is the “algorithm”? How do we
argue correctness when what’s going on under the hood can vary so much? C compilers
transform what is actually executed - arguably “same algorithm”, but blocking, etc., are
substantial transformations. But to do well on multi-/many-core versus single-thread,
you need a “different” algorithm. Choice of algorithm depends on many things, most of
which are not statically determined – so needs to be determined dynamically and perhaps
not even deterministically. How then do we reason about correctness? Or complexity?

4.25 Persistent Memory Ordering
Michael Swift (University of Wisconsin – Madison, US)

License Creative Commons BY 3.0 DE license
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Non-volatile memory (NVM) technologies, such as phase-change memory, memristors, spin-
transfer torque MRAM, and others promise high-bandwidth, low-latency persistent storage
through the standard memory interface. However, making memory persistent poses a number
of challenges, including how to ensure data is durable in the presence of processor caches,
and how to ensure consistency of updates.

A key challenge in persistent memory is that data residing in caches is not durable; it
must be written back to NVM first. When to do this and how to order writes back to NVM
are an open research question.

I discussed several models of persistent memory ordering and then raised some open
questions.
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Notes (collected by members of the audience)

Persistent memory is a hot topic (memristors, etc.) Many research questions regarding
how to enforce atomicity and consistency? This talk focuses on consistency. What is
different to non-persistent memory? We need to have a commit record that allows us
to recover after a crash. Why is this a problem? Write back cache: commit log is not
written out in order. There is a volatile memory ordering that is defined in terms of views
of CPUs. More interesting for consistency is the order at the DRAM. In the presence of
persistence, state can be uncertain after a crash. Without ordering, we cannot enforce
that the “commit” record be updated strictly after the other updates. Q[Milind Kulkarni]:
Do you need to make sure that the cache is flushed in some manner? A: You write a
record after flashing the cache to record what you have written.
Simple (but expensive) solutions: disable caching for logs; write through cache, flush
entire cache at commit. Other approaches: Mnemosyne, BPFS/epochs, and Intel’s new
instructions.
[Stephan Diestelhorst]: There is a misconception that if it is out of the cache it is durable,
but there are lots of buffers between cache and memory, see PCOMMIT in Intel’s HW
Support.
Mnemosyne: Goal to not use any new instructions or special hardware. Primitives:
ordered writes with non-cached stores (they can bypass cache, or force a line to be flushed)
or using flush/fence instructions MOVNTQ/CLFLUSH. Transactions (with durability)
based on tinySTM. Note: undo logging approach not great for this situation.
BPFS/epoch barriers: An epoch is a group of writes that are delimited by a new form
of barrier. Cache tracks epoch id. Epochs have to be written by the processor in epoch
number order, older epochs need to be written before newer epochs. Also need to handle
cross-CPU dependences. The Problem is that one does not know when the data has
become durable. No way to force durability (except perhaps by force a line to be flushed).
The idea is to get ordering by accessing persistent data written by a different processor.
Q[Michael L. Scott]: Is this for current processors (EPOCHS)? A: No, it is for new
hardware.
HW Support by Intel (Spec from last August): CLFUSHOPT: an unordered flush;
CLWB: writes back modified data but data stays in the cache (as unmodified), i.e.,
without flushing; PCOMMIT: commits data queued in the memory system to persistent
memory, lets you know that persistent data are now durable in memory; need to use
SFENCEs between these (since they’re unordered).
Generalizing persistent order: Memory Persistence: [Pelley, Chen, and Wenisch (Univ. of
Mich.)]; Recovery observer model: defines order of visibility at non-volatile memory (not
caches); Persist order: orders writes to non-volatile memory.
Epochs to Strand persistence. Epochs require fitting everything into a linear order. Instead
Strand associates writes with strand numbers. Strands are not ordered. Programmer or
compiler can introduce explicit order strands.
Open questions: Are there more efficient HW mechanisms (than epochs, say)? What HW
mechanisms do we need for efficiently enforcing ordering? How can stores be ordered
across cores (distributed transactions)? Do we need arbitrary dependence graphs? What
granularity do we want for writes, e.g., a cache line? What is the appropriate programmer
API? Library (key/value or object store)? Load/store? Transactions?



Michael Philippsen, Pascal Felber, Michael L. Scott, and J. Eliot B. Moss 43

4.26 NumaGiC: a garbage collector for NUMA machines
Gael Thomas (Télécom & Management SudParis – Evry, FR)
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Joint work of Gidra, Lokesh; Thomas, Gael; Sopena, Julien; Shapiro, Marc; Nguyen, Nhan

When running on contemporary cache-coherent Non-Uniform Memory Access (ccNUMA)
architectures, applications with a large memory footprint suffer from a large garbage collector
(GC) overhead. As the GC scans the reference graph, it makes many remote memory accesses,
saturating the interconnect between memory nodes. This talk presents NumaGiC, a GC
that addresses this problem with a mostly-distributed design. In order to maximize memory
access locality during collection, a GC thread avoids accessing a different memory node,
instead notifying a remote GC thread with a message; nonetheless, NumaGiC avoids the
drawbacks of a pure distributed design, which tends to decrease parallelism. On Spark and
Neo4j, two industry-strength analytics, with heap sizes ranging from 160 GB to 350 GB, and
on SPECjbb2013 and SPECjbb2005, NumaGiC increases the performance of the collector
by up to 5.4x over Parallel Scavenge, the default throughput-oriented collector of Hotspot,
which translates into an overall performance improvement by up to 94%.

Notes (collected by members of the audience)

Problem: large multi-/many-cores have lots of computing power but it is hard to build a
GC that scales. Scaling is limited by data analytics and NUMA. Collector forces accesses
to remote memories and parallel collection ends up saturating the interconnect because
of the cache coherence protocol.
Idea: Use messages. Observation: a thread mostly accesses objects it has allocated, i.e.,
threads mainly access local memory. Send message to the GC thread of the node to
maximize locality. Requires cross-node references to be relatively rare. Heuristic: keep
objects allocated by a given node on that node. But although this avoids remote memory
accesses, being so strict degrades collector parallelism. Q[J. Eliot B. Moss]: There tends
to be locality to the object reference. A: Sending a message is more costly than accessing
one remote object. Q: Is this something that you tried and did not work well? A:
Yes, for all the benchmarks, including DaCapo, etc. Q[Michael L. Scott]: You describe
the problem as a bandwidth problem, but the solution may also affect the latency. A:
Scalability problem comes from the saturation of the network. [Michael L. Scott]: The
critical path length of the GC could be smaller with your approach even with infinite
bandwidth. [Stephan Diestelhorst]: Could you prefetch to pull the object and have the
same benefit in the end?
Adaptive algorithm: Local mode: send messages when not idling; Thief mode: grab
objects (pull to your node) when idling.
Results: GC throughput 2–5x better (with heap size 3–4 x live size); application speedup
of 12–66%; GC shows good scaling; memory access locality very important to GC
performance. Q[Michael L. Scott]: AMD and Intel are both TSO. Are we reaching a
point architecturally where we can see a difference in memory order between scalability
of the machines. Will there be a difference in scalability between ARM and POWER
chips? A: I do not know.
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4.27 Utilizing task-based dataflow programming models for HPC
fault-tolerance

Osman Ünsal (Barcelona Supercomputing Center, ES)

License Creative Commons BY 3.0 DE license
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In this talk, I argued that task-based programming models are a good substrate to build
fault-tolerant frameworks for High Performance Computing (HPC) systems.

In particular, I further advocated the use of dataflow runtimes for resilience. These
runtimes facilitate fault isolation, minimize fault propagation, and help failure root-cause
analysis.

I provided examples showing how leveraging task-based dataflow PMs could lead to
efficient asynchronous checkpoint/restart and selective replication implementations.

Notes (collected by members of the audience)

Application resilience, for instance, in the domain of climate change predictions, is an
increasing concern. This is due to larger circuits, complex substrates, and complex
software. MTBF on the order of tens of minutes without applying more techniques.
Adopt a task-based dataflow programming model where task runs when all dependencies
are satisfied. Envisioned for coarse grained tasks. The runtime system checkpoints the
data at the start of a task as it knows the data inputs of each task. If failure occurs,
the task is re-ran (as its effects are local); scales well with fault rate. Clarifies where
checkpoints can be taken. Likewise, recovery tends to be fairly local. The approach
uses Software CRC for error-correction, can exploit existing Intel instructions to reduce
overhead. Protects only application tasks, not run-time system or OS. Task redundancy
(pairs compare output; on difference, run third and take majority vote; do this only on
tasks that are more likely to experience errors (based on their memory size)). Hard to
handle global shared state. The approach could potentially benefit from non-volatile
memory.
Q: Does non.volatile memory help to achieve fault-tolerance with data flow programs?
A: It can help to perform selective checkpointing more efficiently, but the issues do not
seem different.

4.28 Commutativity Race Detection
Martin T. Vechev (ETH Zürich, CH)

License Creative Commons BY 3.0 DE license
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Main reference D. Dimitrov, V. Raychev, M. Vechev, E. Koskinen, “Commutativity race detection,” in Proc. of
the 35th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’14),
pp. 305–315, ACM, 2014.

URL http://dx.doi.org/10.1145/2666356.2594322

In this talk, I introduced the concept of a commutativity race. A commutativity race occurs
when two method invocations happen concurrently yet they do not commute. Commutativity
races are an elegant concept enabling reasoning about concurrent interaction at the library
interface and generalize classic data races. I also discussed a way to dynamically detect
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commutativity races based on a technique which combines vector clocks with commutativity
information.

By generalizing classic read-write race detection, the work leads to many new interesting
research questions at the intersection of program analysis and distributed computing. These
questions are of both theoretical and practical importance. In particular, I discussed several
open directions and in-progress results including: impossibility of simulating race detectors,
discovering logical fragments for capturing commutativity, and black box learning.

Notes (collected by members of the audience)

Commutativity race = 2 high-level (atomic) operations that do not commute and are not
ordered. Useful for debugging and correctness checking; also for state space exploration.
Knowledge of commutativity properties of operations is essential to practical model
checking (it reduces the search space).
To check for races efficiently, start with a logical specification of commutativity. Convert
this commutativity specification into a structural representation. Combine with some
specification of happens-before. All of this yields a race detector.
Example: hashmap. Put, size, and get operations. Specification indicates commutativity
using logical formulas on arguments. In a hashmap, insert(i) and insert(j) commute if i
!= j; for a register, write(i) and write(j) commute if i == j. The latter is harder.
For more complex objects (e.g., array list from [Deokhwan Kim and Martin Rinard]),
commutativity specs can be complicated, so they have devised a scheme to learn the
commutativity spec from an abstract (or concrete) implementation.
The commutativity race detector employs a “micro operations” representation and
combines it with a happens-before scheme (vector clocks): it maps conflicts on high-level
operations to conflicts on low-level objects, drawing on SIMPLE by [Milind Kulkarni]. It
can be tricky to develop a succinct representation. Good representations are important
because they enable optimizations of the sort employed by FastTrack for read-write races.
Conflict checking is O(n2) in general, but if the conflict predicate is expressed in a
particular form, the cost become linear (constant for each new operation). Open question:
What is the richest logical fragment that results in linear cost? And which data structures
have commutativity specs that lie in that fragment?
There are various other challenges in both formal specification and and tool construction.
For example: Can a read-write race detector precisely detect commutativity races? (Note
that space matters.) Also: is there an interesting “consensus-like” hierarchy of concurrency
analyzers?
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4.29 Application-controlled frequency scaling
Jons-Tobias Wamhoff (TU Dresden, DE)
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Application-controlled frequency scaling explained,” in Proc. of the 2014 USENIX Annual
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Most multi-/many-core architectures nowadays support dynamic voltage and frequency scaling
(DVFS) to adapt their speed to the system’s load and save energy. Some recent architectures
additionally allow cores to operate at boosted speeds exceeding the nominal base frequency
but within their thermal design power. In this talk, we propose a general-purpose library that
allows selective control of DVFS from user space to accelerate multi-threaded applications
and expose the potential of heterogeneous frequencies. We analyze the performance and
energy trade-offs using different DVFS configuration strategies on several benchmarks and
real-world workloads. With the focus on performance, we compare the latency of traditional
strategies that halt or busy-wait on contended locks and show the power implications of
boosting of the lock owner. We propose new strategies that assign heterogeneous and possibly
boosted frequencies while all cores remain fully operational. This allows us to leverage
performance gains at the application level while all threads continuously execute at different
speeds. Our in-depth analysis and experimental evaluation of current hardware provides
insightful guidelines for the design of future hardware power management and its operating
system interface.

Notes (collected by members of the audience)

Dynamic Voltage and Frequency Scaling (DVFS) leveraging existing X86 multi-cores.
Novelty is applying DVFS on the application level.
Idea of P (Performance) states (pre-defined frequency/voltage pair) and C-states: power
states. C0 active; other C states have varying power usage and wake-up time. Trade-off:
state transition latency vs. power consumption in that state. Access to states : HLT or
MONITOR-MWAIT instructions.
Investigated AMD Turbo core (modules = frequency domain; AMD: 2 x86 cores + 1
FPU) and Intel Turbo boost (package; both hyperthreads at some frequency). AMD
Turbo Core and Intel Turbo boost modes are different. Intel also takes temperature into
account. AMD is deterministic by load, can do asymmetric frequencies with manual
boost (for one core). Intel reacts to thermal conditions, cores have to be at the same
P level. Cores can run at different frequencies on AMD but not Intel. Boosting can be
deterministic and thermal; must disable half the cores to give “head-room” to allow it.
Tested on application Critical Section (CS) benchmark, uses “decorated” MCS lock.
Turbo boosted on CS, when it is profitable to do so w.r.t. the overhead of changing V and
f. Will (sometimes) trigger DVFS when waiting. Tested both automatic and manual freq
scaling; identified the costs of transition. Energy implications of spinning vs. blocking
(futex). Goal: run critical section on “fast” CPUs. How big does CS need to be for this
to be interesting? Spinning (allows automatic scaling) vs. blocking (OS control). Break
even time performance is 1.5M cycles for AMD, about 4M for Intel. Break even for energy
is 7M cycle wait time on AMD; much less on Intel. Manual scaling. Overheads in 10s
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of 1000s of cycles. Can: spin; owner boost (600k cycles); delegate (dedicated adjustable
core); 200k cycles); or migrate (to already boosted core; 400k cycles).
Developed a turbo library to change P states; simple interface. Ongoing work: boosting
STM, async STM up to 50% speedup with 2% energy. Next steps: Haswell-EP supports
per-core P-states.
Q: Did you look at Intel SCC processor? It has DVFS domains including the interconnect.
A: A student is looking into this.

5 Breakout Sessions

5.1 Group Discussion on Heterogeneity
What is a heterogeneous architecture? Numerous sources of heterogeneity are possible,
from multiple micro-architectures for a single ISA to integrated CPU/GPU or CellBE-style
architectures to fixed function accelerators to FPGA. In addition, heterogeneity exists for
communication between near and far components. An old paper on the cyclical nature of
display processor design was mentioned.

There was discussion of layers of software that are involved with heterogeneity. For
example, in a single-ISA system like ARM big.LITTLE, the OS can migrate threads because
all cores share an ISA. In a classic GPU system, the application or perhaps the runtime
decides where to run code. The role of each layer (hardware, OS, runtime application) should
be considered.

One problem that can arise in heterogeneous systems is poor memory behavior: if
accelerators work on data in bulk, then often data must be spilled to DRAM, re-fetched to
an accelerator and then re-written to DRAM before it is consumed by another accelerator.
Better interfaces between accelerators, or methods to break problems into pieces that fit
in the cache, could address this problem. Ideally, the programming model should preserve
locality across modules.

Whether accelerators should share the same memory hierarchy as the CPU is also a
question; for example, a GPU may trash the CPU cache because of its massive demand for
memory bandwidth. There needs to be some control over how cache is shared.

A large concern was who looks out for holistic performance: heterogeneous systems
involve many designers who look out for local performance but don’t consider the whole
system. For example, a GPU may consider that it owns the cache and hurt code on the
CPU. When accelerators are integrated on-chip, it may be easier to make tradeoffs because
there is tighter integration. In addition, with dark silicon the marginal cost of an accelerator
is lower as compared to having to buy an external card.

A large question is when and how to decide where to run code, on which type of core or
which accelerator? The ideal, we agreed, was that a programmer writes a single program
that is then compiled for multiple architectures. If the placement decision can be made
dynamically, then it allows undoing a bad decision. A challenge is that algorithmic changes
may be needed to leverage different architectures, such as when moving from a CPU to
a GPU, which means the programmer must be involved. The tradeoff here depends on
the setting: for a mobile device programmer targeting a heterogeneous set of devices, a
single code makes sense. Many programmers today do not want to target GPUs because
architecture is moving too fast and they may need to rewrite code in the near future. For
Google programmers targeting their own set of machines, then writing multiple versions of
the code may be worthwhile.
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Ideally, a runtime would dynamically decide what to run where. This is difficult in the
face of different ISAs. Locality matters as much as specialization.

Another suggestion was to use libraries: experts can write different versions of a library
for different accelerators, and applications can call into the appropriate one. This assumes,
though, that the majority of execution time is spent in such libraries today to achieve a
good speedup. Furthermore, the overhead of moving data in and out of a library through a
procedural interface may be high.

Another concern was the complexity of heterogeneity and lack of predictability. It was
noted that Amazon turns off dynamic performance features, such as hyperthreads and
turboboost, to provide more predictable performance for customers. It was debated whether
cloud vendors would want heterogeneous hardware or prefer homogeneous, as it makes
machines more interchangeable and easier to manage. Heterogeneity is coming to the cloud
from other places as well, with customized chips from Intel, a mix of DRAM and NVM,
different transistor technology, etc.

A final big concern was the complexity of multiple accelerators: it may happen that there
are incompatible interfaces, and some pushback may be needed for simpler, more orthogonal
interfaces that can be composed easily, even at the loss of some performance.

Selected Contributions to the Discussion

[Torvald Riegel] worried about tool chains. How do we ship code for heterogeneous platforms?
How do we integrate code from multiple sources? How do we debug?

[David F. Bacon]: the biggest performance benefits come from the most specialized
accelerators. PowerEN suffered from being all wimpy cores.

[Charles E. Leiserson]: Moore’s Law is going to end in about 5 years. Read Sutherland’s
paper [1] on the wheel of reincarnation

[Stephan Diestelhorst]: We tend to write all data to DRAM before starting the next SW
module (from different vendor), which then pulls it back into cache. Sharing DRAM with
accelerators is clearly good; sharing cache is not so clear.

[Charles E. Leiserson]: Everybody who cares about performance wants to solve the whole
problem (in their world, at their level) in a way that writes everybody else out of the equation.
Really worried about what this looks like in a world of heterogeneous chips.

[Sven-Bodo Scholz]: Hopeless to expect programmers to cope with heterogeneity.
Q[Michael L. Scott] (strawman): Can we just hide accelerator code behind library

interfaces? A: [Charles E. Leiserson]: not if they’re stateful. A [Sven-Bodo Scholz]: and not
if state is huge and has to be piped through main memory.

[Milind Kulkarni]: GPUs are a counter-example: we keep data on the GPU across calls.
(But this may require compiler help.)

Q: Will heterogeneity permeate the cloud? A: [Osman Ünsal]: yes [Charles E. Leiser-
son]: skeptical. An economic argument: will do it if it’s cheaper. [Michael Swift]: Want
predictability in billing.

References
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5.2 Group Discussion on the Future of TM
How do we make HTM perform well? Issue of cost of start/end transaction on Haswell
hardware. Issue of PPC where cost of locking is high, so HTM gains (artificial?) benefit.
Unreasonable to expect it to speed up compared with carefully crafted non-blocking
algorithms (for example).
So the space of interest is algorithms for which we do not yet have hand-crafted versions
– and goal would be comparable performance.
One opportunity might be new programming languages – can obtain both simpler code
and good performance; on a related point, you can build more sophisticated atomic data
structures – such as double-ended queues for work-stealing.
Need HTM designed to play well with Hybrid schemes.
Even lock elision is not exactly a “no code changes needed” proposition – consider adding
a counter to a critical section: to avoid high rate of abort, it needs to be at the end of
the critical section. Observed that a JIT can do this a lot of the time.
Need debugging and analysis tools that tell developers why aborts occur.
What about breaking TM down into building blocks with hardware assist? Various
program analyses do things quite similar to HTM. Obvious: detection of conflicting
accesses. Buffering speculative writes. Ability to pull items back out of a set.
Non-transactional reads/writes to leak information intentionally.
Will HTM just fade away? IBM folks think not, but in the Intel space it seems more iffy
– consensus is that it needs to be more broadly offered to get more customer usage, but
that it appears Haswell TSX will indeed be more broadly available.

5.3 Two Group Discussions on Persistent Memory
Notes from Group 1

[Hans-J. Boehm]: Hardware issues: We must control the order in which things become visible
to non-volatile memory. Typically we force data from cache to the memory controller, but
not to the non-volatile memory. It seems that the hardware must give you mechanisms to
flush the memory controller buffers to memory. Cache line flush instructions (coming on
new Intel machines). There are non-temporal store instructions that can be used to write
things all the way down to non-volatile memory. There was work at HP that was leveraging
“non-temporal stores”, which are far from perfect. You may keep multiple versions of the
same data in non-volatile memory at the same time. One option is to keep a write-through,
non-volatile shadow of volatile DRAM.

[Torvald Riegel]: What impact will there be be on the programming model? 1) Provide a
file-system interface – wastes the potential of NVRAM. 2) Libraries and/or 3) Abstraction
with loads/stores? We cannot let people to essentially program with persistent loads and
stores – cannot use in templates then.

[David F. Bacon]: What are the use cases? Optimize data-base transactional manager?
What is the actual application where I will pay the performance overhead for NVRAM and
gain?

General agreement that MemCacheD is a nice example (a key-value pair storage). [Torvald
Riegel]: Can we write a portable nonvolatile memcached?
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[Hans-J. Boehm]: There is lots of code in Android to serialize and deserialize data
structures. Does NVM mean we can, effectively, just mmap the file that holds the pointer-
rich data?

It would be nice to have only one copy of these data structures instead of having to
serialize. There will be still need to synchronize with the NVRAM. Can you treat NVRAM
simply as a faster way to do serialization? Snapshoting in general as a use case? To make
the consistent state persistent. Write a portable C++ for MemCacheD, but need something
that the compiler can handle.

System persistence proposed by someone at Microsoft. The idea is to provide enough
capacitor/battery power to flush the cache when things are about to die. But may not be
able to build a consistent state. The cache-line flushing goes away, the other issues do not go
away.

Are transactions the right model? Does it mean that there must be a transactional
programming model in place, or is snapshoting sufficient? Can use a lock-based system
to obtain the desirable characteristics of a transactional system. We want transactions to
protect the integrity of the file system. [Michael L. Scott]: Transactions are atomic methods
of concurrent (or stable) objects. The txn system builds bigger abstractions from smaller
ones. One seldom (never?) wants pointers from NV to V state.

[David F. Bacon]: But what notation do we give to the programmers to build the NV
abstractions?

Many (most? all?) of us have the intuition that persistent pointer-rich structures are
“more dangerous” than file-based data. Why, exactly?

Still need partitioning between consistent data and modified data, but we should be able
to avoid serialization, so that we do not need to convert into blocks.

How to handle pointers from non-volatile memory to volatile memory? Use a type system?
[Osman Ünsal]: Note that persistent != stable. It doesn’t eliminate the need for replication.
[David F. Bacon]: Maybe NVM will be the natural successor for DRAM, for density and

cost (and speed?) Maybe persistence will just be a sidelight.
[Michael L. Scott]: Would we then start saying “what can we do with the feature we’ve

been ignoring?” Maybe post-crash forensics of some sort?
Partition memory space so that there is simply a separate partition that is non-volatile.
The window for rollback is much smaller than in the HPC world. And this smaller window

is transformative.
HPC-style checkpoint-restart would not work in the case of a buggy program because

you do not want to restart in that buggy state.
Is there an opportunity to simply use NVRAM the same way that we use it as a RAM?
Should all storage to persistent state be forced to go through some barrier, such as a

system call?
[Hans-J. Boehm]: Lots of people are pursuing APIs similar to mmap (with different

implementation under the hood). For example, Facebook has an Mmapped file that persists
through the rebooting of a process.

[Michael L. Scott]: What about durable STM? Is there a straightforward path toward
adding ’D’ to ’ACI’? Are there implications for STM if we add persistence?

[Hans-J. Boehm]: One question is how to do ordering wrt non-transactional accesses –
publication and privatization, essentially. If we persist a pointer (transactionally, say), we
want to make sure the stuff it points to is already persisted.

Any non-transactional write that is observed by a transaction must be persistent before
the transaction is made persistent.
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[David F. Bacon]: Maybe we should require all persistent writes to be in transactions.
[Torvald Riegel]: But that skips the important optimization of eliding metadata mainten-

ance for update and persistence of the (then) private data.
Note that persisting all previous NV writes of my thread before persisting a txn isn’t

enough: I have to persist everything that happened before.
[Torvald Riegel]: It’s not clear a txnal model is the right level at which to support

portability. We may want something lower level.
Should persistence becomes part of the type system?
Focusing on transactional interface, it is hard to pin down semantics for transactions.

Would it be better to specify something below that, so that people can then write their
transactional abstraction on top of it?

Notes from Group 2

We discussed that while persistence in memory is not new, due to density and power
considerations, technologies such as phase change memory/STT-MRAM (reading faster than
DRAM/writing slower, 4K reads in 2 µsecs)/memristors will likely replace DRAM. Already,
Flash-backed DRAM DIMMs with supercapacitors are available, and in Linux, are treated
like a NUMA zone. While typical SSDs are block-based, with kernel-level file system style
access, these DIMM replacements will allow fine-grain reads and writes at low latency. The
ability to manage durability (persistence) in software is hampered by the high speed.

We discussed what support might be needed, in particular, the ability to “push” data
to persistent memory to force durability, and the need for atomicity and ordering. What is
needed is:

Control over when data reaches persistent memory.
Control over ordering of modifications.
Evaluating the need for (and ability to avoid) redundant pointers and checksums.

Existing support to flush individual cache lines (e.g., Intel’s clflush instruction) could be
useful. However, just as clflush interferes with transactions, careful support will be needed to
decide on when data is flushed to persistent memory and in what order. To achieve atomicity,
maybe create a nonvolatile cache of logs with hardware that later updates the data. We need
a combination of volatile and nonvolatile memory in order to control when persistence is
attained. How can we simplify the process of synchronously updating data structures and
avoid the need for code maintaining these data structures?

We discussed some existing efforts in this direction. [Michael Swift] has provided a
bibliography as part of his seminar materials, which is also replicated below). HP Labs did
some work on consistent durable data structures. Microsoft has a proposal for whole system
persistence via epochs in the cache flush process across all memory controllers in the system
and with the ability to explicitly flush the caches when the power goes out. The epoch
approach creates a new copy of data that is updated rather than updating in place. Michael
Swift’s Mnemosyne project moves this to software and writes data at the granularity of an
update.

We discussed the need for a “killer” application. Michael Swift summarized that when
using NVM for filesystems, in his experiments evaluating a file system benchmark meant as
a stress test, only 1% of total accesses were to non-volatile memory (reading/writing data
or metadata). One possible application where fine-grain persistence might be useful is high
frequency trading, where transactions are small, and all actions are logged for replay by the
SEC for possible replay up to 72 hours later. Another is the increasing use of in-memory
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databases, where there would be direct reads in processing a query, but still the need to
write out logs for persistence. This would reduce commit times from 100 microseconds for
flash to 1 microsecond. Could also simplify software.

Other issues to consider and benefits of persistent memory:
Need for proactive versus reactive support for failure.
Linux – execute in place – execute operating system from flash.
Intel’s PMFS – directly accesses file data from persistent memory.
mmap has copy-on-write, persistent memory would need something efficient.
What about a persistent CAS – in-memory CAS? Or in-cache+extra step for persistence?
File systems have an important property of consistency and naming; how to retain this?
Application programming interface to durability needs to change.
Concurrency control over NVM – managing locks using epoch numbers; epoch mechanism
used to create snapshots.
Persistence as a property of the type system?
Narrow interface that file systems provide help prevent stray pointer corruption issues;
this may be a challenge for fine-grain access to persistent memory.
Use of a “building block” approach for HTM that can then cover persistence as needed
might be beneficial.
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6 Panel and Plenary Discussions

6.1 Panel on How to Teach Multi-/Many-core Programming
Panelists: Maurice Herlihy, Charles E. Leiserson, Michael L. Scott, and Nir Shavit.

Teach concurrency from the beginning.
Concurrency versus parallelism: avoiding non-determinacy and interaction.
Carefully distinguish easy cases from the hard ones.
Can introduce message passage, shared memory, and things like memory models later, in
appropriate contexts.
Need a suitable language for teaching deterministic concurrency in (say) data structures
course.
Java useful because of GC and the concurrency package.
Abstract algorithms such as Baker’s algorithm help give intuition.
Computer organization has been taught bottom-up and top-down.
Introduce simple abstractions first.
We do not have good textbook(s).
Performance engineering course at MIT teaches parallelism/concurrency in context of
larger set of techniques including caching, pipelining, etc.
Concurrency (interaction) done for reasons not necessarily related to performance; paral-
lelism is for performance.
Some of this is not about programming – applies to (say) constructing a building.

6.2 Plenary Discussion on VM Design for Concurrency
What primitives should a VM provide? What about threads in a cloud, each from different
languages? What sharing of code/metadata would happen between instances of the VM?
What do you provide to the language implementer? Channels for communication – can be
shared across languages? Great to have hardware help with bookkeeping. Would also be
great to be able to capture the logs. May need to capture reads as well. Greater risk if you go
too high level as opposed to lower level. How would HTM work in a virtualized environment?
Something like Haswell should directly abort. Hazards of a high-level implementation in
HW – getting things like page faults, etc., can be problematic. Would it slow things down
to use smaller primitives? No intuition that the cost would be higher or lower. Interaction
with non-transactional accesses needs to be considered carefully. Park/Unpark has useful
properties, and so do futexes – general conditions hard with only futex since it looks at a
single location; unpark means you have control over which thread to wake up (can build that
with futex as well) Generally want to use these in a style where you re-check the condition
(see synchronic<T>). Identities when grabbing a lock or accessing a resource: What is
the identity of the agent? Is it a process, thread, whatever? In his talk, [Michael L. Scott]
suggests a single hierarchical mechanism – perhaps similar to concurrent nested transactions,
or to re-acquisition of the same lock in a subroutine in Java – that is, re-entrant locks depend
on a notion of identity. What about accessing “thread-local” storage . . . at different levels of
identity – does this get us back into cactus stacks, though maybe needed only for identity
and explicitly managed identity-specific storage? Should that be part of the model of the
VM? Maybe want something analogous to futexes on identities? Distinction between logical
and physical execution agents, e.g., Java thread versus OS thread versus CPU hyperthread –
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to what extent would a VM model need to expose this distinction? Could the hierarchy have
more to do with what features you have? Along the lines of the concurrency, parallel, and
weakly parallel execution agents in the C++ model described in the talk by [Torvald Riegel].

7 Some Results and Open Problems

7.1 Deterministic algorithm for guaranteed forward progress of
transactions

Charles E. Leiserson (MIT – Cambridge, US)

License Creative Commons BY 3.0 DE license
© Charles E. Leiserson

The following latest revision of a contention-management algorithm is one of the results of
numerous discussions at this Dagstuhl Seminar:

Safe-Access(x)
1 if lock(x) ∈ L

2 // do nothing
3 else
4 M = {l ∈ L : l > lock(x)}
5 L = L ∪ {lock(x)}
6 if M == ∅
7 Acquire(lock(x)) // blocking
8 elseif Try-Acquire(lock(x)) // nonblocking
9 // do nothing
10 else
11 roll back transaction
12 for l ∈ M

13 Release(l)
14 Acquire(lock(x)) // blocking
15 for all l ∈ M in increasing slot order
16 Acquire(l) // blocking
17 restart transaction // does not return
18 access location x

Accessing a memory location x within a transaction with lock set L. The lock function
maps the space of all locations to a finite ownership array, each slot of which contains an
anti-starvation (e.g., queuing) lock. The slots are ordered by an arbitrary linear order,
most conveniently, the index in the ownership array. At transaction start, the lock set L
is initialized to the empty set: L = ∅. When the transaction commits, all locks in L are
released.

Notes (collected by members of the audience)

Deadlock-free because locks on which you wait are acquired in order. On repeated abort, the
lock set keeps growing, and that helps with eventual progress. Allows a compilation strategy
that figures out locations, acquires in order, and has guaranteed progress. Interesting policy

http://creativecommons.org/licenses/by/3.0/de
http://creativecommons.org/licenses/by/3.0/de
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questions – can do bounded waiting rather than immediately aborting, can wait before
restarting, etc. How does this interact with dynamically allocated blocks of memory? Their
lock numbers may be different on each try. Probably have a mapping from addresses (say)
to a smaller set of lock numbers, which may be some kind of hash – but could (in the SW
case) be done in terms of something like Java hash codes, which work even when an object is
relocated. The pessimistic style is both its strength and its weakness – but may be able to
start optimistic and go pessimistic.

7.2 Thoughts on a Proposal for a Future Dagstuhl Seminar
Maybe less TM, and more language/tool chain.
Maybe more people (could have been timing that kept this workshop smaller).
Heterogeneity should still be part.
More of the systems-oriented formal methods people.
Benchmarking and performance evaluation methodology.
More about abstractions and programming models, and how they might appear in
languages.
In scientific computing domain a new GPGPU + POWER9 machine will be coming
available, and that could be relevant.
The situation around non-volatile storage may be different and that could affect the mix
of topics.
More broadly, the HW picture is evolving, e.g., end of Moore’s law.
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