
Report from Dagstuhl Seminar 15121

Mixed Criticality on Multicore/Manycore Platforms
Edited by
Sanjoy K. Baruah1, Liliana Cucu-Grosjean2, Robert I. Davis3,2,
and Claire Maiza4

1 University of North Carolina at Chapel Hill, US, baruah@cs.unc.edu
2 INRIA Roquencourt – Le Chesnay, FR, liliana.cucu@inria.fr
3 University of York, GB, rob.davis@york.ac.uk
4 VERIMAG – Gières, FR, claire.maiza@imag.fr

Abstract
This report provides an overview of the discussions, the program and the outcomes of the first
Dagstuhl Seminar on Mixed Criticality on Multicore/Manycore Platforms. The seminar brought
together researchers working on challenges related to executing mixed criticality real-time ap-
plications on multicore and manycore architectures with the main purpose of promoting a closer
interaction between the sub-communities involved in real-time scheduling, real-time operating
systems / runtime environments, and timing analysis as well as interaction with specialists in
hardware architectures.

Seminar March 16–20, 2015 – http://www.dagstuhl.de/15121
1998 ACM Subject Classification C.3 Special-purpose and Application-based Systems – Real-

time and embedded systems
Keywords and phrases Mixed-Criticality, Real-time systems, Multicore/Manycore Platforms,

fixed priority; probabilistic scheduling, varying-speed processors, model combination
Digital Object Identifier 10.4230/DagRep.5.3.84
Edited in cooperation with Adriana Gogonel

1 Executive Summary

Liliana Cucu-Grosjean
Robert I. Davis
Claire Maiza
Sanjoy K. Baruah

License Creative Commons BY 3.0 Unported license
© Liliana Cucu-Grosjean, Robert I. Davis, Claire Maiza, and Sanjoy K. Baruah

Real-time systems are characterised not only by the need for functional correctness, but
also the need for timing correctness. Today, real-time embedded systems are found in many
diverse application areas including; automotive electronics, avionics, and space systems. In
these areas, technological progress is resulting in rapid increases in both software complexity
and processing demands. To address the demand for increased processor performance, silicon
vendors no longer concentrate on increasing processor clock speeds, as this approach has led to
problems with high power consumption and excessive heat dissipation. Instead, technological
development has shifted to multicore processors, with multiple CPUs integrated onto a single
chip. The broad technology trend is towards much larger numbers of cores, referred to as
manycore, requiring network-on-chip rather than bus interconnects.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Mixed Criticality on Multicore/Manycore Platforms, Dagstuhl Reports, Vol. 5, Issue 3, pp. 84–142
Editors: Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15121
http://dx.doi.org/10.4230/DagRep.5.3.84
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 85

Requirements on Size Weight and Power consumption, as well as unremitting cost
pressures, are pushing developments in avionics and automotive electronics towards the
adoption of powerful embedded multicore processors, with a longer term vision of migrating
to manycore. With the adoption of such technology comes the opportunity to combine
different applications on the same platform, potentially dramatically reducing assembly and
production costs, while also improving reliability through a reduction in harnessing. Different
applications may have different criticality levels (e.g. safety-critical, mission-critical, non-
critical) designating the level of assurance needed against failure. For example, in automotive
electronics, cruise control is a low criticality application, whereas electric steering assistance
is of high criticality. In an aerospace context, flight control and surveillance applications
in Unmanned Aerial Vehicles are of high and low criticality respectively. The very low
acceptable failure rates (e.g. 10−9 failures per hour) for high criticality applications imply
the need for significantly more rigorous and costly development and verification processes
than required by low criticality applications.

Combining high and low criticality applications on the same hardware platform raises
issues of time separation and composition; it must be possible to prevent the timing behaviour
of high criticality applications from being disturbed by low criticality ones, otherwise both
need to be engineered to the same rigorous and expensive standards. Simple methods
of achieving this separation, such as time partitioning or allocation to different cores can
however be wasteful of processing resources. They may require more expensive hardware than
necessary, increasing production costs, which is something industry is strongly motivated to
avoid. Time composability is needed so that the timing behaviour of applications, determined
in isolation, remains valid when they are composed during system integration. Without time
composability integration of complex applications would become infeasible expensive. The
transformation of real-time embedded systems into mixed criticality multicore and manycore
systems is recognised as a strategically important research area in Europe and the USA.

The seminar focused on the two key conflicting requirements of Mixed Criticality Systems:
separation between criticality levels for assurance and sharing for resource efficiency, along
with the related requirement of time composability. The key research questions addressed
were:

How to provide effective guarantees of real-time performance to applications of different
criticality levels via intelligent sharing of resources while respecting the requirements for
asymmetric separation / isolation between criticality levels?
How to provide asymmetric time separation between applications with different levels of
criticality so that the impact of lower criticality applications on those of higher criticality
can be tightly bounded independent of the behaviour or misbehaviour of the former,
without significantly compromising guaranteed real-time performance?
How to provide time composability for applications of different criticality levels, so that
the timing behaviour of applications determined in isolation remains valid when they are
composed during system integration?

The sessions of the seminar were structured around a set of themes. Particular attention
was given to the interfaces between themes, as these are the areas that can benefit most from
improved understanding and collaboration. The discussion groups were organized around the
following themes that correspond to research challenges in mixed criticality systems (MCS):

Platforms and Experimental Evaluation (see Section 5.1);
Worst-Case Execution Time (see Section 5.2);
Criticality (see Section 5.3);
Probabilistic (see Section 5.4).

15121

86 15121 – Mixed Criticality on Multicore/Manycore Platforms

Organization of the Seminar

The seminar took place from 15th to 20th March 2015. The first day started with a keynote
talk by Prof. Alan Burns (University of York), one of the most influential researchers in the
Real-Time Systems field over the last 25 years. Alan reviewed advances in MCS research
and underlined current open problems. An overview of his talk is provided in Section 3. The
first day ended with presentations and feedback on real implementations (see Section 4) as
well as identifying the main themes for group discussion.

The following three days started with presentations, which were followed by discussions
either within the identified groups or in an open format.

The second day started with discussions about the motivation for mixed-criticality systems
presented by three different participants (see Sections 4.4, 4.5 and 4.6). Different notations
are used by different sub-communities and several presentations underlined these differences
(see Sections 4.7, 4.8 and 4.9). An outline of the main ideas for probabilistic analysis of
real-time systems provided the topics for the discussion group on probabilistic MCS (see
Sections 4.10 and 4.11).

The morning of the third day commenced with discussions on the relation between time
and MCS (see Section 4.11), which continued into the afternoon’s hiking activity.

Starting from the fourth day a slot dedicated to anonymous mixed criticality supporters
was added to the program allowing researchers new to the topic to identify open problems in
MCS from the perspective of their different domains.

As detailed later in this report, the seminar enabled the real-time community to make
important progress in articulating and reaching a common understanding on the key open
problems in mixed criticality systems, as well as attracting new researchers to these open
problems (see Section 6). The seminar also provided an ideal venue for commencing new
collaborations, a number of which are progressing towards new research publications, see
Section 7.

The seminar has helped define a research agenda for the coming years that could be
supported by follow-up events, given the strong interest expressed by the participants of this
seminar.

As organizers, we would like to thank Prof. Reinhard Wilhelm for encouraging us to
submit the seminar proposal, Dagstuhl’s Scientific Directorate for allowing us to run a
seminar on mixed criticality systems, and to the staff at Schloss Dagstuhl for their superb
support during the seminar itself. Finally, we would like to thank all of the participants
for their strong interaction, presentations, group discussions, and work on open problems,
sometimes into the early hours of the morning. We were very pleased to hear about the
progress of new found collaborations, and to receive such positive feedback about the seminar
itself. Thank you to everyone who participated for a most enjoyable and fruitful seminar.

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 87

2 Table of Contents

Executive Summary
Liliana Cucu-Grosjean, Robert I. Davis, Claire Maiza, and Sanjoy K. Baruah . . . 84

Keynote
Mixed Criticality – A Personal View
Alan Burns . 89

Keynote addenda: An Augmented Model for Mixed Criticality
Alan Burns . 92

Overview of Talks
Mixed Criticality in Multicore Automotive Embedded Systems
Sebastien Faucou . 94

Efficiently Safe: Decoding the Dichotomy in Mixed-Criticality Systems
Arvind Easwaran . 95

Adding Cache and Memory Management to the MC2 (Mixed Criticality on Mul-
ticore) Framework
James H.Anderson . 97

Mixed-criticality in Railway Systems: A Case Study on Signaling Application
A. Cohen , V. Perrelle, D. Potop-Butucaru, E. Soubiran, Z. Zhang 98

Confidence in Mixed-Criticality Multi-Core
Zoë Stephenson amd Mark Pearce . 103

Challenges in Mixed Criticality Systems Design – Integration Issues
Rolf Ernst . 105

Real-time Performance Evaluation and VT Control mechanisms for the timing
correct use of shared main memory
Kai Lampka . 106

System-level, Inter-Criticality, Multi-Core Resource Sharing with Scalable Predict-
ability
Gabriel Parmer . 107

Mixed Criticality Support on Networks-on-Chip
Leandro Soares Indrusiak . 110

Mapping cricalities to certification levels – a probabilistic attempt
Liliana Cucu-Grosjean and Adriana Gogonel . 111

Response Time Analysis for Fixed-Priority Tasks with Multiple Probabilistic Para-
meters
Dorin Maxim . 113

Viewpoints on the Timing Aspect of Mixed Criticality Systems
David Broman . 115

Mapping the landscape of mixed criticality systems research
Sanjoy K. Baruah . 116

Some Open Problems in Mixed-Criticality Scheduling
Pontus Ekberg . 118

15121

88 15121 – Mixed Criticality on Multicore/Manycore Platforms

Runtime monitoring of time-critical tasks in multi-core systems
Christine Rochange . 120

Timing Analysis for Multi/Many-core Platforms
Jan Reineke . 120

Analysis of pre-emptive systems with caches
Sebastian Altmeyer . 122

Using Mixed-Criticality to Reason about Temporal Correctness in Uncertain &
Dynamic Environments
Nathan Fisher . 123

Augmenting Criticality-Monotonic Scheduling with Dynamic Processor Affinities
Bjoern B. Brandenburg . 124

Adaptive Uni-processor Fixed Priority Pre-emptive Probabilistic Mixed Criticality
Yasmina Abdedda . 126

MC Scheduling on Varying-Speed Processors
Zhishan Guo . 128

Speedup bounds for multiprocessor scheduling
Suzanne van der Ster . 130

Working Groups
Report on Platforms and Experimental Evaluation
Robert I. Davis . 131

Report on WCET
Claire Maiza . 133

Report on Criticality
Sanjoy K. Baruah . 134

Report on Probabilistic Approaches
Liliana Cucu-Grosjean . 136

Open Problems
Unification of mixed criticalities, WCET, and probabilistic execution time
Enrico Bini . 137

New collaborations
Providing Weakly-Hard Guarantees for Mixed-Criticality Systems
Robert I. Davis and Sophie Quinton . 139

A Multicore Response Time Analysis Framework
S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke 140

Mixed criticality support for automotive embedded systems
Yasmina Abdeddaim, Sébastien Faucou, and Emmanuel Grolleau 141

Participants . 142

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 89

3 Keynote

3.1 Mixed Criticality – A Personal View
Alan Burns (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Alan Burns

In this talk I want to address four topics:
The notion of mixed criticality
A overview of the literature on mixed criticality
An augmented system model for mixed criticality
Open Issues in mixed criticality research

The third of these topics is addressed in a separate abstract in Section 3.2. Notes
on the other topics are provided below. As this is an extended abstract, derived from a
talk, I will not include citations of the many works that have been published on Mixed
Criticality. For accurate accrediting of the work alluded to below I refer readers to the
Review from York (updated every 6 months and funded by the MCC project) available from:
http://www-users.cs.york.ac.uk/~burns/.

It is important to be clear on the notion of ‘criticality’ as it is used in the, now extensive,
literature on mixed critically. To me the notion is primarily based on the consequences and,
to some extent, the likelihood of failure. A classification is therefore obtained by some form
of hazard (or risk) analysis following a process usually defined in a Standard. All potential
hazards much be mitigated during the design and implementation of both the hardware
and software architectures. Software components, perhaps implemented within a run-time
thread or task, will be assigned a criticality level (although different names are used for this
classification in different Standards and application domains). If the late running of a task
can contribute to a potential hazard then there must be evidence to support the view that
such a deadline miss is sufficient unlikely. Such evidence will come from WCET analysis of
the code and scheduling theory. It may also rely on run-time checks and enforcement.

The level of hazard, and the assignment of an assurance, integrity or criticality level
will dictates the level of hardware redundancy and the procedures required in the design,
verification and implementation of the code. There is considerable cost implications in
(justifiable) begin able to reduce the classification of the software within a system.

To me, ‘mixed criticality’ is a means of dealing with the inherent uncertainty in a complex
system. It is a means of providing efficient resource usage in the context of this uncertainty.
It is also the means of protecting the more critical work when faults occur; including where
assumptions are violated (rely conditions are false).

A mixed critically system is therefore not a mixture of hard and soft deadlines, nor is it
a mixture of critical and non-critical components. Moreover it is not only concerned with
delivering isolation and non-interference. And it is certainly not about dropping tasks to
make a system schedulable. All of these ideas are, I believe, misconceptions about the nature
of a mixed criticality system.

So if a mixed criticality approach is a means of dealing with uncertainly, where does
this uncertainty come from? The primary source of uncertainly, as recognised in Vestal’s
initial paper, comes from WCET estimation. We know that WCET cannot be known with
certainty. All estimates have a probability of being wrong (too low). But all estimates are
attempting to be safe (pessimistic). In particular C(LO) is a valid engineered estimate with

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www-users.cs.york.ac.uk/~burns/

90 15121 – Mixed Criticality on Multicore/Manycore Platforms

the belief that C(LO) >WCET1. Beliefs can be misplaced of course, which is why systems
must be built to be resilient in the face of faults. But there must be a high level of confidence,
perhaps expressed as a probability, that the assertion C(LO) >WCET is true.

Other forms of uncertainty can come from the environment of the system. An event
driven system must make assumptions about the intensity of the events it must deal with
(in a timely fashion). Again this cannot be known with certainty. So the ‘Load’ parameters
(however they may appear in the scheduling analysis) need to be estimated (safely). In
particular, the minimum arrival interval (T) for a sporadic task (i.e. the assumed minimum
interval between two events from the same source) as assumed at even the lowest criticality
level of the system much be safe, that is T (LO) < T (real).

Critical systems need to demonstrate survivability. Faults will occur and some level
must be tolerated. One source of faults is that relate to the assumptions upon which the
verification of the timing behaviour of the system was based eg. WCET, arrival rates, etc. A
common notion in the fault tolerance literature is the idea of a fault model. Fault models
provide a means of assessing/delivering survivability. For example:

full functional behaviour with a certain level of faults;
Graceful Degradation for more severe faults.

Graceful Degradation is a controlled reduction in functionality, aiming to preserve safety.
So within the mixed criticality domain: if any task executes for more than C(LO) and all
HI-criticality tasks execute for no more than C(HI) then it can be demonstrated that all
HI-criticality tasks meet their deadlines.

As a strategy for Graceful Degradation a number of schemes in Mixed Criticality literature
have been proposed:

Drop all lower critical work
Drop some, using notions of importance etc.
Extend periods and deadlines (elastic task model)
Reduce functionality within low and high criticality tasks

This strategy should perhaps be extended to issues concerning the C(HI) bound also being
wrong!

If tasks are dropped/aborted then this cannot be arbitrary – the approach must be related
back to the software architecture and task dependencies. So if task A is closely coupled
to task B then either drop both or neither. Recovery must also relate to the needs of the
software (e.g. dealing with missing/stale state).

What I want to emphasis with the above discussion is that the dropping of functions can
never be seen as part of the normal behaviour of the system. That would not be acceptable
to any system’s developer. Rather it is a means of protected the most critically functions
during a system overload, which itself is due to a fault, with may occur due to the inherent
uncertainly in the system’s behaviour and environment.

Another issue that arises in the mixed criticality literature is the use of a ‘criticality
mode’ to capture the behaviour of the system when all functions are being deliver, and
other modes that relates to reduced functionality. We have tended to call these modes (in a
dual-criticality system) LO-criticality mode when all is well, and HI-criticality mode when
only HI -criticality functions are guaranteed. This terminology is I feel misleading, the normal
behaviour of the system when all functions are timely should be called ‘normal’.

1 Many papers on mixed criticality assume two critically levels, LO and HI , and two estimates of WCET
related to these two levels: C(LO) and C(HI), with C(LO) ≤ C(HI).

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 91

After a fault, and degraded functionality it should be possible for the system to return to
full functionality (i.e. normal mode). After all, a 747 can fly with 3 engines, but its nice to
get the 4th one back. Fault recovery is therefore also an issue for mixed criticality behaviour.
Indeed, as I have tried to explain, much of the work on mixed criticality systems need to be
more cognisant of the available literature on fault tolerance.

Since Vestal’s paper there has been at least 180 articles published (one every 2 weeks!).
Some top level observations follow. For uniprocessors:
For FPS, AMC seems to be the ‘standard’ approach.
For EDF, schemes that have a virtual deadline for the HI -criticality tasks seem to be
standard.
Server based schemes have been revisited.
Not too much work on the scheduling schemes actually used in safety-critical systems,
e.g. cyclic executives and non-preemptive (or cooperative) FPS.

For multiprocessor systems there are a number of schemes (extensions from uni-criticality
systems). Similarly for resource sharing protocols. Work on communications is however less
well represented. As indicated above, there is lots of work on graceful degradation (although
few papers use that term).

Almost all papers stick to just two criticality levels. But remember LO-criticality does
not mean no-criticality! Some papers pay lip service to multiple levels, but not many. It is
still not clear what is the model we require for, say, 4 or 5 levels? To me it does not seem to
make sense to have five estimates of WCET.

Notwithstanding the obvious synagy with fault tolerance there is actually little work on
linking mixed criticality to fault tolerance in general. There is also little work on probabilistic
assessment of uncertainty. There is some implementation work, but arguable not enough.
Similarly, there is some comparative evaluations, but again not enough. There is however
good coverage of formal issues such as speed-up factors.

I will finish by recording the open issues that I have identified from reading the extensive
mixed criticality literature.

1. As well as looking at mixing criticality levels within a single scheduling scheme (e.g.
different priorities within FPS) we need to look at integrating different schemes (e.g.
Cyclic Executives for safety-critical, FPS for mission critical on the same processor).

2. More work is needed to integrate the run-time behaviour (monitoring and control) with
the assumptions made during static verification.

3. We need to be more holistic in terms of ALL system resources (especially communications
media).

4. There are a number of formal aspects of scheduling still to be investigated.
5. We need to be sure that techniques scale to at least 5 levels of criticality.
6. There are still a number of open issues with regard to graceful degradation and fault

recovery.
7. There is little work as yet on security as an aspect of criticality.
8. We need protocols for information sharing between criticality levels.
9. We need better WCET analysis to reduce the (safe) C(HI) and C(LO) values (or at least

improve our confidence in the numbers used).
10. We should look to have an impact on the Standards relevant to the application domains

we hope to influence.
11. Better models for system overheads and task dependencies are needed.
12. How many criticality levels to support (and how many estimates of the sources of

uncertainty to accommodate)?
13. We do not as yet have the structures (models, methods, protocols, analysis etc) that

allow tradeoffs between sharing and separation to be evaluated.

15121

92 15121 – Mixed Criticality on Multicore/Manycore Platforms

To conclude, the Dagstuhl seminar is both timely and necessary in moving our research
forward.

3.2 Keynote addenda: An Augmented Model for Mixed Criticality
Alan Burns (University of York, GB)

License Creative Commons BY 3.0 Unported license
© Alan Burns

Inevitably not all papers on mixed criticality have used the same system or task model. But
following on from the initial paper of Vestal [1] the most common form of the mixed criticality
model is one that has a small number of criticality levels and that for each level tasks have an
assigned estimation of worst-case execution time (WCET), C. Early publications on mixed
criticality have often further restricted the model to have just two criticality levels, HI and
LO, and therefore only two computations parameters C(HI) and C(LO). As we move back
to using four or five criticality levels then the question arises – do we really have this number
of ways of estimating WCET?

A criticality level determines many aspects of how a software function, embedded in a
run-time task, is to be produced and verified. But it does not follow that distinct means of
estimating or measuring execution time are available at each criticality level. In this short
note we argue that two estimates are sufficient for a suitably expressive model to be defined.

Assume that the application domain of the defined system has four levels of criticality:
A,B,C,D (with A being the highest level) and one non-critical level E. Code in E, if it exists,
will have no or soft deadlines and not be crucial for any function of the system. Nevertheless,
it may include house-keeping functions that are useful and should be executed if possible.

Level D is the lowest criticality level. We term this the normal mode of the system in that
during normal, fault-free, execution all code from all four criticality levels are guaranteed to
meet defined timing constraints. To validate normal behaviour it is necessary for all critical
code to have an estimate of its WCET that is appropriate for level D criticality. We call
these estimates C(normal) – in existing literature this would be called C(D).

As code of a particular criticality level has to be produced and verified to the standard
dictated by the assigned level, there must be an estimate of WCET that is linked to that
criticality level. So level A has a C(A) estimate, level B a C(B) estimate etc. In general, we
can say that all critical code has an estimate commensurate with its own criticality, we term
this C(self).

To summarise, all task have two estimates of WCET: C(self) and C(normal), with
C(self) ≥ C(normal). For tasks of the lowest level of criticality (level D in our framework),
these two estimates are the same.

The run-time behaviour of our system, following the basic idea of Vestal, is as follows:
If all critical tasks execute for no more than their C(normal) values then all critical
deadlines are met.
All tasks are prevented, by run-time monitoring, to execute for more than C(self).
If any task of criticality level X executes for more than C(normal) then all tasks of
critically level X and higher must continue to meet their deadlines, using estimates of
WCET of C(self) for tasks of criticality X and C(normal) for tasks of criticality higher
than X.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 93

In the above scenario, tasks of criticality levels below X are no longer guaranteed (and
may be subject to forms of graceful degradation necessary to ensure the continuing correct
execution of levels X and higher).

Note that this is a different behaviour from the one used by AMC [2], for example. In
that protocol the second case would use estimates of C(X) for the higher criticality tasks
(not C(normal)). Of course the augmented model presented here can be directly expressed
in the original Vestal model if all intermediate estimates of WCET between C(normal) and
C(self) are assigned the same value as C(normal).

As well as simplifying the model, the above behaviour is supported by at least some
industrial practice. Code of level A is likely to be subject to coding standards that restrict
the expressive power of the programming language employed. For example, recursion may
be prohibited as may the arbitrary use of pointers and ‘while’ loops. It follows that level A
code is more predictable and less likely to execute for more than C(normal).

This augmented model is motivated by the fact that software development processes are
unlikely to deliver more than two estimates of WCET. However, this does not mean that
run-time behaviour cannot use computed estimates that facilitate more fine-grain control over
graceful degradation. For example, if a task of level A executed for more than C(self) (i.e.
C(A)) then the above model will allow all tasks of all lower criticality levels to be abandoned
(to ensure level A work is preserved). However a Real-Time Systems engineer could quite
reasonable argue that this reaction is overly conservative. It would be quite straightforward
to use the scheduling analysis to compute a value of C(C), with C(self) > C(C) > C(normal),
and enforce the run-time behaviour: if a level A task executes for more than C(normal) but
no higher than C(C) then only tasks of level D need to degrade. Sensitivity analysis for fixed
priority scheduling has already been used [3] to solve a related problem.

This useful step, of computing intermediate WCET estimates, does not however detract
from the application model being advocated here. This model restricted the number of
external/given estimates of WCET to two.

Vestal [1], and much follow on work, has focused on WCET as the main source of
uncertainty in the model of the system. Other forms of uncertainly exist – including load
from the environment, faults in the hardware, power from (perhaps unreliable) sources etc.
For all of these sources of uncertainty we argue that there should be two estimates. One for
the normal all inclusive criticality of the system and one that reflects the particular criticality
of the component.

References
1 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

2 S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality
systems. In Proc. IEEE RTSS, 2011, pages 34–43.

3 T. Fleming and A. Burns. Incorporating the notion of importance into mixed criticality
systems. In L. Cucu-Grosjean and R. I. Davis, editors, Proc. 2nd Workshop on Mixed
Criticality Systems (WMC), RTSS, 2014, pages 33–38.

15121

94 15121 – Mixed Criticality on Multicore/Manycore Platforms

4 Overview of Talks

Mixed-criticality needs feedback from real implementation

4.1 Mixed Criticality in Multicore Automotive Embedded Systems
Sebastien Faucou (University of Nantes, FR)
sebastien.faucou@univ-nantes.fr

License Creative Commons BY 3.0 Unported license
© Sebastien Faucou

Introduction

The automotive industry pursues an effort toward the standardization of in-vehicle embedded
systems technologies. If we focus on the topics of interest of this seminar, two standards
stands out: ISO 26262, the functional safety standard; and AUTOSAR OS, the RTOS
component of the standardized AUTOSAR architecture. Studying these standards gives
some insight on the way mixed criticality is handled today in automotive embedded systems
and allows to identify direction for future works.

ISO 26262: ASIL and freedom from interference

ISO 26262 defines two key concepts. The first one is the risk classification scheme composed
of four ASILs (Automotive Safety Integrity Level) that range from A (the least critical)
to D (the most critical). ASILs are attached to hazardous events and mapped to software
components as a result of the hazard analysis. Mixed criticality requirements arise when the
software components of a system have different ASILs.

The second key concept of ISO 26262 is freedom from interference. Freedom from
interference is established when no error can propagate from low-criticality components to
high criticality components. Freedom from interference does not implies full isolation but
rather that interferences between criticality classes are bounded. It encompasses functional
and extra-functional concerns, including timeliness and communication. In a system built
on top of a shared platform, if freedom from interference can not be proved, then every
component shall be designed with the requirements associated with the highest ASIL among
all the co-hosted components.

AUTOSAR OS

AUTOSAR OS extends OSEK/VDX OS with several features, including protection facilities
and support for multicore platforms. Among the protection facilities, timing protection
monitors the run-time behaviour of the jobs, assuming a sporadic model. This allows to
use for instance the schedulability tests developped for Vestal’s model [1] and may be for
some of its extensions [2] in order to validate the capacity of the system to survive to timing
faults and preserve the timeliness of its most critical functions, ie. establishing freedom from
interference in the time domain.

Protection facilities also include the possibility to partition the memory and the peripherals
of the platforms between OS-Applications (set of tasks, interrupt handlers and shared
resources) and to enforce this partitionning at run-time. These features contribute to freedom
from interference in the communication domain

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 95

MC in multicore automotive embedded systems

The two parts of AUTOSAR OS protection facilities presented above are usefull but with the
advent of multicore platforms, this is not sufficient. Indeed, these mechanisms do not adress
the management of shared hardware resources in a mixed-criticality context. Examples of
shared hardware resources include the memory bus, the SRAM banks, the shared cache level
found in high-ends microcontroller for infotainment. These shared resoources are channels
that allow low criticality tasks to interfere on the execution of highest criticality ones.

Two directions for futures works

Vestal’s model and its extensions offer a solid theory for real-time scheduling of mixed
criticality systems. Some works have been carried on in order to evaluate the pertinence of
this theory in the context of Linux-based el-time ystems [3]. The same type of works remains
to be done in the context of smaller (embedded) real-time systems, taking into account and
exploiting some distinctive features such as: limited hardware resources, static software,
sub-millisecond deadlines, etc.

According to the current state of the art, the second direction that should be considered
a priority is the design of methods to bound interferences in multicore systems. Once again,
the distinctive features of automotive embedded systems should be exploited to propose low
footprint mechanisms, amenable to static analysis.

References
1 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

2 S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality
systems. In Proc. IEEE RTSS, 2011, pages 34–43.

3 Huang-Ming Huang, Christopher D. Gill, and Chenyang Lu. Implementation and evaluation
of mixed-criticality scheduling approaches for periodic tasks. In RTAS, pages 23–32, 2012.

4.2 Efficiently Safe: Decoding the Dichotomy in Mixed-Criticality
Systems

Arvind Easwaran (Nanyang Technological University, SG)
arvinde@ntu.edu.sg

License Creative Commons BY 3.0 Unported license
© Arvind Easwaran

An increasing trend in embedded systems is towards open computing environments, where
multiple functionalities are developed independently and integrated together on a single
computing platform. This trend is evident in industry-driven initiatives such as ARINC653
Integrated Modular Avionics (IMA) in avionics and AUTOSAR in automotive. An important
notion behind this trend is the safe partitioning of separate functionalities, primarily to
achieve fault containment. This raises the challenge of how to balance the conflicting
requirements of partitioning for safety assurance and efficient resource sharing for economical
benefits. The concept of mixed-criticality, first introduced by Vestal [1], appears to be
important in meeting these dichotomous goals.

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

96 15121 – Mixed Criticality on Multicore/Manycore Platforms

In many safety-critical systems, the correct behavior of some functionality (e.g., flight
control) is more important (“critical”) to the overall safety of the system than that of another
(e.g., in-flight entertainment). In order to certify such systems as being correct, they are
conventionally assessed under certain assumptions on the worst-case run-time behavior. For
example, the estimation of Worst-Case Execution Times (WCETs) of code for highly critical
functionalities involves very conservative assumptions that are unlikely to occur in practice.
Such assumptions make sure that the resources reserved for critical functionalities are always
sufficient. Thus, the system can be designed to be fully safe from a certification perspective,
but the resources are in fact severely under-utilized in practice.

In order to close such a gap in resource utilization, Vestal [1] proposed the mixed-criticality
task model that comprises of different WCET values. These different values are determined
at different levels of confidence (“criticality”), based on the following principle. A reasonable
low-confidence WCET estimate, even if it is based on measurements, may be sufficient for
almost all possible execution scenarios in practice. In the highly unlikely event that this
estimate is violated, as long as the scheduling mechanism can ensure deadline satisfaction for
highly critical applications, the resulting system design may still be considered as safe.

To ensure deadline satisfaction of critical applications, mixed-criticality studies make
pessimistic assumptions when a single high-criticality task executes beyond its expected
(low-confidence) WCET. They assume that the system will either immediately ignore all
the low-criticality tasks (e.g., [2, 3, 4]) or degrade the service offered to them (e.g., [5, 6, 7]).
They further assume that all the high-criticality tasks in the system can thereafter request for
additional resources, up to their pessimistic (high-confidence) WCET estimates. Although
these strategies ensure safe execution of critical applications, they have a serious drawback as
pointed out in a recent article [5]. When a high-criticality task exceeds its expected WCET,
the likelihood that all the other high-criticality tasks in the system will also require more
resources is very low in practice. Therefore, to penalize all the low-criticality tasks in the
event that some high-criticality tasks require additional resources seems unreasonable.

In practice, most mixed-criticality systems are comprised of independently developed
components. For wide applicability, it is then natural that mixed-criticality strategies must
consider the impact of WCET violations across component boundaries. To the extent possible,
these strategies must limit this impact to within components, so that other components in
the system (high- as well as low-criticality ones) can continue their execution uninterrup-
ted. Considering the fact that different approaches may be used to compute the WCET
estimates within different components, we believe this is a reasonable requirement because
otherwise components can be unfairly penalized due to ill-computed WCET estimates of
other components. One extreme solution that addresses this requirement is the worst-case
reservation-based approach that completely isolates components but severly under-utilizes
the resources. On the other hand, most of the recent mixed-criticality studies such as
those mentioned above, completely ignore these component boundaries but still under-utilize
resources due to unrealistic assumptions.

Challenges

Based on the above discussions, we now summarize some of the main challenges in designing
an “efficiently safe” mixed-criticality system.
1. What is a good scheduling and execution strategy that can use component boundaries to

provide partitioning between functionalities, but at the same time is resource-efficient
and adequately supports low-criticality tasks? Some initial results in this direction are
presented in a recent article [8].

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 97

2. Is there any motivation to provide hierarchical scheduling for component-based mixed-
criticality systems? Since mixed-criticality scheduling strategies naturally isolate the
critical tasks from non-critical ones, can we meet the partitioning requirements using a
non-hierarchical scheduling framework?

3. The failure of existing studies to understand the implication and feasibility of abruptly
stopping/modifying the active low-criticality tasks is another important shortcoming that
has been highlighted [5]. Can we also address this issue by limiting the impact of WCET
violations to within components?

References
1 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

2 S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality sys-
tems. In Proc. IEEE RTSS, 2011, pages 34–43.

3 S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, and A Marchetti-Spaccamela. The Preemptive
Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline Spo- radic Task Systems. In
ECRTS, 2012.

4 A. Easwaran. Demand-based Scheduling of Mixed-Criticality Sporadic Tasks on One Pro-
cessor. In RTSS, 2013.

5 A. Burns, S. Baruah, K.M. Phan, and I. Shin Towards a more practical model for mixed
criticality systems In WMC, 2013.

6 H. Su and D. Zhu An elastic mixed-criticality task model and its scheduling algorithm. In
DATE, 2013.

7 P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-
criticality systems. In ASP-DAC 2014. In Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC).

8 X. Gu, A. Easwaran, K.M. Phan, and I. Shin Resource Efficient Isolation Mechanisms for
Mixed-Criticality Systems (Technical Report: Nanyang Technological University).
http://ntu.edu.sg/home/arvinde/preprints/ECRTS15.pdf In ECRTS, 2015.

4.3 Adding Cache and Memory Management to the MC2 (Mixed
Criticality on Multicore) Framework

James H.Anderson (The University of North Carolina at Chapel Hill, US)
anderson@cs.unc.edu

License Creative Commons BY 3.0 Unported license
© James H.Anderson

Keywords: cache coloring, set partitioning, way partitioning, memory banks, multicore

The multicore revolution is having limited impact in safety-critical application domains. The
key reason is the “one out of m” problem: when checking real-time constraints on a platform
with m cores, analysis pessimism can easily negate the processing capacity of the “additional”
m−1 cores. Two major approaches have been investigated previously to address this problem:
mixed-criticality allocation strategies that seek to provision less critical software components
less pessimistically, and hardware management strategies that seek to make the underlying
platform itself more predictable. While both approaches seem somewhat promising, neither
by itself has proven capable of practically resolving the “one out of m” problem. In this talk,

15121

http://ntu.edu.sg/home/arvinde/preprints/ECRTS15.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

98 15121 – Mixed Criticality on Multicore/Manycore Platforms

the results of an ongoing development effort will be discussed in which both approaches are
being applied together. This effort is based on a new variant of the MC2 (mixed-criticality
on multi core) [1, 2, 3] framework that enables tasks to be isolated by criticality level with
respect to the hardware resources they access. Experimental results will be presented that
demonstrate the efficacy of the overall framework (if such results are available by the time
the workshop is held).

References
1 J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. RTOS support for

multicore mixed-criticality systems. In RTAS, 2012.
2 M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos. Mixed criticality real-

time scheduling for multicore systems. In ICESS, 2010.
3 B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches more predictable

on multicore platforms. In ECRTS, 2013.

... and the industry has created the need for the mixed-criticality

4.4 Mixed-criticality in Railway Systems: A Case Study on Signaling
Application

A. Cohen (INRIA, FR),V. Perrelle (Technological Research Institute SystemX, FR), D. Potop-
Butucaru (INRIA, FR), E. Soubiran (Alstom Transport, FR), Z. Zhang (INRIA & Technolo-
gical Research Institute SystemX, FR)
albert.cohen@inria.fr

License Creative Commons BY 3.0 Unported license
© A. Cohen , V. Perrelle, D. Potop-Butucaru, E. Soubiran, Z. Zhang

Since the early 2000’s almost every new metro project in the world make use of a standardized
railway signalling system called Communication Based Train Control (CBTC) (IEEE 1474).
Previously to CBTC, conventional signalling train control systems were relying almost
exclusively on track circuits, wayside signals and operating procedures to ensure train
protection and operation. In order to ensure better operational performance (e.g. effective
utilization of the transit infrastructure), CBTC systems rest on three pillars: “Automatic
train control (ATC) based on high-resolution train location determination, independent of
track circuits”; “high-capacity and bidirectional train-to-wayside data communications”; and
“train-borne and wayside computing units that execute vital functions”. Functions are classified
within three families that are: Automatic Train Protection (ATP), Automatic Train Operation
(ATO) and Automatic Train Supervision (ATS). The level of criticality differs from a family
to another and without loss of generality, one can state that ATP functions are mostly
safety critical functions (SIL4 regarding to CENELEC 50126), whereas ATO and ATS gather
functions of low criticality (from SIL0 to SIL2). As a matter of fact, CBTC systems are
in essence Mixed-critical systems. Furthermore the mainstream evolution of those systems
tends toward more functional integration on more powerful computing units. ATP and ATO
functions that were traditionally distributed on different computing units (both on wayside
and train-borne) tends now to be deployed on the same computing units and thus sharing
resources.

FSF (Safe and reliable embedded system) is an IRT SystemX project positioned on two
topics, the first one is about the conception of signalling applications (typically ATO/ATP

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 99

Doors
command

Departure
authorization

Aligned &
enabled

doors

Doors
State

Train kinematic
state

Vital
Doors
cmd

P
ro

ce
ss

 in
p

u
ts

P
ro

ce
ss

 o
u

tp
u

ts

Enabled
doors

cmd

Dep
auth

Train &
doors
states

Figure 1 Simplified view of a mixed-critical path in the Passenger Exchange component.

application) that contain both critical and non-critical parts and the second one is on
execution platforms that execute those applications while offering high guarantee of safety
and availability. Industrial expectations around the execution platform include the use of
multi-core COTS, the use of modern RTOS that offer spatial and temporal isolation, the
use of safety and availability architectural patterns (e.g. voting and redundancy), and the
whole being finally hidden behind a “system abstraction layer”. On top of this platform,
a tooled framework is prototyped and allow one to develop, verify and deploy component
based applications where components may arbitrary contains both vital and non-vital code.
The project has started in May 2013, the aim of this communication is to propose a first
return of experience and a positioning on how MICS will be addressed in FSF.

Alstom Transport has defined an applicative case study that, while being limited to
one single ATC function, is representative of the complexity in term of vital/non-vital
code interweaving, operational performance and availability. The system function is called
“passenger exchange”. This function takes control on the train when this one is safely docked
at a station; it organizes the exchange of passengers (train and station doors opening/closing)
while protecting them from any untimely train movement or non-aligned doors opening and
finally gives the departure authorization when all safety conditions are met. The functional
specification is made of more than 300 requirements (natural language + SysML), and the
functional architecture is made of about twenty sub functions.

PE is designed as a system component with a vital and a non-vital part. At this level a
component is roughly a packaging unit that exposes to the exterior world a set of ports (in or
out) and that is characterized by a set of behaviours that depend on the operational context.
One shall notice that there are no restrictive design constraints on dataflow dependency
between the vital and non-vital part. This component is then implemented as a set of
software components which are this time exclusively vital or non-vital.

The vital and the non-vital parts need to communicate together. To illustrate this fact, we
give an example from the case study. Let’s take two constraints from the vital requirements.
The first one states that the component shall not transmit a departure authorization when
the doors are open or opening. It obviously implies that the component isn’t sending any
command to open the doors. The second requirements state that the system shall not send
commands to doors which are not safe to open. (e.g. because they are not aligned) To
meet these requirements, a vital subcomponent compute which doors shall be enabled. This
information is given to a non-vital component which compute which commands to send and
when to send them to achieve the assigned mission. Since this last component is not bound
by the same safety constraints, we can’t give the same confidence to its output. Hence, we

15121

100 15121 – Mixed Criticality on Multicore/Manycore Platforms

need to process these output with a vital component. The door commands are matched
against the enable set of doors initially computed and truncated if necessary to fulfil the
requirements. Finally, another vital component reads the door state and the commands
which have just been computed to decide whether to give a departure authorization or not.

This example shows that in our case study, there can be numerous communications
between small components of mixed criticality.

Synchronous approaches

Synchronous languages

Data-flow synchronous languages, such as Lustre [1] or Signal [2] have been designed
in the 80’s for program real-time safety critical embedded systems. Since then, they have
been widely used in industrial applications [3]. These languages emphasise a correct-by-
construction approach, ensuring bounded memory and execution time. Moreover, they are
praised for their predictable behaviour and formally defined semantics.

Recently, the problem of scheduling multi-rate, mixed-critical synchronous programs have
been addressed. At first for uni-processor [6] then for multi-processors [14]. Outside the
scope of mixed-criticality there were also several attempts to distribute synchronous data-flow
languages [4, 5]. Recent work have been done to develop these languages to target multi-core
platforms through the programming of parallelism [12]. This work introduces futures in
Lustre-like languages giving the guarantee that the sequential semantics is preserved.

Automatic allocation, partitioning, and scheduling

Due to their use in the avionics industry, synchronous languages have been considered
early on as an input formalism for the automatic or semi-automatic synthesis of real-time
implementations. Most significant in this direction are previous results by previous work by
Sorel et al. [7] on the AAA/SynDEx methodology and tool for distributed, but not time-
triggered, real-time implementation of multi-periodic synchronous specifications, previous
work by Caspi et al. on the use of Lustre/Scade in the real-time implementation of Simulink
over multi-processor platforms based on the time-triggered partitioned bus TTA [8], and
previous work by Forget et al. [9] on the specification and implementation of multi-periodic
applications over a time-triggered platform using the Prelude language.

But none of these approaches allow us to take into account all the characteristics of our
case study in order to allow automatic mapping. In particular, none of them has support for
ensuring the time and space separation between application parts with different criticalities.

This is why we considered in this project a new tool, named LoPhT [11, 10], which allows
the automatic mapping of applications onto platforms following the ARINC 653 time and
space partitioning mechanisms. The LoPhT tool has the flow pictured in Fig. 2. It takes
as input deterministic functional specifications provided by means of synchronous data-flow
models with multiple modes and multiple relative periods. These specifications are extended
to include a real-time characterization defining task periods, release dates, and deadlines.
Task deadlines can be longer than the period to allow a faithful representation of complex
end-to-end flow requirements. The specifications are also extended with allocation constraints
and partitioning information meant to represent the criticality of the various tasks, as well as
information on the preemptability of the various tasks. Starting from such specifications, the
LoPhT tool performs a fully automatic allocation and off-line scheduling onto partitioned
time-triggered architectures. Allocation of time slots/windows to partitions can be fully or
partially provided, or synthesized by LoPhT. The mapping algorithms of LoPhT take into

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 101

Figure 2 The design flot.

account the communication costs. The off-line mapping algorithms of LoPhT use advanced
mapping techniques such as software pipelining and pre-computed preemption to improve
schedulability and minimize the number of context switches.

Case study

The case study PE has been implemented and a first demonstrator has been produced. The
challenge for this first demonstrator was to propose a framework for on the one hand the
design and implementation of components and on the other hand the design of signalling
application its partitioning and scheduling.

Choice of software modelling language. We chose to use the language Heptagon, very
similar to Lustre and featuring novel constructions and novel optimisations. Two criteria
have influenced the choice of the language. First, the functional specification defined at
system level and allocated to software components have been written in a reactive and
mostly equational way. It was thus very natural to implement it in a synchronous data-flow
language. Second, the normative referential (CENELEC 50128) recommends the use of formal
methods for the development of critical software while making no restrictive assumption on
the language used for the non critical part. Synchronous languages are a good trade-off since
they enable the use of formal methods (for instance model checking or abstract interpretation)
while providing a sufficient power of expression to implement non-critical components. Finally,
having a single language to develop both critical and non-critical components allows not
only the early simulation of functional behaviour without integration effort but also the
rationalisation of competence in the software development team.

Scheduling and partitioning with LoPhT. Entering in the flow of the LoPhT tool, detailed
above, requires the definition of its input specification. For the functional specification part,
direct translation is possible from Scade/Heptagon to the input formalism of LoPhT (which
is also a data-flow synchronous language).

15121

102 15121 – Mixed Criticality on Multicore/Manycore Platforms

 command

P2 / Dur8 P0 / Dur7 P1 / Dur4 P0 / Dur4 P2 / Dur18

Doors state

Train kinematic state
......

Vital doors cmd
......

− Train and platform

− Simulation

−

− Proc. inputs

− Doors aligned

−

−

− Dep authorization

−

− Display

−

Non−vital cmd
......

Enabled doors
.....

Dep auth

MTF = 40

− Proc. ouputs

 & enabled

− Non−vital door

Figure 3 The partitional scheduling result of LoPhT.

Technical realisation. We developed the Passenger exchange components following a five
step process:
1. In a SysML environment, we produced a component design that realize the Passenger ex-

change function. System requirements are traced and refined to define atomic components
that correspond to software components and that are either safety-critical, mission-critical
or non-critical.

2. We matched every atomic component to a Heptagon node realizing the functional
behaviour.

3. Depending on the SIL of the component verification activities have been led but are out
of the scope of this communication.

4. Thanks to a dataflow model we have produced a small signalling application that gathers
several components including Passenger exchange, Train/Station interfaces and a simu-
lation of other system functions (train driving...). From Heptagon point of view the
application is trivially a node assembly. At this stage, a first executable code is produced
to simulate the application behaviour, however no insurance is given on spatial isolation.

5. In LoPhT, the application functions are decomposed into three partitions, which are “P0:
critical”, “P1: non-critical” and “P2: environment”. Meanwhile the function durations
are given (we suppose that each function takes one time scale unit). The scheduling
result is presented in the Figure 3. Five windows are created. The first one has eight
functions of the “environment” partition. In this window, the states of the doors and the
train kinematic are analyzed and finally sent to the corresponding windows. The second
window containing seven functions of the “critical” partition, which decide the critical
control commands. The third window is composed of four functions of the “non-critical”
partition. In this window, the non-critial control commands are generated. The fourth
window does the remaing critical works and the last window gives the feedbacks to the
“environment” component, such as a display screen. The code generated by LoPht is
simulated and tested on the POK OS [13].

To interface the software model with LoPhT, we needed to add a bit of glue code.
Each Heptagon node representing an atomic function has been wrapped with a static
memory. This wrapper exposes the two reset and step functions needed by the synchronous
paradigm. We extended the C backend of Heptagon to be able to generate these wrappers
automatically.

References
1 P. Caspi, D. Pilaud, N. Halbwachs and J.A. Plaice. LUSTRE: A Declarative Language for

Real-time Programming. Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, ACM, 178–188, 1987.

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 103

2 A. Benveniste, P. Le Guernic and C. Jacquemot. Synchronous Programming with Events
and Relations: The SIGNAL Language and Its Semantics. Sci. Comput. Program., Elsevier
North-Holland, Inc., 16, 103–149 1991.

3 A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, L. Robert and D.
Simone. The synchronous languages 12 years later. Proceedings of The IEEE, 64–83, 2003.

4 P. Aubry and P. Le Guernic. On the desynchronization of synchronous applications. 11th
International Conference on Systems Engineering, ICSE, 96, 1996.

5 P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis and P. Niebert. From Simulink
to SCADE/Lustre to TTA: A Layered Approach for Distributed Embedded Applications.
Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool for
Embedded Systems, ACM, 2003.

6 S. Baruah. Semantics-preserving Implementation of Multirate Mixed-criticality Synchron-
ous Programs. Proceedings of the 20th International Conference on Real-Time and Network
Systems, ACM, 11–19, 2012.

7 M. Marouf, L. George and Y. Sorel. Schedulability analysis for a combination of non-
preemptive strict periodic tasks and preemptive sporadic tasks. Proceedings ETFA, 2012.

8 P. Caspi, A. Curic, A. Magnan, C. Sofronis, S. Tripakis and P. Niebert. From Simulink
to SCADE/Lustre to TTA: a Layered Approach for Distributed Embedded Applications.
Proceedings LCTES, 2003.

9 C. Pagetti, J. Forget, F. Boniol, M. Cordovilla and D. Lesens. Multi-task Implementation
of Multi-periodic Synchronous Programs. Discrete Event Dynamic Systems, 21, 307–338,
2011.

10 T. Carle and D. Potop-Butucaru. Predicate-aware, Makespan-preserving Software Pipelin-
ing of Scheduling Tables. ACM Trans. Archit. Code Optim, 11, 12:1–12:26, 2014.

11 T. Carle, D. Potop-Butucaru and Y. Sorel and D. Lesens. From dataflow specification to
multiprocessor partitioned time-triggered real-time implementation. INRIA, 2012.

12 A. Cohen, L. Gérard and M. Pouzet. Programming Parallelism with Futures in Lustre.
Proceedings of the Tenth ACM International Conference on Embedded Software, ACM, 197–
206, 2012.

13 J. Delange, L. Pautet, and P. Feiler. Validating Safety and Security Requirements for
Partitioned Architectures. Proceedings of the 14th Ada-Europe International Conference
on Reliable Software Technologies, Springer-Verlag, 30–43, 2009.

14 E. Yip, M. Kuo, D. Broman, and P. S. Roop. Relaxing the Synchronous Approach for
Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS), pages 89–100. IEEE, 2014.

4.5 Confidence in Mixed-Criticality Multi-Core
Zoë Stephenson and Mark Pearce (Rapita Systems Ltd., UK)
{zstephenson,mpearce}@rapitasystems.com

License Creative Commons BY 3.0 Unported license
© Zoë Stephenson amd Mark Pearce

Keywords: WCET, assurance, assurance deficit, argument, partitioning

For aerospace applications, CAST-32 [1] indicates that applicants need to show both that
applications running on a multi-core processor have the desired behaviour, and that the
characteristics of the computing platform are understood and controlled.

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

104 15121 – Mixed Criticality on Multicore/Manycore Platforms

We believe that our process for measurement-based worst-case execution time (WCET)
estimation can be extended to account for mixed-criticality systems, many-core systems and
measurement-based testing for characteristics other than timing.

Hypothesis-driven Analysis

As an example, our method for exploring execution time is to perform standard functional
testing and measure end-to-end execution times, hypothesise that the longest measured time
is the worst that can occur, search for evidence to contradict this, and repeat the exercise
until further challenge to the hypothesis is no longer practicable. We use RapiTime for
on-target measurements and WCET path prediction as part of this process, but the method
is not restricted to a specific tool. Any lingering aspects that cannot be addressed through
this approach need to be accounted for with additional margins and protection mechanisms
(CAST-32 calls these “safety nets”).

Meeting CAST-32

CAST-32 contains many recommendations asking the applicant to demonstrate understanding
of the target. It is explicit in MCP_Software_2 that the verification environment should be
representative of the final intended hardware environment. By including iterative testing on
the target as part of the analysis process, we ensure that this is the case. We can then use
the guidance of CAST-32 to drive the search for counter-evidence challenging the execution
time hypothesis, which provides insight into the behaviour of the processor.

Beyond Execution Time

CAST-32 is concerned with other effects that can occur because of the multi-core platform –
delays in access to resources (data, devices, locks. . .), denial of access, out-of-order accesses or
incorrect accesses. These are compatible with the hypothesis-driven approach. For example,
a hypothesis that accesses are always in order may be established, and then testing improved
to try to cause out-of-order behaviour. In the eventuality that the erroneous behaviour can
be triggered, the testing process itself tells the analyst what to recommend to avoid triggering
the behaviour.

Extension to Mixed Criticality

Mixing criticalities implies some protection between those different criticalities. This may be
seen as another type of on-target constraint that the analyst can measure and challenge. It is
likely that this will be needed as multi- and many-core systems become more prevalent. We
expect that additional support may be needed from suppliers to be able to provide testing to
show that protection works for a specific application in a specific set of configurations in a
specific test environment.

Beyond Two Cores

The strategy in CAST-32 is to test what will run on each core individually, and then test
them together. When viewed from the perspective of hypothesis-and-challenge testing, we
suggest that it may be useful to test individual cores first in combination with a range of
“test” behaviours on other cores, to try to undermine the application on the core under test
with expected and unexpected use of shared resources.

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 105

Challenges

The recommendations of CAST-32 ask the applicant to explain what has been done to
understand and control the target behaviour. This is a complex task, with evidence both
about the behaviour of the software on target and about the process of exploring the unknown
behaviour of that target. We advise using a structured argument to present this explanation
as an assurance case.

Regardless of the approach taken, a significant challenge is to measure the behaviour on
a multi-core system without causing further interference. To this end, we advise engagement
to refine existing debug and trace capabilities so that interference is minimal and bounded,
and ideally entirely non-existent.

References
1 CAST. Multi-core Processors. Position Paper CAST-32, May 2014

4.6 Challenges in Mixed Criticality Systems Design – Integration Issues
Rolf Ernst (TU Braunschweig, DE)
ernst@ida.ing.tu-bs.de

License Creative Commons BY 3.0 Unported license
© Rolf Ernst

Current industrial developments lead to a growing number of tasks with different safety
criticalities sharing the same components of an embedded system. At the same time, high
performance is becoming more important. Prominent examples are the automotive and
avionics domains. In the talk, we explain the complex side effects of switched Ethernet
for automotive applications which make mixed critical designs hard. A main challenge
arises from the many dependencies between the numerous layers of an architecture that
are typically not overseen by a single person in the design process. We propose applying
dependency analysis to identify possible hidden effects between function executions and
between components. We conclude that mixed criticality are as complex as the underlying
architectures and mechanisms. Solutions to individual problems, such as scheduling, are not
sufficient, because safety (like security) is dominated by the weakest link. Challenges often
arise from integration mechanisms that shall improve efficiency. Research should, therefore,
address effective and efficient mechanisms for bounding interference on all levels, not only of
time. Another important topic are mechanism which work under errors.

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

106 15121 – Mixed Criticality on Multicore/Manycore Platforms

Hard and soft, low and high, how mixed-criticality makes the difference
between important and urgent?

4.7 Real-time Performance Evaluation and VT Control mechanisms for
the timing correct use of shared main memory

Kai Lampka (Uppsala University, SE)
kai.lampka@it.uu.se

License Creative Commons BY 3.0 Unported license
© Kai Lampka

Joint work of Lampka, Kai; Georgia Giannopolou; Nikolay Stoimenov (ETH Zurich); Jonas Flodin; Yi Wang
Main reference K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, N. Stoimenov, “A formal approach to the

WCRT analysis of multicore systems with memory contention under phase-structured task sets,”
Real-Time Systems, 50(5):736–773, 2014.

URL http://dx.doi.org/10.1007/s11241-014-9211-y

This presentation considers sets of real-time tasks executing in parallel on different cores
and sharing parts of the memory hierarchy. For quantifying and handling contention at the
DRAM controller this presentation presents the following recent innovations.

Worst-case response time analysis based on Timed Automata

The proposed method exploits the so-called superblock model of the work of Schranzhofer et
al. [2], respectively the PRedictable Execution Model (PREM) of Pellizzoni et al. [3]. This
limits the time non-determinism inherent to the occurrence of cache misses, respectively
memory (data) fetches. To achieve scalability we suggest to replace some of the Timed
Automata models with an abstract representation based on access request arrival curves,
rather than using an individual component TA model for each core and its real-time workload.

Memory access bandwidth control

The proposed adaptive budgeting technique controls the access frequencies of applications to
the main memory. To bound the interference of co-running soft real-time tasks, past works
have proposed periodic server- based memory access reservation mechanisms [7, 5, 4, 6]. As
the computed budgets are commonly extremely pessimistic, they reflect the worst-case rather
than the normal resource use, it can be assumed that tasks under memory access budgeting
experience a severe degradation of their average response time. For the hard real-time
tasks, commonly implementing system control functions, this degradation is irrelevant, what
matters is the guarantee that all deadlines are met. However, for user-centric soft-real time
applications performance degradation should be reduced. The presented approach addresses
this obstacle by dynamically changing sizes of budgets or simply ignoring them once a hard
real-time tasks has terminated before its set worst case response time and there is no job
release of some other hard real-time task.

References
1 K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov. A formal approach

to the WCRT analysis of multicore systems with memory contention under phase-structured
task sets. Real-Time Systems, 50(5-6):736–773, 2014.

2 A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo. Timing analysis
for resource access interference on adaptive resource arbiters. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 213–222, 2011.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 107

3 G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-centric scheduling for
multicore hard real-time systems. Real-Time Systems Journal, 48(6):681–715, Nov 2012.

4 W. Jing. Performance isolation for mixed criticality real-time system on multicore with
xen hypervisor. Master’s thesis, Uppsala University, Department of Information Technology,
2013.

5 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in mul-
tiprocessor for real-time systems with mixed criticality. In Real-Time Systems (ECRTS),
2012 24th Euromicro Conference on, pages 299–308, 2012.

6 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pages
55–64, 2013.

7 M. Behnam, R. Inam, T. Nolte, and M. Sjödin. Multi-core composability in the face of
memory-bus contention. SIGBED Rev., 10(3):35–42, Oct. 2013.

8 J. Flodin, K. Lampka, and W. Yi. Combining Performance Monitoring and Resource
Budgeting on Multi-core for Real-Time Guarantees. In MCC 2013 – Sixth Swedish Work-
shop on Multicore Computing, 2013.

4.8 System-level, Inter-Criticality, Multi-Core Resource Sharing with
Scalable Predictability

Gabriel Parmer (The George Washington University, Washington, DC, US)
gparmer@gwu.edu

License Creative Commons BY 3.0 Unported license
© Gabriel Parmer

Background

Multi-core systems have proven to be a double-sided sword for embedded and real-time
systems. They provide increases in computational power that promise to not only consolidate
previously distributed systems together, but also to increase the computational capability,
thus intelligence and functionality, of embedded systems. However, these parallel systems
present a significant challenge due to the interference between tasks caused by increased
resource sharing between cores. For example, different cores often share hardware resources
such as last-level caches (LLC) and memory buses. Past research has addressed each of
these in turn by, for example, partitioning memory [1] or cache [2]. An inescapable challenge
not addressed by these techniques is the interference caused by the sharing relationships of
data-structures within software due to cache coherency. This problem is complementary to
previous approaches, and it is particularly important: a store to a cache-line can (on our
40-core, 4 socket, cache-coherent hardware) take three cycles, or more than 27µs, depending
on coherency behavior.

Note that this is relevant to all shared structure access, and is orthogonal to the mech-
anisms for mutual exclusion and their resource sharing protocols. When considering such
implementations, even predictable (FIFO) spin-locks that are known to be scalable in the
average case (MCS locks), have worst-case latencies of 50µs which increases to 65µs if even a
single cache line is modified within the critical section.

The impact of the overhead for loads and stores that access data-structures on shared
cache lines not only impacts a task’s response time, but also increases the interference
between competing tasks. One task’s data-structure access pattern in the kernel can increase

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

108 15121 – Mixed Criticality on Multicore/Manycore Platforms

the latency of another. This cross-talk makes temporal isolation difficult across criticalities.
A high criticality task, tested in isolation on a system could suffer memory access latency
spikes when a low criticality task is added to the system that contends a shared kernel
data-structure.

Scalable Predictability

Just as the real-time community designs techniques to provide isolation given access to
shared hardware resources such as cache and memory buses, this talk will discuss the major
challenges in designing software to enable controlled access to data-structures that are shared
between tasks of different criticalities across cores. Specifically, our goal is to provide access
to data-structures shared between cores that not only scales with increasing core counts in
terms of average-case performance (i.e. the per-operation overhead doesn’t increase), but
also in terms of the worst-case latencies. We call this scalable predictability, and it is a strong
form of scalability that focuses on the worst-case overheads from cache-line coherency traffic
– in addition to the average behaviors that are often the focus of scalable systems – and on
avoiding coherency traffic all-together. Scalable predictability means that the latency bounds
provided on a single core and in isolation of all lower criticalities, don’t increase with a rising
number of cores.

Techniques for Scalable Predictability

This talk will be discussing recent work that will appear in RTAS, and more recent research
into further techniques for scalable predictability. Methods and mechanisms to handle
concurrent data-structure access are derived or borrowed from techniques in the High-
Performance Computing and scalable software construction realms.

Existing techniques. Here we’ll briefly survey existing concurrency control mechanisms for
shared data-structures, and assess them for their scalability properties. We assume that the
data-structures to be protected are both accessed on multiple cores, and by tasks of multiple
criticalities (though the code that defines the access methods for the data-structure is of high
assurance [3]). In other words, they are typical kernel data-structures.

Predictable locks. Locks are often backed by at least one common cache-line. The
cache-coherency traffic due to this cache-line “bouncing” between caches results in the
significant overheads discussed previously.
Read-write locks. Many data-structures are read mostly, thus enabling parallel access for
readers to the data structures increases parallelism. However, these locks suffer from the
same deficiency with respect to scalable parallelism as normal predictable locks: large
worst-case latencies due to bouncing the lock’s cache line (or in some cases, multiple
cache-lines).
Read-Copy-Update (RCU). RCU enables very low overhead reads to data-structures,
often without any writes to shared structures. However, modifications to such structures
involves ensuring that no readers are still accessing the modified portions before returning.
This heavily penalizes writers that require coherency traffic for consensus. Thus RCU is
mainly used in read-mostly workloads.
Reference counting. Object liveness is often interrelated with mutual exclusion as refer-
ences to an object can only be removed with proper coordination between the object, and
the data-structure that is referencing it. Reference counting is the pervasive technique

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 109

often used to track this, but it suffers from average-case scalability overheads, let alone
issues with scalable predictability.

Techniques for scalable predictability. This talk will include an overview of a few techniques
we propose as serving as a foundation for a community investigation of worst-case scalability.
These include:

Lock-less lookup structures with fine-grained consistency control. Operating systems
often must map between an opaque identifier (e.g. a file descriptor, mailbox id, process
identifier), and the data-structure that backs it. The very data-structures that typically
provide this map often require protection with locks. Thus, regardless of which criticality
is accessing the namespace, and on which core, data-structure modification, and lock cache-
line bouncing significantly impact high-criticality latencies. Lock-less data-structures
that rely on liveness based on the very timing properties provided by the system (see
quiescence below) provide a strong foundation for worst-case scalability.
Explicit mapping of namespaces to cache-line accesses. Though the objects tracked
in the kernel can be located without any cache-line modifications using the previous
technique. However, once located, any modifications to the object must not impact the
cache-lines of other objects. The goal is to enable the users of the API to tailor their
access to the namespace to explicitly avoid accesses and modifications to cache lines for
any other object. When data-structures require modification, the goal here is to enable
the modifications to be at the finest possible granularity, so that scalable predictability is
only compromised when cores and criticalities access the exact same object.
Quiescence-based liveness. By avoiding any shared cache-line modification on kernel
object lookup, the liveness question must be answered. Can a kernel object be deallocated,
or are there parallel accesses to it on another core? Quiescence-based memory reclamation
answers this question by ascertaining a point in the future when all references accessed
before the object is freed, cannot persist. Real-time and predictable systems offer a
significant benefit here: we can base our quiescence period on the latency bounds provided
by the system itself.

Case Study: The SPeCK Kernel

This talk will discuss a case study we’ve conducted for scalable predictability in the SPeCK
kernel [4] which is our new kernel for the Composite component-based OS. Through a
combination of using the techniques listed above, it is able to provide scalable predictability
guarantees for many of its most important operations. Notably, the operations used by
computation in hard real-time components are worst-case scalable, and even operations that
have traditionally never had scalable solutions, such as TLB coherence on page unmap, are
usable in real-time computation. Additionally, SPeCK provides the features required by
Composite systems: all resource management policies and most system abstractions are
defined in user-level components including scheduling, memory mapping management, and
I/O.

References
1 H. Kim, D. deNiz, B. Andersson, M. Klein, O. Mutlu, and R. (Raj) Rajkumar, “Bounding

memory interference delay in COTS-based multi-core systems,” in RTAS, 2014.
2 H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for practical OS-level

cache management in multi-core real-time systems,” in ECRTS, 2013.

15121

110 15121 – Mixed Criticality on Multicore/Manycore Platforms

3 E. Armbrust, J. Song, G. Bloom, and G. Parmer, “On spatial isolation for mixed criticality,
embedded systems,” in 2nd International Workshop on Mixed Criticality Systems (WMC),
2014.

4 Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for scalable predictabil-
ity,” in Proceedings of the 21st IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2015.

4.9 Mixed Criticality Support on Networks-on-Chip
Leandro Soares Indrusiak (University of York, UK)
lsi@cs.york.ac.uk

License Creative Commons BY 3.0 Unported license
© Leandro Soares Indrusiak

Overview

Networks-on-Chip (NoCs) are a widely used on-chip interconnect architecture for large
multi and many-core processors. They provide packet-switching infrastructure for multiple
types of system-wide communications, such as message passing between tasks running on
different cores, data transfers between external memories and local scratchpads, or paging
and coherency mechanisms for multi-level caches. In the work reported here, we focus on
the first two types of communication, which deal with coarse-grain communications (i.e.
messages and data blocks rather than cache lines). Thus, we consider that mixed-criticality
application tasks executing over such a processor exchange data packets of different criticality
levels through the NoC infrastructure. This leads to a situation where the transmission of
a packet has potential impact over the latency of all the others. Therefore, the design of
the NoC infrastructure must logically separate packets of different criticality, so that their
distinct requirements can be satisfied even though they share the same interconnect.

Mixed-Criticality Networks-on-Chip

WPMC [1] is a protocol applied to NoCs with virtual channels (VCs) that are arbitrated
at the flit-level using a priority-preemptive mechanism. This means that each output port
will send out, in every cycle, a data word (flit) from the input VC with the highest priority.
WPMC aims to provide hard real-time guarantees to all criticality levels (i.e. all packets
will arrive by their deadlines even in the worst-case scenario) and supports sporadic as well
as periodic traffic patterns. It follows Vestal’s assumption [2] that application components
of high criticality will be given more generous upper bounds for their timing behaviour,
e.g. due to more strict analysis or to larger safety margins; and that components of low
criticality, which are likely to be analysed with less strict techniques or which are given
smaller safety margins, will have tighter upper bounds for their timing behaviour. In line
with that approach, WPMC assumes that high-criticality traffic is likely to have potentially
larger packets, or having packets injected more often into the NoC, as this would be a safer
upper bound on the load it may impose to the NoC.

A key idea of WPMC, which was also used in the AMC scheduling algorithm [3], is
that traffic of high criticality could also be analysed with the same techniques and safety
margins used to profile low criticality traffic, and thus be given tighter upper bounds to its
timing behaviour. The tight upper bounds can be used to dimension the NoC in such a
way that all packets will always meet their deadline, as long as they don’t exceed their low

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 111

criticality upper bounds (i.e. maximum packet size, minimum packet inter-arrival interval).
WPMC uses runtime monitoring to check whether all high- criticality traffic stays within their
low-criticality upper bounds. The moment one of them exceeds that bound, the system is said
to change into a high-criticality mode. To guarantee the timely delivery of all high-criticality
packets under that mode, the NoC is allowed to drop all low-criticality traffic (as a way
to achieve graceful degradation). Thus, to ensure the system is dimensioned to cope with
the high-criticality mode, it must be able to support only the high-criticality traffic, but
considering their more generous upper bounds. In [1], we defined the NoC mechanisms to
perform the runtime monitoring, signalise mode change, and to change the NoC arbitration
policies to drop low-criticality traffic. We also provided schedulability analysis to evaluate
whether a given NoC is properly dimensioned to cope with the traffic produced by a given
(set of) application(s) under the default low-criticality mode, as well as during and after a
change to the high-criticality mode is detected.

A number of extensions and improvements to WPMC are currently being researched and
developed, including:

An alternative mode-change propagation strategy that floods the network and forces the
whole NoC to change its criticality level.
An improved credit-based flow control that allows low criticality packets to be transferred
without impact on high criticality packets, even after a mode change.
The set of conditions that must be satisfied before a mode change from high to low-
criticality mode, which has not been supported by WPMC.
Task allocation heuristics that can be used to improve schedulability of a given mixed-
criticality application mapped onto a specific NoC.
This contribution will provide an overview of WPMC, and will present the progress on

each one of the extensions and improvements mentioned above.

References
1 A. Burns, J. Harbin and L.S. Indrusiak. A Wormhole NoC Protocol for Mixed Criticality

Systems In Proc. IEEE RTSS, pages 184–195, 2014.
2 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

3 S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality
systems. In Proc. IEEE RTSS, 2011, pages 34–43.

How do we map criticalities to certification levels – a probabilistic
attempt

4.10 Mapping cricalities to certification levels – a probabilistic attempt
Liliana Cucu-Grosjean and Adriana Gogonel (INRIA, FR)
{liliana.cucu,adriana.gogonel}@inria.fr

License Creative Commons BY 3.0 Unported license
© Liliana Cucu-Grosjean and Adriana Gogonel

Some context

The main feature of time critical embedded systems concerns the respect of temporal
constraints. The correctness of each computation within these systems depends on both the

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

112 15121 – Mixed Criticality on Multicore/Manycore Platforms

Synchronous**
Models*

Model*
Checking*

Asynchronous**
Models*

Processor*

Real78me*
Scheduling*

Control*
Theory*

Func8onal*
requirem

ents*
Im

plem
enta8on*

Figure 4 Different phases of the design of a time critical embedded system.

logical results of the computation and the time at which these results are produced.
The design of a time critical embedded system may have basically three main phases: (i)

the description of the physical process that should be controlled, (ii) the description of the
functional requirements that should be fulfilled and (iii) the description of the implementation
of the time critical embedded system. During the first phase the characteristics of the physical
process are described using control theory. Then a model is proposed using synchronous
or asynchronous modelling and this model is verified using model checking. At the end of
the second phase the designer has a model of the system that is correct with respect to the
expected functional requirements. During the last phase (of implementation), the processors
are taken into account and the time feasibility of the system is checked using methods like
formal verification or real-time schedulability analysis. The relations between different phases
of conception is provided in Figure 4.

The pessimism of all existing solutions comes mainly from the implementation phase
where an absolute value is considered for the worst case execution time of a program. The
arrival of modern and more complex processors (e.g., use of caches, multi- and many-core
processors) increases the timing variability of programs, i.e., the absolute worst case execution
time is becoming significantly larger. For instance, larger execution times require an increased
number of processors or more powerful processors.

Our open problem

An intuitive solution to overcome this pessimism is the introduction by Steve Vestal [1] of
the notion of mixed criticality for time critical embedded systems. This solution defines
several possible values for the worst case execution time of a program on a processor and it
has propagated from the original work on scheduling theory [2] to synchronous languages [3],
predictable processors [4], model checking [5], etc.

Nevertheless today the mixed criticality solutions are heterogeneous and they are proposed
for different phases of design without a common framework. In conclusion we identify as
vital the need for a modular framework unifying heterogeneous solutions of the
design problem of mixed criticality systems without re-writing the entire theory
of time critical embedded systems.

Our intuition is that probabilistic description of some parameters or properties
of existing models is a possible solution to the problem of designing time critical
embedded systems.

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 113

Nevertheless the introduction of probabilities is not trivial as not every probabilistic
approach may be used to study time critical embedded systems. Indeed the introduction
of probabilistic descriptions in all phases of the design of time critical embedded systems
should be done such that the two following properties are ensured:
1. worst case values are rare events;
2. probabilistic worst case reasoning is applicable.

References
1 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

2 A. Burns and R. I. Davis. Mixed Criticality Systems – A Review. Department of Computer
Science, University of York, Report. Fourth edition, July 31, 2014.

3 E. Yip, M. Kuo, D. Broman, and P. S. Roop. Relaxing the Synchronous Approach for
Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS), pages 89–100. IEEE, 2014.

4 M. Zimmer, D. Broman, C. Shaver, and E.A. Lee. FlexPRET: A Processor Platform
for Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS), pages 101–110. IEEE, 2014.

5 A.J. Boudjadar and A. David and J. Kim and K.G. Larsen and M. Mikucionis and U. Ny-
man and A. Skou. Degree of Schedulability of Mixed-Criticality Real-Time Systems with
Probabilistic Sporadic Tasks. In the book Theoretical Aspects of Software Engineering Con-
ference, 2014

4.11 Response Time Analysis for Fixed-Priority Tasks with Multiple
Probabilistic Parameters

Dorin Maxim (The Polytechnic Institute of Porto, PT)
dorin@isep.ipp.pt

License Creative Commons BY 3.0 Unported license
© Dorin Maxim

Joint work of Maxim, Dorin; Cucu-Grosjean, Liliana;
Main reference D. Maxim, L. Cucu-Grosjean, “Response Time Analysis for Fixed-Priority Tasks with Multiple

Probabilistic Parameters,” in Proc. of the IEEE 34th Real-Time Systems Symposium (RTSS’13),
pp. 224–235, IEEE, 2013.

URL http://dx.doi.org/10.1109/RTSS.2013.30

Introduction

We consider a system of n synchronous tasks {τ1, τ2, . . . , τn} to be scheduled on one processor
according to a preemptive fixed-priority task-level scheduling policy. Without loss of generality,
we consider that τi has a higher priority than τj for i < j. By synchronous tasks we understand
that all tasks are released simultaneously the first time at t = 0.

Each task τi generates an infinite number of successive jobs τi,j , with j = 1, . . . ,∞. All
jobs are assumed to be independent of other jobs of the same task and those of other tasks.

Each task τi is a generalized sporadic task [1] and it is represented by a probabilistic worst
case execution time (pWCET) denoted by Ci

2 and by a probabilistic minimum inter-arrival
time (pMIT) denoted by Ti.

2 In this paper, we use calligraphic typeface to denote random variables.

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1109/RTSS.2013.30

114 15121 – Mixed Criticality on Multicore/Manycore Platforms

The probabilistic execution time (pET) of a job of a task describes the probability that
the execution time of the job is equal to a given value. A safe pWCET Ci is an upper bound
on the pETs Cj

i , ∀j and it may be described by the relation � as Ci � Cj
i , ∀j. Graphically

this means that the CDF of Ci stays under the CDF of Cj
i , ∀j.

Following the same reasoning the probabilistic minimal inter-arrival time (pMIT) denoted
by Ti describes the probabilistic minimal inter-arrival times of all jobs. The probabilistic
inter-arrival time (pIT) of a job of a task describes the probability that the job’s arrival
time occurs at a given value. A safe pMIT Ti is a bound on the pITs T j

i , ∀j and it may be
described by the relation � as T j

i � Ti, ∀j. Graphically this means that the CDF of Ti stays
below the CDF of T j

i , ∀j.
Hence, a task τi is represented by a tuple (Ci, Ti). A job of a task must finish its execution

before the arrival of the next job of the same task, i.e., the arrival of a new job represents
the deadline of the current job. Thus, the task’s deadline may also be represented by a
random variable Di which has the same distribution as its pMIT, Ti. Alternatively, we can
consider the deadline described by a distribution different from the distribution of its pMIT
if the system under consideration calls for such model, or the simpler case when the deadline
of a task is given as one value. The latter case is probably the most frequent in practice,
nevertheless we prefer to propose an analysis as general as possible and in the rest of the
paper, we consider tasks with implicit deadlines, i.e., having the same distribution as the
pMIT.

Problem description: We address the problem of computing the response time distributions
and, implicitly, Deadline Miss Probabilities (DMP) of tasks with pMIT and pWCET. The
response time of a job is the elapsed time between its release and its completion. Since we
consider jobs with probabilistic parameters, the response time of a job is also described by a
random variable. The DMP of a job is obtained by comparing the response time distribution
of said job and its deadline, be it a probabilistic deadline or a deterministic one. This is a
novel problem, and the fact that the system under consideration has more than one task
parameter given as a distribution makes it a complex one.

Probabilistic response time analysis

The probabilistic worst case response time (pWCRT) Rn of a task τn in the critical instance
is computed by coalescing all the distributions Ri,j

n (called copies) resulted by iteratively
solving the following equation (from [2]):

Ri,j
n = (Ri−1,head

n ⊕ (Ri−1,tail
n ⊗ Cpr

m))⊗ Ppr (1)

The iterations end when there are no more arrival of any job i of any higher priority
task τm that occurs within the response time distribution at the current step. A stopping
condition may be explicitly placed in order to stop the analysis after a desired response time
accuracy has been reached. For example, the analysis can be terminated once an accuracy
of 10−9 has been reached for the response time. In our case, the analysis stops when new
arrivals of the preempting tasks are beyond the deadline of the task under analysis, i.e., the
type of analysis required for systems where jobs are aborted once they reach their deadline.

Once the jobs’ response time distribution can be computed, the Deadline Miss Probability
can be obtained by comparing the response time distribution with that of the deadline, as
follows:

Bi = Ri 	Di = Ri ⊕ (−Di), (2)

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 115

where the 	 operator indicates that the values of the distribution are negated.
Note that the analysis can handle any combination of probabilistic and deterministic

parameters, and in the case that all parameters are deterministic the returned result is the
same as the one provided by the worst case response time analysis in [3]. More details about
the analysis can be found in [2].

References
1 A. Ka-Lau Mok (1983). Fundamental Design Problems of Distributed Systems for the Hard-

Real-Time Environment. Massachusetts Institute of Technology.
2 D. Maxim and L. Cucu-Grosjean. Response Time Analysis for Fixed-Priority Tasks with

Multiple Probabilistic Parameters. In Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013.

3 M. Joseph and P.K. Pandya. Finding response times in a real-time system. In The Com-
puter Journal 29(5):390–395, (1986).

What is the meaning of mixed-criticality when time is the keyword?

4.12 Viewpoints on the Timing Aspect of Mixed Criticality Systems
David Broman (KTH Royal Institute of Technology, SE)
dbro@kth.se

License Creative Commons BY 3.0 Unported license
© David Broman

Mixed criticality systems can be informally defined as systems where software components,
with different levels of criticality, execute on the same hardware platform. Starting with
the paper by Vestal [1] in 2007, a large body of research results has been presented within
the real-time community. The common research problem can be seen as the challenge of
reconciling the two requirements of partitioning for safety, and sharing resources [2]. There
are, however, several different viewpoints on the timing aspects of mixed criticality systems;
in particular of the meaning of criticality levels. We separate between two distinct viewpoints:
i) the implementation view, and ii) the specification view.

In the implementation view, the model and meaning of criticality level also include aspects
of the implementation. That is, consideration needs to be taken to the actual hardware
platform and operating system (OS) that are used. Vestal’s classic task model [1] falls into
this category; different WCET estimate numbers are used for different criticality levels. To be
able to get these numbers, programs need to be executed and measured on the real hardware
platform, or accurate timing models of the hardware need to be used when computing safe
bounds of the WCET. Other variants of Vestal’s model, for instance Burns and Baruah’s
variant [3], can also be considered to fall into the same category. Both these examples are
based on software scheduling for mixed criticality systems.

Another approach is to perform the scheduling in hardware. The FlexPRET [4] processor
platform is an example of hardware-based scheduling using fine-grained multithreading. In
this approach, several hardware threads are used, which either fall into the category of hard
real-time threads or soft real-time threads. Hard real-time threads are guaranteed to have
both temporal and spatial isolation, whereas soft real-time threads do not have temporal
isolation, but can steal cycles from the hard real-time threads when they are not active.
Tasks with different levels of criticality can then be scheduled on either hard real-time or

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

116 15121 – Mixed Criticality on Multicore/Manycore Platforms

soft real-time threads using only hardware scheduling or with a combination of hardware
and traditional software scheduling. Clearly, this approach for ensuring the timing aspects of
mixed criticality systems falls under the category of the implementation view.

An alternative is to use a specification view for the timing aspects. For such a viewpoint,
nothing within the definition of the criticality levels should say anything about implementation
aspects. One such approach is to define the criticality levels using frequency bounds. Yip et
al. [5] proposes such approach, where tasks are divided into three different criticality levels.
Each periodic task has two frequency parameters: fmax and fmin, meaning that the task is
allowed to be executed with a frequency that falls within this interval. For life critical tasks,
fmax = fmin and for mission critical tasks fmax > fmin. For non-critical tasks, fmax is the
goal frequency and fmin = 0. Note that this task model does not say anything about the
implementation technique or WCET numbers for specific platforms. The different criticality
levels are specified using constraints on timing.

The idea of using timing specifications can be taking further to make it more expressive.
We call this approach programming with time, meaning that time and timing become part
of a programming model. At the Dagstuhl seminar, I presented some work-in-progress
about incorporating time in a small language, by formalizing the semantics using small-step
operational semantics.

References
1 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

2 A. Burns and R. I. Davis. Mixed Criticality Systems – A Review. Department of Computer
Science, University of York, Report. Fourth edition, July 31, 2014.

3 A. Burns, S. Baruah, K. M. Phan, and I. Shin Towards a more practical model for
mixed criticality systems In WMC, 2013.

4 M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. FlexPRET: A Processor Platform
for Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS), pages 101–110. IEEE, 2014.

5 E. Yip, M. Kuo, D. Broman, and P. S. Roop. Relaxing the Synchronous Approach for
Mixed-Criticality Systems. In Proceedings of the 20th IEEE Real-Time and Embedded
Technology and Application Symposium (RTAS), pages 89–100. IEEE, 2014.

4.13 Mapping the landscape of mixed criticality systems research
Sanjoy K. Baruah (University of North Carolina at Chapel Hill, US)
baruah@cs.unc.edu

License Creative Commons BY 3.0 Unported license
© Sanjoy K. Baruah

There appears to be general agreement on the definition of mixed-criticality systems: a
mixed-criticality system is a system in which functionalities of different specified criticalities
are implemented upon a shared platform. Beyond this general definition, however, the
situation parallels that described in John Godfrey Saxe’s poem The Blind Men and the
Elephant: different interpretations abound, each highlighting selected aspects of mixed-
criticality systems while choosing to minimize (or ignore) other aspects. It is important to
be cognizant of these different perspectives, and to better understand the different contexts

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 117

and requirements that motivate the different interpretations; else, we end up with different
sub-communities speaking across one another and misunderstanding each other – the same
terms mean very different things to different people. Some of the different perspectives that
I am aware of are listed below.

Perspective 1. A perspective that is found in the safety-critical systems industry holds
that different criticality levels are user-specified attributes that have no additional semantic
interpretation – different criticality levels are not really comparable to each other. Different
requirements, such as correctness criteria, are specified for different criticality levels; each
functionality is expected to satisfy the requirements for its specified criticality level. For
instance, a presentation3 advocating this perspective explicitly states:

What [a mixed-criticality system] is NOT: A system where system approach sacrifices
lower criticality applications for whatever purpose.

If the different criticality levels are assumed incomparable in this manner, then a reasonable
objective of mixed-criticality research should be to devise mechanisms and policies that
enable isolation amongst the different criticality levels. The research questions here then seek
to determine how best to provide such isolation upon modern platforms (such as multicores),
particularly as systems become increasingly more complex.

Perspective 2. In much of the mixed-criticality real-time scheduling literature, it is as-
sumed that the different criticality levels correspond to different degrees of importance: a
functionality that is semantically more important is assigned greater criticality. (For example,
safety-critical functionalities may be accorded greater criticality than mission-critical ones.)
The research objective here is to seek more resource-efficient implementations of such mixed-
criticality systems. Such research may be classified into two broad categories according to
the different approaches adopted:

Perspective 2A (Run-time adaptation). Under this approach a mixed- criticality system
starts out executing functionalities of different criticalities, based upon optimistic as-
sumptions regarding resource requirements. If these optimistic assumptions are observed
during run-time to not hold, then the system adapts its run-time behavior to allocate
additional resources to the more critical functionalities; less critical functionalities receive
less resources and may experience a consequent degradation in performance.
Perspective 2B (Pre-run-time verification). Such research is based on the principle
that resources must be provisioned under more conservative assumptions to more critical
functionalities, in order to meet their more stringent correctness criteria – those typically
include a requirement that such functionalities have their correctness validated to higher
levels of assurance. Some of these provisioned resources may then be reclaimed during
system design time itself, and used to make performance guarantees at lower levels of
assurance to less critical functionalities. (This is the approach that is currently commonly
referred to within the real-time scheduling theory community as the Vestal approach, in
recognition of the fact that is was first proposed in a paper4 by Vestal.) The research

3 Michael Paulitsch (Thales) and Jan Nowotsch (Airbus Group). Monitoring Techniques in COTS
Multicore Processors in Mixed-Criticality Systems with Focus on Temporal Aspects. Torrent Workshop,
Toulouse, December 12, 2014. Slides available at http://www.irit.fr/torrents/seminars/20141212/
20141212-paulitsch.pdf (Date accessed: 2015/02/18).

4 Steve Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution
Time Assurance. Proceedings of the IEEE Real-Time Systems Symposium (RTSS), pp. 239–243. 2007.

15121

http://www.irit.fr/torrents/seminars/20141212/20141212-paulitsch.pdf
http://www.irit.fr/torrents/seminars/20141212/20141212-paulitsch.pdf

118 15121 – Mixed Criticality on Multicore/Manycore Platforms

activities within this category include seeking novel innovative ways of achieving such
design-time resource reclamation.

Summary. Above, three different perspective to mixed-criticality systems research have
been identified. Perspective 1 differs greatly from the two perspectives 2A and 2B, while
the differences between 2A and 2B are somewhat more subtle. It is important to identify
additional perspectives that may exist, and to study the relationships between these different
perspectives in order to understand whether there are commonalities that allow for mutually
beneficial interaction amongst advocates of the different perspectives, perhaps leading to the
development of common research agendas.

4.14 Some Open Problems in Mixed-Criticality Scheduling
Pontus Ekberg (Uppsala University, SE)
pontus.ekberg@it.uu.se

License Creative Commons BY 3.0 Unported license
© Pontus Ekberg

I list a few open problems that I consider foundational for our understanding of mixed-
criticality scheduling theory. Sprinkled among the questions are a few related claims, these
are accompanied by much waving of hands. The questions concern the scheduling of mixed-
criticality workload of the common “Vestal-type”. In addition, they are restricted to systems
with two criticality levels (lo and hi) running on a preemptive uniprocessor. Not because
that is necessarily the most interesting case, but because we need to understand the basics
first.

Let us start by considering static collections of mixed-criticality jobs, and denote with
MC-Job-Schedulability the decision problem of whether a given collection of jobs has
a correct online (i.e., non-clairvoyant) schedule. Further, let us slightly abuse established
notation and denote with EDF-VD the family of schedulers that follow these rules:
1. Schedule all jobs Ji in EDF order, but according to their virtual deadlines vi instead of

absolute deadlines di.
2. In lo-criticality mode,

a. vi = di for lo-jobs and
b. vi ∈ [ai, di] for hi-jobs.

3. In hi-criticality mode,
a. vi =∞ for lo-jobs and
b. vi = di for hi-jobs.

Baruah et al. [1] showed MC-Job-Schedulability to be strongly NP-complete for
any constant number of criticality levels. The hardness part of their proof is a reduction
from 3-Partition. It is fairly easy to see that all feasible job collections they construct
are schedulable by some scheduler in the EDF-VD family, and given such a scheduler it can
be verified whether it is correct in polynomial time. Therefore, it must be hard to identify
which scheduler in the EDF-VD family to use.

Claim

Finding an optimal assignment of virtual deadlines for MC job collections when using
EDF-VD is strongly NP-hard.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 119

Why this focus on the EDF-VD family? It is because I believe the answer to the following
question to be “yes”.

Question

Given any collection of (2-level) MC jobs that is online schedulable, is there always a correct
scheduler in the EDF-VD family for it

Now we turn to MC sporadic tasks instead. Let MC-Sporadic-Schedulability be the
corresponding decision problem and let us abuse notation again and denote with EDF-VD
the family of schedulers that behave as before, but with a static virtual deadline vi ∈ [0, di]
per task τi, that is applied to all jobs of τi. Unfortunately, a strong link that we usually have
between job collections and sporadic tasks does not exist for MC systems.

Claim

The synchronous arrival sequence is not a worst case for MC sporadic tasks.
If non-integer arrival times are allowed, the situation is even worse.

Claim

There are sporadic MC task systems which are unschedulable only when some arrival times
are non-integer.

The ability to restrict attention to one or a few concrete cases is a very useful property
for analysis. Can the SAS be replaced by some other case?

Question

For a given MC sporadic task set, can we efficiently identify some restricted set of job
sequences that are the worst cases?

The lack of the SAS as a guaranteed worst case means that we can not trivially extend
the hardness proof of Baruah et al. to sporadic MC tasks, but it seems fair to suspect
that MC-Sporadic-Schedulability is also NP-hard. However, it is easy to see that it is
coNP-hard via a reduction from the corresponding non-MC problem, and therefore it seems
reasonable to suspect that it is neither in NP nor in coNP.

Question

What is the complexity of MC-Sporadic-Schedulability?
A closely related question is how to optimally schedule a set of sporadic MC tasks.

Question

What scheduling policies are optimal for sporadic MC tasks?
Unfortunately, the family of EDF-VD schedulers does not appear to be it, though hopefully

there are some others that are also efficient at runtime.

Claim

When non-integer arrival times are allowed, there are (2-level) sporadic MC task sets that
are online schedulable, but for which there are no correct schedulers in the EDF-VD family.

15121

120 15121 – Mixed Criticality on Multicore/Manycore Platforms

References
1 S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, and A. Marchetti-Spaccamela. The Preemptive

Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline Sporadic Task Systems. In
ECRTS, 2012.

WCET – the central notion of mixed-criticality

4.15 Runtime monitoring of time-critical tasks in multi-core systems
Christine Rochange (Paul Sabatier University – Toulouse, FR)
rochange@irit.fr

License Creative Commons BY 3.0 Unported license
© Christine Rochange

Joint work of Kritikakou, Angeliki; Baldellon, Olivier; Pagetti, Claire; Rochange, Christine; Roy, Matthieu
Main reference A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, C. Rochange, “Run-Time Control to Increase

Task Parallelism In Mixed-Critical Systems,” in Proc. of the 26th Euromicro Conf. on Real-Time
Systems (ECRTS’14), pp. 119–128, IEEE, 2014.

URL http://dx.doi.org/10.1109/ECRTS.2014.14

Existing WCET computation methods [1] consider pessimistic situations with permanent
conflicts. This leads to WCET estimates that are safe but far from the frequent case, and
then to over-provisioning time slots for tasks.

The objectives of the proposed approach are to relax constraints on scheduling so that it
can consider less safe but more realistic predictions of execution times. A recovery mechanism
monitors high-criticality tasks to check whether they can miss their deadlines: this is done
based on the remaining WCET which is dynamically updated along the execution. If a hazard
is detected, highly-criticality tasks are allowed to finish their execution in a contention-free
mode.

We introduced a scheme based on extended control flow graphs and partial timing
information that is computed offline and stored in a table looked up at runtime to update
the remaining WCET.

References
1 R. Wilhelm et al. The worst-case execution-time problem: overview of methods and survey

of tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3), 2008.

4.16 Timing Analysis for Multi/Many-core Platforms
Jan Reineke (Universität des Saarlandes, DE)
reineke@cs.uni-saarland.de

License Creative Commons BY 3.0 Unported license
© Jan Reineke

Joint work of Reineke, Jan; Doerfert, Johannes; Wilhelm, Reinhard

Timing analysis seeks to answer the following question: Can a given task set be scheduled
to meet all deadlines on a particular execution platform? If the execution platform is a
single-core processor, timing analysis is a fairly well-understood problem. For such platforms
timing analysis is commonly split into two phases:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ECRTS.2014.14
http://dx.doi.org/10.1109/ECRTS.2014.14
http://dx.doi.org/10.1109/ECRTS.2014.14
http://dx.doi.org/10.1109/ECRTS.2014.14
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 121

1. Worst-case execution time (WCET) analysis determines for each task a bound on its
execution time, independently of the other tasks.

2. Schedulability analysis determines whether all deadlines can be met based on these WCET
bounds.

If the execution platform is a multi- or many-core processor such a clean separation
into WCET and schedulability analysis is hard to maintain. Due to interference on shared
resources, such as buses, caches, and DRAM-based main memory, the execution time of a
task depends strongly on its execution context [1].

I discuss four approaches to timing analysis for multi- and many-core processors and
their respective benefits and drawbacks:
1. The Integrated-analysis approach: Analyze the entire task set at once in a combined

WCET and schedulability analysis. This is practically infeasible even for the analysis of
two co-running tasks.

2. The Murphy approach: Determine a context-independent WCET bound. Perform
schedulability analysis using these bounds. This can be extremely pessimistic: Radojkovic
et al. [2] report a 14-fold slowdown due to interference on a shared L2 cache and memory
controller, negating all performance benefits of using a multi-core processor.

3. The Abstract interference approach:
1. Characterize the interference on shared resources generated by each task.
2. Determine interference-aware WCET bounds, i.e., mappings from the amount of
interference experienced to WCET bounds.
3. Perform an extended schedulability analysis taking into account the information from
1 and 2.

4. The Isolation approach: Isolate tasks running on different cores by partitioning shared
resources in time and space. This re-enables the single-core two-phase timing analysis
approach. However, the question arises how to split the resources among the cores.
An ingredient of an informed partitioning decision is architecture-parametric timing
analysis [3]; a WCET analysis that determines how the execution time depends upon the
amount of available resources.

References
1 A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Jacobs, A. H. Moin,

J. Reineke, B. Schommer, R. Wilhelm. Impact of Resource Sharing on Performance and
Performance Prediction: A Survey. In In CONCUR 2013.

2 P. Radojkovic, S. Girbal, A. Grasset, E. Quinones, E., S. Yehia, F. J. Cazorla: On the
evaluation of the impact of shared resources in multithreaded COTS processors in time-
critical environments. ACM Transactions on Architecture and Code Optimization 8(4),
January 2012.

3 J. Reineke, J. Doerfert: Architecture-Parametric Timing Analysis. In In RTAS 2014.

15121

122 15121 – Mixed Criticality on Multicore/Manycore Platforms

4.17 Analysis of pre-emptive systems with caches
Sebastian Altmeyer (University of Amsterdam, NL)
altmeyer@uva.nl

License Creative Commons BY 3.0 Unported license
© Sebastian Altmeyer

Main reference S. Altmeyer, “Analysis of Preemptively Scheduled Hard Real-time Systems,” Dissertation,
Universität des Saarlandes, 2013.

URL http://nbn-resolving.de/urn:nbn:de:bsz:291-scidok-52797

Proving timing correctness of an embedded system is traditionally a two-step approach:
Timing analysis derives upper bounds on the execution times of tasks in isolation, called
worst-case execution times (WCET). Scheduling analysis determines if each task complies
with its timing constraints when scheduled according to a predefined scheduling policy.
Timing constraints are typically defined by a task’s period and a task’s deadline, both
determined by the physical environment. Hence, tasks are assumed to be fully characterized
by a triple consisting of a period, a deadline and an execution time bound, i.e. the WCET of
the task.

While this verification process provides a useful separation of concerns and a clean
interface between the two steps, it fails to account for the complexity of modern embedded
systems; already in the case of uniprocessor systems: History-sensitive hardware components,
foremost caches, impact the system performance beyond the scope of a task. This is especially
problematic in the case of pre-emptive scheduling, where the execution time of a pre-empted
task strongly depends on whether previously cached data has been evicted during pre-emption
or whether it is still resident in the cache. The additional execution time due to cache eviction
is called cache-related pre-emption delay (CRPD). Consequently, a task’s execution time can
not be analyzed independently anymore.

There are three different solutions to this problem: (i) one can inflate the execution time
bounds to account for the CRPD, (ii) one can avoid CRPD by using cache partitioning, or
(iii) one can adapt the timing verification process to include the CRPD as part of the task
model. Solution (i) and (ii) enable the reuse of the common task model, but potentially at
the cost of substantial pessimism or degraded performance. Solution (iii) requires the highest
effort, but allows us to compute safe and precise bounds. The timing analysis must provide
metrics for the cache-reuse (the set of useful cache blocks) and the memory footprint (set of
evicting cache blocks) of each task. The scheduling analysis then needs to correctly account
for these metrics and needs to identify the worst-case pre-emption scenarios, which strongly
depend on the metrics provided by the timing analysis.

The timing verification process for pre-emptively scheduled uni-processors with caches
may serve as a blueprint for the multicore timing verification. In the case of multicore
systems, the independence-assumption of the timing analysis is violated not only due to a
common memory hierarchy, but also due to a shared bus system. This shared bus causes
additional interference and creates a dependency not only between tasks scheduled on the
same core, but also between tasks scheduled on all other cores.

Based on what we have learned for the analysis of pre-emptive systems, we can formulate
the educated guesses that the notion of WCET alone is not sufficient to correctly represent
the complex behaviour on multicore systems, that a precise analysis restricts the hardware
components to be used and that the complete timing verification process needs to be addressed
and revised instead of just one of the two sides.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://nbn-resolving.de/urn:nbn:de:bsz:291-scidok-52797
http://nbn-resolving.de/urn:nbn:de:bsz:291-scidok-52797
http://nbn-resolving.de/urn:nbn:de:bsz:291-scidok-52797

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 123

Mixed-criticality models are the answer to adaptive time critical
systems?

4.18 Using Mixed-Criticality to Reason about Temporal Correctness in
Uncertain & Dynamic Environments

Nathan Fisher (Wayne State University, US)
fishern@cs.wayne.edu

License Creative Commons BY 3.0 Unported license
© Nathan Fisher

Starting with the seminal paper by Steve Vestal at RTSS 2007 [1], avionics has been
the most frequently-cited motivating application domain for the development of mixed-
criticality scheduling theory (MCST). The reasons are quite clear: integrating multiple
avionic subsystems with different criticalities and certification levels requires guarantees that
lower-criticality subsystems do not have a negative effect upon the temporal correctness of
higher-criticality subsystems. Given the initial progress of the MCST research community
towards addressing these system- integration goals in avionics (and related application
domains), this Dagstuhl seminar is an ideal setting to reflect upon the potential broader
implications (beyond system integration) of the resulting MCST from the past eight years.
Specifically, I would like to raise the question of how can MCST results be leveraged in the
design of adaptive real-time systems executing in dynamic and uncertain physical environments
(esp., power-aware control systems)?

Similar Notions of Uncertainty. One important insight that has been gained from MCST
research is the ability to make formal timing guarantees in the presence of uncertain execution
times. For instance, in a system with two criticality levels, HI and LO, the typical model
specifies that when each job’s total execution time does not exceed the LO-criticality bound,
then the system is considered temporally correct if all jobs (both HI and LO criticality) meet
their respective deadlines; however, whenever any job exceeds its LO-criticality execution
bound, then the system must only guarantee that each HI-criticality job meets its deadline.
Thus, with this model of mixed criticality, a system designer is able to reason about the
temporal correctness of the system without knowing an exact execution time bound for some
subset of the jobs.

The area of adaptive real-time control systems often requires reasoning about execution
uncertainty from a similar, but slightly different perspective. Consider the problem of
maintaining the CPU temperature below a specified threshold. Under typical environmental
conditions, the processor can execute normally and not exceed its temperature threshold.
However, if the environmental temperature increases, the CPU is unable to dissipate the
heat generated from computation as efficiently. To guard against a temperature violation,
modern CPUs often have dynamic voltage/frequency scaling (DVFS) capabilities to permit a
reduction in the CPU heat generation. For real-time systems these adaptive DVFS changes
present a challenge in reasoning about the temporal correctness of the system given that the
thermal operating environment may be dynamic and unpredictable; using DVFS will create
uncertainty in the execution time of the underlying jobs and may require some to be aborted
or deferred.

Opportunities & Challenges. The similar notions of execution-time uncertainty present an
opportunity to “port” some of the scheduling algorithms and associated analysis developed for
MCST to the domain to adaptive real-time systems. Recent work on using mixed-criticality

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

124 15121 – Mixed Criticality on Multicore/Manycore Platforms

upon processors with varying execution speeds [2] may be one avenue to unify the notions
of uncertainty used for MCST and power-aware real-time control systems. However, there
are some fundamental differences in the settings that may present challenges in immediately
applying MCST to such systems:

1. Differing Mode-Change Semantics: Traditional MCST appears to view changing modes
from LO to HI as a rare event. Conversely, for systems executing in a dynamic en-
vironment, changing modes continuously to adapt is fundamental to their design. A
recent talk by Alan Burns at WMC 2014 surveyed some adaptive criticality mode- change
protocols that may prove useful for adaptive real-time system design [3]; the differences
between these MCST-based protocols and multi-modal protocols developed specifically
for power-aware control systems (e.g., [4]) warrant further discussion.

2. Number of Operating Modes: In power-aware systems, more operating modes (e.g.,
voltage/frequency levels) leads to more fine-grained control. Each of these operating
modes can be viewed in MCST parlance as a “criticality level”. Unfortunately, it seems
that scaling the number of criticality levels beyond two is a non-trivial objective. Thus, it
may be a worthwhile exercise to investigate whether the setting of discrete control (e.g.,
mode changes will occur at periodic intervals corresponding to the controller’s sampling
interval) can lead to some simplifications that permit an increased scaling of criticality
levels.

References
1 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execu-

tion time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007.

2 S. Baruah and Z. Guo. Scheduling Mixed-Criticality Implicit-Deadline Sporadic Task Sys-
tems upon a Varying-Speed Processor. Proceedings of the IEEE Real-Time Systems Sym-
posium (RTSS), pp. 31–40, 2014.

3 A. Burns. System Mode Changes – General and Criticality-Based. Proceedings of the 2nd
International Workshop on Mixed Criticality Systems, pp. 3–8, 2014.

4 M. Ahmed and N. Fisher. Tractable Schedulability Analysis and Resource Allocation for
Real-Time Multimodal Systems. ACM Transactions on Embedded Computing Systems. 13
(2s), January 2014.

4.19 Augmenting Criticality-Monotonic Scheduling with Dynamic
Processor Affinities

Bjoern B. Brandenburg (MPI-SWS – Kaiserslautern, DE)
bbb@mpi-sws.org

License Creative Commons BY 3.0 Unported license
© Bjoern B. Brandenburg

Consider the problem of scheduling a dual-criticality workload consisting of high- and
low-criticality sporadic real-time tasks on top of a fixed-priority (FP) scheduler. Each
high-criticality (HC) task Ti has both a high- and a low- criticality WCET estimate, denoted
eL

i and eH
i , resp., and low- criticality (LC) tasks are required to meet their deadlines only if

no HC task exceeds its LC WCET estimate.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 125

task criticality pi eL
i eH

i

Ta low 2 1 –
Tb high 10 3 6
Tc low 2 1 –
Td high 10 2 5

Figure 5 In this example, Tb exceeds eL
b at time 3. Its affinity is then set to {P1, P2}, which

allows Tb to finish on P2. Td is isolated; Ta and Tc miss one and three deadlines.

From a pragmatic point of view, FP scheduling with criticality-monotonic priorities [1],
where HC tasks have higher priority than LC tasks, holds considerable appeal: it is simple,
provides obvious isolation for HC tasks, and imposes no runtime overheads.

Unfortunately, as LC tasks may be more urgent than HC tasks (i.e., they may have
shorter periods or more constraining deadlines), it is not always feasible to assign criticality-
monotonic priorities [1]. For example, the task set τ1 = {Ta, Tb} (as specified in Fig. 5),
which consists of a LC task Ta that is urgent (i.e, it has a short period pa = 2) and a HC
task Tb that is less urgent (pb = 10) but more costly (eL

b = 3), cannot be scheduled on a
uniprocessor with criticality-monotonic priorities: the LC task Ta, if given a lower priority
than Tb, may miss deadlines even if no job of Tb exceeds eL

b .
Similar urgency vs. criticality conflicts also arise on multiprocessors. For instance, the

task set τ2 = {Ta, Tb, Tc, Td} cannot be scheduled with criticality-monotonic priorities on
m = 2 cores using either global or partitioned FP scheduling: under global scheduling, the
HC tasks Tb and Td can cause the more-urgent LC tasks Ta and Tc to miss deadlines even
with LC execution costs, and under partitioned scheduling, Tb and Td need to be assigned to
different partitions, but neither can be co- located with Ta or Tc. However, while scheduling
τ1 with criticality-monotonic priorities is infeasible on a uniprocessor, τ2 can be scheduled
with criticality- monotonic priorities on two processors—provided processor affinities are
used to shield urgent tasks in the LC case.

Exploiting Arbitrary Processor Affinities (APAs)

Contemporary OSs such as Linux, Windows, QNX, or VxWorks provide flexible APIs to
explicitly set a task’s processor affinity, which is the set of processors on which it may
execute. In particular, task affinities can be restricted to arbitrary processor sets and changed
at arbitrary times during runtime. This can be exploited to render criticality-monotonic
scheduling feasible.

Consider the following strategy for scheduling τ2 on two processors P1 and P2: (1) Tasks
are assigned criticality-monotonic priorities. (2) Ta and Tc may execute on both P1 and
P2. (3) Tb and Td may initially execute only on processor P1. (4) When a HC job Jx of Tb

(resp., Td) fails to complete after eL
b (resp., eL

d) time units, it updates its processor affinity to
include both P1 and P2. (The processor affinity of any other task is not changed.) (5) A
HC task’s affinity is reset when it completes its job.

A possible schedule is shown in Fig. 5: at time 3, when it becomes known that Tb’s
job requires more than eL

b = 3 time units to complete, it relaxes its processor affinity to
include P1 and P2. Consequently, under a FP scheduler with strong APA semantics [2] —
which, intuitively, is an APA scheduler that shifts higher-priority tasks from one processor to
another if that is required to enable lower-priority tasks with more- constraining affinities to
be scheduled — Tb shifts to P2, which enables Td to be scheduled on P1. As Tb handles its
increased demand on P2, Td is protected from undue interference. LC tasks are not dropped,
but may temporarily incur deadline misses.

15121

126 15121 – Mixed Criticality on Multicore/Manycore Platforms

Remarks and outlook

We have observed that an APA interface – readily available in current, already certified
RTOSs – allows the timeliness requirements of urgent LC tasks to be reconciled with the
desirable simplicity of criticality- monotonic scheduling. The sketched approach offers several
practical benefits: HC tasks exceeding their LC WCET are effectively given a “dedicated”
processor to cope with increased demand; only the currently executing task’s affinity is
adapted, which keeps runtime overheads low and independent of the number of tasks; there
is no “mode change” and LC tasks are not abandoned, just temporarily delayed; and budget
enforcement is not required.

Of course, the above example works only because of simplifying assumptions. We believe,
however, that it is possible to generalize the approach to an arbitrary number of HC tasks
and also to weak APA schedulers [2] such as those found in QNX and Linux.

References
1 S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality sys-

tems. In Proc. IEEE RTSS, 2011, pages 34–43.
2 F. Cerqueira, A. Gujarati, and B. Brandenburg. Linux’s processor affinity API, refined:

Shifting real-time tasks towards higher schedulability. In RTSS, 2014.

4.20 Adaptive Uni-processor Fixed Priority Pre-emptive Probabilistic
Mixed Criticality

Yasmina Abdedda (Université Paris-Est, LIGM UMR CNRS 8049, ESIEE Paris, FR)
yasmina.abdeddaim@esiee.fr

License Creative Commons BY 3.0 Unported license
© Yasmina Abdedda

Keywords: fixed priority; probabilistic scheduling; mixed criticality

Extended Abstract

According to [1], the most effective fixed priority approach for scheduling mixed criticality
systems is the Adaptive Mixed Criticality (AMC) approach. This approach uses the as-
sumption that no low criticality task is released when the system moves to high criticality.
Our goal is to propose an adaptive approach for a model where low criticality tasks have a
probabilistic computation time [2]. When the systems moves to high criticality level, the
set of low criticality tasks are not ignored but their tolerated probability deadline miss is
modified. More formally, we consider a system defined as a set of probabilistic periodic
real-time tasks {τ1, . . . , τn} having a certain level of criticality: high (HI) or low (LO). Each
task τi is defined as a tuple (Li, Ti, Di, Ci) with Li ∈ {LO,HI} the criticality of the task,
Ti its period, Di its constrained deadline and Ci is its worst-case execution time discrete
random variable. We consider that the random variables Ci, i = 1, . . . , n are independent
such that for every task τi:
1. If Li = LO, the sample space of Ci is {Ci(1), . . . Ci(mi)} and the probability distribution

of Ci is the function fCi
: [1,mi]→ N∗ with

∑mi

j=1 fCi
(Ci(j)) = 1.

2. If Li = HI, the sample space of Ci is {Ci(LO), Ci(HI)} with 0 < Ci(LO) ≤ Ci(HI) and
the probability distribution of Ci is a function fCi : [LO,HI] → N with fCi(x) = 1 if
L = x and fCi

(x) = 0 if L 6= x where L ∈ {LO,HI} is the criticality of the system.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 127

Figure 6 τ1 = (HI, 5, 5, C1), τ2 = (LO, 15, 13, C2), τ3 = (HI, 15, 12, C3), C1 = {C1(LO) =
1, C1(HI) = 2}, C2 = {3, 4}, fC2 (C2 = 3) = fC2 (C2 = 4) = 0.5, C3 = {C3(LO) = 3, C3(HI) = 4},
PLO = 0 and PHI = 0.5. Priority order: τ1, τ2, τ3 not feasible but feasible if D3 = 14.

The system behaves as described bellow (see Figure 6):
1. At the beginning of the execution, the criticality of the system is L = LO, and if a task

τi with Li = HI does not notify its completion after the execution of Ci(LO) time unit,
the criticality of the system moves from L = LO to L = HI,

2. When L = LO: (a) a task τi is executed if it is active and no higher priority task is
active, (b) the probability of a deadline miss of all high criticality tasks is 0 and the
probability miss of all low criticality task is less then a constant PLO.

3. When L = HI: (a) for every task τi, if Li = LO, τi is executed if it is active and no
higher criticality or priority task is active, and if Li = HI, τi is executed if it is active
and no high criticality task of higher priority is active, (b) the probability of a deadline
miss of all high criticality tasks is 0 and the probability of a deadline miss of all low
criticality tasks is less then PHI ≥ PLO.

References
1 S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality sys-

tems. In Proc. IEEE RTSS, 2011, pages 34–43.
2 D. Maxim and L. Cucu-Grosjean. Response Time Analysis for Fixed-Priority Tasks with

Multiple Probabilistic Parameters. In Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013.

15121

128 15121 – Mixed Criticality on Multicore/Manycore Platforms

4.21 MC Scheduling on Varying-Speed Processors
Zhishan Guo (University of North Carolina at Chapel Hill, US)
zsguo@cs.unc.edu

License Creative Commons BY 3.0 Unported license
© Zhishan Guo

Keywords: varying-speed processors, model combination

Introduction and Motivation

Most existing research on Mixed-Criticality (MC) scheduling (see [1] for a review) has focused
on dealing with different WCET estimations of a single piece of code. This is typically a
consequence of different tools for determining worst case execution time (WCET) bounds
being more or less conservative than each other.

This narrative is now being repeated with respect to processor speeds. Modern powerful
and energy-efficient processors are yielding innovations that result in varying speed during
run-time. For example, [2] describes a mechanism such that late signals can be recovered
by delaying the next clock tick, so that logical faults do not propagate to higher (i.e., the
software) levels. In a Globally Asynchronous Locally Synchronous (GALS) circuit, local
clocks can be affected by signals propagating between different synchronous modules in an
asynchronous manner.

Research on such varying-speed platform may lead to better understanding of a wider
range of problems. For example, in data communication of automobiles, aircrafts, or wireless
sensor networks, time-sensitive data-streams must be transmitted over potentially faulty
communication channels, where a high bandwidth is provided under most circumstances yet
only guaranteeing a lower bandwidth.

Model and Existing work

A varying-speed processor is modeled as follows: under normal circumstances, it completes
at least one unit of execution during each time unit, while it may fall into a degrade mode at
any instant, during which it can only complete x ∈ [s, 1) units of execution during each time
unit, for some (known) threshold s < 1. It is not a priori known when, or whether, such
degradation will occur. Similar to other MC scheduling problems, we seek a strategy that
guarantees to complete all jobs by their deadlines under normal (LO-criticality) behaviors,
while simultaneously guaranteeing to complete all HI-criticality jobs if either the platform
(or the jobs) suffer from degradation (HI-criticality) behaviors. Note that here we are
considering a combination of various aspects that MC may arise from, including periods,
WCETs, processing speeds, etc.

Based upon the properties of the platform and the workload, we classify those problems
into four categories:
1. Self-Monitoring: A self-monitoring (SM) processor immediately knows its execution speed

during run-time5 while non-monitored (NM) one may not.
2. Number of processors: Either uniprocessor, or multiprocessor.
3. Workload model: One shot job set, or sporadic/periodic task set.
4. Single(S)- or Multiple(M)- Worst case execution time (WCET) per job.

5 Similar to Linux command cpufreq-info, SM platform has access to processor speeds, while NM
processor may only identify degradation upon some job not signaling its finishing on time.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 129

Table 1 Existing work on scheduling MC sets on varying-speed uniprocessor.

– Jobs & S-WCET Tasks & S-WCET Jobs & M-WCET Tasks & M-WCET
SM Uniproc. [3] [4]6 [3] [4]7 [8] [5] [8]
NM Uniproc. [7] [8] [5] [8]
SM Multiproc. [6] – – –
NM Multiproc. – – 8 – – 5

Table 1 lists existing work on MC scheduling upon varying-speed platforms.

Further Directions

Most current work only deals with one-shot jobs or implicit-deadline sporadic tasks, and
the generalization to constrained deadlines is not trivial. Also, as shown in Table 1, much
remains to be done regarding multiprocessors – the degraded mode upon such platforms
needs to be completely specified. If different processors are assumed to degrade to different
speeds, the resulting degraded platform may become a heterogeneous one, for which the MC
scheduling problem is totally open.

References
1 A. Burns and R. I. Davis. Mixed Criticality Systems – A Review. Department of Computer

Science, University of York, Report. Fourth edition, July 31, 2014.
2 D. Bull, et al. A power-efficient 32b ARM ISA processor using timing-error detection and

correction for transient-error tolerance and adaptation to PVT variation. In IEEE ISSCC
2010, pages 284-285.

3 S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed processors. IEEE
RTSS 2013.

4 Z. Guo and S. Baruah. Mixed-criticality scheduling upon varying-speed multiprocessors.
Leibniz Transactions on Embedded Systems, 1(2): 3:1–3:19, 2014.

5 Z. Guo and S. Baruah. The concurrent consideration of uncertainty in WCETs and pro-
cessor speeds in mixed-criticality systems. Under submission.

6 Z. Guo and S. Baruah. Mixed-criticality scheduling upon varying-speed multiprocessors.
IEEE DASC 2014, pp. 237–244.

7 Z. Guo and S. Baruah Mixed-criticality scheduling upon unmonitored unreliable processors.
SIES 2013, pp. 161–167.

8 S. Baruah and Z. Guo. Scheduling Mixed-Criticality Implicit-Deadline Sporadic Task Sys-
tems upon a Varying-Speed Processor. Proceedings of the IEEE Real-Time Systems Sym-
posium (RTSS), pp. 31–40, 2014.

6 The strong NP-hardness of non-preemption scheduling under such case is also shown in [3] and [4].
7 Regarding scheduling tasks, [3] and [4] only provide necessary conditions and a sharing-based (fluid)

scheduling scheme, which is not impractical due to too many preemptions.
8 We may model a NM varying-speed processor with the multi-WCET MC model, and apply some existing
MC scheduling work, while being somewhat pessimism, which is similar as [8].

15121

130 15121 – Mixed Criticality on Multicore/Manycore Platforms

Mixed-criticality systems: different models for scheduling problems
(open or not)

4.22 Speedup bounds for multiprocessor scheduling
Suzanne van der Ster (Vrije Universiteit Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Suzanne van der Ster

Introduction

When studying mixed-criticality (MC) task systems, we are interested in worst-case beha-
viors and determining feasibility. Since determining feasibility exactly is hard, we design
approximate feasibility tests. If such a test returns “feasible”, the task system is guaranteed
to be feasible on a processor running at speed , while if it returns “infeasible”, the task set
is guaranteed to be infeasible when processed on a unit-speed processor. The factor is also
called the speedup factor (also for scheduling algorithms corresponding to the feasibility
test).

Known results

There are two main paradigms for scheduling task systems on multiprocessors: global and
partitioned scheduling. In the former, all tasks can use all machines, and jobs can even be
migrated from one machine to another. In the partitioned scheduling approach, each task
has to be assigned to one of the machines such that all its jobs have to be executed on this
specific machine. For MC sporadic task sets, the only known results on multiple machines
are for 2-level implicit-deadline task sets, i.e., for task sets such that the period equals the
relative deadline for all tasks. Those results are based on an earlier result for implicit-deadline
task systems on a single machine. For single-machine scheduling, the algorithm EDF-VD
(introduced in [1]) is a modification of the well-known EDF policy, where higher-criticality
tasks are assigned tighter deadlines (that are called virtual deadlines), in order to be able
to meet all their deadlines, even in case of a criticality switch. It was shown [2] that any
feasible 2-level MC task system can be scheduled successfully by EDF-VD on a processor
running at speed 4/3.

This result is used in the partitioned scheduling policy in [3]. The algorithm given has a
speedup for m machines of at most 8/3− 4/3m.

An alternative approach, only interesting from a theoretical point of view, is viewing the
MC scheduling problem as a V ECTORSCHEDULING problem (see [4] for a definition),
where each dimension corresponds to a criticality level. For this problem, a PTAS exists,
when the number of dimensions is a constant. Combining the PTAS with EDF-VD yields
that any task system that is feasible on m unit-speed machines can be scheduled on m

machines of speed 4/3 + ε For global scheduling, the EDF-VD scheduling policy is combined
with the fpEDF scheduling policy, designed for non-MC task systems. For the resulting
global scheduling algorithm it is proven [3] that any 2-level implicit-deadline MC task system
that is feasible on m unit-speed machines, can be scheduled on m machines running at speed√

5 + 1.

Open problems

Extending results to more than two criticality levels. For a single processor, schedulability
conditions for EDF-VD are known [1] and the questions is how these can be incorporated
into a partitioned or global scheduling algorithm for multiple processors.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 131

Extending results to different processor models, for instance unrelated machines. In [5],
non-MC task systems are scheduled on unrelated machines with a speedup 8+2

√
6 ≈ 12.9,

via smart rounding of an integer linear program. An interesting question is if the ILP and
the corresponding rounding procedure can be adjusted to accommodate schedulability
conditions for MC task systems.

References
1 S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and L.

Stougie. Mixed-criticality scheduling of sporadic task systems. In Proceedings of 19th
Annual European Symposium on Algorithms (ESA), pp. 555–566, 2011.

2 S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, and A. Marchetti-Spaccamela. The Preemptive
Uniprocessor Scheduling of Mixed-Criticality Implicit-Deadline Sporadic Task Systems. In
ECRTS, 2012.

3 S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality scheduling on multipro-
cessors. Real-Time Systems 50, 142–177, 2014.

4 C. Chekuri and S. Khanna. On multidimensional packing problems. SIAM Journal on
Computing 33(4) 837–851, 2004.

5 A. Marchetti-Spaccamela, C. Rutten, S. van der Ster, and A. Wiese. Assigning sporadic
tasks to unrelated machines. Mathematical Programming. DOI: 10.1007/s10107-014-0786-9

5 Working Groups

5.1 Report on Platforms and Experimental Evaluation
Robert I. Davis

Present: Sébastien Faucou, Leandro Indrusiak, Chris Gill, Gabe Parmer, Roman Ober-
maisser, Sebastian Stiller, Cristian Maxim, Jim Anderson, Albert Chen, Sophie Quinton,
David Broman, Kai Lampka, Lothar Thiele

Benchmarks and workloads

Workloads
Fudge factors relating measurements to execution time budget: Typically 20 to 50% for
singlecore systems. Does this also make sense in multicore?
How much bigger can C(HI) be than a ‘well’ measured C(LO) (that perhaps accounts for
the paths through the code, but not variations due to HW)? Could we perhaps get an
upper bound by turning the cache off?
What type of systems offers a representative workload for MCS? Are UAVs a good
candidate?

Benchmarks, WATERS workshop and Call to Action For RT Benchmarks
Complaint: we need industrial benchmarks to design solutions to problems that would be
of benefit to the industry. Using existing real code, even if it is not true level A code?
Source code is fine, but should we also have benchmarks in the form of more abstract
models.
Do Mälardalen Benchmarks cover all the case-studies that we want? Is it possible to
build realistic task sets from Mälardalen Benchmarks? Should we set up a set of different
representative applications from the Mälardalen Benchmarks representative of cache
access and memory footprint?

15121

http://dx.doi.org/10.1007/s10107-014-0786-9

132 15121 – Mixed Criticality on Multicore/Manycore Platforms

A large goal here is to collect artifacts that are usable for experimental purposes by the
community.
If this is not possible, then perhaps we can create a set of these that might not functionally
be interesting, but that maintain the interesting characteristics in terms of time/cache
utilization/etc.
What is the set of non-functional behaviors we care about? The top three are the cache
usage, memory access patterns, and timing. Additional behaviors that would be nice
down the line are synchronization/dependencies/system interactions.
We want the benchmarks to be open and free.
We need executable benchmarks: we want code that can be functionally irrelevant but
which has realistic execution times, memory accesses, cache policies and ideally environ-
ment. Best case is that we have applications from industry. What about developping an
obfuscation strategy? If this isn’t possible, then we need a set of benchmarks that we can
use to compare against each other, and seek industry blessing or modification afterwards.
Papabench is a benchmark for the task models. Can we have a benchmark suite based
on generating task models?
Another idea, if we want more complicated tasks, perhaps we can can run a few of
the Mälardalen benchmarks composed sequentially to make at least temporally more
interesting tasks. This might not be reasonable, but it might be reasonable to go to
industry and get feedback on what we should do. Of course, this will not work for cache
footprints.
How can we generate task models for MC? Vestal’s original paper seemed to have the
WCET “fudge factors” between around 20% to 50%. Importantly, there are concrete
examples in his paper, so we should heed those.

What do we need to do as a community?
A call for benchmarks/artifacts/code/task models from the community. We can take this
to industry and get their feedback. See the call in http://waters2015.inria.fr/, though
the call for benchmarks should be community-wide and go beyond this venue.
Should we have a MCBench workshop devoted to creating this benchmarking suite? Or
should we fold this into an existing workshop like WMC?
We want exemplars of different application scenarios. These are the end-to-end suites of
software you’d see running on a real system. For example, think the collection of software
required to run UAVs. These should be emphasized in any call for benchmarks.

Other Questions
Is complete isolation needed (or even possible) between criticality levels? Answer: No.
Criticality level similar to memory hierarchy (by going down a level, you have less
confidence but more tasks/work/utilization)?
Tackling the whole complexity on a simple platform is too difficult today?

Links
TACLeBench: http://tacle.knossosnet.gr/activities/taclebench
Debie: http://www.irit.fr/wiki/doku.php?id=wtc:benchmarks:debie1
Mälardalen Benchmarks: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
Papabench: http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=
97

http://waters2015.inria.fr/
http://tacle.knossosnet.gr/activities/taclebench
http://www.irit.fr/wiki/doku.php?id=wtc:benchmarks:debie1
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 133

5.2 Report on WCET
Claire Maiza

Present: David Broman, Bjorn Lisper, Pontus Ekberg , Claire Maiza, Christine Rochange,
Suzanne van der Ster, Liliana Cucu-grosjean, Jan Reineke, Pascal Richard, Sebastian
Altmeyer.

In this subgroup, the idea was to discuss about worst-case execution time in the context of
mixed-criticality. In the context of mixed-criticality systems, timing models at the scheduling
phasis consider not only one guaranteed bound, but a set of execution time estimations. In
this summary we first discuss where these different estimations come from, second we focus
on mixed-criticality in multi-core systems and the specificities due to the timing interferences.

How to get different execution time estimations?

Note that as far as more than one estimation is considered, one can not name them “worst-
case execution time”. The notion of an estimation which is supposed to be closer to the
real execution time but not an upper-bound on all possible execution time is clearly not a
“worst-case”.

We identified some sources of different execution time estimations:
Due to the environment:
Using a static analysis, one usually look for a bound on the execution time for a specific
“execution context”. The precision of this context may influence the execution time
estimation. For instance, in automotive functionality may be developped for a large set
of cars. However, once deployed, the specificities of the car in which the functionality is
implemented could lead to a preciser estimation of the execution time.
Due to the use of a margin:
In some companies, the WCET is measured or estimated and a large margin (e.g., a
factor of 100) is applied to get an upper-bound on the execution time. In this case, the
upper-bound is largely over-estimated, but may give the feeling of a more trustful bound...
Due to the WCET analysis:
Timing analysis are based on three models: hardware, software and environement.
Different tools or analysis method could get different estimations due to the precision of
these models and/or the uncertainty involved. For instance, a measurement-based timing
analysis considers a subset of the hardware model states.

Multi-core context

In case of multi-core, the large set of possible interferences of one task execution on the
execution of other ones, leads to a more complex notion of execution time estimation. Due to
the complexity of an exhaustive analysis that would take into account all possible interferences,
there is a usual tradeof between precision of the estimation and complexity of the analysis.

Some approaches try to get more precision by adapting the architecture. These ap-
proaches may try to get a multi-core platform that suffers less from interferences (predictabe
architecture) or to configure the architecture to get less interferences (e.g., partition). In this
context, mixed-criticality is less an issue because the tasks with low-criticality should not
influence the execution time of the high-criticality tasks.

When the platform is not designed to be predictable, execution time analysis may lead to
a large set of different estimations. For instance, a bus analysis may consider a very large

15121

134 15121 – Mixed Criticality on Multicore/Manycore Platforms

guaranteed bound on the interferences or model precisely all possible accesses to the bus. In
the first case, the bound should be over-estimated. In the second case, the complexity of the
analysis might not scale real application size. That may be a reason for the need of different
execution time bounds in the scheduling analysis. This lead to two open-questions: should
WCET and scheduling analysis be one common analysis in the case of multi-core? Should the
uncertainty in the multi-core hardware model lead to a new execution time analysis method?

5.3 Report on Criticality
Sanjoy K. Baruah

Present: Zoë Stephenson, Vincent Nelis, Joël Goossens, Sophie Quinton, Leen Stougie,
Dorin Maxim, Alberto Marchetti-Spaccamela, Enrico Bini, Wang Yi, Marko Bertogna, Nathan
Fisher, Gerhard Fohler, Emmanuel Grolleau, Zhishan Guo, Pengcheng Huang, Sanjoy K.
Baruah.

Agenda

This subgroup was spawned off with a mandate to explore an agenda that includes the
following issues

Obtain a better understanding of the safety background that motivates consideration of
criticality levels. Why do we even have criticality levels, what need do they address?
Identify the role that the WCET concept plays in safety considerations in mixed-criticality
systems. We should distinguish between WCET budgets used for runtime enforcement
and mode changes, and WCET estimates which approximate the WCET with different
levels of confidence. Distinguish between budgets and estimates.
The above issues may help determine what characterizes a system as being a mixed-
criticality one. Is it about where WCET values are usable or is it about having isola-
tion/lack of interference or both?

Discussions

1. Notions of criticality, as used in the research community, come from safety standards,
e.g., IEC61508 and ISO26262. However, the use of some of the criticality-related terminology
in the mixed-criticality systems (MCS) research community is not always consistent with
their use in the standards (see Figure 7). It is incumbent on the research community to make
an effort to familiarize practitioners with their research findings. Some possible avenues for
achieving this were discussed:

Issue is maybe of widening the scope of who gets involved with this work.
We should speak of graceful degradation and fault tolerance rather than changing
criticality.
Mixed criticality in industry is currently mainly about isolation and separation; a signi-
ficant portion of the research efforts are aimed at ensuring more efficient utilization of
computational resources.

Where do criticality levels come from?
In several application domains, criticality levels they are defined by standards
The research community could think that criticality levels in MCS are related to those
standards

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 135

Figure 7 Mapping Research Concepts to Industrial Concerns.

2. ALARP – “As Low As Reasonably Practicable” – is a widely-adopted guiding principle
in safety analysis for evaluating success in risk reduction. It is not expected that risk can be
reduced to zero; nor it is desirable (cost-effective) to over-engineer for no tangible benefit.
Neither is it desirable to miss out some risk area from analysis and mitigation.

It is important to be aware of these distinctions:
Safety relates to inadvertent harm that a system can do. It is sufficiently safe if the risk
of causing a hazard is reduced as low as reasonably practical.
Security relates to intentional violation of access control – exposure of data through overt
and covert channels, for example.
Surety is not a term that is often used, it relates to having 100% confidence or 0% residual
risk. Since there is always risk in the environment and in hardware failures, this induces
a limit on the level of risk reduction for software that will ever be acceptable in practice.
However, it is still important to reduce uncertainty in what the risks even are.

3. Industry often uses an isolation/ separation based approach to partition software of
different assurance levels so that it can be known that there is sufficient freedom from
interference with sufficient confidence. In order to justify dropping this approach, there
would have to be a good reason to suffer the pain of arguing about why there is still sufficient
freedom from interference with sufficient confidence. What would the gains be? – flexibility?
Would it be possible to use current hardware for longer? Would it be feasible to reduce the
confidence level with which one has to assess some kinds of interference?

4. Arguments were made in favor of the mixed-criticality approach advocated in the MCS
research community vs. an isolation-based approach:

Today there is a gap between actual and worst-case execution times requiring, especially
in the case of isolation-based approaches, significant over-provisioning the computing
resources.

15121

136 15121 – Mixed Criticality on Multicore/Manycore Platforms

We can expect future architecture to increase this gap, will it be increased to the point of
being unbearable?
If so, is the cost of loosening isolation worth the gain of computing resource utilization?
Other gains of mixed-criticality: dealing with different cases of uncertainty (not only
WCET, but also periods, thermal aspects, etc.)

5. When we try to reason about uncertainty we need to be clear about how the standards
relate aleatory uncertainty (e.g. MTBF of a hardware component) and epistemic uncertainty
(e.g. I’m not 100% sure I got enough coverage in my testing).

6. MCS research and the certification process. Currently, correct by construction is the
common way to demonstrate correctness for the purposes of obtaining certification. Evidence
can be provided by analysis, but it is challenging to make this acceptable to certification
authorities. The question was discussed: Can MCS research be used in certification? The
following points were made:

any new theory takes time to be accepted
perhaps we should be working on developing a theory that is ready to be applied whenever
industry is ready
There was a discussion about how mixed-criticality is applicable or could be in the future
in the industry: in mixed-criticality systems research there is room for every aspect:
theory, operating systems, practical research more certification standard oriented, etc.

5.4 Report on Probabilistic Approaches
Liliana Cucu-Grosjean

Present: Arvind Easwaran, Zhishan Guo , Adriana Gogonel, Dorin Maxim, Sebastian
Altmeyer, Yasmina Abdeddaim, Rob I. Davis, Liliana Cucu-Grosjean.

The discussions on probabilistic approaches took place during two time slots:
1. Following the presentations on probabilistic approaches, the first slot of discussions within

this group has been dedicated to the application of Extreme Value Theory (EVT). This
theory is used to solve the problem of estimating a probabilistic bound on all possible
execution times, this bound is usually denoted by pWCET.
We underline four different threads of discussions related to the utilization of pWCET to
estimate WCET in the context of mixed criticality systems. Each thread had identified
one or several open problems detailed below.

Currently the static analysis is extensively used to estimate the WCET. The users of
static analysis need the understand the assumptions of EVT in order to use it while
WCET estimating, but also to compare against state of the art approaches.
An important effort of popularization is necessary in order to increase the understanding
of the steps of EVT when applied to the problem of estimating the WCET.
Today the differences between functional independence, probabilistic independence
and statistical independence are not well understood by the community and this has a
direct impact on the overall understanding of this method.
Once a pWCET is estimated, how do we calculate the probability of more than one
overrun of C(LO) in a given time? It is generally admitted that an overrun never
appears alone and that it is usually related to other possible overruns.

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 137

2. The second slot of discussions has been concentrated on the understanding how a
probability distribution of a WCET defines different criticalities ?
Three different models have been identified as follows.

A first model that associates to each level of criticality a pair (value for the WCET,
probability of appearance of that value). For instance in the Vestal model this could
correspond to a random variable with three possible values C(LO), C(HI) and ∞.
A second model that associates to each level of criticality a random variable describing
the pWCET. For instance in the Vestal model this could correspond to C(LO)9 and
C(HI) where C(HI) = C(LO) + constant.
A third model that associates to the highest level of criticality an unique WCET (that
could be obtained using static analysis for instance) and to the lowest level of criticality
a pWCET.

6 Open Problems

6.1 Unification of mixed criticalities, WCET, and probabilistic
execution time

Enrico Bini (Scuola Superiore Sant’Anna, Pisa, IT)

License Creative Commons BY 3.0 Unported license
© Enrico Bini

I have no experience with mixed-criticality systems
I believe that some concepts we have been listening about

mixed-criticality
probabilistic exec time
mode change

do overlap significantly
This presentation is an attempt to relate them with each other
It may well be something very obvious to you (especially timing analysis people).

Execution time

What does the sequence of job execution times10 depend on?

Let Ω be the sample space (input data, machine type, cache status, alpha particles
flipping bits, etc.)
ω ∈ Ω is an event
execution time is c : Ω→ R

“Worst-case execution time”

CWCET(Ω) = sup
ω∈Ω

c(ω)

9 We use calligraphic letters to denote random variables.
10 next arguments are valid for any task parameter

15121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

138 15121 – Mixed Criticality on Multicore/Manycore Platforms

Criticality

Sanjoy: criticality is a desired “level of assurance”
It seems that “criticality” are then just subsets of Ω

LO ⊆ HI ⊆ Ω (3)

Then, for any criticality level L ⊆ Ω, the corresponding L-WCET is

CWCET(L) = sup
ω∈L

c(ω)

Notice that (3) implies

CWCET(HI) ≥ CWCET(LO)

The partial ordering of set inclusion over Ω also induces a partial ordering of the criticalities

Property of criticality

One possible property of criticality:
Let us have a chain of criticality levels

L1 ⊆ L2 ⊆ . . . ⊆ Ln

Is an event ω′ ∈ Li+1 \ Li “worse” than any event ω ∈ Li? This is reasonable to expect
I Property 1 (monotonicity of c(·) over crit). If an event ω′ ∈ Li+1 \ Li “worse” than any
event ω ∈ Li?, then

∀i = 1, . . . , n− 1, ∀ω′ ∈ Li+1 \ Li, ∀ω ∈ Li, c(ω′) ≥ c(ω)

Probability

If Ω is equipped with a probability measure P , then c : Ω→ R becomes a random variable
its cumulative distribution function (cdf(x)) is

cdf(x) = P (c ≤ x) = P ({ω ∈ Ω : c(ω) ≤ x})

P (HI) is then the probability that the system belongs to the criticality HI ⊆ Ω;
P (HI) ≥ P (LO)
How is the measure P defined? I don’t know

it has to do with the probability of the input values, probability of being in some
status, etc.

Criticality & Probability

Given
a probability measure P over Ω,
a criticality L ⊆ Ω with P (L) 6= 0, and
the computation time function c : Ω→ R

we can define the conditional probability any event A ⊆ Ω given L as

P (A|L) = P (A ∩ L)
P (L)

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 139

the conditional random variable c : Ω→ R give L, has

cdf(x) = {c(w) ≤ x} ∩ L
P (L)

Average execution time, with criticality L
the average execution time is

Cavg(L) = E[c | L] = 1
P (L)

∫
L
c(ω) dP (ω)

nice property (maybe proved on the blackboard) is:
given LO ⊆ HI ⊆ Ω, then

Cavg(HI) < Cavg(LO) ⇔ Cavg(HI \ LO) < Cavg(LO)

however of Property “monotonicity over crit” holds, then

∀ LO ⊆ HI ⊆ Ω, Cavg(HI) ≥ Cavg(LO)

7 New collaborations

7.1 Providing Weakly-Hard Guarantees for Mixed-Criticality Systems
Robert I. Davis (Real-Time Systems Research Group, Department of Computer Science,
University of York, UK and AOSTE team, Inria Paris-Rocquencourt, FR)
Sophie Quinton (SPADES team, Inria Grenoble – Rhône-Alpes, FR)

Mixed Criticality Systems are systems running applications of different criticality levels [1].
Often only two criticality levels are considered, denoted LO-criticality and HI-criticality
respectively. According to the definition most widely accepted by the research community,
usually called the Vestal model, tasks are expected to run in normal mode as specified by
their LO-criticality model (which is based on somewhat optimistic parameters) so that all
task requirements are satisfied. In addition, one must consider the possibility for tasks to
run out of the bounds defined by their LO-criticality parameters in degraded mode, following
their HI-criticality model. In that case requirements for the HI-criticality tasks must remain
satisfied but requirements for the LO-criticality tasks are dropped.

One criticism that is often made of this approach is that it is not realistic to consider that
LO-criticality tasks may be dropped, even in a context where the safety of HI-criticality tasks
may be at risk. We are interested here in how weakly-hard guarantees [2] (i.e. having to meet
m out of k deadlines rather than all of them) can be used to avoid dropping LO-criticality
tasks entirely. The simplest scenario that can be envisioned is that LO-criticality tasks have
to meet all deadlines in normal mode, but have weakly-hard constraints in degraded mode,
while HI-criticality tasks have to meet all deadlines (i.e. hard constraints) in both modes.
The rationale behind this is that control algorithms can often tolerate some jobs missing
their deadlines or not executing, but then need to guarantee that a number of jobs will meet
their deadlines so that the system returns to a stable state [4]. A key consequence of using
weakly-hard constraints is that this may allow postponement of the change in scheduling
policy resulting from a switch from normal to degraded mode.

We believe that introducing weakly-hard constraints into the mixed criticality model
might help increase the acceptance of the latter in industry. Note that various other scenarios

15121

140 15121 – Mixed Criticality on Multicore/Manycore Platforms

are interesting as well. For example we could consider that HI-criticality tasks have hard
deadlines while LO-criticality tasks always have weakly-hard constraints (maybe weaker
ones in degraded mode). Alternatively, all tasks could have weakly-hard constraints in both
modes. Again in that case weakly-hard constraints may allow postponement of the change in
scheduling policy: a HI-criticality task could be aborted rather than exceed its LO-criticality
execution time.

We aim to collaborate on research integrating the concept of weakly-hard constraints into
Mixed Criticality Systems. In the first instance, we will explore how these constraints can be
incorporated into the Adaptive Mixed Criticality scheduling policy and analysis proposed by
Baruah et al. [1].

References
1 Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time analysis for mixed

criticality systems. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages
34–43. IEEE, 2011.

2 Guillem Bernat, Alan Burns, and Albert Llamosí. Weakly hard real-time systems. IEEE
Trans. Computers, 50(4):308–321, 2001.

3 Alan Burns and Robert I. Davis. Mixed criticality systems – a review.
http://www-users.cs.york.ac.uk/burns/review.pdf.

4 Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias Woehrle. Formal analysis of
timing effects on closed-loop properties of control software. In Proceedings of the IEEE
35th IEEE Real-Time Systems Symposium, RTSS 2014, Rome, Italy, December 2-5, 2014,
pages 53–62, 2014.

7.2 A Multicore Response Time Analysis Framework
Sebastian Altmeyer (University of Amsterdam, NL)
Robert I. Davis (Real-Time Systems Research Group, Department of Computer Science,
University of York, UK and AOSTE team, Inria Paris-Rocquencourt, France)
Leandro Indrusiak (University of York, GB)
Claire Maiza (VERIMAG – Gières, FR)
Vincent Nelis (The Polytechnic Institute of Porto, PT)
Jan Reineke (Universität des Saarlandes, DE)

In this paper, we introduce a Multicore Response Time Analysis (MRTA) framework.
This framework is extensible to different multicore architectures, with various types and
arrangements of local memory, and different arbitration policies for the common interconnects.
We instantiate the framework for single level local data and instruction memories (cache
or scratchpads), for a variety of memory bus arbitration policies, including: Round-Robin,
FIFO, Fixed Priority, Processor Priority, and TDMA, and account for DRAM refreshes. The
MRTA framework provides a general approach to timing verification for multicore systems
that is parametric in the hardware configuration and so can be used at the architectural
design stage to compare the guaranteed levels of performance that can be obtained with
different hardware configurations. The MRTA framework decouples response time analysis
from a reliance on context independent WCET values. Instead the analysis formulates
response times directly from the demands on different hardware resources.

http://www-users.cs.york.ac.uk/burns/review.pdf

Sanjoy K. Baruah, Liliana Cucu-Grosjean, Robert I. Davis, and Claire Maiza 141

7.3 Mixed criticality support for automotive embedded systems
Yasmina Abdeddaim (Université Paris-Est, LIGM UMR CNRS 8049, ESIEE Paris, FR)
Sébastien Faucou (University of Nantes, FR)
Emmanuel Grolleau (ENSMA – Chasseneuil, FR)

On the subject of probabilistic analysis on mixed criticality systems when some criticality
levels have deterministic constrains and parameters descriptions, while other criticality
levels allow for a certain probability of failure and hence can be modeled and analyzed
probabilistically.

15121

142 15121 – Mixed Criticality on Multicore/Manycore Platforms

Participants

Yasmina Abdeddaim
ESIEE – Noisy le Grand, FR

Sebastian Altmeyer
University of Amsterdam, NL

James H. Anderson
University of North Carolina –
Chapel Hill, US

Sanjoy K. Baruah
University of North Carolina –
Chapel Hill, US

Marko Bertogna
University of Modena, IT

Enrico Bini
Scuola Superiore Sant’Anna –
Pisa, IT

Björn B. Brandenburg
MPI-SWS – Kaiserslautern, DE

David Broman
KTH Royal Institute of
Technology, SE

Alan Burns
University of York, GB

Albert Cohen
ENS – Paris, FR

Liliana Cucu-Grosjean
INRIA – Le Chesnay, FR

Robert I. Davis
University of York, GB

Arvind Easwaran
Nanyang TU – Singapore, SG

Pontus Ekberg
Uppsala University, SE

Rolf Ernst
TU Braunschweig, DE

Sébastien Faucou
University of Nantes, FR

Nathan Fisher
Wayne State University, US

Gerhard Fohler
TU Kaiserslautern, DE

Christopher D. Gill
Washington University –
St. Louis, US

Adriana Gogonel
INRIA – Le Chesnay, FR

Joel Goossens
Free University of Brussels, BE

Emmanuel Grolleau
ENSMA – Chasseneuil, FR

Zhishan Guo
University of North Carolina –
Chapel Hill, US

Pengcheng Huang
ETH Zürich, CH

Leandro Soares Indrusiak
University of York, GB

Kai Lampka
Uppsala University, SE

Björn Lisper
Mälardalen University –
Västeras, SE

Claire Maiza
VERIMAG – Giè res, FR

Alberto Marchetti-Spaccamela
University of Rome
“La Sapienza” IT

Cristian Maxim
Airbus S.A.S. – Toulouse, FR

Dorin Maxim
The Polytechnic Institute of
Porto, PT

Vincent Nelis
The Polytechnic Institute of
Porto, PT

Roman Obermaisser
Universität Siegen, DE

Gabriel Parmer
George Washington University –
Washington, US

Sophie Quinton
INRIA - -Grenoble, FR

Jan Reineke
Universität des Saarlandes, DE

Pascal Richard
ENSMA – Chasseneuil, FR

Christine Rochange
Paul Sabatier University –
Toulouse, FR

Zoe Stephenson
Rapita Systems Ltd. – York, GB

Sebastian Stiller
TU Berlin, DE

Leen Stougie
CWI – Amsterdam, NL

Lothar Thiele
ETH Zürich, CH

Suzanne van der Ster
VU University of Amsterdam, NL

Wang Yi
Uppsala University, SE

	Executive Summary Liliana Cucu-Grosjean, Robert I. Davis, Claire Maiza, and Sanjoy K. Baruah
	Table of Contents
	Keynote
	Mixed Criticality – A Personal View Alan Burns
	Keynote addenda: An Augmented Model for Mixed Criticality Alan Burns

	Overview of Talks
	Mixed Criticality in Multicore Automotive Embedded Systems Sebastien Faucou
	Efficiently Safe: Decoding the Dichotomy in Mixed-Criticality Systems Arvind Easwaran
	Adding Cache and Memory Management to the MC2 (Mixed Criticality on Multicore) Framework James H.Anderson
	Mixed-criticality in Railway Systems: A Case Study on Signaling Application A. Cohen , V. Perrelle, D. Potop-Butucaru, E. Soubiran, Z. Zhang
	Confidence in Mixed-Criticality Multi-Core Zoë Stephenson amd Mark Pearce
	Challenges in Mixed Criticality Systems Design – Integration Issues Rolf Ernst
	Real-time Performance Evaluation and VT Control mechanisms for the timing correct use of shared main memory Kai Lampka
	System-level, Inter-Criticality, Multi-Core Resource Sharing with Scalable Predictability Gabriel Parmer
	Mixed Criticality Support on Networks-on-Chip Leandro Soares Indrusiak
	Mapping cricalities to certification levels – a probabilistic attempt Liliana Cucu-Grosjean and Adriana Gogonel
	Response Time Analysis for Fixed-Priority Tasks with Multiple Probabilistic Parameters Dorin Maxim
	Viewpoints on the Timing Aspect of Mixed Criticality Systems David Broman
	Mapping the landscape of mixed criticality systems research Sanjoy K. Baruah
	Some Open Problems in Mixed-Criticality Scheduling Pontus Ekberg
	Runtime monitoring of time-critical tasks in multi-core systems Christine Rochange
	Timing Analysis for Multi/Many-core Platforms Jan Reineke
	Analysis of pre-emptive systems with caches Sebastian Altmeyer
	Using Mixed-Criticality to Reason about Temporal Correctness in Uncertain & Dynamic Environments Nathan Fisher
	Augmenting Criticality-Monotonic Scheduling with Dynamic Processor Affinities Bjoern B. Brandenburg
	Adaptive Uni-processor Fixed Priority Pre-emptive Probabilistic Mixed Criticality Yasmina Abdedda
	MC Scheduling on Varying-Speed Processors Zhishan Guo
	Speedup bounds for multiprocessor scheduling Suzanne van der Ster

	Working Groups
	Report on Platforms and Experimental Evaluation Robert I. Davis
	Report on WCET Claire Maiza
	Report on Criticality Sanjoy K. Baruah
	Report on Probabilistic Approaches Liliana Cucu-Grosjean

	Open Problems
	Unification of mixed criticalities, WCET, and probabilistic execution time Enrico Bini

	New collaborations
	Providing Weakly-Hard Guarantees for Mixed-Criticality Systems Robert I. Davis and Sophie Quinton
	A Multicore Response Time Analysis Framework S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke
	Mixed criticality support for automotive embedded systems Yasmina Abdeddaim, Sébastien Faucou, and Emmanuel Grolleau

	Participants

