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—— Abstract

In natural language processing (NLP) there is an increasing interest in formal models for pro-
cessing graphs rather than more restricted structures such as strings or trees. Such models of
graph transformation have previously been studied and applied in various other areas of com-
puter science, including formal language theory, term rewriting, theory and implementation of
programming languages, concurrent processes, and software engineering. However, few research-
ers from NLP are familiar with this work, and at the same time, few researchers from the theory
of graph transformation are aware of the specific desiderata, possibilities and challenges that one
faces when applying the theory of graph transformation to NLP problems. The Dagstuhl Sem-
inar 15122 “Formal Models of Graph Transformation in Natural Language Processing” brought
researchers from the two areas together. It initiated an interdisciplinary exchange about existing
work, open problems, and interesting applications.
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1 Executive Summary
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Marco Kuhlmann
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Strings are fundamental data structures in natural language processing (NLP). Weighted
finite-state string acceptors and transducers, first introduced as theoretical constructs, have
proven their worth in speech recognition, part-of-speech tagging, transliteration, and many
other applications. The string automaton framework provides efficient generic algorithms
for composition, bidirectional application, k-best extraction, determinization, minimization,
parameter tuning, etc. These algorithms have been packaged in software toolkits that form
the core of many state-of-the-art systems.

Tree automata go further in permitting large-scale, syntactically-motivated re-ordering of
subtrees. They were originally devised to help formalize Chomsky’s linguistic theories, but
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their subsequent development was largely disconnected from NLP practice. In 2005, tree
automata theorists and machine translation (MT) practitioners began working together to
come up with a new kind of statistical MT system based on tree automata. This led to some
of the best practical results in common evaluations of MT quality, and syntactic methods
are now used in industrial MT systems. This work at the intersection of tree automata and
NLP created vibrant new research directions for both areas.

Nowadays, graphs are becoming an even more general fundamental data structure in
practical NLP. Classic feature structures can be seen as rooted, directed, edge- and leaf-
labeled graphs. Recent work in dependency parsing produces graphs rather than trees. New
work in deep semantic annotation organizes logical meanings into directed graph structures,
and several efforts are now being made that in the near future will yield large amounts of
linguistic data annotated with these representations. Formal models of graph transformation
are therefore of fundamental importance for the development of practical systems for these
tasks. The situation is familiar: there exists a formal theory of graph transformation, but
this theory is largely disconnected from research and practice in NLP.

The theory of graph transformation studies rule-based mechanisms for the manipulation of
graphs. A particularly well-studied subject within the area of graph transformation, and one
that has received quite some attention recently within the NLP community, are context-free
graph grammars. These grammars have many nice properties in common with context-free
phrase structure grammars, but are considerably more powerful and versatile; in particular,
they can be used to generate context-sensitive string languages (when strings are represented
as chain graphs). The price of this expressiveness is a higher computational complexity; in
particular, there are context-free graph languages for which parsing is NP-complete. This has
triggered research on specialized, more efficient algorithms for restricted classes of graphs. A
well-known result in this area is that many in general intractable problems on graphs become
solvable in polynomial time when restricted to graphs of bounded tree-width.

With the number of interesting applications and the amount of available data quickly
increasing, there is a clear need for the NLP community to acquire knowledge about formal
models of graph processing, as such models can greatly simplify practical systems, by
providing a uniform knowledge representation and efficient, generic algorithms for inference.
Unfortunately, most NLP researchers are unaware of the rich literature on graph transforma-
tion, and even those who are find it hard to connect it to their own work. Conversely, few
researchers in graph transformation are aware of the new applications of their research within
natural language processing, the characteristic properties of the available data, the specific
desiderata of these applications, and the research problems that are posed by them.

The overall goal of the seminar was to bring the various research communities together
to assess the state of the art, identify areas of common interest, and pave the way for future
collaborations. We think that this goal was reached to a very high degree, which will be a
major factor in the creation of a new interdisciplinary research community.

Organization of the Seminar

The seminar was attended by 29 participants from 9 countries in North America, Europe,
and Africa. It was held from March 15 to March 20, 2015. Since the intention was to foster
the creation of a new research community, it was decided to organize the seminar in the form
of a self-organized workshop with many informal discussion meetings on topics suggested
by the participants themselves. For this, the seminar roughly followed the idea of Open
Space Technology. This worked very well and gave rise to many insightful discussions. (See
Section 5 for the list of topics discussed.)
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3 Overview of Talks

3.1 Tutorial: Introduction to Graph Transformation
Frank Drewes (University of Umed, SE)
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The theory of graph transformation studies formal rule-based models for the manipulation
of graphs. In particular, this includes graph grammars that generate graph languages and
graph rewrite systems that turn input graphs into output graphs. The tutorial gave an
introduction to some of the most well-studied aspects of graph transformation, focusing on
those which seem to be of particular interest for NLP.

General Graph Transformation Systems

These are graph transformation systems which are Turing complete. They usually consist of
finitely many rules (possibly enhanced by control structures or application conditions) that
replace a subgraph (the left-hand side) in a host graph by another graph (the right-hand
side). The most well-known approaches are the single and double pushout approaches, which
belong to the so-called algebraic approaches.

Context-Free Graph Grammars

Context-free graph grammars are grammars based on rules that either replace single nodes or
single (hyper)edges by other subgraphs. This makes them context-free and results in many
desirable properties, e.g., there exist algorithms for various tasks.

Parsing Hyperedge Replacement Languages

One of the most important algorithmic tasks in connection with context-free graph grammars,
such as hyperedge replacement grammars, is parsing. There are easy and very versatile
proofs showing that this problem is NP-hard even in the non-uniform case, i.e., where the
grammar is fixed. In other words, there are NP-complete hyperedge replacement languages.
However, in special cases polynomial-time parsing is known to be possible.

Monadic Second-Order Logic

There are well-known and very useful connections between monadic second-order logic on
strings or trees on the one hand, and regular string and tree languages on the other hand.
Similarly useful connections relate monadic second-order logic on graphs with context-free
graph languages. For example, the restriction of a context-free graph language by a logical
sentence is again context-free, and it can be decided whether all graphs/finitely many
graphs/no graphs of a given context-free graph language satisfy a given sentence.

Term Graphs

Acyclic directed graphs can represent terms with sharing, so-called term graphs. This has
been used in order to implement functional programming languages efficiently. Since directed
acyclic graphs are important in meaning representation, the techniques and results of term
graph rewriting may turn out to be useful in NLP.
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4 Reports from Working Groups

4.1 Convolution Kernels for Graphs

Giorgio Satta
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In machine learning, kernels are a class of functions that measure the “similarity” between
two objects or structures. Many algorithms implementing kernel functions use an underlying
feature vector representation for the input structures in a space with very high or even
infinite dimension, but only implicitly represent this feature space. The advantage is that
kernel algorithms avoid explicit computation of the feature map in such large space, and are
thus much more efficient than direct algorithms.

Convolution kernels use a decomposition of the input structures into overlapping sub-
structures or patterns, and are based on the computation of a census function for these
substructures. In natural language processing, convolution kernel functions have been in-
troduced for strings and trees. This group has been exploring existing convolution kernel
methods for graph structures, in view of their potential application to semantic analysis of
natural language based on directed acyclic graph structures.

Several convolution kernels for graphs have been proposed in the literature, based on
simple path or tree-like substructures; see [1] and references therein.

This group has been exploring the idea of using so-called elastic kernels for directed acyclic
graphs. The idea is borrowed from tree-based kernels as used in syntactic parsing (Alessandro
Moschitti, personal communication). In an elastic kernel, substructure matching is allowed by
stretching an arc of the pattern graph over a path of several arcs in the graph under analysis.
This allows “jumping” over portions of the semantic representation that might correspond
to some adjunct or modifier. Linguistic relevance of this idea has been discussed, without
reaching a consensus among the participants on its effectiveness in semantic representations.

This group has also looked into existing similarity measures for Abstract Meaning
Representation (AMR) such as smatch [2]. It has been observed that the smatch similarity
measure does not satisfy the standard kernel function conditions and therefore can not
be considered a well-formed kernel. This is so because convolution kernels make use of
summations over substructure matching, while smatch make use of a max operator over the
same counts.

References

1 Nino Shervashidze and Karsten M. Borgwardt. Fast subtree kernels on graphs. In Yoshua
Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta,
editors, Advances in Neural Information Processing Systems 22: 23rd Annual Conf. on
Neural Information Processing Systems 2009. Proc. of a meeting held 7-10 December 2009,
Vancouver, British Columbia, Canada, pp. 1660-1668. Curran Associates, Inc., 2009.

2 Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature structures. In
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 748-752, Sofia, Bulgaria, August 2013. Association for
Computational Linguistics.
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4.2 Efficient HRG-Parsing for the NLP Domain

Christoph Teichmann and Frank Drewes
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Hyperedge Replacement Grammars (HRGs) are one of the candidate formalisms for the
generation and parsing of graph based semantic representations [1]. In general, HRGs can
generate NP-complete languages [2, 3]. Thus, one cannot hope to develop efficient parsing
algorithms that work for all HRGs.

While it has been known for a long time that parsing based on HRGs can theoretically
be implemented efficiently if the graphs that are being processed exhibit certain properties
[4], researchers are currently trying to solve many of the details of actual implementation.
Parsing algorithms often require a number of very complex design decisions in order to be
efficient.

One approach to more efficient parsing has been the proposal to make use of tree decom-
positions of rules and input graphs, and work on representations based on the “boundary”
of subgraphs that have already been processed [5]. This approach is asymptotically more
efficient than storing copies of complete subgraphs and can be used to establish upper bounds
on the number of items that need to be considered. On the comparatively small graphs that
are used as input data in natural language processing, however, it may actually be more
efficient just to store the complete subgraphs.

Once the questions of representation and look-up have been settled, it is then possible to
design graph parsers in a way that is very similar to well known approaches in string parsing
for natural language processing.

Another approach that is currently being worked on is to generalize techniques known
from compiler construction, based on restrictions that make string parsing more efficient
than the usual O(n?®) obtained by CKY or Earley parsing. A first approach in this direction
is predictive top-down parsing, which extends SLL(1) string grammars to the HRG case. A
predictively top-down (PTD) parsable HRG yields a quadratic, and in many cases linear
parsing algorithm. However, the analysis of a grammar needed to establish PTD parsability
is complicated and cannot usually be done by hand [6]. It is currently still unclear whether
PTD parsable HRGs are suitable for NLP applications. It may be worthwhile to check
whether predictive bottom-up parsing is possible as well, generalizing the well-known notion
of LR(1) string parsing.

Another idea, which may be especially useful for parsing structures such as Abstract
Meaning Representations, is to extend Lautemann’s almost forgotten concept of component-
wise derivations [4]. Roughly speaking, the intuition behind componentwise derivations is
that, if a nonterminal generates a graph that consists of several connected components, then
the derivations of the individual components are independent of each other. This corresponds
well to the intuition that, if several modifiers are attached to a concept in an AMR, then the
sub-DAGs corresponding to those modifiers can usually be generated independently.

References
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4.3 Grammarless Approaches
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The term grammarless approaches is used informally to describe parsing algorithms where
no hard constraint is imposed on the search for a syntactic analysis of the input sentence.
In other words, the parser never rejects any input sentence. Typically, in a grammarless
approach the parser uses soft constraints (weights) to choose some syntactic analysis in a
space that includes all candidate structures that are compatible with the input sentence.
More specifically, some search process is carried out that applies soft constraints either
globally or locally to optimize possible choices.

In dependency parsing a number of transition systems and weighting schemes have been
proposed that can generate projective and/or non-projective dependency trees given an input
sentence. It is possible to use these to efficiently generate analyses for input sentences, when
they are paired with a classifier that selects one out of a list of possible transitions given
the current state of the parsing process and the input data, or by finding maximum weight
substructures. It seems natural to extend this approach to structures that do not obey the
treeness constraint.

In this group we discussed transition systems and weighting schemes capable of selecting
different graph structures and their comparative benefits. In this context it is important to
consider the problem of learning the weight function that guides the selection of the final
analysis and whether it is possible to efficiently reconstruct the operations that generated a
graph. It was observed that there is a simple generalization of Covington’s algorithm for
dependency tree parsing [1] that can derive any graph in time quadratic in the length of the
input sentence. This algorithm could possibly be restricted to interesting special cases in
order to improve accuracy or efficiency or both.

Generation/Decomposition of Graphs with Page Number Bounded by Two

In graph theory, a book embedding of a graph is an embedding into a collection of half-planes,
all having the same line as their boundary. The vertices of the graph are required to lie on
this boundary line, and the edges are required to stay within a single half-plane. The page
number of a graph is the smallest possible number of half-planes for any book embedding of
the graph [2].
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This group has focused on dependency graphs with page number of two, where the vertices
of the graph lying on the book boundary line is fixed and specified by the input sentence. The
group has then discussed the problem of computing the highest score dependency graph with
page number of two given an input sentence. Note that here we are considering dependency
structures that are graphs in the strict sense, that is, these structures are not tree-like graphs.

Discussion has focused on how to apply dynamic programming techniques to solve this
problem efficiently, therefore showing that the problem is in PTIME. There are known
dynamic programming algorithms for the case of dependency graphs with page number of
one; see [3]. Shortly after the meeting in Dagstuhl, two participants to this discussion group
came up with a proof that the problem at hand is NP-hard; see [4].

Grammarless Generation of Strings from DAGs

We also discussed the problem of generating strings from DAGs, which can be viewed as a
kind of graph transduction problem. The question then becomes: is there a grammarless
approach to transducing graphs? Informally, the answer seems to be yes, and it is helpful to
first think about how grammarless parsing algorithms apply to strings and trees. In the string
case, the set of outputs can be defined as the set of all trees over a set of input words. In some
cases we define it more carefully as the set of projective trees, or the set of non-projective
trees meeting particular criteria [5]. We can then use combinatorial optimization algorithms
or transition systems to search over the set of output trees.

Before considering generation of strings from graphs, we can consider generation of strings
from trees, which is a special case (this is sometimes called realization in the generation
community). Suppose that we have a labeled input tree. Then the output might be defined
as follows: the string obtained by any tree traversal and substitution operation on the nodes
of the tree. In other words, at each node of the tree, we must visit the node and its children
(recursively) once, and when we visit the node, we output a word. This can be thought
of as linearization of an (unordered) dependency tree, which always results in a projective
structure. It should be possible to produce non-projective structures by encoding them into
the traversal [6]. To extend this idea to DAGs, it suffices to observe that some nodes can
be visited more than once, but we always know the number of visits since we know the
number of parents. Hence, we can split the (recursive) visit of a node into as many parts
as there are parents, and execute each part in order as the node is visited from its parents.
Algorithmically, this could be accomplished many ways: by a transition system that outputs
words as it visits nodes, or a global or local model that predicts the visit order for each node.
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4.4 HRG-Grammar Induction for NLP

Christoph Teichmann
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Recently there has been interest in generating graph based semantic representations for
input sentences and/or generating sentences that correspond to the meaning represented by
a graph. This task can be solved by using synchronous grammars that generate a string and
a graph in parallel. One can then parse an input with one side of the synchronous grammar
and use any result that would have been generated by to other side as output. This leads
naturally to the problem of inferring these synchronous grammars from input data. Since we
will usually only have access to sentences and graphs and not to any information about an
underlying grammar, we are forced to consider a potentially large set of parallel derivation
steps and then extract a — preferably small — grammar. We assume that the sentence has
been generated by some context-free derivation tree and that the graph was generated by a
hyperedge replacement derivation. Unfortunately there are a large number of many potential
pairings of sentence and graph parses, even when they are only considered in some packed
representation. Therefore it is necessary to employ alignments that are the result of some
simpler pre-processing step.

4.5 Probabilities for DAG Automata and Other Non-Context-Free
Graph Rewriting Systems

Adam Lopez
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The last few decades of work in natural language processing have confirmed that probabilistic
systems learned from data are indispensable. So graph rewriting systems used for natural
language processing must be probabilistic. Consider semantics-based machine translation,
in which the goal is to explicitly convert a source string to its semantic representation, and
then convert this representation to a target string, as in the following example from Jones et
al. [1].

miss argl
arg0 ]
Anna’s cat misses her. — N‘nna' = Anna fehlt ihrem Kater.
poss

ca}/

Figure 1 Example translation using semantics.

In a probabilistic setting, our goal is first to predict a graph g from a source string s, and then
to predict a target string ¢ from g, giving us a model p(t, g|s) = p(t|g)p(g|s). Jones et al. [1]
suggest solving this with a pair of synchronous grammars, each defining a probabilistic relation
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on string/ graph pairs. Given a language of source strings L, a language of source graphs

Ly, a language of target graphs £, and a language of target strings £;, these grammars

define relations R C L, x L4 and R C Ly x L. From these relations, we can formally define

translations as the sets of semantically equivalent strings: the set of all translation pairs is

{s,t|3g : s,g € RAg,t € R'}. Hence we must be able to efficiently compute the intersection

of the graph languages, £, U L,. Compositions of this kind are widely used on string data

in current speech and machine translation models, where they can be implemented using

compositions of finite-state transducers [2, 3].

Our goal is to define similarly composable probabilistic graph languages. If our graph
grammar is context-free (in the sense that its productions are associative and commutative),
then we can attach normalized weights to each production to define a probability distribution
over the set of graphs that it generates. We can also define its productions to be isomorphic
to a (string) context-free grammar, enabling us to define probabilistic relations on strings and
graphs, as desired. Although grammars and automata on graphs are much less well-studied
than they are on strings and trees, two candidate formalisms have recently been identified:
hyperedge replacement grammar (HRG), described by Drewes et al. [4] and studied by Chiang
et al. [5]; and DAG automata, introduced by Kamimura and Slutzki [6] to model type-0
derivations and studied by Quernheim and Knight [7].

Unfortunately, neither HRG nor DAG automata satisfy our desired criteria. Although
HRGs are context-free and can easily be made probabilistic, they are not closed under
intersection — the emptiness of intersection is undecidable, as are many other useful questions
on HRGs. In contrast, DAG automata are closed under intersection but are not context-
free —so it is unknown how to make them probabilistic in a way that would yield practical
algorithms, although weighted algorithms have been developed that do not define proper
probability distributions. The session addressed the question of whether a fully probabilistic
treatment of DAG automata is possible. Informally, the fundamental problem stems from a
confluence of properties:

1. DAG automata were initially designed to model type-0 derivations, so they are non
context-free. This means that rewriting operations are not commutative: applying a
single rewrite to the frontier states of a DAG automaton may change the set of rewrites
that are applicable to remaining states.

2. One plausible way to define probabilistic rewriting systems is to define a probability
distribution over all possible rewriting steps that can be applied to a particular configura-
tion of the system. However, property 1 implies that this probability distribution cannot
factor over the frontier states of the automaton: the rewriting of any particular state
is not independent of rewriting other states. Most likely, this means that a probability
distribution over derivations of a DAG automaton cannot factor over its productions,
as it can in context-free formalisms. So, probability distributions must depend on the
complete configuration of the automaton.

3. Since probability depends on the state of the automaton, steps of a probabilistic parsing
algorithm must also know the state of the automaton before and after application of a
particular rewrite. Unfortunately, the naive algorithm for this is to define a parsing state
for every cut of an input graph, and the number of cuts is exponential.

Hence, it appears that a natural definition of probabilistic graph automata leads to
exponential probabilistic recognition algorithms, which is actually worse than in the weighted
case. It is an open problem whether a better solution is possible.
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Graph structures in NLP are often directed acyclic graphs (DAGs). In particular, representa-
tions of meaning such as Abstract Meaning Representations (AMRs) may safely be assumed
to be DAGs. Therefore, automata working on DAGs, similar to the well-known concept of
tree automata, could be of great usefulness if they (a) allow to recognize DAG languages that
are of interest from an NLP point of view and (b) exhibit useful closure properties as well as
algorithmic properties. Ideally, such a theory should also provide corresponding notions of
transducers, i.e., automata with output. Unfortunately, not much work seems to have been
done in this field. The oldest approach [1, 2] was explicitly invented to capture the nature
of derivations in type-0 Chomsky grammars and is thus much to powerful. The approach
of [3, 4] considers only DAGs that are trees with maximally shared subtrees. This is clearly
inappropriate for processing AMRs or other representations of meaning because such DAGs
cannot contain isomorphic sub-DAGs. An interesting approach from the NLP point of view
seems to be the one proposed in [5], but it has some disadvantages:

It is capable of generating NP-complete DAG languages, and thus parsing is too inefficient.

The recognized DAG languages have non-context-free path languages in the worst case,
whereas it is reasonable to assume that the set of all valid meaning representations (in
any reasonable formalism such as AMRs) have regular path languages.
The class is not closed under complementation.
It is unclear how important the last point is, but from a formal point of view closedness
under complementation would certainly be a positive property. Hence, it seems that [5] may
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be used as a starting point and source of inspiration, but does not provide a satisfactory

solution in itself.
Properties such as those mentioned above left aside, there are properties of the DAGs

being worked on that are of interest:
Incoming and outgoing edges of a node in a DAGs may be ordered or unordered. In the
ordered case, this order may be defined globally by placing an order on the nodes of a
DAG. This type of DAGs is considered in [1, 2], and it seems that the global order (and
the fact that it defines the local order at each node) is responsible for the power of these
automata. From the point of view of NLP, and in particular from the point of view of
AMRs, it seems that outgoing edges of a node should at least be partially ordered (or
labeled, which is equivalent) whereas incoming edges should be unordered. Thus, an ideal
model should be able to capture both.
DAGs can be ranked or unranked, where ranked means that every node has a predefined
number of incoming and outgoing edges determined by its label. Meaning-representing
DAGs are usually unranked in the sense that there is no a priori bound on the number of
incoming and outgoing edges of a node. From this point of view, unranked seem to be
more appropriate. However, given the fact that it is difficult to devise a model that is
both general and has nice properties, it may be reasonable to consider the ranked case,
anyway, at least as a first step towards a more general model.

More recently, Quernheim and Knight [6] proposed a new notion of DAG automata based
loosely on the approach by Kamimura and Slutzki. Inspired by that approach, Chiang,
Drewes, Gildea, Lopez, and Satta have started to work on a restricted model of ranked DAG
automata that has been discussed during the Dagstuhl Seminar. These automata have a
decidable emptiness problem and regular path languages, the latter being an insight obtained
during the discussions of the Dagstuhl Seminar (with considerable help of J. Bjorklund
and A. Maletti). Unfortunately, even these rather restricted DAG automata can recognize
NP-complete DAG languages.
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4.7 Typical or Desirable Features of Graphs in NLP
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GraphalLogue: Surveying Graph Banks

With a growing community interested in graph processing, it would seem worthwhile to
compile a survey of existing graph banks, i.e. collections that pair natural language data
with graph-structured representations of linguistic analysis (syntactic, semantic, or other-
wise). Initially at least, such resources will primarily be annotations of meaning (in various
interpretations), but in principle other types of linguistic annotations that transcend tree-
structured analyses should be included. For this survey, one should define and quantify
relevant structural properties such as:

reentrancy

edge density

connectedness

rootedness

acyclicity

functionality of edge labels

treewidth

page number
Likewise, it would be helpful to try and characterize the (purpose and) contents of the
annotations, sentence and token counts, and licensing.

Besides providing a catalogue of available resources, this survey could also develop into a
quantitative and qualitative comparison of representations. To the extent that we can tease
apart different layers of semantic construction — for example differentiate grammatical control
from anaphoric binding — it would also seem useful to characterize annotated resources in
terms of which of these phenomena they target.

Marco Kuhlmann and Stephan Oepen would be happy to try and coordinate an initial
catalogue (or “graphalogue”,; if you will) construction. With a bit of luck, this could evolve
into a community resource (e.g. on the ACL Wiki) and enjoy collective maintenance over
time. Obvious existing resources to look at include:

AMR Bank

SemEval 2014 and 2015 Semantic Dependency Parsing (SDP) graphs

Universal Dependencies

Semantic Dependencies in CCGBank

Semantic Representations Adapted to Inference

A central problem in using semantic parsing for tasks like open-domain question answering
and (more obviously) machine translation is that the sentence in unseen text or the target
language may take a form that is not the one most directly suggested by the question or
source. (Thus the answer to the question “Did Google buy YouTube” may or may not be
answered by “Google bought every company”, “Google’s purchase of YouTube”, “Google
subsidiary YouTube,” “L’acquisition de YouTube par Google”, etc.) Most semantic parsers
are too specific to the original form of language to allow the question to be settled without
lengthy inference of a kind that is not usually affordable — hence the habit of search engines
of returning multiple pages containing such phrases in the hope that the user can work out
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the answer by reading them. Often the user can do this, but sometimes they cannot. (Try
“What are Miles Davis Recordings without Fender-Rhodes piano?”).

Since the Generative Semantics and Conceptual Dependency Semantics of the ’70s,
there have been many attempts to produce a Universal or “Natural” Semantics underlying
paraphrase and common-sense entailment relations between expressions, including attempts
to use such a representation or “Interlingua” for Machine Translation. However, none of
them have got very far beyond language specificity, even when multiple languages have
been considered, and there has recently been a move to recast the problem in machine
language terms as that of learning a “hidden” set of semantic relations from large amounts
of unannotated text.

Two main approaches were distinguished. The most radical is the “pure distributional”
approach, based on collocations of content words represented as dimensionally reduced
vectors, with linear algebraic operations like vector addition and multiplication substituting
for traditional semantic composition in forming meanings for larger structures, often under
the control of dependency parsers [1]. Such representations have some striking advantages,
such as being able to simultaneously represent multiple ambiguous readings, which may be
disambiguated by linear algebraic composition.

Such representations are capable of representing the similarity of concepts as closeness in
the multidimensional vector space, and hence of detecting the similarity between paraphrases
in source and target. However, it is hard to see how they can be interfaced with logical
semantics. In particular, there does not seem to be a vector or linear algebraic representation
for operators such as negation. A second kind of distributional semantic seeks to identify
relations of paraphrase and entailment directly in unseen text, using parsing or “machine
reading”, and to build such logical relations into natural language semantics directly, treating
paraphrases as clusters and entailment as logical conjunction [2].

The latter approach has been shown to to be capable of capturing linguistically significant
entailments, such as that “McCain regrets that he wasn’t nominated” entails that “McCain
wanted to be nominated”, which could be used to acquire the information that the semantics of
verbs like “want” includes an implicit controlled subject of the complement “to be nominated”.

There was further discussion of the vector based alternative, and whether recent devel-
opments using “Deep Learning”, or multi-layer perceptrons or Boltzmann machines using
backpropagation training at a vast scale would render interaction with logicist semantic
unnecessary. It was generally felt that the radical approach was probably incompatible with
any form of structured representation such as AMR, but that the paraphrase and entailment
based clustering approaches were entirely compatible and might even be helpful.

Logical Operators and Quantification

Currently logical operators and quantification are not represented explicitly in most graph
based meaning representations like AMR, although they have been used traditionally to
represent linguistic meaning. We discussed if we can and should develop a graph-based
representation that has a translation into some logical form. Such a representation would
allow for semantic inference but can be difficult to annotate, especially when annotators have
to resolve possible scope orders.

In AMR, some vertices represent existentially quantified variables (instances of concepts,
such as events and objects), which also interferes with the scope order. Universal quantification
and negation is expressed using additional edges. Negation attaches to the root of the
sub-DAG it takes scope over. Disjunction is represented using an additional “or” node.
Conjunction is sometimes represented this way, but only if it is mentioned explicitly in the
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sentence (for instance, conjunction of two events). Unfortunately scope is not adequately
represented in the structure of the AMR graph. Logical operators are generally only
represented if they are mentioned explicitly in the sentence described by the AMR.

Existentially quantifying all event nodes allows us to account for the reading with narrow
scope of the existentially quantified event in the following sentence: “Most of the students
have read the book.” In this reading there is one reading event for each student. Without an
explicit representation of scope the reading in which the existential quantifier takes broad
scope is lost. According to this reading there is a single reading event of the book, for instance
if the students take turns.

A better solution might be to represent scope outside the graph structure, on a separate
representation level. Scope could then be left underspecified if it is ambiguous. Annotators
could either annotate the specific order of quantifiers, for instance

“Most people know two languages”: most people > exists knowing > two languages
or they could specify dependencies in Skolem terms, such as
“most people know two languages”: language(people), know(most)

The second option appears to be more intuitive for the annotator and it would allows
annotators to leave out dependencies they are not sure of (or that are actually ambiguous
or independent of each other). The result would be an underspecified representation of
quantifier scope that allows for reasoning.

We leave the specification of a graph-based representation that addresses these issues and
an annotation scheme for future work.

Linguistic Phenomena that “Cause” Reentrancies in AMRs

The following “causes” of reentrancies could be discovered by looking at a variety of AMRs:
anaphora such as pronouns
control (-like) structures such as in “John promised me to paint the wall.” (John will be
the argy of paint.)
multiple participles (NB “front-loading” assigns arg;)
VP coordination / shared conjuncts
implicit arguments (“he” is argy of “hospital treatment”)
relative clauses

Argument Sharing Exemplars

Besides inspecting concrete example annotations in the AMR bank, a more general inventory
of phenomena that cause reentrancies in semantic graphs due to argument sharing is of
interest. We aim at creating such a collection of argument sharing exemplars that will be a
useful resource for linguistic analysis and grammar developing. The following list is a first
collection of such phenomena.

Grammatical Control

Kim wants to sing. ; subject-equi

Kim wants Sandy to sing. ; raising-to-object (no reentrancy)
Kim persuaded Sandy to sing. ; object-equi

Sandy seemed to sing. ; raising-to-subject (no reentrancy)
Kim promised to seem to be competent.
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Passives

Kim wants to be heard.

Nominalizations

Kim made a promise to sing.

Kim has a desire to sing.

Kim’s plan is to sleep more.

Kim showed signs of recovery.

Modification

The drying and washing machine broke.
The washing machine is expensive.
Coordination

Kim drank wine and ate pizza.

Kim showed Sandy and sold Tony the wine.
Kim showed and Sandy sold the wine.

Kim sold the wine and Tony the pizza.
Kim and Sandy sang.

his arms and feet. ; interaction with possessive determiner
Kim sang on Monday and on Tuesday.

Kim wanted and expected to sing.
Reflexive Pronouns and reciprocals

Kim saw herself.

Kim and Sandy admired each other.
Relative Clauses

Kim ate the pizza that Tony had sold.

Kim saw the boy whose father sold the pizza.
Kim arrived on the day that Sandy arrived.
Secondary Predicates

Kim placed the book on the table.

Kim wiped the table clean.

Kim left Sandy without paying.

Kim met Sandy singing.

Kim met Sandy drunk.

Stephan Oepen and Laura Kallmeyer plan to extend this initial list of examples in the
near future to a more complete resource called SemSharE — Semantic Argument Sharing

FExemplars.
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5 Seminar Program

Introductory Presentations

The seminar started by two introductory presentations on the use of graphs for representing
meaning:

1. Kevin Knight. Mapping English Strings to Reentrant Semantic Structures

2. Marco Kuhlmann. Properties of the SemFEval-2015 Data Sets

Tutorial on Graph Transformation

In addition, a longer tutorial on the theory of graph transformation, divided into several
parts and spread out over 3 days, was given by Frank Drewes.

Working Groups

Open Space group discussions were held on Monday, Tuesday, and Thursday. The following
topics were discussed:

Monday

Session 1
Node replacement grammar for semantics. What does treewidth mean (in NLP)?
(Greedy) parsing algorithms for graphs. Restricted Graph formalisms that allow efficient
parsing. Grammarless parsing
DAG automata. Generating and recognizing AMRs
Universal dependencies. Syntax—semantics interface. Integrating logical operators into
semantic graphs. Comparison of graph banks

Session 2
Characterizing graphs produced by various grammar formalisms. Tree-to-DAG trans-
formations
What happens to HRG when we impose a linear order on the nodes?
Identifying a “good” generator set of graph operations
Multitape graph transducers (insufficient output)
Convolution kernels for directed acyclic graphs and other similarity measures

Tuesday

Session 1
DAG automata. Generating and recognizing AMRs
Grammarless approaches to graph parsing
Dress up an inventory of the graphs we want to have; what are the consequences for
required HRG?
Hyperedge Unification Grammars

Session 2
Characterizing graphs produced by various grammar formalisms. Tree-to-DAG trans-
formations
Practical parsing of HRG
Grammarless generation
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Thursday

Session 1
Types and causes of reentrance. Linguistically relevant graph grammars. An inventory of
the graphs that we want to have; consequences regarding constraints on HRG
An argmax-algorithm for pagenumber-2 graphs. Relationship to dependency parsing.
Eisner-like algorithms and treewidth (or other notions of z-width)

Session 2
How can semantic representations support inference?
Restricted but fast HRG parsing

Session 3
Graphalog — a catalogue of graph banks/Example-based comparisons of graph represent-
ations (AMR, SDP etc.)
Inducing synchronous context-free string <+ graph transformations. Graph-string align-
ment algorithms

Evening session
How do we assign probabilities to graphs? Probabilistic non-context-free graph rewriting

Note that the remainder of this report is not structured according to the list above.
Instead, we have tried to structure the major outcomes of the discussions and present them
in an appropriate way in order to serve as a reference for future work.

Closing Session

Friday morning was devoted to a general recap and an evaluation of the seminar. The result
of the evaluation was very positive; it was decided to consider the possibility of applying for
a follow-up workshop after a couple of years when the community and its research area had
taken shape, which to a significant extent would be thanks to this Dagstuhl Seminar.
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