
Report from Dagstuhl Seminar 15162

Software and Systems Traceability for Safety-Critical
Projects
Edited by
Jane Cleland-Huang1, Sanjai Rayadurgam2, Patrick Mäder3, and
Wilhelm Schäfer4

1 DePaul University – Chicago, US, jhuang@cs.depaul.edu
2 University of Minnesota – Minneapolis, US, rsanjai@cs.umn.edu
3 TU Ilmenau, DE, patrick.maeder@tu-ilmenau.de
4 Universität Paderborn, DE, wilhelm@uni-paderborn.de

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15162 on “Software
and Systems Traceability for Safety-Critical Projects”. The event brought together researchers
and industrial practitioners working in the field of safety critical software to explore the needs,
challenges, and solutions for Software and Systems Traceability in this domain. The goal was to
explore the gap between the traceability prescribed by guidelines and that delivered by manufac-
turers, and starting from a clean slate, to clearly articulate traceability needs for safety-critical
software systems, to identify challenges, explore solutions, and to propose a set of principles and
domain-specific exemplars for achieving traceability in safety critical systems.

Seminar April 12–17, 2015 – http://www.dagstuhl.de/15162
1998 ACM Subject Classification D.2.4 Software/Program Verification
Keywords and phrases safety-critical software development, assurance cases, software and sys-

tems traceability
Digital Object Identifier 10.4230/DagRep.5.4.76
Edited in cooperation with Patrick Rempel

1 Executive Summary

Jane Cleland-Huang
Sanjai Rayadurgam
Patrick Mäder
Wilhelm Schäfer

License Creative Commons BY 3.0 Unported license
© Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer

Safety-critical systems, defined as systems whose “failure could result in loss of life, significant
property damage, or damage to the environment”1, pervade our society. Developing software
is a challenging process. Not only must the software deliver the required features, but it must
do so in a way that ensures that the system is safe and secure for its intended use. To this end
safety-critical systems must meet stringent guidelines before they can be approved or certified
for use. For example, software developed for the aerospace industry must comply to the

1 Failure Analysis and the Safety-Case Lifecycle, W. S. Greenwell, E.A. Strunk, and J.C. Knight in
Human Error, Safety and Systems Development, 2004, http://dx.doi.org/10.1007/1-4020-8153-7_11.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Software and Systems Traceability for Safety-Critical Projects, Dagstuhl Reports, Vol. 5, Issue 4, pp. 76–97
Editors: Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15162
http://dx.doi.org/10.4230/DagRep.5.4.76
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/1-4020-8153-7_11
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 77

ISO12207 and/or the DO-178B/C guidelines, while software developed for European railway
communication, signaling, and processing systems, must comply to EN50128. Most guidelines
prescribe a set of steps and deliverable documents that focus around planning, analysis and
design, implementation, verification and validation, configuration management, and quality
assurance activities. In addition they often provide specific guidelines for the creation and
use of traceability in the project. For example, depending upon the criticality level of a
requirement, the US Federal Aviation Authority guideline DO-178B requires traceability
from requirements to design, and from requirements to source code and executable object
code.

In practice, traceability is achieved through the creation and use of trace links, defined by
the Center of Excellence for Software and Systems Traceability2 as “specified associations
between pair of artifacts, one comprising the source artifact and one comprising the target
artifact”. Software traceability serves an important role in demonstrating that a delivered
software system satisfies its software design constraints and mitigates all identified hazards.
When correct, traceability demonstrates that a rigorous software development process has
been established and systematically followed. Current guidelines, in many safety-critical
industries, prescribe traceability for two reasons. First, as an indirect measure that good
practice has been followed, the general idea being that traceability information serves as
an indicator that design and production practices were conducted in a sound fashion; and
second, as a more direct measure, to show that specific hazards have been explored, potential
failure modes identified, and that the system is designed and implemented in a “demonstrably
rational way”.

Unfortunately, there is a significant gap between prescribed and actual traceability.
An analysis of the traceability information submitted by various organizations to the US
Food and Drug Administration (FDA) as part of the medical device approval process 3,
showed a significant traceability gap between the traceability expectations as laid out in
the FDA’s “Guidance for the Content of Premarket Submissions for Software Contained
in Medical Devices”, and the traceability data documented in the submissions. While all
of the submissions made some attempt to satisfy the FDA’s traceability guidelines, serious
deficiencies were found in almost all the submissions in terms of missing traceability paths,
missing and redundant links, and problems in trace granularity. These deficiencies made
it very difficult to understand the rationale for individual links. A more recent systematic
analysis of seven software projects that originated from four different domains (automotive,
aviation, medical, and space) revealed similar problems 4. The provided software development
artifacts were analyzed with respect to four technical guideline documents (ISO 26262-6,
DO-178B, FDA Guide for Submissions, ECSS-E-40), where each document is a representative
guideline of one of the four domains.

Problems are exacerbated in the systems engineering domain in which core concepts
and designs are often documented across multiple models, each of which might depict a
single viewpoint or perspective of the system. For example, the system might include
separate models for functional and behavioral requirements, software components, electrical
components, thermodynamics, and mechanical components. Furthermore, although each

2 Center of Excellence for Software and Systems Traceability (http://www.CoEST.org)
3 Strategic traceability for safety-critical projects, P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang,

IEEE Software, 30(3):58–66, http://dx.doi.org/10.1109/MS.2013.60.
4 Mind the gap: Assessing the conformance of software traceability to relevant guidelines, P. Rempel,

P. Mäder, T. Kuschke, and J. Cleland-Huang, Proc. of the 36th Int’l Conf. on Software Engineering
(ICSE’14), http://dx.doi.org/10.1145/2568225.2568290.

15162

http://www.CoEST.org
http://dx.doi.org/10.1109/MS.2013.60
http://dx.doi.org/10.1145/2568225.2568290

78 15162 – Software and Systems Traceability for Safety-Critical Projects

of these perspectives is modeled separately in isolation from one another, they interact to
produce the final behavior of the system. Traceability solutions must extend across these
heterogeneous models. Deficiencies in traceability are certainly not new. As far back as
1995, Gotel et al. identified several different traceability problems and attributed them to
poor coordination, lack of perceived benefits, time to market pressures, and lack of sufficient
tooling. These problems observed almost 20 years ago, continue to plague the traceability
landscape today, meaning that the traceability gap between what is prescribed and what is
practiced is still very real.

Given that the software and systems engineering communities have been unable to
solve this problem in over 20 years, it seems prudent to reexamine traceability needs and
their prescribed solutions. Within this Dagstuhl seminar, we engaged software and systems
engineering researchers and practitioners from the safety-critical domain alongside traceability
experts, in highly focused discussions. The aim was to gain a deeper understanding of exactly
what traceability is needed for safety-critical systems, and to identify practical and achievable
solutions. To the best of our knowledge this was the first time researchers from the safety-
critical and traceability domains came together in a dedicated forum to tackle this problem.

We started the week with a number of more general presentations and discussions
from experts in the respective areas to form a common understanding for later discussions.
Subsequently, the seminar continued with shorter talks focusing on a variety of specific
aspects of open challenges and potential solutions accompanied by intensive and highly
interactive discussions. In parallel, we parted for about one third of the time into four focus
groups working on what had been identified as the most relevant and urgent challenges for
closing the traceability gap. The four areas of focus were: tracing qualities, traceability in
the context of models and tools, cost-benefit and stakeholder perspectives, and traceability
in the context of evolution and change. In result, we intend to publish a white-paper that
systematically analyzes the existing traceability gap based on the outcome of the four focus
groups. Furthermore, the workshop has initiated collaborations and potential research
projects between previously separate areas with the potential of significant impact.

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 79

2 Table of Contents

Executive Summary
Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer . . 76

Overview of Talks
Reusing Traceability for Change Impact Analysis – A Case Study in a Safety
Context
Markus Borg . 81

Questioning the Traceability Requirements of Certifying Bodies
Jane Cleland-Huang . 81

Towards a Categorical Foundation of Model Synchronization
Krzysztof Czarnecki . 82

Model-to-Model Traceability as a Key Enabler for Domain-Specific Safety Analysis
Christopher Gerking . 84

Runtime Traceability Challenges in Systems of Systems
Paul Gruenbacher . 84

Tracebility and the CoWolf framework
Lars Grunske . 84

Model-based Reliability and Safety Engineering
Kai Hoefig . 85

The Benefits of Traceability During Software Implementation
Patrick Maeder . 85

Model-based design inspection based on traceability information models and design
slicing
Shiva Nejati . 87

Traceability Through Precise Process Definitions
Leon J. Osterweil . 87

Evolving Trace Links across Versions of a Software System in Safety-Critical Domain
Mona Rahimi . 88

Medical Device Verification and Validation: Experiences and Perspectives
Sanjai Rayadurgam . 88

Traceability Asessment and Roadmap for Medical Device Domain
Gilbert Regan . 89

Mind the Gap: Assessing the Conformance of Software Traceability to Relevant
Guidelines
Patrick Rempel . 91

An Analysis of Challenges in Safety Certification and Implications for Traceability
Research
Mehrdad Sabetzadeh . 92

Traceability in the Nuclear Energy Industry. Challenges and Lessons Learned from
an Industrial Project
Nicolas Sannier . 92

15162

80 15162 – Software and Systems Traceability for Safety-Critical Projects

Systems Engineering and Traceability at the Model Level
Wilhelm Schäfer . 94

Gene-Auto & QGen: Experiences and ideas on ACG specification, qualification and
verification
Andres Toom . 94

Model-based safety engineering: Challenges and opportunities in practice
Marc Zeller . 96

Participants . 97

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 81

3 Overview of Talks

3.1 Reusing Traceability for Change Impact Analysis – A Case Study in
a Safety Context

Markus Borg (Lund University, SE)

License Creative Commons BY 3.0 Unported license
© Markus Borg

Joint work of Borg, Markus; Wnuk, Krzysztof; Regnell, Björn; Runeson, Per

Change Impact Analysis (CIA) during software evolution of safety-critical systems is a
fundamental task closely related to traceability. However, CIA is difficult and labor-intensive
for complex systems, and several authors have proposed tool support. Unfortunately, very few
have been evaluated in industrial settings. In this talk, I will introduce our tool ImpRec, a
Recommendation System for Software Engineering (RSSE), tailored for CIA at an automation
company. Building on research from assisted tracing using information retrieval solutions, as
well as mining software repositories, ImpRec recommends development artifacts potentially
impacted when resolving incoming issue reports. In contrast to previous work on automated
CIA, our approach explicitly targets development artifacts that are not source code. I will
present results from the evaluation of ImpRec, designed as a two-phase industrial case study.
In the first part, we measured the correctness of ImpRec’s recommendations by simulating
the historical inflow of 12 years’ worth of issue reports in the company. In the second part,
we assessed the utility of working with ImpRec by deploying the RSSE in two development
teams. Our results suggest that ImpRec presents about 40% of the true impact among the
top-10 recommendations. Furthermore, user log analysis indicates that ImpRec can support
CIA in industry, and the developers in our study also acknowledged the value of ImpRec in
interviews. In conclusion, our findings show the potential of reusing traceability associated
with developers’ past activities in an RSSE. However, more research is needed on how to
retrain the tool once deployed, and how to adapt processes when new tools are introduced in
safety-critical contexts.

3.2 Questioning the Traceability Requirements of Certifying Bodies
Jane Cleland-Huang (DePaul University – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Jane Cleland-Huang

Software traceability is a sought-after, yet often elusive quality. It is required in safety-critical
systems by many certifying and/or approving bodies, such as the USA Federal Aviation
Authority (FAA) or the USA Food and Drug Administration (FDA). However, our previous
study of medical device submissions to the FDA [1] highlighted the fact that adequate
traceability was rarely achieved in practice. We identified numerous traceability problems
including missing traceability paths, missing individual trace links, redundant paths, and
inconsistencies. Furthermore, conversations with practitioners revealed that traceability is
frequently built into a system as an afterthought, primarily for compliance purposes. In short,
practitioners often perceive traceability effort as a burden, and rarely realize its benefits for
supporting a broad range of software engineering activities for querying project data.

A traceability gap exists between what is prescribed by certifiers and what is delivered
by product manufacturers [2]. This gap has several root causes. The traceability prescribed

15162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

82 15162 – Software and Systems Traceability for Safety-Critical Projects

by certifiers tends to be overly extensive, requiring traceability paths between almost every
pair of artifact types but providing only weak rationales for each path. Practitioners often
fail to understand the need for such extensive traceability and therefore deliver only a subset
of the requested trace links. This tends to be accepted by certifiers thereby reinforcing
the practice of delivering less than the prescribed traceability. Further, current traceability
tools fall short of providing adequate support for trace link construction and maintenance.
Trace links are created using drag-and-drop mechanisms while potentially outdated links
are as ‘suspect’ whenever the source or target artifacts are modified. Significant manual
effort is therefore needed to establish and maintain traceability. More promising state-of-
the-art approaches capture trace links as a natural byproduct of the workflow, for example
by requiring developers to tag work requests with the associated code. The high cost of
traceability can also potentially be reduced using automated trace retrieval, or by utilizing
more intelligent traceability solutions capable of integrating natural language processing
techniques and domain knowledge in order to reason about the presence of links.

Traceability serves two primary purposes in safety-critical systems, to demonstrate that
due process has been followed, and to assess whether specific hazards, regulatory codes,
and/or mitigating requirements have been implemented in the design. However, it is not
clear whether current certification guidelines capture ideal traceability requirements. Recent
interest in building safety- and assurance-cases suggests that a better approach might focus
traceability efforts on connecting hazards, claims, and evidence for those claims in order to
demonstrate product safety while simultaneously showing that good process was followed.

Solving the traceability gap is going to require a multi-pronged effort. Tracing practices
will need to become a natural byproduct of the software engineering process. State of the
art solutions for retrieving and/or reconstructing missing trace links will need to improve
so that the links they generate can be trusted by human users. Finally, certifying bodies
will need to rethink their prescribed traceability requirements – so that any cost and effort
involved in the traceability process returns clear benefits to both developers and certifiers.

References
1 J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and Zisman, A (2014). “Software

Traceability: Trends and Future Directions”. In: Proc. of FOSE’14/ICSE’14, pp. 55–69.
2 P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang (2013). “Strategic Traceability for

Safety-Critical Projects”, In: IEEE Software, 30(3), pp. 58–66.

3.3 Towards a Categorical Foundation of Model Synchronization
Krzysztof Czarnecki (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Krzysztof Czarnecki

Main reference Z. Diskin, A. Wider, H. Gholizadeh, K. Czarnecki, “Towards a Rational Taxonomy for Increasingly
Symmetric Model Synchronization,” in Proc. of the 7th Int’l Conf. on Theory and Practice of
Model Transformations (ICMT’14), pp. 57–73, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-08789-4_5

Model-driven engineering usually requires many overlapping models of a system, each
supporting a particular kind of stakeholder or task. The consistency among these models
needs to be managed during system development. Consistency management unfolds in
the space of multiple model replicas, versions over time, different modeling languages, and
complex relations among the models, which make the process complex and challenging.

This talk reports on our ongoing work to develop the theoretical foundation for model
synchronization based concepts from category theory and illustrated its application to

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-08789-4_5
http://dx.doi.org/10.1007/978-3-319-08789-4_5
http://dx.doi.org/10.1007/978-3-319-08789-4_5
http://dx.doi.org/10.1007/978-3-319-08789-4_5

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 83

practical model synchronization problems. This theory views model synchronization as
an algebra, abstracting from any concrete model structures and synchronization function
implementations and with laws regulating the properties of the functions.

We have delivered several pieces of such foundation, including a precise notion of model
overlap for two or more models expressed in one or more languages [4], a general notion of
model mapping based on queries [7], and a general framework of delta lenses [5, 6, 8]. A
lens, originally proposed by Benjamin Pierce et al., is a coordinated pair of functions: get
to extract an abstract view from a source artifact and put to update the source to make it
consistent with an updated view. In contrast to the original state-based lenses, delta lenses
operate on model updates (represented as vertical model mappings) and traces relating the
overlapping models (represented as horizontal model mappings) rather than model states
only. Basing lenses on model mappings addresses limitations of the state-based setting, such
as composition anomalies and inflexible signatures of the propagation functions [5]. We have
also addressed the symmetric case of delta lenses [6], solving a long-standing problem of
bidirectional transformations: too strong PUTPUT/undoability laws. We have also shown
that our delta lens framework can be instantiated in the Triple-Graph-Grammar (TGG)
setting, giving necessary and sufficient correctness conditions, checkable by tools [8]. Based on
these concepts, we have recently constructed a design space of model synchronizers, capturing
fundamental design choices, such as incrementality, and informational and organizational
symmetry [10].

Practical application of delta lenses include bi-directional synchronization between models
and code [1, 2] and between models specifying business processes and executable models
implementing the specifications [11].

References
1 M. Antkiewicz and K. Czarnecki (2006). “Framework-Specific Modeling Languages with

Round-Trip Engineering”. In: Proc. of MODELS’06, 693–706.
2 M. Antkiewicz, T. Bartolomei, and K. Czarnecki (2009). “Fast extraction of high-quality

framework-specific models from application code”. In: ASE, 16(1), 101–144.
3 M. Antkiewicz and K. Czarnecki (2008). “Design Space of Heterogeneous Synchronization”.

In: GTTSE’07, LNCS 5235, 10, 3–46
4 Z. Diskin, Y. Xiong, and K. Czarnecki (2010). “Specifying Overlaps of Heterogeneous Mod-

els for Global Consistency Checking”. In: Proc. of MDI Workshop, 42–51
5 Z. Diskin, Y. Xiong, and K. Czarnecki (2011). “From State- to Delta-Based Bidirectional

Model Transformations: the Asymmetric Case”. In: JOT, 10(6), 1–25
6 Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas (2011). “From

State- to Delta-based Bidirectional Model Transformations: the Symmetric Case”. In Proc.
of MODELS’11, 304–318

7 Z. Diskin, T. Maibaum, and K. Czarnecki (2012). “Intermodeling, queries, and Kleisli
categories”. In: Proc. of FASE’12, 163–177

8 F. Hermann, H. Ehrig, F. Orejas, F. Czarnecki, Z. Diskin, Y. Xiong, S. Gottmann, and
T. Engel (2013). “Model Synchronization Based on Triple Graph Grammars: Correctness,
Completeness and Invertibility”. In: SOSYM, 14(1), 241–269

9 M. Branco, Y. Xiong, K. Czarnecki, J. Kuester, H. Voelzer (2014). “A case study on
consistency management of business and IT process models in banking”. In: SOSYM, 13(3),
913–940

10 Z. Diskin, A. Wider, H. Gholizadeh, K. Czarnecki (2014). “Towards a Rational Taxonomy
for Increasingly Symmetric Model Synchronization”. In: Proc. of ICMT’14, 57–73

11 J. Küster, H. Völzer, C. Favre, M. Branco, K. Czarnecki (2015). “Supporting Different
Process Views through a Shared Process Model”. In: SOSYM, 25 pages

15162

84 15162 – Software and Systems Traceability for Safety-Critical Projects

3.4 Model-to-Model Traceability as a Key Enabler for Domain-Specific
Safety Analysis

Christopher Gerking (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Christopher Gerking

Joint work of Gerking, Christopher; Dziwok, Stefan; Heinzemann, Christian; Schäfer, Wilhelm

Safety-critical systems raise the need for formal verification at an early stage of the design
process. Model checking is a verification technique that provides counterexamples in case of
violated safety properties. Domain-specific model checking (DSMC) [1] hides the complexity
of model checking by translating from a domain-specific language (DSL) to the input of
a given model checker, and using traceability information to translate counterexamples
back to the DSL. Our approach addresses the problem that existing settings assume only
minor differences between DSL and model checking language, which allows for a single-
step translation. This talk demonstrates how model-to-model traceability enables a back-
translation of counterexamples even in case of major differences between DSL and model
checking language. Our case study describes a successful application of DSMC to a multi-step
translation scenario from the domain of interconnected cyber-physical systems.

References
1 W. Visser, M. B. Dwyer, and M. W. Whalen (2012). “The hidden models of model checking”.

In: Software & Systems Modeling, 11(4), 541–555

3.5 Runtime Traceability Challenges in Systems of Systems
Paul Gruenbacher (Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Paul Gruenbacher

This talk addresses challenges of using traceability links at runtime to diagnose problems
in systems of systems (SoS). Specifically, it addresses traceability needs in setting up a
requirements monitoring infrastructure for a system-of-systems architecture. The challenges
are illustrated with examples from an industrial system of systems in the domain of metallur-
gical plants. Specifically, automated traceability techniques can support engineers defining
requirements monitoring models. Better traceability between requirements and the SoS
runtime architecture can further improve problem diagnoses after detecting violations of
requirements.

3.6 Tracebility and the CoWolf framework
Lars Grunske (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
© Lars Grunske

Agile and iterative development with changing requirements leads to continuously changing
models. In particular, the researchers are faced with the problem of consistently co-evolving

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 85

different views of a model-based system. Whenever one model undergoes changes, correspond-
ing models should co-evolve with respect to this change. On the other hand, domain engineers
are faced with the huge challenge to find proper co-evolution rules which can be finally used
to assist developers in the co-evolution process. In the presentation, the CoWolf framework is
introduced that enables co-evolution actions between related models and provides a tooling
environment. Furthermore, the results of a case study for the co-evolution of architecture
and fault tree models [1] are presented.

References
1 S. Getir, A. Van Hoorn, L. Grunske, M. Tichy (2013). “Co-evolution of software architecture

and fault tree models: An explorative case study on a pick and place factory automation
system”. In: Proc. of NiM-ALP@MoDELS’13, 32–40

3.7 Model-based Reliability and Safety Engineering
Kai Hoefig (Siemens – München, DE)

License Creative Commons BY 3.0 Unported license
© Kai Hoefig

Main reference K. Höfig, M. Zeller, L. Grunske, “metaFMEA-A Framework for Reusable FMEAs”, in Proc. of the
4th Int’l Symp. on Model-Based Safety and Assessment (IMBSA’14), pp. 110–122, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-12214-4_9

Model driven development is currently one of the key approaches to cope with increasing de-
velopment complexity, in general. Applying model-based approaches during the development
of complex products aims at a systematic reuse of models or model elements and thus aims at
a reuse of effort that already has been accomplished. A shorter time to marked and decreased
development costs are strong drivers from industry. Domain specific languages or model
elements come into play to handle complexity and ease the development of systems. Domain
specific and universal modeling languages provide purpose-oriented views on a system model.
The ability to include variation points is used if product lines are being developed. The
overall strategy of divide and conquer brakes complexity down into manageable parts.

Applying similar concepts to safety engineering is a promising approach to extend the
advantages of model driven development to safety engineering activities aiming at a reduction
of development costs, a higher product quality and a shorter time-to-market. First, it makes
safety engineering as a standalone subtask of system development more efficient. Second,
and even more important, this is an essential step towards a holistic development approach
closing the gap between functional development and safety engineering.

3.8 The Benefits of Traceability During Software Implementation
Patrick Maeder (TU Ilmenau, DE)

License Creative Commons BY 3.0 Unported license
© Patrick Maeder

Joint work of Maeder, Patrick; Egyed, Alexander
Main reference P. Mäder, A. Egyed, “Do developers benefit from requirements traceability when evolving and

maintaining a software system?”, Empirical Software Engineering, 20(2):413–441, 2015.
URL http://dx.doi.org/10.1007/s10664-014-9314-z

Software traceability is a required component of many software development processes.
Advocates of software traceability cite advantages like easier program comprehension and

15162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-12214-4_9
http://dx.doi.org/10.1007/978-3-319-12214-4_9
http://dx.doi.org/10.1007/978-3-319-12214-4_9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10664-014-9314-z
http://dx.doi.org/10.1007/s10664-014-9314-z
http://dx.doi.org/10.1007/s10664-014-9314-z

86 15162 – Software and Systems Traceability for Safety-Critical Projects

support for software maintenance (i.e., software change). However, despite its growing
popularity, for a long time there existed no published evaluation about the usefulness of
requirements traceability. It is important, if not crucial, to investigate whether the use of
requirements traceability can significantly support development tasks to eventually justify its
costs [3, 1, 4, 5]. We thus conducted a controlled experiment with 71 subjects re-performing
real implementation tasks on two third-party development projects: half of the tasks with
and the other half without traceability. Our findings show that subjects with traceability
performed on average 24% faster on a given task and created on average 50% more correct
solutions [2, 6] – suggesting that traceability not only saves effort but can profoundly improve
software implementation quality. For a follow-up study [7], we selected medium to large-scale
open-source projects and focused especially on the discovered effect for implementation
quality. We quantified for each developed component of each software project, the degree
to which a studied development activity was enabled by existing traceability and set this
metric in relation to the number of defects that occurred in a component. We found that
traceability significantly affects the defect rate in a component. Overall, our results provide
for the first time empirical evidence that traceability significantly improves implementation
speed as well as implementation quality during software development.

References
1 P. Mäder, O. Gotel, and I. Philippow (2009). “Motivation matters in the traceability

trenches”, In: Proc. of RE’09, pp. 143–148.
2 P. Mäder and A. Egyed (2012). “Assessing the effect of requirements traceability for software

maintenance”, In: Proc. of ICSM’12, pp. 171–180.
3 E. Bouillon, P. Mäder, I. Philippow (2013). “A Survey on Usage Scenarios for Requirements

Traceability in Practice”, In: Proc. of REFSQ’13, pp. 158–173.
4 P. Rempel, P. Mäder, and T. Kuschke (2013). “An empirical study on project-specific

traceability strategies”, In: Proc. of RE’13, 195–204.
5 P. Rempel, P. Mäder, T. Kuschke, and I. Philippow (2013). “Requirements Traceability

across Organizational Boundaries – A Survey and Taxonomy”, In: Proc. of REFSQ’13,
pp. 125–140.

6 P. Mäder and A. Egyed (2015). “Do developers benefit from requirements traceability when
evolving and maintaining a software system?”, In: Empirical Software Engineering, 20(2),
pp. 413–441.

7 P. Rempel and P. Mäder (2015). “Estimating the Implementation Risk of Requirements in
Agile Software Development Projects with Traceability Metrics”, In: Proc. of REFSQ’15,
pp. 81–97.

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 87

3.9 Model-based design inspection based on traceability information
models and design slicing

Shiva Nejati (University of Luxembourg, LU)

License Creative Commons BY 3.0 Unported license
© Shiva Nejati

Joint work of Nejati, Shiva; Sabetzadeh, Mehrdad; Briand, Lionel; Falessi, Davide
Main reference S. Nejati, M. Sabetzadeh, D. Falessi, L. C. Briand, and T. Coq (2012). “A SysML-based approach

to traceability management and design slicing in support of safety certification: Framework, tool
support, and case studies”, Information & Software Technology, 54(6): 569–590, 2012.

URL http://dx.doi.org/10.1016/j.infsof.2012.01.005

Traceability is one of the basic tenets of all software safety standards and a key prerequisite
for certification of software. Despite this, the safety-critical software industry is still suffering
from a chronic lack of guidelines on traceability. An acute traceability problem that we have
identified through observing the software safety certification process has to do with the link
between safety requirements and software design. In the current state of practice, this link
often lacks sufficient detail to support the systematic inspections conducted by the certifiers
of the software safety documentation. As a result, the suppliers often have to remedy the
traceability gaps after the fact which can be very expensive and the outcome might be far
from satisfactory.

The goal of our work is to provide a traceability methodology and a design slicing algorithm
for software safety certification by applying and specializing the Systems Modeling Language
(SysML). Our methodology enables the establishment of traceability links prescribed by
a traceability information model as well as a mechanism for extracting a minimized and
relevant slice of the design with respect to the specified traceability links. The certifiers can
then utilize the links and the design slices to effectively investigate safety claims. To validate
our approach, we report on an industrial case study applying the approach to a safety IO
software module used on ships and offshore facilities.

In this talk, I describe the context in which the above work was carried out, explain our
proposed solutions, and discuss how our solutions have been applied to case studies from the
Maritime and Energy domain.

3.10 Traceability Through Precise Process Definitions
Leon J. Osterweil (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
© Leon J. Osterweil

Traceability should be viewed as a property needed support tracing, whose purpose should be
viewed as the gathering and maintenance of key knowledge and understandings about software
products. Precise and detailed definitions of the processes by which these products are
developed, tested, and evolved are excellent vehicles for continuous creation and maintenance
of the inter- and intra- artifact links that provide the desired traceability. This talk describes
the Little-JIL process definition language and how it can be used to create processes that
can be used to create these links and support this kind of traceability.

15162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.infsof.2012.01.005
http://dx.doi.org/10.1016/j.infsof.2012.01.005
http://dx.doi.org/10.1016/j.infsof.2012.01.005
http://dx.doi.org/10.1016/j.infsof.2012.01.005
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

88 15162 – Software and Systems Traceability for Safety-Critical Projects

3.11 Evolving Trace Links across Versions of a Software System in
Safety-Critical Domain

Mona Rahimi (DePaul University – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Mona Rahimi

Trace links provide critical support for numerous software engineering activities including
safety analysis, compliance verification, test-case selection, and impact prediction in safety-
critical systems. However, as the system evolves over time, there is a tendency for the
quality of trace links to degrade into a tangle of inaccurate and untrusted links. This is
especially true with the links between source-code and upstream artifacts such as requirements-
because developers frequently refactor and change code without updating links. We present
TLE(Trace Link Evolver), a solution for automating the evolution of trace links as the change
is introduced to source code. We use a set of heuristics, open source tools and information
retrieval methods to detect common change scenarios in different versions of code. Each
change scenario is the associated with a set of link evolution heuristics which are used to
evolve trace links. We evaluated our approach through a controlled experiment and also
through applying it to a selection of classes taken from Cassandra Database System. Results
show that the trace links produced by our approach is significantly more accurate than those
produced using information retrieval alone.

3.12 Medical Device Verification and Validation: Experiences and
Perspectives

Sanjai Rayadurgam (University of Minnesota – Minneapolis, US)

License Creative Commons BY 3.0 Unported license
© Sanjai Rayadurgam

Medical devices such as infusion pumps and pacemakers are safety-critical systems that are
strictly regulated by government agencies. The safety of these devices must be demonstrably
established prior to gaining approval for sale. Assurance cases, which are structured arguments
that use evidence gathered through the course of development to establish desirable claims,
are being used, and in some cases mandated, to establish safety of these devices. The
feasibility and the merits of such arguments are critically dependent on traceability across all
development process artifacts, which provide the evidence for the assurance case. Maintaining
and evolving traceability information throughout the development process is challenging.
In particular, showing that requirements are realized in specific design elements and that
realization has been verified is necessary. Often, requirements and architecture co-evolve [4]
and so attempting to specify one without the other leads to inconsistent specifications.

When the architecture is formally modeled and the requirements are decomposed along
architectural lines, compositional verification techniques can be used to prove that the
components satisfying their requirements and interacting as specified by the architecture,
are sufficient to ensure that the system meets its requirements [3]. However, this is typically
insufficient to make a complete argument for claiming verification. Components at the
lowest levels of the architectural decomposition, have to be elaborated below into realizable
implementations and their behavior verified or tested to check conformance to their respective
requirements. Above the architectural model, there may be models of usage scenarios for

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 89

the system in its context, which may then be checked to validate that the system as
specified would meet its intended needs. To tie these together into a complete satisfaction
argument for safety claims [2], trace links that span multiple models and relate elements
of that model at finer levels of granularity are needed. Further, the assurance arguments
and consequently the trace links that enables argumentation must evolve along with the
corresponding artifacts throughout development. In general, the models developed during the
course of system building support several activities such as simulations, analysis, verification
and code-generation. The relationships between the models, and the relationships established
by these activities are essential to the assurance arguments. When architectural designs
are annotated with logical rules of argumentation, generation of assurance cases can be
automated [1].

A few observations related to traceability in this regard merit consideration. First,
requirements placed on traceability solutions for safety-critical medical devices include both a
stable core (that is mandated by regulations) as well as an evolving frontier (that is driven by
changes in development methods and tools employed). Second, while automation can speed
up several traceability related tasks, it is not helpful especially when the output produced
has to be manually analyzed. Strategic thinking is needed to strike a good balance between
automation and manual analysis. Third, questions of provenance tend to be difficult to answer,
but those are the most useful for constructing good assurance arguments. Fourth, supporting
multiple viewpoints of various stakeholders during development requires incremental evolution
of trace semantics because the stakeholder requirements also evolve throughout development.

References
1 A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen (2014). “Resolute: An assurance

case language for architecture models”, In: Proc. of HILT ’14, pp. 19–28.
2 A. Murugesan, O. Sokolsky, S. Rayadurgam, M. Whalen, M. Heimdahl, and I. Lee (2014).

“Linking abstract analysis to concrete design: A hierarchical approach to verify medical
CPS safety”, In: Proc. of ICCPS’14, pp. 139–150.

3 A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. Heimdahl (2013). “Compositional
verification of a medical device system”, In Ada Lett., 33(3), pp. 51–64.

4 M.W. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. Heimdahl, and S. Rayadurgam
(2013). “Your ‘What’ Is My ‘How’: Iteration and Hierarchy in System Design”, In: IEEE
Software, 30(2), pp. 54–60.

3.13 Traceability Asessment and Roadmap for Medical Device Domain
Gilbert Regan (Dundalk Institute of Technology, IE)

License Creative Commons BY 3.0 Unported license
© Gilbert Regan

Within the medical device domain, as in other safety critical domains, software must
provide reliability, safety and security because failure to do so can lead to injury or death.
Software is a complex element of a medical device; it’s role, functionality and importance
continually increases. Additionally due to changes in the 2007 medical device directive (MDD
2007/47/EC), standalone software can now be classed as an active medical device in its own
right. Developing medical device software-based systems in a disciplined and cost-effective
way poses major challenges (esp. with the move towards mobile devices, patient-driven
applications, wireless devices and cloud-based solutions). Therefore highly effective software

15162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

90 15162 – Software and Systems Traceability for Safety-Critical Projects

practices are required. Additionally, regulation normally requires safety critical systems
are certified before entering service. This involves submission of a safety case (a reasoned
argument that the system is acceptably safe) to the regulator. A safety case should include
evidence that the organization has established effective software development processes that
are based on recognized engineering principles appropriate for safety critical systems. At the
heart of such processes, they must incorporate traceability.

However, numerous barriers hamper the effective implementation of traceability such
as cost, complexity of relationship between artifacts, calculating a return on investment,
different stakeholder viewpoints, lack of awareness of traceability and a lack of guidance on
what traceability to implement and how to implement it. There are a number of standards
which medical device manufacturers must conform to, however these standards have different
traceability requirements. This leads to confusion as to what traceability manufacturers
should implement. Additionally medical device software manufacturers are often very small
organisations with little experience in traceability, and, in addition to ‘what traceability to
implement’, they are often unsure as to ‘how to implement it’.

In Ireland the importance of the medical device Industry is obvious from its contribution
of 8.5% of Ireland’s total merchandise exports, and this sector has been identified as one
of the key drivers of industrial growth for the future. Consequently the Irish government
fund research into how medical device organizations can improve their software development
process. The implementation of traceability through the software development lifecycle
and supporting processes of risk management and change management has been identified
as a weakness within these medical device organizations. To assist these organizations
improve their implementation of traceability, a decision was taken to address the ‘lack of
guidance’ on what traceability to implement and how to implement it. This decision lead to
the development of the following research question: “To what extent can the development
of a traceability assessment and implementation framework assist medical device software
organizations improve their traceability practices and put them on the path to regulatory
compliance?”

To answer this question a traceability process assessment model and a roadmap for the
implementation of traceability have been developed. In this presentation the experience of
developing and trialling a traceability assessment model in two medical device organizations
is presented. We show that the assessment model was successful in identifying strengths and
weaknesses in both organisations implementation of traceability. Additionally a roadmap to
assist organizations implement traceability that is both efficient and compliant is presented.
Finally, through the experience of trialling the assessment model in two medical device organ-
izations, I think the traceability assessment model could be improved through automation
and so propose an initial idea of using the Open Services for Lifecycle Collaboration (OSLC)
initiative.

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 91

3.14 Mind the Gap: Assessing the Conformance of Software
Traceability to Relevant Guidelines

Patrick Rempel (TU Illmenau, DE)

License Creative Commons BY 3.0 Unported license
© Patrick Rempel

Joint work of Rempel, Patrick; Mäder, Patrick; Kuschke,Tobias; Cleland-Huang, Jane
Main reference P. Rempel, P. Mäder, T. Kuschke,J. Cleland-Huang, “Mind the Gap: Assessing the Conformance

of Software Traceability to Relevant Guidelines”, in Proc. of the 36th Int’l Conf. on Software
Engineering (ICSE’14), pp. 943–954, ACM, 2014.

URL http://dx.doi.org/10.1145/2568225.2568290

Many guidelines for safety-critical industries such as aeronautics, medical devices, and
railway communications, specify that traceability must be used to demonstrate that a
rigorous process has been followed and to provide evidence that the system is safe for use.
However, practitioners rarely follow explicit traceability strategies [2, 1]. Organizations
struggle to establish and maintain accurate and complete sets of traceability links [3, 4]. In
practice, there is a gap between what is prescribed by guidelines and what is implemented
in practice, making it difficult for organizations and certifiers to fully evaluate the safety
of the software system [5]. We present an approach, which parses a guideline to extract a
Traceability Model depicting software artifact types and their prescribed traces. It then
analyzes the traceability data within a project to identify areas of traceability failure [7].
Missing traceability paths, redundant and/or inconsistent data, and other problems are
highlighted. We used our approach to evaluate the traceability of seven safety-critical
software systems and found that none of the evaluated projects contained traceability that
fully conformed to its relevant guidelines [6].

References
1 P. Mäder, O. Gotel, and I. Philippow (2009). “Getting back to basics: Promoting the use of

a traceability information model in practice”, In: Proc. of TEFSE@ICSE’09, pp. 143–148.
2 P. Mäder, O. Gotel, and I. Philippow (2009). “Motivation matters in the traceability

trenches”, In: Proc. of RE’09, pp. 143–148.
3 P. Rempel, P. Mäder, and T. Kuschke (2013). “An empirical study on project-specific

traceability strategies”, In: Proc. of RE’13, pp. 195–204.
4 P. Rempel, P. Mäder, T. Kuschke, and I. Philippow (2013). “Requirements Traceability

across Organizational Boundaries – A Survey and Taxonomy”, In: Proc. of REFSQ’13,
pp. 125–140.

5 P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang (2013). “Strategic Traceability for
Safety-Critical Projects”, In: IEEE Software, 30(3), pp. 58–66.

6 P. Rempel, P. Mäder, T. Kuschke, and J. Cleland-Huang (2014). “Mind the Gap: Assessing
the Conformance of Software Traceability to Relevant Guidelines”, In: Proc. of ICSE’14,
pp. 943–954.

7 P. Rempel and P. Mäder (2015). “A Quality Model for the Systematic Assessment of
Requirements Traceability”, In: Proc. of RE’15, 8 pages.

15162

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2568225.2568290
http://dx.doi.org/10.1145/2568225.2568290
http://dx.doi.org/10.1145/2568225.2568290
http://dx.doi.org/10.1145/2568225.2568290

92 15162 – Software and Systems Traceability for Safety-Critical Projects

3.15 An Analysis of Challenges in Safety Certification and Implications
for Traceability Research

Mehrdad Sabetzadeh (University of Luxembourg, LU)

License Creative Commons BY 3.0 Unported license
© Mehrdad Sabetzadeh

Many safety-critical systems in domains such as healthcare, aviation, and railways are subject
to safety certification. The goal of safety certification is to provide confidence that a system
will function safely in the presence of known hazards. Safety certification can be associated
with the assessment of products, processes, or personnel. For software-intensive safety-critical
systems, certification of products and processes are the most challenging.

In my talk, I will discuss several challenges in the safety certification of software-intensive
systems. These challenges were gleaned from a large systematic review of the academic
literature on safety certification, a number of practitioner surveys, and my personal experience
working with the safety-critical software industry. I will argue that safety certification is closely
intertwined with traceability, and that many of the challenges faced in safety certification
today are caused by traceability gaps.

At the end, I will briefly present some technical work from our research group lying at
the intersection of safety certification and traceability research.

3.16 Traceability in the Nuclear Energy Industry. Challenges and
Lessons Learned from an Industrial Project

Nicolas Sannier (University of Luxembourg, LU)

License Creative Commons BY 3.0 Unported license
© Nicolas Sannier

Joint work of Sannier, Nicolas; Baudry, Benoit
Main reference N. Sannier, B. Baudry, “INCREMENT: A Mixed MDE-IR Approach for Regulatory Requirements

Modeling and Analysis,” in Proc. of the 20th Int’l Working Conf. on Requirements Engineering:
Foundation for Software Quality (REFSQ’14), pp. 135–151, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-05843-6_11

The basic intuition behind any thermal power plant (independently of the primary resource
they use: coal, gas, oil or uranium) is rather simple. Legitimate safety issues and safety
measures to prevent catastrophic accidents or mitigate their consequences make these
systems incredibly complex, and the more complex, the harder the safety qualification.
Instrumentation and Control (I&C) systems allow to measure and control the plant’s behavior.
Since 1986, I&C Systems are now mostly made of software systems and represent the toughest
part for safety qualification. Those important to safety must conform to safety and regulatory
requirements. Regulatory requirements are written by national safety authorities and are
completed using a set of national recommendation guides or national and international
standards. All these documents are weakly interrelated. Due to the lack of international
consensus on regulatory practices, building such systems in different countries requires
facing practices of several safety authorities. In order to minimize design and qualification
effort, traceability between regulatory requirements became suddenly important. These
observations set three important challenges. First, the global domain knowledge is scattered,
not formalized and hold by few experts. Second, traceability links and, said differently,
the organization within the domain, is implicit. The third problem is the consequence of
the two firsts. Bridges between different national practices are not developed, whereas the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-05843-6_11
http://dx.doi.org/10.1007/978-3-319-05843-6_11
http://dx.doi.org/10.1007/978-3-319-05843-6_11
http://dx.doi.org/10.1007/978-3-319-05843-6_11

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 93

understanding of regulations and practices becomes a significant industrial issue. In our
context, traceability comes with two facets. Traceability basically means linking one element
to another. However, two elements are basically linked for a particular purpose. In this
case, traceability also means organizing the domain. (1) We need to define different types
of traceability links between elements of our domain. It is one thing to define traceability
links. It is another one to concretely present the relationship(s) between two artifacts
as traceability links. In the modeling community, people are used with diagrams, where
traceability between elements can be visualized as arrows between two boxes. However, for
this particular project, nuclear engineers are mainly working with a large amount (thousands)
of textual fragments, using excel spreadsheets. This representation put the text as first class
citizen, and traceability cannot be handled properly in a class diagram neither in a matrix
for such a huge amount of data. (2) We need to provide a convenient way to present these
traceability links. Another concern worth considering is how to implement these traceability
links. Said differently, it will be more than helpful to automatically build these traceability
links. In our context, building traceability links between requirements means investigating
relationships between requirements from the same corpus, and from different corpora in
order to find similarities and possible coverage between requirements. In practice, these
traceability links rarely exist in the regulation (regulations may have been written before the
standards and were not always updated, practices may have changed). Moreover, these texts
are generic, do not target any particular system and are voluntary ambiguous in order to last
along the years. Finally regulations, standards and their interpretation as well as practices
widely differ from one country to another. Consequently, there is no straightforward mapping
between safety requirements. (3) Before creating traceability links between elements, we must
first reduce the amount of elements to compare and analyze. In this project, we investigated
different areas of research. We used Metamodeling to model the domain and precisely define
the traceability links we wanted to represent. Modeling is good for formally defining domain
elements and their relationship, however, it is not useful for representing information that is
mainly textual and “would never fit in a box”, neither it is to analyze these textual fragments.
For the latter, we investigated the use of different techniques such as overlapping clustering
algorithms, machine learning and topic detection, and information retrieval. The objective
was to be able to build topic clusters and reduce the size of the search space. We draw
some observations from these experiments. In particular, machine learning and clustering
approaches were considered suspicious by our industry partners, as defined topics could not
be legitimately argued and validated. Results were “not good enough” to impose confidence.
On the other hand, Information Retrieval performed reasonably well and received more
positive feedbacks as the querying tool we proposed made more sense to them as it was in
line with the support our industry partners were expecting. Among the many lessons that
can be learned with respect to traceability, we can highlight the following ones:

Traceability is not only a matter of linking objects together; it is also a matter of amount
of objects to link together.
Traceability techniques may also require trust and understandability to be accepted.

15162

94 15162 – Software and Systems Traceability for Safety-Critical Projects

3.17 Systems Engineering and Traceability at the Model Level
Wilhelm Schäfer (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Wilhelm Schäfer

Todays embedded and often safety-critical systems require traceability from requirements
down to the implementation in terms of software and hardware. The talk presents a systematic
V-model based approach which includes a discipline spanning model in the requirements
and early design phase. This model consists of seven views which cover all disciplines as for
example a so-called active structure. The active structure includes the definition of system
components and energy, material and information flow between the components. Other views
define scenarios or use cases and the underlying abstract shape model which comes from CAD.
Partially automatic transformations which are based on a formal , semantically well-defined
mechanism, define how discipline-specific models are derived. These transformations form
the basis for defining traces between all concerned models.

3.18 Gene-Auto & QGen: Experiences and ideas on ACG specification,
qualification and verification

Andres Toom (IB Krates OÜ – Tallinn, EE)

License Creative Commons BY 3.0 Unported license
© Andres Toom

Automatic Code Generators (ACG) or model transformers make Model Driven Engineering
(MDE) really powerful and have a great potential for reducing human errors and assisting
certification by having an ability to generate together with the expected output also complete
and consistent trace data. However, ACGs are complex tools themselves and need to be also
qualified/certified.

This presentation reports on the experiences of two consecutive collaborative initiatives
Gene-Auto [1] and its continuation carried out in two affiliated projects Project P [2] and
Hi-MoCo [3], aiming at developing open-source code generators for safety critical domains.
These code generators are designed to transform high-level modelling languages such as
Simulink, Scicos and Stateflow to low-level program code in languages such as C or Ada.
Since the intended end-user domains include avionics, their qualification plans have been set
up according to the DO-178 B/C software qualification guideline. As this guideline is also
one of the most stringent and refined ones among the safety critical domains, it is expected
to be relatively easy to apply the results also in other domains. The outcomes of these
initiatives are due to the effort of several organisations and many individuals over several
years. References of the contributors can be found from the provided websites.

Gene-Auto was the first project, with most of the development taking place during
an ITEA project in 2006-2008. The goals of the project included the clarification of the
requirements for such a tool across different domains, investigating the qualification of Java
language based software, and usage of formal methodologies such as development with a
formal proof assistant in a qualifiable tool development process. Below is a brief summary of
all of these outcomes.

The project went through several iterations and ended with a rather mature prototype
ACG. The high-level user requirements and low-level software requirements (architecture and

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 95

component requirements) were considerable refined, but the global functional requirements
(resulting from the toolset integration) were not yet explicitly specified. Similarly, source
code and test cases were not explicitly traced to the requirements. For this project, differently
from some more typical critical software development tasks, this was a rather natural process.
As the requirements were largely clarified during an iterative process, rigorous management
of trace links at all artifact levels was considered not that useful at that stage. Also, since
the toolset had a very clear architectural design the risk of software deviating from high-level
requirements was minimal.

The part of requirements that handled language definitions were formalised as metamodels
and grammars. Other parts were specified as tagged Open Office documents. These
documents were parsed and analysed by the Tramway (Topcased-Requirements) tool. The
requirement split-down and coverage analysis performed by Tramway was rather useful.
However, document based requirement management became soon complicated in terms of
version and change management.

As for the qualification of Java-based software, then the main open questions remained
related to the qualification of the Java Virtual Machine (JVM) and libraries, both native and
external (such as parser generator, XML library). The advantage of Java is that it has a large
user community and rich functionality. However, the libraries have much more functionality
than is needed for a tool with concise, but safety critical functionality. One would either
have to qualify or remove this extra functionality. Both options have considerable cost.

A specific procedure in the qualification plan was also set up for component development
with a proof assistant. In particular the Coq proof assistant was used. In this process the
initial component requirements specification phase is followed by a formal specification phase
and a rather minimal design phase. Software code (with the exception of some interface
and glue code) is automatically generated from the proof of the properties expressed in the
formal specification. The program extraction technology has been developed out earlier and
has been used on some tools of considerable complexity (e.g. the CompCert compiler by X.
Leroy et al.). The certification experts considered the process outlined above acceptable for
the qualification of such a tool possible in the long term. However, all the components used
in the process, including the Coq kernel and program extractor need to be qualified. On the
other hand, usage of such deep formal methods and tools in the industry was not considered
possible by the Gene-Auto industrial partners at the current time.

The Gene-Auto initiative was continued in the joint follow-up projects Project P and
Hi-MoCo, which laid the foundations for the QGen [4] code generator. The requirements
of Gene-Auto have been refined and extended and different technical platforms are used to
ease the tool qualification process. The main implementation language of the tool is Ada,
which has been developed specifically for safety critical domains. Only a minimal set of
already qualified external Ada libraries are used. Currently, the complete tool-chain has
been implemented in Ada. The toolset has a standard Ecore metamodel-based interface for
exporting-importing models between the transformation steps. This enables substituting
elementary transformation steps by components implemented using other technologies (e.g.
formal methods-based), when they are at a sufficient maturity level for tool qualification.

All qualification artifacts for QGen are managed using the Qualifying Machine (QM) [5]
tool. The main functionalities of this tool currently include importing artifacts from different
formats, analysing and displaying them, and (to some extent) also modifying via a common
user interface. The low level requirements are written as structured annotations or formal
pre/post conditions to the Ada spec (.ads) files that specify the public interface of source
code modules of QGen. This way it is easy to ensure that all the public functions have

15162

96 15162 – Software and Systems Traceability for Safety-Critical Projects

associated requirements, as well as update either the source code or low level requirement
each time one of them changes. When requirements are expressed as formal invariants
or pre-post conditions, mismatches between the requirement and implementation can be
also automatically detected. Mapping between the test cases and requirements is achieved
by explicit QM cross-links. Overall, at this stage the QGen tool maturation as well as
qualification process and data refinement are still in progress. In addition we are performing
complementary studies with more formal, but light-weight approaches that are close to the
current state of the art and practice in the industry. These experiments include the formal
specification of block libraries for dataflow languages [6] and transformation contracts for
the specification of model transformations [7]. However, it is evident that most factors
that complicated and impeded the qualification process of the Gene-Auto project have been
refined and resolved in the QGen project.

References
1 Gene-Auto project (2006-2008). http://www.geneauto.org.
2 Project P (2011–2015). http://www.open-do.org/projects/p.
3 High-Integrity Model Compiler (Hi-MoCo) project (2011-2014).

http://www.eurekanetwork.org/project/-/id/6037.
4 QGen tool (2015). http://www.adacore.com/qgen.
5 Qualifying Machine (QM) project (2015). http://www.open-do.org/projects/

qualifying-machine.
6 A. Dieumegard, A. Toom, and M. Pantel (2014). “A software product line approach for

semantic specification of block libraries in dataflow languages”, In: Proc. of SPLC’14,
pp. 217–226.

7 A. Toom, A. Dieumegard, M. Pantel (2014). “Specifying and verifying model transforma-
tions for certified systems using transformation models”, In: Proc. of ERTS2’14.

3.19 Model-based safety engineering: Challenges and opportunities in
practice

Marc Zeller (Siemens – München, DE)

License Creative Commons BY 3.0 Unported license
© Marc Zeller

Joint work of Zeller, Marc; Hoefig, Kai

The technology path MbRSE develops and integrates models and methods for the model-
driven engineering of critical systems. MbRSE stands for Model-based Reliability and
Safety engineering and is primarily motivated by the challenges of dynamic reconfigurable
cyber-physical systems.

We provide Siemens business units with top-notch technologies to establish systematic
reuse of critical development artifacts and security-aware runtime certification.

Our methods and models enable divide and conquer strategies for critical systems
development to reduce effort and increase quality of Siemens products.

http://www.geneauto.org
http://www.open-do.org/projects/p
http://www.eurekanetwork.org/project/-/id/6037
http://www.adacore.com/qgen
http://www.open-do.org/projects/qualifying-machine
http://www.open-do.org/projects/qualifying-machine
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer 97

Participants

Markus Borg
Lund University, SE

Jane Cleland-Huang
DePaul University – Chicago, US

Krzysztof Czarnecki
University of Waterloo, CA

Christopher Gerking
Universität Paderborn, DE

Paul Grünbacher
Universität Linz, AT

Lars Grunske
Universität Stuttgart, DE

Kai Höfig
Siemens – München, DE

Patrick Mäder
TU Ilmenau, DE

Shiva Nejati
University of Luxembourg, LU

Leon J. Osterweil
University of Massachusetts –
Amherst, US

Mona Rahimi
DePaul University – Chicago, US

Sanjai Rayadurgam
University of Minnesota –
Minneapolis, US

Gilbert Regan
Dundalk Institute of Technology,
IE

Patrick Rempel
TU Illmenau, DE

Mehrdad Sabetzadeh
University of Luxembourg, LU

Nicolas Sannier
University of Luxembourg, LU

Wilhelm Schäfer
Universität Paderborn, DE

Andres Toom
IB Krates OÜ – Tallinn, EE

Marc Zeller
Siemens – München, DE

15162

	Executive Summary Jane Cleland-Huang, Sanjai Rayadurgam, Patrick Mäder, and Wilhelm Schäfer
	Table of Contents
	Overview of Talks
	Reusing Traceability for Change Impact Analysis – A Case Study in a Safety Context Markus Borg
	Questioning the Traceability Requirements of Certifying Bodies Jane Cleland-Huang
	Towards a Categorical Foundation of Model Synchronization Krzysztof Czarnecki
	Model-to-Model Traceability as a Key Enabler for Domain-Specific Safety Analysis Christopher Gerking
	Runtime Traceability Challenges in Systems of Systems Paul Gruenbacher
	Tracebility and the CoWolf framework Lars Grunske
	Model-based Reliability and Safety Engineering Kai Hoefig
	The Benefits of Traceability During Software Implementation Patrick Maeder
	Model-based design inspection based on traceability information models and design slicing Shiva Nejati
	Traceability Through Precise Process Definitions Leon J. Osterweil
	Evolving Trace Links across Versions of a Software System in Safety-Critical Domain Mona Rahimi
	Medical Device Verification and Validation: Experiences and Perspectives Sanjai Rayadurgam
	Traceability Asessment and Roadmap for Medical Device Domain Gilbert Regan
	Mind the Gap: Assessing the Conformance of Software Traceability to Relevant Guidelines Patrick Rempel
	An Analysis of Challenges in Safety Certification and Implications for Traceability Research Mehrdad Sabetzadeh
	Traceability in the Nuclear Energy Industry. Challenges and Lessons Learned from an Industrial Project Nicolas Sannier
	Systems Engineering and Traceability at the Model Level Wilhelm Schäfer
	Gene-Auto & QGen: Experiences and ideas on ACG specification, qualification and verification Andres Toom
	Model-based safety engineering: Challenges and opportunities in practice Marc Zeller

	Participants

