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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15171 “Theory and
Practice of SAT Solving”. The purpose of this seminar was to explore one of the most significant
problems in all of computer science, namely that of computing whether formulas in propositional
logic are satisfiable or not. This problem is believed to be intractable in general (by the the-
ory of NP-completeness). However, the last two decades have seen dramatic developments in
algorithmic techniques, and today so-called SAT solvers are routinely and successfully used to
solve large-scale real-world instances in a wide range of application areas.

A surprising aspect of this development is that the best current SAT solvers are still to a large
extent based on methods from the early 1960s, which can often handle formulas with millions
of variables but may also get hopelessly stuck on formulas with just a few hundred variables.
The fundamental question of when SAT solvers perform well or badly, and what underlying
mathematical properties of the formulas influence SAT solver performance, remains very poorly
understood. Another intriguing aspect is that much stronger mathematical methods of reasoning
about propositional logic formulas are known today, in particular methods based on algebra and
geometry, and these methods would seem to have great potential based on theoretical studies.
However, attempts at harnessing the power of such methods have conspicuously failed to deliver
any significant improvements in practical performance.

This seminar gathered leading researchers in applied and theoretical areas of SAT and compu-
tational complexity to stimulate an increased exchange of ideas between these two communities.
We see great opportunities for fruitful interplay between theoretical and applied research in this
area, and believe that this seminar showed beyond doubt that a more vigorous interaction between
the two has potential for major long-term impact in computer science, as well for applications in
industry.
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1 Executive Summary

Armin Biere
Vijay Ganesh
Martin Grohe
Jakob Nordström
Ryan Williams
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This seminar brought together researchers working in the areas of applied SAT solving on
the one hand, and in proof complexity and neighbouring areas of computational complexity
theory on the other, in order to communicate new ideas, techniques, and analysis from both
the practical and theoretical sides.

The goals of this endeavour are to better understand why modern SAT solvers work so
efficiently for many large-scale real-world instances, and in the longer term to discover new
strategies for SAT solving that could go beyond the present “conflict-driven clause-learning”
paradigm and deliver substantial further gains in practical performance.

Topics of the Workshop
This seminar explored one of the most significant problems in all of mathematics and computer
science, namely that of proving logic formulas. This is a problem of immense importance
both theoretically and practically. On the one hand, it is believed to be intractable in
general, and deciding whether this is so is one of the famous million dollar Clay Millennium
Problems (the P vs. NP problem). On the other hand, today so-called SAT solvers are
routinely and successfully used to solve large-scale real-world instances in a wide range of
application areas (such as hardware and software verification, electronic design automation,
artificial intelligence research, cryptography, bioinformatics, operations research, and railway
signalling systems, just to name a few examples).

During the last 15–20 years, there have been dramatic – and surprising – developments
in SAT solving technology that have improved real-world performance by many orders of
magnitude. But perhaps even more surprisingly, the best SAT solvers today are still based on
relatively simple methods from the early 1960s, searching for proofs in the so-called resolution
proof system. While such solvers can often handle formulas with millions of variables, there
are also known tiny formulas with just a few hundred variables that cause even the very best
solvers to stumble. The fundamental question of when SAT solvers perform well or badly,
and what underlying properties of the formulas influence SAT solver performance, remains
very poorly understood. Other practical SAT solving issues, such as how to optimize memory
management and how to exploit parallelization on modern multicore architectures, are even
less well studied and understood from a theoretical point of view.

Another intriguing fact is that although other mathematical methods of reasoning are
known that are much stronger than resolution in theory, in particular methods based on
algebra and geometry, attempts to harness the power of such methods have failed to deliver
any significant improvements in practical performance – indeed, such solvers often struggle
even to match the performance of resolution-based solvers. And while resolution is a fairly
well-understood proof system, even very basic questions about these stronger algebraic and
geometric methods remain wide open.
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We believe that computational complexity can shed light on the power and limitations
on current and possible future SAT solving techniques, and that problems encountered in
SAT solving can spawn interesting new areas in theoretical research. We see great potential
for interdisciplinary research at the border between theory and practice in this area, and
believe that more vigorous interaction between practitioners and theoreticians could have
major long-term impact in both academia and industry.

Goals of the Workshop
A strong case can be made for the importance of increased exchange between the two fields
of SAT solving on the one hand and proof complexity (and more broadly computational
complexity) on the other. While the two areas have enjoyed some exchanges, it seems fair to
say that there has been relatively low level of interaction, given how many questions would
seem to be of mutual interest. Below, we try to outline some such questions that served as
motivation for organizing this seminar. We want to stress that this list is far from exhaustive,
and in fact we believe one important outcome of the seminar was to stimulate the process of
uncovering other questions of common interest.

What Makes Formulas Hard or Easy in Practice for Modern SAT Solvers?

The best SAT solvers known today are based on the DPLL procedure, augmented with
optimizations such as conflict-driven clause learning (CDCL) and restart strategies. The
propositional proof system underlying such algorithms, resolution, is arguably the most
well-studied system in all of proof complexity.

Given the progress during the last decade on solving large-scale instances, it is natural
to ask what lies behind the spectacular success of CDCL solvers at solving these instances.
And given that there are still very small formulas that resist even the most powerful CDCL
solvers, a complementary interesting question is if one can determine whether a particular
formula is hard or tractable. Somewhat unexpectedly, very little turns out to be known
about these questions.

In view of the fundamental nature of the SAT problem, and in view of the wide applicability
of modern SAT solvers, this seems like a clear example of a question of great practical
importance where the theoretical field of proof complexity could potentially provide useful
insights. In particular, one can ask whether one could find theoretical complexity measures for
formulas than would capture the practical hardness of these formulas in some nice and clean
way. Besides greatly advancing our theoretical understanding, answering such a question
could also have applied impact in the longer term by clarifying the limitations, and potential
for further improvements, of modern SAT solvers.

Can Proof Complexity Shed Light on Crucial SAT Solving Issues?

Understanding the hardness of proving formulas in practice is not the only problem for
which more applied researchers would welcome contributions from theoretical computer
scientists. Examples of some other possible practical questions that would merit from a
deeper theoretical understanding follow below.

Firstly, we would like to study the question of memory management. One major concern
for clause learning algorithms is to determine how many clauses to keep in memory. Also,
once the algorithm runs out of the memory currently available, one needs to determine
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which clauses to throw away. These questions can have huge implications for performance,
but are poorly understood.
In addition to clause learning, the concept of restarts is known to have decisive impact on
the performance on modern CDCL solvers. It would be nice to understand theoretically
why this is so. The reason why clause learning increases efficiency greatly is clear –
without it the solver will only generate so-called tree-like proofs, and tree-like resolution
is known to be exponentially weaker than general resolution. However, there is still ample
room for improvement of our understanding of the role of restarts and what are good
restart strategies.
Given that modern computers are multi-core architectures, a highly topical question is
whether this (rather coarse-grained) parallelization can be used to speed up SAT solving.
Our impression is that this is an area where much practical work is being carried out,
but where comparatively little theoretical study has been done. Thus, the first step here
would consist of understanding what are the right questions to ask and coming up with a
good theoretical framework for investigating them.
While there are some successful attempts in parallelizing SAT, obtained speed-ups are
rather modest. This is a barrier for further adoption of SAT technology already today and
will be become a more substantial problem as thousands of cores and cloud computing
are becoming the dominant computing platforms. A theoretical understanding on how
SAT can be parallelized will be essential to develop new parallelization strategies to adapt
SAT to this new computing paradigm.

Can we build SAT Solvers based on Stronger Proof Systems than Resolution?

Although the performance of modern CDCL SAT solvers is impressive, it is nevertheless
astonishing, not to say disappointing, that the state-of-the-art solvers are still based on simple
resolution. Resolution lies very close to the bottom in the hierarchy of propositional proof
systems, and there are many other proof systems based on different forms of mathematical
reasoning that are known to be strictly stronger. Some of these appear to be natural
candidates for serving as a basis for stronger SAT solvers than those using CDCL.

In particular, proof systems such as polynomial calculus (based on algebraic reasoning)
and cutting planes (based on geometry) are known to be exponentially more powerful than
resolution. While there has been some work on building SAT solvers on top of these proof
systems, progress has been fairly limited. As part of the seminar, we invited experts on
algebraic and geometric techniques to discuss what the barriers are that stops us from
building stronger algebraic or geometric SAT solvers, and what is the potential for future
improvements. An important part of this work would seem to be to gain a deeper theoretical
understanding of the power and limitations of these proof methods. Here there are a number
of fairly long-standing open theoretical questions. At the same time, only in the last couple
of years proof complexity has made substantial progress, giving hope that the time is ripe
for decisive break-throughs in these areas.

Organization of the Workshop
The scientific program of the seminar consisted of 26 talks. Among these there were five
80-minute tutorials on core topics of the seminar:

proof complexity (Paul Beame),
conflict-driven clause learning (CDCL) SAT solvers (João Marques-Silva),
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proof systems connected to SAT solving (Sam Buss),
preprocessing and inprocessing (Matti Järvisalo),
SAT and SMT (Nikolaj Bjørner).

Throughout, the tutorials were well-received as a means of introducing the topics and creating
a common frame of reference for participants from the different communities.

There were also nine slighly shorter survey talks of 50 minutes which were intended to
give overviews of a number of important topics for the seminar:

semialgebraic proof systems (Albert Atserias),
pseudo-Boolean constraints and CDCL (Daniel Le Berre),
Gröbner bases (Manuel Kauers),
SAT-enabled verification of state transition systems, (Karem Sakallah),
SAT and computational complexity (Ryan Williams)
the (strong) exponential time hypothesis and consequences (Ryan Williams),
SAT and parameterized complexity (Stefan Szeider),
QBF solving (Nina Narodytska),
random satisfiability (Dimitris Achlioptas).

Most tutorials and survey talks were scheduled early in the week, to create a conducive
atmosphere for collaboration on open problems later in the week. The rest of the talks were
25-minute presentations on recent research of the participants. The time between lunch and
afternoon coffee was left for self-organized collaborations and discussions, and there was no
schedule on Wednesday afternoon.

Based on polling of participants before the seminar week, it was decided to have an
open problem session on Monday evening, and on Wednesday evening there was a panel
discussion. The organizing committee also considered the option of having a poster session
to give more researchers the opportunity to present recent research results, but the feedback
in the participant poll was negative and so this idea was dropped.
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3 Overview of Presentations

In this section we list the titles and abstracts of all presentations given during the seminar.

3.1 An introduction to proof complexity
Paul Beame (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Paul Beame

We give an overview of proof complexity including its basic definitions and many examples
of natural and widely-studied propositional proof systems including inference systems using
logical formulas, circuits, polynomials, and linear and polynomial inequalities. We also show
how every complete SAT solver also yields a propositional proof system. We describe many
of the known relationships between propositional proof systems and known bounds on their
efficiency. We show some of the key techniques for bounding the lengths of propositional
proofs, including relationships between their size, width, and degree and we show how this is
related to forms of graph expansion of their input formulas. Finally, we describe a number of
classes of natural examples of formulas that are hard to prove in various proof systems.

3.2 Tutorial on conflict-driven clause learning (CDCL) SAT solvers
João Marques-Silva (INESC-ID – Lisboa, PT)

License Creative Commons BY 3.0 Unported license
© João Marques-Silva

Conflict-driven clause learning (CDCL) SAT solvers represent the de facto standard solver
in practical problem solving with SAT, being used in the most visible and most successful
practical applications of SAT. This tutorial will give an overview of the key concepts and
techniques used in modern CDCL SAT solvers.

3.3 An Introduction to Semialgebraic Proofs: Basic Definitions and
Results

Albert Atserias (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Albert Atserias

Boolean satisfiability is a special case of integer linear programming, so we can hope to
integrate some of their methods to SAT solvers. We will go over well-studied semialgebraic
techniques, namely Gomory-Chvátal cuts and lift-and-project methods, and present some
cases where they beat a resolution-based approach, as well as some lower bounds.
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3.4 Handling Pseudo-Boolean constraints in a CDCL solver: a
practical survey

Daniel Le Berre (CNRS – Lens, FR)

License Creative Commons BY 3.0 Unported license
© Daniel Le Berre

CDCL solvers have been quickly extended to handle arbitrary constraints. Doing so while
preserving the original proof system of the solver does not require much changes to the solver.

Extending the proof system of the solver is however much more challenging. The talk will
emphasize the extension of the CDCL architecture to the so called “generalized resolution”
proof system, which lies between resolution and cutting planes proof systems, to handle
Pseudo-Boolean constraints.

It will especially point out the strong requirements of the CDCL architecture on the
proof system used for conflict analysis. Gory details about the constraints derived by such
extended CDCL solver on benchmarks such as pigeon hole formulas will highlight both the
strength and weaknesses of the resulting solver.

3.5 Gröbner bases
Manuel Kauers (Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Manuel Kauers

We explain what Gröbner bases are, why they are interesting, and how they are computed.
The focus of the talk is on computational aspects. We will therefore not say much about how
Gröbner bases can be used for solving all sorts of problems in commutative algebra. Instead,
after discussing the classical Buchberger algorithm for computing Gröbner basis, we will try
to sketch the underlying ideas of more recent algorithms.

3.6 Tutorial on proof systems connected to SAT solving
Sam Buss (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Sam Buss

Most SAT solvers implicitly generate refutation in the resolution proof system. We review
this connection and characterize the shape of proofs generated by a CDCL solver. We
introduce proof systems weaker than resolution that model these proofs.

3.7 Tutorial on preprocessing and inprocessing
Matti Järvisalo (University of Helsinki, FI)

License Creative Commons BY 3.0 Unported license
© Matti Järvisalo

This tutorial aims at covering (i) some of the most important preprocessing techniques used
today in practice in conjunction with SAT solvers, and (ii) a generic “inprocessing” proof
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system capturing the deductions made by inprocessing SAT solvers that interleave CDCL
search and preprocessing steps during search.

3.8 An Empirical Understanding of Conflict-Driven Clause-Learning
SAT Solvers

Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Vijay Ganesh

Modern conflict-driven clause-learning (CDCL) Boolean SAT solvers routinely solve very
large industrial SAT instances in relatively short periods of time. This phenomenon has
stumped both theoreticians and practitioners since Boolean satisfiability is an NP-complete
problem widely believed to be intractable. It is clear that these solvers somehow exploit the
structure of real-world instances. However, to-date there have been few results that precisely
characterize this structure, or shed any light on why these SAT solvers are so efficient.

In this talk, I will present results that provide a deeper empirical understanding of why
CDCL SAT solvers are so efficient. First, we provide evidence that industrial SAT instances
have “good community structure”, and that this correlates more strongly with the running
time of SAT solvers than traditional complexity-theoretic measures of SAT instance size such
as number of clauses, variables or clause-variable ratio. Second, we characterize the famous
VSIDS branching heuristic through a set of behavioral invariants that we discovered through
a rigorous scientific process. These invariants include the following: First, VSIDS picks
high-centrality bridge variables in the community structure of SAT instances much more
often than other variables. Second, the multiplicative decay in VSIDS acts as a exponential
moving average (EMA). Third, VSIDS is spatially and temporal focused (localized) with
respect to the community structure of the SAT instance. We believe that the net effect of
these behaviors of VSIDS is that it essentially enables the CDCL SAT solver to carry out a
divide-and-conquer strategy by separating and then solving the communities of an instance.

Finally, I will present an abstract model of a SAT solver as an “active learner with
deductive corrective feedback” that we believe is an accurate and analyzable mathematical
model of CDCL solvers. I will also provide evidence that many successful techniques in
formal verification and, more broadly, in software engineering can be abstractly modeled as
“reinforcement learners with deductive corrective feedback”.

3.9 MaxSAT Solving with SAT Oracles
João Marques-Silva (INESC-ID – Lisboa, PT)

License Creative Commons BY 3.0 Unported license
© João Marques-Silva

Given an unsatisfiable formula, the maximum satisfiability problem (MaxSAT) is to identify
a maximal subset of clauses that can be simultaneously satisfied. MaxSAT finds a growing
number of practical applications, that include fault localization in software, design debugging
in hardware, different applications in bioinformatics, timetabling and scheduling problems,
among many others. For practical purposes, the most effective algorithms are based on
iterative identification and relaxation of unsatisfiable subformulas using SAT solvers as
oracles. This talk gives a brief overview of MaxSAT algorithms based on SAT oracles, and
highlights what are currently the most effective techniques.

http://creativecommons.org/licenses/by/3.0/
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3.10 SAT-Enabled Verification of State Transition Systems
Karem A. Sakallah (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Karem Sakallah

The sequential behavior of complex artifacts, such as a hardware design or a software
programs, is commonly captured by modeling the artifact as a formal state transition system.
Given a desired (safety) property on the states of such a system, an important verification
challenge is to determine whether all states reachable from a given (safe) initial state are safe
and, if not, to produce an execution trace leading from the initial state to an unsafe state.
Algorithmic approaches for solving this problem, in contrast to interactive theorem proving
or proof checking methods, are what is referred to in the literature as model checking (MC).

In this talk I will briefly survey the evolution of MC over the last 30+ years highlighting
the critical role SAT technology played in scaling MC to transition systems with exponentially-
sized state spaces. I will also describe two specific applications, one in hardware and one in
software, to illustrate the architecture of a scalable SAT-based verification environment.

3.11 Machine learning for SAT
Holger H. Hoos (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Holger Hoos

In this presentation I will explain how machine learning methods can be used to automatically
configure, select, combine and assess SAT solvers. I will briefly cover algorithm configuration
techniques, such as SMAC (as used in the recent Configurable SAT Solver Challenges),
automated algorithm selectors, such as SATzilla, automatic techniques for constructing
parallel solver portfolios and finally, an interesting approach for assessing the scaling of
solver performance with instance size that recently produced evidence that SLS-based SAT
solvers like WalkSAT have running time polynomial in instance size for phase transition
random-3-SAT instances.

3.12 How SAT Solvers Could (And Do) Prove Lower Bounds +
(S)ETH and A survey of Consequences

Ryan Williams (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Ryan Williams

This is a merger of two tutorial talks: one by me on SAT algorithms and connections to
computational complexity theory, and one by Mohan (cancelled) on the Exponential Time
Hypothesis and the Strong Exponential Time Hypothesis.
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3.13 A Survey on Parameterized Complexity and SAT
Stefan Szeider (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Stefan Szeider

In this talk I will discuss basic concepts of parameterized complexity (such as fixed-parameter
tractability, reductions, hardness, and kernelization) and survey parameterized complexity
results related to satisfiability (SAT). The focus will be on laying out what kind of questions
can be asked and not on technical details.

3.14 From SAT to SMT – a Tutorial
Nikolaj S. Bjørner (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolaj S. Bjørner

Satisfiability Modulo Theories (SMT) solvers are used in many modern program verification,
analysis and testing tools. They owe their scale and efficiency thanks to advances in search
algorithms underlying modern SAT solvers and first-order theorem provers. They owe their
versatility in software development applications thanks to specialized algorithms supporting
theories, such as numbers and algebraic data-types, of relevance for software engineering.

This tutorial introduces algorithmic principles of SMT solving, taking as basis modern
SAT solvers and integration with specialized theory solvers and quantifier reasoning. We
detail some of the algorithms used for main theories used in current SMT solvers and
survey newer theories and approaches to integrating solvers. The tutorial also outlines some
application scenarios where SMT solvers have found use, including program verification,
network analysis, symbolic model checking, test-case generation, and white-box fuzzing.

3.15 Survey on QBF solving
Nina Narodytska (Carnegie Mellon University, US)

License Creative Commons BY 3.0 Unported license
© Nina Narodytska

Quantified Boolean formulas are a natural extension of propositional formulas with universal
and existential quantifiers. QBF solvers are used in solving many problems in knowledge
representation and reasoning, automated planning, and computer aided design.

In this talk, I will introduce the QBF problem and survey state-of-the-art techniques
used in QBF solving. Then I will focus on a recent and successful approach that is based
on the counterexample-guided abstraction refinement (CEGAR) paradigm. This approach
proved very effective on a large number of industrial families of benchmarks.
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3.16 QBF proof complexity
Olaf Beyersdorff (University of Leeds, GB)

License Creative Commons BY 3.0 Unported license
© Olaf Beyersdorff

In this talk we give an overview of the relatively young field of QBF proof complexity. We
explain the main resolution-based proof systems for QBF, modelling CDCL and expansion-
based solving. As our main contribution we exhibit a new and elegant proof technique for
showing lower bounds in QBF proof systems based on strategy extraction. This technique
provides a direct transfer of circuit lower bounds to lengths of proofs lower bounds. We use our
method to show the hardness of a natural class of parity formulas for Q-resolution. Our lower
bounds imply new exponential separations between two different types of resolution-based
QBF calculi: proof systems for CDCL-based solvers and proof systems for expansion-based
solvers. The relations between proof systems from the two different classes were not known
before.

3.17 Parallel SAT Solving or To Share or Not To Share
Armin Biere (Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Armin Biere

We give a brief introduction into the problem and the current state-of-the-art of parallel SAT
solving, mostly from a practical point of view. The talk continues with discussing current
challenges.

3.18 Linear Temporal Logic Satisfiability Checking
Kristin Yvonne Rozier (University of Cincinnati, US)

License Creative Commons BY 3.0 Unported license
© Kristin Yvonne Rozier

Formal verification techniques are growing increasingly vital for the development of safety-
critical software and hardware. Techniques such as requirements-based design and model
checking have been successfully used to verify systems for air traffic control, airplane separation
assurance, autopilots, logic designs, medical devices, and other functions that ensure human
safety. Formal behavioral specifications written early in the system-design process and
communicated across all design phases increase the efficiency, consistency, and quality of
the system under development. We argue that to prevent introducing design or verification
errors, it is crucial to test specifications for satisfiability.

In 2007, we established LTL satisfiability checking as a sanity check: each system require-
ment, its negation, and the set of all requirements should be checked for satisfiability before
being utilized for other tasks, such as property-based system design or system verification via
model checking. We demonstrated that LTL satisfiability checking reduces to model checking;
an extensive experimental evaluation proved that for LTL satisfiability checking, the symbolic
approach is superior to the explicit approach. However, the performance of the symbolic
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approach critically depends on the encoding of the formula. Since 1994, there had been
essentially no new progress in encoding LTL formulas as symbolic automata for BDD-based
analysis. We introduced a set of 30 symbolic automata encodings, demonstrating that a
portfolio approach utilizing these encodings translates to significant, sometimes exponential,
improvement over the standard encoding for symbolic LTL satisfiability checking. In recent
years, LTL satisfiability checking has taken off, with others inventing exciting new methods
to scale with increasingly complex systems. We revisit the benchmarks for LTL satisfiability
checking that have become the de facto industry standard and examine the encoding methods
that have led to leaps in performance. We highlight the past and present, and look to the
future of LTL satisfiability checking, a sanity check that now has an established place in the
development cycles of safety-critical systems.

3.19 Resolution Proofs of Bounded Width
Christoph Berkholz (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
© Christoph Berkholz

The talk focuses on the structure and complexity of resolution refutations of bounded width
(where every clause contains at most k literals).

Such refutations can be found in time nO(k) by exhaustively deriving all possible clauses
with at most k literals. We show that this upper bound is tight by proving a matching lower
bound. Furthermore, deciding whether there exists a resolution refutation of bounded width is
EXPTIME-complete, whereas the same problem for regular resolution is PSPACE-complete.

We will also discuss the structure of bounded width refutations in terms of classical proof
complexity measures such as resolution depth, (treelike) resolution size and clause space.

3.20 An Ultimate Trade-Off in Propositional Proof Complexity
Alexander Razborov (University of Chicago, US)

License Creative Commons BY 3.0 Unported license
© Alexander Razborov

Trade-off results in complexity theory follow this general pattern: a task is exhibited that is
easy with respect to a chosen complexity meeasure but becomes much harder after requiring
that the protocol is efficient with respect to another, normally very different, measure. In
most cases, “much harder” means “as hard as an average task of comparable size” without
imposing any restrictions on the protocol.

In this talk we exhibit an unusually strong trade-off result between width and tree-like
resolution proof size that significantly deviates from this pattern. Namely, we construct
unsatisfiable k-CNFs that possess refutations of very small width O(k) but such that any
tree-like resolutation refutation of even mildly sublinear width n1−ε/k must be of double
exponential size exp(nΩ(k)). This is exponentially larger than the trivial 2n size bound to
which all unsatisfiable CNFs with n variables are entitled.
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3.21 Narrow Proofs May Be Maximally Long
Massimo Lauria (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
© Massimo Lauria

We prove that there are 3-CNF formulas over n variables refutable in resolution in width w
that require resolution proofs of size nΩ(w). This shows that the simple counting argument
that any formula refutable in width w must have a proof in size nO(w) is essentially tight.
Moreover, our lower bound extends even to polynomial calculus resolution (PCR), Sherali-
Adams and Lasserre/Sums-of-Squares, implying that the corresponding size upper bounds in
terms of degree are tight as well.

3.22 A Survey of Random Satisfiability
Dimitris Achlioptas (University of California – Santa Cruz, US)

License Creative Commons BY 3.0 Unported license
© Dimitris Achlioptas

Given a CNF formula F , let S(F ) denote its set of satisfying assignments. We consider a
random k-CNF formula F on n variables, constructed by adding m random clauses one by
one, each clause selected uniformly at random among all 2k

(
n
k

)
possible clauses. The talk

will give a survey of results about random satisfiability by narrating the “video” of S(F ) as
clauses are added. We will see that two important phase transitions occur (neither of which
is the satisfiability transition) and emphasis will be placed on their potential algorithmic
implications. No familiarity with random satisfiability will be assumed.

3.23 Space and Random CNFs
Ilario Bonacina (University of Rome “La Sapienza”, IT)

License Creative Commons BY 3.0 Unported license
© Ilario Bonacina

We will see some space lower bounds in Resolution and Polynomial Calculus Resolution
(PCR) for random k-CNFs. More precisely about random 3-CNFs: a quadratic lower bound
for the total space needed in Resolution to refute such formulas and a linear lower bound for
monomial space in PCR.

3.24 Improving and Evaluating a Hybrid Approach to Max-SAT Solving
Jessica Davies (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 3.0 Unported license
© Jessica Davies

MaxHS is a recent approach to solving Max-SAT that utilizes a hybrid algorithm that exploits
both a SAT solver and an IP solver as black-boxes. This approach has a number of attractive
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properties, but in the recent Max-SAT Evaluations it has not performed as well as other
purely SAT-based solvers. In this paper we examine a current implementation of MaxHS
and find a number of improvements. With these improvements implemented we compare the
performance of the approach to other approaches for solving Max-SAT. Our results indicate
that the hybrid approach remains a promising direction for further research.

3.25 Bit-Vectors: Complexity and Decision Procedures
Andreas Fröhlich (Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Andreas Fröhlich

Bit-vectors are important for many practical applications in verification. We discuss the-
ory and practice by giving complexity results and presenting several alternative decision
procedures.

4 Some Open Problems

Before the seminar, the organizers collected a list of open problems from the participants
that could potentially be discussed during the open problem session Monday evening and
at other times during the week. All submitted problems were collected at the webpage
http://www.csc.kth.se/~jakobn/dagstuhl15171/openproblems.php. Many of these problems
were indeed discussed during the Monday evening problem session, and in addition other
problems were raised there as well.

Below follows a hopefully representative selection of these open problems. The list
is basically unsorted except it is (roughly) in chronological order of submission. Some
partially overlapping problems have been merged. The full list of problems is still available
at http://www.csc.kth.se/~jakobn/dagstuhl15171/openproblems.php. One suggestion put
forward during the seminar week was to collect these and other research problems on a
wiki-style website to stimulate research. This seems like a very attractive idea, and is
something that might be implemented in the future.

4.1 Minimum variable space and minimum depth of resolution
refutations

Alexander Razborov (University of Chicago, US)

License Creative Commons BY 3.0 Unported license
© Alexander Razborov

Can it be the case that minimum variable space is equivalent, up to a polynomial and logn
factors, to the minimum depth of resolution refutations? This is true if we additionally
normalize variable space by log of the proof length, therefore an equivalent form of our
question is this: does there exist a strong ultimate tradeoff between variable space and proof
length?
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4.2 Exact counting for k-SAT
Ryan Williams (Stanford University, US); (originally from Rahul Santhanam)

License Creative Commons BY 3.0 Unported license
© Ryan Williams

It is known that k-SAT with n variables and m clauses can be solved in about 2n−n/O(k) ·
poly(m) time, and these are the best known running times for tthe worst case. For computing
the number of k-SAT solutions, there is a randomized algorithm of Impagliazzo, Matthews,
and Paturi (SODA’12) running in 2n−n/O(k) · poly(m) time, and a deterministic algorithm of
Beame, Impagliazzo, and Srinivasan (CCC’12) running in worse time.

Is there a deterministic worst-case #k-SAT algorithm running in 2n−n/O(k) · poly(m)
time? (Give an algorithm, or evidence against its existence.)

4.3 Optimality of Regular Resolution?
Alasdair Urquhart (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Alasdair Urquhart

Show that for well known examples such as the pigeonhole principle (PHP) and Tseitin
formulas, regular resolution is optimal. This conjecture seems very plausible to me, but I
don’t see how to approach it at the moment.
More generally, you can ask: Can you give general conditions on a set of clauses that
ensure that regular resolution is optimal? In general, the examples separating general
and unrestricted resolution have a rather artificial appearance, where we add “spoiler
variables” to mess up any regular refutation.
A closely related problem that may be more accessible is this: for the same set of examples,
show that the regular width and the unrestricted width of a refutation are the same. Are
there general conditions that ensure this equality?

4.4 How and why does VSIDS work? (Full simulation of resolution by
CDCL with heuristics?)

Alexandra Goultiaeva (Google Waterloo, CA), Armin Biere (Universität Linz, AT), and
Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Alexandra Goultiaeva, Armin Biere, and Vijay Ganesh

The variable scoring scheme VSIDS (variable state independent decaying sum) introduced
by Chaff and its modern variants is crucial for the speed of CDCL solvers. There is almost
no empirical investigation on how it really works, and further no theoretical explanation why
it is working.

In particular, it has been proven that CDCL SAT solvers p-simulate resolution. The
order of decisions is assumed to be arbitrary, i.e., the proof shows that (if a short resolution
proof exists) there exists a sequence of decisions that would allow the solver to find a short
resolution proof. I.e, a result that either:
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shows that whenever a short resolution proof exists, there will always be a sequence of
decisions that respects VSIDS ordering and allows the solver to find a short resolution
proof, or
shows a counterexample where a short resolution proof exists but a solver respecting
VSIDS ordering (regardless of tie-breaking) can never find a short proof.

4.5 Learning definitions through extended resolution
Armin Biere (Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Armin Biere

There has been attempts to shrink learned clauses by introducing definitions in the sense of
extended resolutions, which however in practice has not really been effective. It is unclear
whether these newly introduce literals are can really be used in the search process and shrink
proofs. The question is whether it is possible to come up with a more general but practical
scheme to introduce definitions, which allow to shrink proof size and improve SAT solving in
practice too.

4.6 Limits of portfolio based parallel SAT solving
Armin Biere (Universität Linz, AT)

License Creative Commons BY 3.0 Unported license
© Armin Biere

Portfolio based SAT solving is the dominating approach in the parallel application track of
the SAT competition. However, the improvements we saw in the last two years are apparently
based on using better sharing schemes for learned clauses, thus kind of implicit work splitting.
From a practical point of view it is first of all still unclear how much of the success of solvers
like Penelope or Plingeling can be contributed to the portfolio idea and how much is due to
splitting the work. As the number of compute units is increased it is conjectured that the
relative contribution of the portfolio part will saturate. Does this happen and when?

4.7 What is the relationship, if any, between cluster analysis and
survey propagation on application SAT instances?

Allen Van Gelder (University of California – Santa Cruz, US)

License Creative Commons BY 3.0 Unported license
© Allen Van Gelder

There are several recent works on cluster analysis (AKA community structure) of application
SAT instances. They seem to focus on connections between clause learning, VSIDS, and the
page-rank algorithm.

What new idea is needed for survey propagation to be useful on application SAT instances?
Is survey propagation useful somehow on unsatisfiable application SAT instances? Can
certain behavior suggest the application SAT instance is unsat and give evidence?
Can cluster analysis on application SAT instances give a hint or prediction whether the
application SAT instance is unsat or sat?
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4.8 Why does conflict-driven search work so well? (How do CDCL
solvers exploit the structure of real-world instances?)

Karem Sakallah (University of Michigan – Ann Arbor, US), Sharad Malik (Princeton Uni-
versity, US ), and Vijay Ganesh (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Karem Sakallah, Sharad Malik, and Vijay Ganesh

Empirical evaluation of solver performance suggests that the two most important features
of modern SAT solvers are conflict-driven clause learning and conflict-driven branching.
Tracing the execution of a modern conflict-driven solver seems to show that the solver is
aggressively trying to falsify the formula (looking for conflicts) and only when that fails does
it yield a satisfying assignment. This strategy seems to work quite well on a very diverse set
of benchmarks. Why? Can we characterize when it does not work? What problem structure
causes an aggressive falsification approach to fail? What other strategies can we envision to
complement conflict-driven search?

4.9 How to cut directed paths in a dag (related to the complexity of
CircuitSAT)

Edward A. Hirsch (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© Edward A. Hirsch

Consider directed acyclic graphs with vertices of indegree at most two (that is, Boolean
circuits). Prove (or disprove) that for every ε > 0 there is a constant K = K(ε) such that for
every n large enough in every such dag with n vertices there is a subset of vertices of size at
most ε · n such that its removal (with incident edges) leaves no directed paths of length more
than K.

4.10 How Total Space and Monomial Space relate with other
complexity measures?

Ilario Bonacina (University of Rome “La Sapienza”, IT)

License Creative Commons BY 3.0 Unported license
© Ilario Bonacina

Given an unsatisfiable CNF φ let’s see a refutation of it in Resolution (res. PCR) as a
sequence of memory configurations, i.e. set of clauses (res. polynomials) such that each
memory configuration is obtained from the previous one either (i) removing some clause
(resp. polynomial), or (ii) adding some clause from φ, or (iii) inferring some consequence
applying the inference rules to something in memory.

MSpacePCR(φ ` ⊥) ≥ m means that for every PCR refutation π of φ (according to the
previous model) there must be some memory configuration in π in which at least m distinct
monomials appear (maybe in several places in the polynomials in that memory configuration).
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TSpace(φ ` ⊥) ≥ m means that for every (Res/PCR) refutation π of φ (according to the
previous model) there must be some memory configuration in π in which the total number
of occurrences of literals in that memory configuration is at least m.

So the questions are the following:
Is it the case that given a k-CNF φ, TSpaceRES(φ ` ⊥) = Ω((width(φ ` ⊥)− k)2)?
Is it the case that given a k-CNF φ, MSpacePCR(φ ` ⊥) = Ω(degree(φ ` ⊥)− k)?
Is there any k-CNF φ in n variables and nO(1) clauses such that TSpacePCR(φ ` ⊥) =
Ω(n2)? It should be true w.h.p. for random k-CNFs for any k ≥ 3 and with clause density
a constant above the unsatisfiability threshold.

4.11 Random k-SAT
Dimitris Achlioptas (University of California – Santa Cruz, US)

License Creative Commons BY 3.0 Unported license
© Dimitris Achlioptas

The sat/unsat threshold for random 10-SAT is provably > 700. Solve random 10-SAT
instances with 100,000 variables of density 600 (or greater). (hard)
The sat/unsat threshold for random 6-SAT is provably > 40. Solve random 6-SAT
instances with 100,000 variables of density 35 (or greater). (not easy)
The mixture of (1 − ε)n random 2-clauses and (2/3)n random 3-clauses (on the same
variables) is satisfiable with high probability, for every ε > 0. Prove that 2/3 is best
possible. That is, prove that for every δ > 0, there exists ε > 0 such that such a mixture
is unsatisfiable. (hard)

4.12 The complexity of the parity principle in semi-algebraic systems
Paul Beame (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
© Paul Beame

Determine the complexity of the parity principle (also known as the mod 2 counting principle,
or the matching principle on K2n+1) in semi-algebraic systems, especially LS and LS+:

This has a variable for each edge of the complete graph on an odd number of vertices. In
clausal form this has clauses like the bijective pigeonhole for each vertex but it is easy to
derive

∑
i6=j xij = 1 in small size in these systems. (In LS it takes degree Ω(n) to derive this

but it is only quadratic size. In LS+ there is a rank one derivation.)
In cutting planes it is easy to derive a contradiction from this since one can add all of the

equations to get 2
∑
i,j:i6=j xij = 2n+1 and rounding in both directions yields a contradiction.

However, it is not clear how to simulate this “division by 2” in any semi-algebraic system.
This is related to the Knapsack problem considered by Grigoriev. He showed that if a
sum of m variables is an odd number that is near the middle of the interval [0,m] then
Positivstellensatz degree is large. Using the methods of Kojevnikov and Itsyksen this yields
tree-like size lower bounds for LS. The differences here are that there are

(2n+1
2
)
variables

and the 2n+ 1 bound is nowhere near the middle of the range [0,
(
m
2
)
], and we have separate

equations for subset of the variables.
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5 Panel Discussion

On Wednesday evening there was a panel discussion with Paul Beame, Nikolaj Bjørner,
Sam Buss, Sharad Malik, Karem Sakallah, and Stefan Szeider serving as members of the
panel. The panel members opened the discussion with a short “keynote remark” each (of
around 4–5 minutes), after which followed a discussion of a little bit more than an hour
between panel members and all participants present. The purpose of the panel was to
discuss question such as promising and/or important future research directions, how (and if)
we should get more interaction between practitioners and theoreticians doing SAT-related
research, or whatever else the seminar participants wanted to talk about.

The panel discussion brought out several socio-scientific issues at the forefront of satis-
fiability research. Three of the most memorable issues were:

1. Some researchers lamented over the laser-like focus of many on the SAT competitions;
they felt that not enough attention is being paid to the long-term scientific goal of
understanding of why SAT is solvable in practice. Others argued in response that the
SAT competitions are fun and community-building; they help motivate people to do
worthy work with good intentions.

2. Related to the subject of competitions, a few researchers objected to their format, again
based on scientific disagreement. There is still a rift between those designing “classical”
CDCL-based SAT solvers, and those who use machine learning techniques to design
algorithm “portfolios” selecting such SAT solvers to run on instances, and the SAT
competition has developed rules to isolate the latter group from the rest of the solver
submissions. The question of whether re-designing the competition in this way will
positively (or negatively) influence further research is intriguing; it certainly was not
resolved by this panel discussion.

3. Related to the subject of understanding SAT, there was extensive speculation by many
parties on why SAT solvers tend to work so well in practice. Some pointed to the variable
choice heuristics of solvers; some pointed to the clause learning of solvers; some posited
that there must be inherent structure in most real-world SAT instances. Some asked
(controversially) if and why we should expect be able to understand SAT solvers at all:
SAT code and SAT instances solved in practice are so complex that perhaps humans
simply cannot know, or cannot rigorously explain why practical SAT instances are solved
so efficiently.

All in all, the thought-provoking discussion highlighted the diversity of attitudes and
ideas that people bring to SAT research.

6 Examples of Outcomes of the Workshop

It is still a bit too early for any concrete publications to have resulted from the seminar, but
participants have reported that the following papers, in different stages of preparation, were
significantly influenced by discussions during the seminar:

Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow Proofs May Be
Maximally Long. Journal version in submissions, 2015.
Armin Biere and Andreas Fröhlich. Evaluating CDCL Variable Scoring Schemes.
To appear in Proceedings of SAT’15, September 2015.
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Armin Biere and Andreas Fröhlich. SAT Solving and Stock Market Analysis.
Manuscript in preparation, 2015.
Oliver Kullmann and João Marques-Silva. Computing maximal autarkies with few
and simple oracle queries. To appear in Proceedings of SAT’15, September 2015.
Massimo Lauria and Jakob Nordström. Tight Size-Degree Bounds for Sums-of-
Squares Proofs. In Proceedings of CCC’15, June 2015.
Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, Krzysztof Czarnecki. Un-
derstanding VSIDS Branching Heuristics in Conflict-Driven Clause-Learning
SAT Solvers. Manuscript in submission, 2015.
Jakob Nordström. On the Interplay Between Proof Complexity and SAT Solv-
ing. ACM SIGLOG News, July 2015.
Mladen Mikša and Jakob Nordström. A Generalized Method for Proving Polyno-
mial Calculus Degree Lower Bounds. In Proceedings of CCC’15, June 2015.

Making the connection to the panel discussion which we report on in Section 5, the
Dagstuhl seminar week played an important role in stimulating a research project focused on
a comprehensive empirical study to better understand the impact on performance of different
features in modern CDCL SAT solvers. In joint work, Laurent Simon, João Marques-Silva,
and Karem Sakallah have collected all non-random benchmarks from all SAT competitions
and races (2002 to 2014) and instrumented both Minisat and Glucose to enable and disable
their various options in order to pinpoint the effect of each option or combination of options
on performance. The plan is to make this data available on a public website and provide
extensive analysis of the data in a paper that is currently under preparation.

Other participants of the seminar have reported about at least six concrete research
projects that resulted to a large part from contacts during the week at Dagstuhl. Since
many of these projects are still in a start-up phase it would seem slightly premature to list
concrete participants, but it can be mentioned that these projects involve researchers from
INESC-ID Lisboa, Johannes Kepler University, KTH Royal Institute of Technology, Microsoft
Research, Princeton University, RWTH Aachen, Swansea University, Universitat Politécnica
de Catalunya, and University of Washington in various constellations. Several of these projects
involves interdisciplinary research with both applied and theoretical components, and many
seminar participants mentioned explicitly that the mix of theoreticians and practitioners at
the seminar played a decisive role in making this happen.

7 Evaluation by Participants

In addition to the traditional Dagstuhl evaluation after the seminar, the organizing committee
also arranged for a separate evaluation which specific questions about different aspects of
the seminar. Below follows a summary of the answers – the full results are available at
http://www.csc.kth.se/~jakobn/dagstuhl15171/evaluation.php.

In the post-seminar survey, the participants identified two major aspects of the seminar
they enjoyed most: the networking opportunities between theoreticians and practitioners
that the environment of Dagstuhl provided, and the high quality of the tutorial talks selected
by the organizers. Many reported that they learned a substantial amount from the seminar
talks.

However, the seminar was not immune from some negative feedback. Some found the
tutorials too elementary, and felt there was not enough focus on talks with new results. Some
felt that there should have been talks on the applications and general impact of SAT in

http://www.csc.kth.se/~jakobn/dagstuhl15171/evaluation.php
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science and engineering. Some participants felt there was not enough proof complexity and
others felt there was too much. A few did not like that some of the schedule extended into
the late evening (which was the case for the Monday evening open problem session and the
Wednesday evening panel discussion).

The seminar participants were polled before the seminar about some different aspects of
the planning, and based on the results of this poll it was decided to have an open problem
session on the first day. It the post-seminar survey, this decision was viewed favourably:
48% felt of respondents it was “definitely the right decision” and 40% felt it was “probably”
the right decision. Some felt that the open problem session had too many problems, many
of which were either too vague to fully grasp or too specific to be interesting; perhaps a
“curated” open problem session would have been more effective.

Also based on results of the pre-seminar poll, we decided not to have poster session, and
an overwhelming majority felt this was the right decision in hindsight as well. Nevertheless,
some did wish that there had been more opportunities to recreate “what happens at a poster
session”: structured informal discussions about SAT research among many participants.

In general, much of the feedback contained the sentiment that more time for “guided”
extended discussions among the entire group would have been useful. This is interesting when
placed in the context of the feedback on the panel discussion (which was an intentionally
guided discussion of SAT issues). Only slightly more than half of the respondents to the
post-seminar survey felt that the panel was either “definitely” or “probably” a good idea
with hindsight. Some enjoyed the panel, but others did not find the discussion fruitful. One
participant, noting the abundance of experts at the seminar, suggested that a “town hall
style” meeting (where everyone had the same chance to state their views) might have fared
better.

All in all, the feedback from the participants was overwhelmingly positive. Many called
the experience “great” or “fantastic” and thought the seminar had been “superbly organized”
with “outstanding” talks. One participant even wrote that “[t]his was hands down the best
Dagstuhl I have ever attended, and I have attended 10 so far”, and another respondent noted
that “I and other people remarked that it seemed we could easily continue into a second week
– people were refreshed rather than exhausted by the end of the seminar.” Many participants
look forward to returning to Dagstuhl: in the post-seminar evaluation, 72% said they would
definitely come again if invited to a similar seminar, and 20% said they would probably come
again.
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