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Abstract
Formal methods tools have been shown to be effective at finding defects in and verifying the
correctness of safety-critical systems, many of which require some form of certification. However,
there are still many issues that must be addressed before formal verification tools can be used as
part of the certification of safety-critical systems. For example, most developers of avionics sys-
tems are unfamiliar with which formal methods tools are most appropriate for different problem
domains. Different levels of expertise are necessary to use these tools effectively and correctly.
In most certification processes, a tool used to meet process objectives must be qualified. The
qualification of formal verification tools will likely pose unique challenges.
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Motivation and objectives
Dagstuhl Seminar 13051, Software Certification: Methods and Tools, convened experts from
a variety of software-intensive domains (automotive, aircraft, medical, nuclear, and rail) to
discuss software certification challenges, best practices, and the latest advances in certification
technologies. One of the key challenges identified in that seminar was tool qualification. Tool
qualification is the process by which certification credit may be claimed for the use of a
software tool. The purpose of tool qualification is to provide sufficient confidence in the tool
functionality so that its output may be trusted. Tool qualification is, therefore, a significant
aspect of any certification effort. Seminar participants identified a number of needs in the
area of formal methods tool qualification. Dagstuhl Seminar 15182 Qualification of Formal
Methods Tools, was organized to address these needs.
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Software tools are used in development processes to automate life cycle activities that are
complex and error-prone if performed by humans. The use of such tools should, in principle,
be encouraged from a certification perspective to provide confidence in the correctness of the
software product. Therefore, we should avoid unnecessary barriers to tool qualification which
may inadvertently reduce the use of tools that would otherwise enhance software quality and
confidence.

Most software tools are not used in isolation, but are used as part of a complex tool
chain requiring significant integration effort. In general, these tools have been produced by
different organizations. We need to develop better and more reliable methods for integrating
tools from different vendors (including university tools, open source tools, and commercial
tools).

A given software tool may be used in different application domains having very different
requirements for both certification and tool qualification. Furthermore, the methods and
standards for tool development varies across domains. Consistent qualification requirements
across different domains would simplify the process.

Despite the additional guidance provided for the avionics domain in recently published
standards (DO-178C, DO-330, and DO-333), there are still many questions to be addressed.
For one thing, most practicing engineers are unaware of how to apply different categories
of formal verification tools. Even within a particular category, there are a wide variety of
tools, often based on fundamentally different approaches, each with its own strengths and
weaknesses.

If formal verification is used to satisfy DO-178C objectives, DO-333 requires the applicant
to provide evidence that the underlying method is sound, i.e., that it will never assert
something is true when it is actually false, allowing application software errors to be missed
that should have been detected. Providing an argument for the soundness of a formal
verification method is highly dependent on the underlying algorithm on which the method is
based. A method may be perfectly sound when used one way on a particular type of problem
and inherently unsound when used in a different way or on a different type of problem.
While these issues may be well understood in the research community, they are not typically
collected in one place where a practitioner can easily find them. It is also not realistic to
expect avionics developers to be able to construct an argument for the soundness of a formal
method without help from experts in the field.

At the same time, it is also important to not make the cost of qualification of formal
methods tools so great as to discourage their use. While it is tempting to hold formal
verification tools to a higher standard than other software tools, making their qualification
unnecessarily expensive could do more harm than good.

The objectives of this Dagstuhl Seminar were to
investigate the sorts of assurances that are necessary and appropriate to justify the
application of formal methods tools throughout all phases of design in real safety-critical
settings,
discuss practical examples of how to qualify different types of formal verification tools,
and
explore promising new approaches for the qualification of formal methods tools for the
avionics domain, as well as in other domains.
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Accomplishments
Qualification is not a widely understood concept outside of those industries requiring certific-
ation for high-assurance, and different terminology is used in different domains. The seminar
was first a way of sharing knowledge from certification experts so that formal methods
researchers could better understand the challenges and barriers to the use of formal methods
tools.

The seminar also included presentations from researchers who have developed initial
approaches to address qualification requirements for different classes of formal methods tools.
We were especially interested in sharing case studies that are beginning to address tool
qualification challenges. These case studies include tools based on different formal methods
(model checking, theorem proving, abstract interpretation).

As a practical matter, we focussed much of our discussion on the aerospace domain
since there are published standards addressing both formal methods and tool qualification
for avionics software. The seminar also included researchers from other domains (nuclear,
railway) so we could better understand the challenges and tool qualification approaches that
are being discussed in those domains.

We managed to bridge a lot of the language between the certification domains, mostly rail-
way, avionics, and nuclear, and bits of automotive, and related the qualification requirements
to each other. Some of the otherwise maybe less stringent schemes (e.g. automotive) can end
up having stronger qualification requirements, because formal methods are not specifically
addressed in them. There is some hope that DO-333 might influence those domains, or be
picked up by them in the future, to increase the use of FM tools which would increase the
quality of systems.

For the academic tool provider side, we worked out and got the message across that tool
qualification can be a lot easier and simpler than what we might strive for academically, and
discussed specific tools in some detail, clarifying what would be necessary for a concrete
qualification. Finally, we also investigated tool architectures that make tools easier to qualify
(verification vs code generation).
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3 Overview of Talks

3.1 Please check my 500K LOC of Isabelle
June Andronick (UNSW – Sydney, AU)
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The seL4 microkernel has been formally proved correct [2], from binary code, up to high
level requirements, using the Isabelle theorem prover [5]. In this talk we first gave an
overview of seL4 development and proof guarantees and assumptions. We then explored
what would be needed for a (hypothetical) certification of seL4 according to DO-178 (the
software certification standard for airborne systems on commercial aircraft [6]), including a
potential qualification of Isabelle according to DO-330 (tool qualification guidelines [7]).

The seL4 microkernel is a small operating system kernel, of roughly 10,000 lines of C code,
designed to be a high-performance, secure, safe, and reliable foundation for a wide variety
of application domains. It provides isolation and controlled communication to applications
running on top of it, allowing trusted applications to run alongside untrusted, legacy code
such as a whole Linux instance.

seL4 is the world’s most verified kernel [2], with a full functional correctness proof, showing
that the binary code is a correct implementation of the high-level functional specification, plus
security proofs, showing that seL4 enforces integrity and confidentiality. All the proofs have
been conducted in the Isabelle/HOL theorem prover, apart from the binary-to-C correctness
proof, which uses some SMT solvers and HOL4 models and proofs. The combined Isabelle
proofs amount to about 500,000 lines of Isabelle models and proof scripts.

For this Dagstuhl seminar of tool qualification, we have put ourselves in the situation of
wanting to certify seL4 for use in an avionics context, and therefore needing to qualify the
tools used in its formal verification, here mainly Isabelle, according to DO-330. Following
the discussions and presentations from the seminar, we investigated the following question:

What would be needed to qualify Isabelle, for the objective of using the proof of
functional correctness of seL4 to justify that the code is complete and correct with
respect to its high-level specification?

From our understanding of the qualification process, we propose to answer the following
questions.

1. Justify that the method (Interactive Theorem Proving) is suitable:
Since the property we are showing is functional correctness, it requires a high-level of
expressiveness to precisely model the code and specification; such high level of express-
iveness implies a loss of decidability, and therefore requires user’s input to perform the
proof. Interactive theorem proving fits precisely with those requirements. To justify this
to a certifier, we could refer to peer-reviewed papers or point to examples of projects
using interactive theorem provers to prove functional correctness.

2. Justify that the method (Isabelle-style deduction) is sound :
Isabelle’s logic is based on a very small kernel that needs to be trusted: a dozen axioms,
that have been manually validated. All extensions are derived from first principles
and checked by this kernel. The only ways of adding axioms is through (conservative)
definitions and through explicit axioms and tracked oracles (e.g. sorried lemmas). To
justify this to a certifier, we could again refer to peer-reviewed papers, the HOL-report [1],
or the formally verified HOL-light [3] and CakeML implementations [4].

http://creativecommons.org/licenses/by/3.0/
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3. Justify that the tool (Isabelle) correctly implements the method:
This would require us to show that only the standard distribution theory HOL is used,
that no axiom commands are used after the theory HOL, that no “sorry” and “cheat_tac”
commands are used, and other technical corner-cases that should be documented. When
these conditions are met, only true theorems in HOL can be derived. Evidences for this
question would ideally be a small verified proof checker for Isabelle (using e.g. cakeML
and providing efficient proof terms).

4. Justify the correct use of the tool (Isabelle):
This would consist in checking that the above conditions (no axioms, no sorries, etc) are
satisfied in the specific example of the proof under consideration. This is where the title
of this talk comes from.

5. Justify that the tool (Isabelle) is helping meeting the objective:
This would require showing that the model of C used is a correct representation of C,
that the model of the specification is a correct representation of the expected behavior,
and that the formalisation of the property (here refinement) is a correct representation of
the objective (here that the code is complete and correct with respect to its high-level
specification). The seL4 verification includes high-level security proofs, which aim at
justifying that the specification satisfies the expected behaviors. Evidence for the C
model and refinement statement could be done by review, inspection and testing. As a
community, it would also be helpful to provide documentation and training material on
how to read formal specification, to allow certifiers and non-experts to convince themselves
that the statements and properties make sense. Then they only need to trust the experts
and peer-reviewed papers that the proof script will indeed provide an evidence that the
statement is true, that the property is satisfied.
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3.2 Compiling avionics software with the CompCert formally verified
compiler

Sandrine Blazy (IRISA – Rennes, FR)
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Compilers are complicated pieces of software that sometimes contain bugs causing wrong
executable code to be silently generated from correct source programs. In turn, this possibility
of compiler-introduced bugs diminishes the assurance that can be obtained by applying
formal methods to source code.

This talk gives an overview of the CompCert project: an ongoing experiment in developing
and formally proving correct a realistic, moderately-optimizing compiler from a large subset
of C to PowerPC, ARM and x86 assembly languages. The correctness proof, mechanized
using the Coq proof assistant, establishes that the generated assembly code behaves exactly as
prescribed by the semantic of the C source, eliminating all possibilities of compiler-introduced
bugs and generating unprecedented confidence in this compiler.

3.3 Qualification of Formal Methods Tools and Tool Qualification with
Formal Methods

Matteo Bordin (AdaCore – Paris, FR)
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This work focuses on the return of experience in the relation between Formal Methods and
Tool Qualification. We explored two main application domains: the qualification of formal
methods tools and the use of formal methods for tool qualification. In the first case, we
present our work in qualifying an abstract interpretation tool (CodePeer) and a formal
verification tool (SPARK) in a DO-178 context. In the second case, we focus instead on a
lightweight use of formal methods to help the qualification of an automated code generator
from Simulink models. This second experience is particularly interesting as it describes how
we used Ada 2012 contracts (pre/post-condition) to formally describe in first-order logic the
behavior of a code generator. Such specification is not used to statically verify the code
generator, but rather as a run-time oracle that checks that the tool executes accordingly to
its specifications. Differently from other similar experiences, and quite to our surprise, we
realized that the specification in the form of pre/post-conditions significantly differed from
the implementation algorithm.

3.4 Are You Qualified for This Position? An Introduction to Tool
Qualification

Darren Cofer (Rockwell-Collins – Minneapolis, US)
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Formal methods tools have been shown to be effective at finding defects in and verifying
the correctness of safety-critical systems such as avionics systems. The recent release of
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DO-178C and the accompanying Formal Methods supplement DO-333 will make it easier
for developers of software for commercial aircraft to obtain certification credit for the use of
formal methods.

However, there are still many issues that must be addressed before formal verification
tools can be injected into the design process for safety-critical systems. For example, most
developers of avionics systems are unfamiliar with which formal methods tools are most
appropriate for different problem domains. Different levels of expertise are necessary to
use these tools effectively and correctly. Evidence must be provided of a formal method’s
soundness, a concept that is not well understood by most practicing engineers. Finally,
DO-178C requires that a tool used to meet its objectives must be qualified in accordance
with the tool qualification document DO-330. The qualification of formal verification tools
will likely pose unique challenges.

Qualification is not a widely understood concept outside of those industries requiring
certification for high-assurance, and different terminology is used in different domains. This
talk provided an overview of certification and qualification requirements for the civil aviation
domain so that formal methods researchers can better understand the challenges and barriers
to the use of formal methods tools. Topics covered included a summary of certification
processes and objectives for avionics software, requirements for qualification of tools used in
software development and verification, and how formal methods tools fit into the certification
environment.

3.5 Sharing experience on SAT-based formal verification toolchain
qualification in the railway domain

Rémi Delmas (ONERA – Toulouse, FR)
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The goal of the talk is to fuel the reflexion and discussion about formal verification tool
qualification in the aerospace domain according to the new DO-333 guidelines, by sharing
previous experience on tool qualification in the railway domain under CENELEC SIL-*
requirements. The talk describes a formal verification toolchain based on SAT solvers
and k-induction used in the railway domain for the verification of safety properties of
interlocking and communication-based train control systems. The tool in question has been
used to earn certification credits, by replacing tests with formal properties verification, in
real world railway control systems. In particular, the talk describes how the tool chain’s
architecture, development and V&V process was designed in order to meet CENELEC SIL-4
tool qualification requirements, using implementation diversification, semantic equivalence
checking, proof-logging/proof-checking. The talk also highlights the various non-technical
issues that surround formal verification tool qualification, which nevertheless must be taken
into account to ensure the success of formal verification in industrial applications.

15182
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3.6 Qualification of PVS for Systematic Design Verification of a
Nuclear Shutdown System

Mark Lawford (McMaster University – Hamilton, CA)
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The Systematic Design Verification (SDV) process used on the redesign of the Darlington
Nuclear Generating Station originated in the difficulties encountered in receiving regulatory
approval for Canada’s first computer based reactor shutdown system (SDS) [4]. The SDV
process for the redesign project made use of tabular expressions for the Software Require-
ments Specification (SRS) and the Software Design Description (SDD). Completeness and
consistency of the tabular expressions and the conformance of the SDD to the SRS were
established using the automated theorem prover PVS [3]. The process used to qualify PVS
for use in this context is described below and related to the latest version of IEC 61508.

The qualification required the use of manual proof to mitigate against potential undetected
errors that might be caused by a failure of PVS, i.e., all of the proofs performed in the PVS
theorm prover also had to be done by hand. The standard IEC 61508 (2nd ed) in part 4
provides a classification of tools according to whether they are software on-line support tools
that can directly influence system safety at run time, or software off-line support tools that
support a phase of the software development lifecycle and that cannot directly influence the
safety-related system during its run time. Software off-line support tools are further broken
down into three subclasses:
T1: generates no outputs which can directly or indirectly contribute to the executable code

(including data) of the safety related system; (e.g. a text editor, a requirements or design
support tool with no automatic code generation capabilities, configuration control tools)

T2: supports the test or verification of the design or executable code, where errors in the
tool can fail to reveal defects but cannot directly create errors in the executable software;
(e.g. a test harness generator, test coverage measurement tool, static analysis tool)

T3: generates outputs which can directly or indirectly contribute to the executable code of
the safety related system (e.g., an optimising compiler where the relationship between
the source code program and the generated object code is not obvious, a compiler that
incorporates an executable run-time package into the executable code).

According to this classification, PVS as used on the Darlington Redesign Project would be a
T2 tool since it is being used to verify a design and a tool failure could fail to reveal an error
but not introduce an error into the executable.

In IEC 61508-3 (2nd ed) it states that:

7.4.4.5 An assessment shall be carried out for offline support tools in classes T2 and
T3 to determine the level of reliance placed on the tools, and the potential failure
mechanisms of the tools that may affect the executable software. Where such failure
mechanisms are identified, appropriate mitigation measures shall be taken.

Since a failure mechanism is that PVS has a bug that causes a proof to succeed when it
should have failed, we needed a mitigation strategy. The strategy chosen was to redo all
proofs manually. Although this mitigation strategy might appear to defeat much of the
benefit of using a formal methods tool, PVS could still be used to quickly check design
iterations and the manual checks only needed to be performed on the final work product
to mitigate PVS’s failure modes. Still, the final manual proofs were tedious and required
significant effort.
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A proposal is made for a revised Tabular Expression Toolbox that makes use of PVS and
an SMT solver to eliminate the need for manual review in order to gain tool qualification. A
prototype implementation of the Tabular Expression Toolbox is described in [1].
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3.7 How much is CompCert’s proof worth, qualification-wise?
Xavier Leroy (INRIA – Le Chesnay, FR)
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Intuitively as well as experimentally (cf. the Csmith compiler testing project), the formal
verification of the CompCert C compiler generates much confidence that it is free of miscom-
pilation issues. How can we derive certification credit from this formal verification, in the
context of a DO-330 / DO-333 tool qualification? This question is being investigated within
the Verasco project (ANR-11-INSE-03; http://verasco.imag.fr/).

Consider first the formally-verified part of the CompCert C compiler. This part goes
from abstract syntax for the CompCert subset of C to abstract syntax for the assembly
language of the target processor. This part contains all the optimizations and almost all
code generation algorithms. For this part, we see a plausible mapping between parts of the
Coq development and DO-330 concepts:

The “specifications” part of the Coq development constitutes most of the (high-level)
tool requirements. This part comprises the abstract syntax and operational semantics of
the CompCert C and CompCert assembly languages, as well as the high-level statement
of compiler correctness, namely preservation of semantics during compilation, with
preservation of properties as a corollary.
The “code” part of the Coq development map to the low-level tool requirements. This
part comprises all compilation algorithms (written in pure functional, executable style
in Coq’s specification language) as well as the abstract syntaxes of the intermediate
languages used. It is comparable to the pseudocode or Simulink/Scade models that are
used as low-level requirements in other certifications.
The “proof” part of the Coq development automates the verification activities between
the (high-level) tool requirements and the low-level tool requirements. This part contains
the proofs of semantic preservation for every compilation pass, the proofs of semantic
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soundness for every static analysis, as well as the operational semantics for the intermediate
languages.

A first difficulty is that the “specifications”, “code” and “proof” parts are not clearly
separated in CompCert’s Coq development, owing to good mathematical style (theorems
and their proofs come just after definitions) and also to the use of dependently-typed data
structures. It would be useful to develop a “slicing” tool for Coq that extracts the various
parts of the development by tracing dependencies.

The source code for the compiler, in DO-330 parlance, corresponds to the OCaml code
that is generated from the “code” part of the Coq development by Coq’s extraction facility.
The executable compiler, then, is obtained by OCaml compilation. Here, we are in familiar
territory: automatic code generation followed by compilation. However, suitable confidence
arguments must be provided for Coq’s extraction and for OCaml’s compilation. Several
approaches were discussed during the meeting, ranging from dissimilar implementations to
Coq-based validation of individual runs of the executable compiler.

At the other end of the DO-330 sequence of refinements, we are left with the tool
operational requirements, which have to be written in informal prose, with references to the
ISO C 1999 language standard, the ISA reference manuals for the target architecture, and
coding standards such as MISRA C. The verification activities here are essentially manual,
and include for example relating the CompCert C formal semantics with the informal
specifications in ISO C 1999 and MISRA. Such a relation can be built from appropriate tests,
since CompCert provides a reference interpreter that provides an executable, testable form
of its C formal semantics.

All in all, the formal proof of CompCert does not eliminate the need for manual verifica-
tions, but it reduces their scope tremendously: from manual verification of a full optimizing
compiler to manual verification of formal semantics for C and assembly languages. For ex-
ample, changes to the “code” part of the compiler (e.g. adding new optimizations, modifying
the intermediate languages, etc) need no new manual verification activities, as long as the
“specification” part of the compiler is unchanged.

To finish, we need to consider the parts of the CompCert C compiler that are not formally
verified yet: uphill of the verified part, the transformations from C source text to CompCert
C abstract syntax (preprocessing, tokenization, parsing, type-checking, pre-simplifications,
production of an abstract syntax tree); downhill, the transformation from assembly abstract
syntax to ELF executables (assembling and linking). CompCert provides an independent
checker that validates a posteriori the assembling and linking phases. Likewise, some of the
uphill passes were formally verified recently (parsing and type-checking). Nonetheless, many
of the uphill passes lack formal specifications and therefore must be verified by conventional,
test-based means.

In conclusions, the qualification of an optimizing compiler to the highest quality levels
has never been attempted before, and might very well be too expensive to be worth the
effort. A formal compiler verification such as CompCert’s has high potential to reduce these
costs. However, much work remains to take full advantage of this potential.
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3.8 Certificates for the Qualification of the Model Checker Kind 2
Alain Mebsout (University of Iowa – Iowa City, US)
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This talk presents a technique for generating proof certificates in the model checker Kind 2
as an alternate path of qualification with respect to DO-178C. This is put in perspective
with the qualification that was conducted for the SMT solver Alt-Ergo at Airbus for use in
the development of the A350. Alt-Ergo was qualified wrt DO-178B as a backend solver for
Caveat to verify C code of the pre-flight inspection. On the other hand, Kind 2 generates
proof certificates which allows to shift the trust from the model checker to the proof checker
(LFSC). Certificates for the actual model checking algorithm are generated as SMT2 files and
verified by an external SMT solver. The translation from Lustre to the internal first-order
logic representation is verified in a lightweight way by proving observational equivalence
between independent frontends (for the moment JKind and Kind 2). This proof is actually
carried by Kind 2 itself and generates in turn SMT2 certificates.

3.9 Towards Certification of Network Calculus
Stephan Merz (INRIA Nancy – Villers-lès-Nancy, FR)
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Network Calculus (NC) is an established theory for determining bounds on message delays
and for dimensioning buffers in the design of networks for embedded systems. It is supported
by academic and industrial tool sets and has been widely used, including for the design and
certification of the Airbus A380 AFDX backbone. However, tool sets used for developing
certified systems need to be qualified, which requires substantial effort and makes them rigid,
even when deficiencies are subsequently detected. Result checking may be a worthwhile
complement, since the use of a qualified (and highly trustworthy) checker could replace
qualifying the analysis tool itself. In this work, we experimented an encoding of the
fundamental theory of NC in the interactive proof assistant Isabelle/HOL and used it to
check the results of a prototypical NC analyzer.
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3.10 Tool Qualification Strategy for Abstract Interpretation-based
Static Analysis Tools

Markus Pister (AbsInt – Saarbrücken, DE)
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In automotive, railway, avionics and healthcare industries more and more functionality is
implemented by embedded software. A failure of safety-critical software may cause high costs
or even endanger human beings. Also for applications which are not highly safety-critical, a
software failure may necessitate expensive updates.

Safety-critical software has to be certified according to the pertinent safety standard to
get approved for release. Contemporary safety standards including DO-178C, IEC-61508,
ISO-26262, and EN-50128 require the identification of potential functional and non-functional
hazards and to demonstrate that the software does not violate the relevant safety goals.
If tools are used to satisfy the corresponding verification objectives, an appropriate tool
qualification is mandatory to show functional correctness of the tool behavior with respect
to the operational context.

To ensure functional program properties, automatic or model-based testing and formal
techniques like model checking are becoming more widely used. For non-functional properties
identifying a safe end-of-test criterion is a hard problem since failures usually occur in corner
cases and full test coverage cannot be achieved.

For some non-functional program properties this problem is solved by abstract interpretation-
based static analysis techniques which provide full control and data coverage and yield provably
correct results. Like model checking and theorem proving, abstract interpretation belongs
to the formal software verification methods. AbsInt provides abstract interpretation-based
static analyzers to determine safety-guarantees on the worst-case execution time (aiT) and
stack consumption (StackAnalyzer) as well as to prove the absence of runtime errors (Astree)
in safety-critical software.

This talk focuses on our tool qualification strategy of the above mentioned verification
tools, which are increasingly adopted by industry in their validation activities for safety-
critical software. First, we will give an overview of the tools and their role within the analyzed
system’s certification process. We then outline the required activities for a successful tool
qualification of our static analyzers alongside their correspondingly produced data.

3.11 Tool Qualification in the Railway Domain
Werner Schuetz (Thales – Wien, AT)
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In this presentation we give an overview of the relevant standards applicable to the rail
domain. EN50128 is concerned with software, while EN50129 addresses system issues.

This presentation focuses on tool qualification. The 2011 edition of EN50128 is the first
to include requirements on “Support Tools and Languages”. To this end it defines three tool
classes. T3 tools directly or indirectly produce code or data that is used in the safety-related
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system. T2 tools are verification tools that may fail to detect an error but cannot introduce
an error themselves. T1 tools do not contribute directly or indirectly to the executable code
or data.

This presentation discusses the requirements on support tools and how they apply to the
three tool classes. Comparison with the relevant aerospace standards (DO178C, DO330) is
partly given.

In an appendix we briefly analyze which “Formal Methods” are contained in the 2011
edition of EN50128.

3.12 FM Tool Trust Propositions
Konrad Slind (Rockwell-Collins – Minneapolis, USA)
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An interactive theorem proving (ITP) system is a complex piece of software that bundles
a great deal of functionality together. Beyond their core theorem proving task, which can
employ highly complex algorithms, these systems provide extensibility, rich interfaces for
users, interaction with host operating systems, etc. And yet, ITP systems are claimed to
provide very high assurance. It is our purpose to take a close look at this state of affairs and
explain the justifications for this claim.

We introduce the notion of the trust proposition to organize the discussion: it helps
the consumer of a theorem prover’s output understand what the full assurance story is, by
breaking the overall trust proposition down to subcomponents. In particular, we identify
the work product of an ITP as a collection of theories, which formalize the artifact under
scrutiny, plus properties and proofs. This work product can be trusted, provided the following
conditions are met:

1. Trusted Basis The support theories are trusted;
2. Trusted Extension The newly introduced types, constants, definitions, and axioms are

trusted;
3. Valid Model The support theories plus newly introduced types, constants, definitions,

and axioms accurately model the artifact under scrutiny;
4. Sound Logic The proof system is sound;
5. Correct Implementation The proof system and extension mechanisms are correctly

implemented
6. Correct Libraries The libraries used in the implementation are correctly implemented;
7. Correct Compilation The compiler correctly compiles the libraries and the implement-

ation of the proof system;
8. Correct Execution The machine correctly runs the executable; and
9. Trusted IO The input and output of the ITP can be trusted.
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3.13 DO-330 Tool Qualification: An experience report
Lucas Wagner (Rockwell Collins – Cedar Rapids, US)
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This presentation gives an overview of the qualification of a test case generation tool that
utilized model checking to generate tests. The tool is used to satisfy verification objectives,
so it was qualified in accordance with DO-330 Tool Qualification Level 5 (TQL-5).

The presentation covers the rationale used for classifying the tool as a TQL-5 tool, the
applicable DO-330 objectives for a TQL-5 tool, and examples of how the major objectives
were satisfied, including examples of test cases used in the qualification package developed
for the test generation tool.

The purpose of this presentation was to give a concrete example and demonstrate that
qualification of a tool is not overly complicated, but rather a straightforward, manageable
process.

4 Discussion Groups

In addition to individual presentations, the seminar included four discussion groups organized
around specific questions that arose during these presentations.

4.1 Why qualify a formal methods tool?
DO-178 (certification standard for software in civil aviation) states that qualification of a
tool is needed when certification processes are eliminated, reduced, or automated by the use
of a software tool without its output being verified.

For formal methods tools, two questions arise:
Why use formal methods tools?
Is qualification necessary?

One difficulty with DO-178 is that structural coverage testing is connected to many
different certification objectives. Only some of these objectives can be mitigated using formal
methods tools. A careful look at objectives is necessary to determine the economic benefit of
using formal methods tools. In some cases, the business case may be derived from a new
capability enabled by the use of a formal methods tool. For example:

The ability to optimize code by using the CompCert compiler (see presentation by Xavier
Leroy)
The ability to increase processor utilization by performing worst case execution time
(WCET) analysis with AiT
The ability to host software at multiple criticality levels on same processor using a verified
microkernel such as seL4

Formal methods qualification may, therefore, be a means to justify using the new capability.

Sometimes it is also possible to realize value without qualifying the tool. The use of a
formal methods tool to detect and remove errors earlier in the development process is an
example. Therefore, the benefit to be derived from a formal methods tool and how it is used
in the development process should be carefully evaluated before assuming that qualification
is needed.
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4.2 How to qualify a formal methods tool?
In this group, we discussed qualification considerations for formal methods tools in the civil
aviation context.

DO-333, the formal methods supplement for DO-178C, makes a distinction between a
formal method and the tool which implements the method. Additional objectives for formal
methods are defined in DO-333 (appearing in tables A-3 through A-5). These objectives
apply to the underlying method, and are in addition to any tool qualification activities that
may be required. For each formal method used, the following activities should be done:

Verification that the method has precise unambiguous, mathematically defined syntax
and semantic
Justification of the soundness of the analysis method
Description and justification of any assumptions that are made in the analysis performed

Concerning tool qualification, there is nothing specific for formal methods tools required
by the tool qualification document, DO-330. For verification tools (called TQL-5 tools), the
main activities have to do with definition and verification of Tool Operational Requirements.
These describe operation of the tool from a user perspective and demonstrate that the tool
can satisfy the certification objectives for which it is being used. Some verification must be
done showing that the tool does what the requirements say it should do (for example by the
use of adequate test cases).

4.3 Compiler qualification strategies
Some formal methods are more difficult to classify in terms of how they fit in to a certification
process and what kind of qualification is needed. A good example is the CompCert tool
[1]. CompCert is a formally verified C compiler and thus could be seen as a development
tool. However, DO-178 is designed to not require that the compiler be trusted. Instead, it
assumes that executable object code will be verified by means of test (for compliance and
robustness with respect to the requirements and to demonstrate structural coverage). The
question is thus what is the certification objective that is automated by CompCert?

A possible answer is property preservation between source code and object code. In that
case, CompCert could be considered as a verification tool automating this objective, and
thus it would be qualified as a TQL-5 tool (according to DO-330). It would, however, be
necessary to separate the code production part from the proof part inside the CompCert
tool, which is not easy given the nature of the technique used (Coq).

Of course, CompCert could also be qualified as a development tool (TQL-1). In that case,
since its assurance story is based on a formal proof, DO-333 (the formal methods supplement
to DO-178C) could be applied for the qualfication objectives concerning the tool development
process. This combination of using formal methods to qualify a formal methods development
tool has not been previously considered. In that case, the issue is to justify qualification of
CompCert as a development tool on an economic point of view. Since a TQL-1 qualification
is costly, it is necessary to determine what can we put in the balance to motivate the use of
CompCert in place of a traditional compiler.

References
1 Leroy, X. (2009). Formal verification of a realistic compiler. In Communications of the

ACM, volumne 52, number 7, pages 107–115.
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4.4 Comparison of qualification in different domains
In this discussion group we discussed the similarities and difference among qualification
standards in different domains. The standards considered were:

DO-178C Software Considerations in Airborne Systems and Equipment Certification and
DO-330 Software Tool Qualification Considerations
IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-
related systems – Part 3: Software requirements
ISO 26262 Road vehicles – Functional safety – Part 8: Supporting processes

The comparison concerned the following questions:
When is tool qualification required?
What levels of qualfication are defined and what it is the purpose of each?
What activities are required to achieve qualification?



Darren Cofer, Gerwin Klein, Konrad Slind, and Virginie Wiels 159

Participants

June Andronick
UNSW – Sydney, AU

Rob Arthan
Lemma 1 Ltd. – Twyford, GB

Jasmin Christian Blanchette
INRIA Lorraine – Nancy, FR

Sandrine Blazy
IRISA – Rennes, FR

Matteo Bordin
AdaCore – Paris, FR

Darren Cofer
Rockwell Collins –
Minneapolis, US

David Cok
GrammaTech Inc. – Ithaca, US

Rémi Delmas
ONERA – Toulouse, FR

Michael Dierkes
Rockwell Collins France –
Toulouse, FR

Eric Engstrom
SIFT – Minneapolis, US

Gerwin Klein
NICTA – Sydney, AU

Ramana Kumar
University of Cambridge, GB

Mark Lawford
McMaster Univ. – Hamilton, CA

Xavier Leroy
INRIA – Le Chesnay, FR

Stefan Leue
Universität Konstanz, DE

Alain Mebsout
Univ. of Iowa – Iowa City, US

Stephan Merz
INRIA Nancy –
Villers-lès-Nancy, FR

Cesar A. Munoz
NASA Langley ASDC –
Hampton, US

Magnus Myreen
University of Cambridge, GB

Scott Owens
University of Kent, GB

Marc Pantel
University of Toulouse, FR

Markus Pister
AbsInt – Saarbrücken, DE

Werner Schütz
Thales – Wien, AT

Konrad Slind
Rockwell Collins –
Minneapolis, US

Nick Tudor
D-RisQ Limited – Malvern, GB

Lucas Wagner
Rockwell Collins –
Cedar Rapids, US

Michael W. Whalen
University of Minnesota –
Minneapolis, US

Virginie Wiels
ONERA – Toulouse, FR

15182


	Executive Summary Darren Cofer, Gerwin Klein, Konrad Slind, and Virginie Wiels
	Table of Contents
	Overview of Talks
	Please check my 500K LOC of Isabelle June Andronick
	Compiling avionics software with the CompCert formally verified compiler Sandrine Blazy
	Qualification of Formal Methods Tools and Tool Qualification with Formal Methods Matteo Bordin
	Are You Qualified for This Position? An Introduction to Tool Qualification Darren Cofer
	Sharing experience on SAT-based formal verification toolchain qualification in the railway domain Rémi Delmas
	Qualification of PVS for Systematic Design Verification of a Nuclear Shutdown System Mark Lawford
	How much is CompCert's proof worth, qualification-wise? Xavier Leroy
	Certificates for the Qualification of the Model Checker Kind 2 Alain Mebsout
	Towards Certification of Network Calculus Stephan Merz
	Tool Qualification Strategy for Abstract Interpretation-based Static Analysis Tools Markus Pister
	Tool Qualification in the Railway Domain Werner Schuetz
	FM Tool Trust Propositions Konrad Slind
	DO-330 Tool Qualification: An experience report Lucas Wagner

	Discussion Groups
	Why qualify a formal methods tool?
	How to qualify a formal methods tool?
	Compiler qualification strategies
	Comparison of qualification in different domains

	Participants

