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The seminar was dedicated to Prof. Dima Grigoriev on the occasion of his 60th birthday. Its
aim was to discuss modern trends in computational real algebraic geometry, in particular,
areas related to solving real algebraic and analytic equations and inequalities. Very recent new
developments in the analysis of these questions from the point of view of tropical mathematics
were also presented.

Historically there were two strands in the computational approach to polynomial systems’
solving. One is the tradition of numerical analysis, a classical achievement of which is
the Newton’s method. Various other approximation algorithms were developed since then,
some based on the idea of a homotopy. Numerical analysis did not bother to introduce
formal models of computations (and hence computational complexity considerations) but
developed refined methods of estimations of convergency rates. Another tradition emerged
from algebra, particularly in classical works of Cayley, Sylvester and Macaulay. Algebraic
results concerning real solutions go further back to the Descartes’ rule and Sturm sequences.
An important contribution to the subject from logic was Tarski’s constructive quantifier
elimination procedures for algebraically closed and real closed fields. The computations
considered in this tradition are exact, under modern terminology – “symbolic”. They
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naturally fit into standard models of computation (Turing Machines, straight-line programs,
computation trees) thus lending themselves to complexity analysis.

Until 1990s these two strands developed largely independently. One of the important
unifying ideas became the concept of a real numbers (or BSS) machine suggested by Blum,
Shub and Smale which can be considered as a model of computation for the numerical
analysis. This idea led to Smale’s 9th and 17th problems, which became an inspiration for
many researchers in the field.

The seminar considered a wide set of questions related to the current state of the symbolic
and numeric approaches to algorithmic problems of real algebraic and analytic geometry,
also from the novel perspective of tropical and max/plus mathematics.
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3 Overview of Talks

In this section we give a very coarse general outline of the results presented at the seminar.
The reader should consult the Abstracts section for a more precise description of the talks.

One of the conceptually most simple and computationally efficient methods for deciding
consistency of systems of polynomial equations over algebraically closed fields is based on
Effective Hilbert’s Nullstellensatz – the theorem known since late 1980s. Over real closed fields,
where polynomial inequalities make sense, the analogy of the classical Hilbert’s Nillstellensatz
is Positivstellensatz (in different versions). This seminar was one of the first conferences
where the new breakthrough result was announced: an elementary recursive bound for
Effective Positivstellensatz and Hilbert 17-th problem, proved by H. Lombardi, D. Perrucci,
and M.-F. Roy.

In tropical mathematics, the research of algorithmic and complexity issues had started only
very recently, and mostly in linear algebra. One of the first complexity results in polynomial
algebra, Tropical Effective Nullstellensatz, was reported at the seminar by V. Podolskii (joint
work with D. Grigoriev). This remarkable achievement starts a new chapter in symbolic
computer algebra. In the talk of A. Weber, complexity aspects of tropical algebra were
applied to bio-chemical reaction networks.

In complexity theory, the Graph Isomorphism problem is one of the most exciting since
it is not known to be NP-complete or belong to P. On the other hand, the problem is
polynomially equivalent to finding the automorphism group of a colored graph. In the talk
of I. Ponomarenko, for the important particular case of the latter problem, the Cartan
association scheme, an algorithm with polynomial complexity was presented.

Talks of F. Cucker, D. Amelunxen, and P. Bürgisser were dedicated to the latest advances
in complexity theory of numerical algorithms, foundations of which were developed in the
recent monograph “Condition” by Bürgisser and Cucker. Cucker presented a theory of
complexity for numerical computations that takes into account the condition of the input
data and allows for roundoff in the computations. Amelunxen proposed a new model for
probabilistic analysis of condition numbers which, when applied to the convex feasibility
problem, yields a dramatic improvement in complexity (joint work with M. Lotz). Bürgisser
presented a proof of the condition number theorem, characterizing the condition of computing
a point in the intersection of a fixed complex projective variety with an input linear subspace
of the complement dimension.

A number of talks described recent breakthroughs concerning problems in classical
complexity theory. D. Grigoriev applied a technique of cluster algebras to close a long-
standing problem on the comparative complexity power between all possible subsets of
operations +, −, ×, / in arithmetic circuits. This is done via computing Schur functions
(joint work with S. Fomin and G. Koshevoy). É. Shost gave in his talk an alternative algorithm
for computing Schur functions. N. Vorobjov presented complexity lower bounds for testing
membership in semi-algebraic sets on algebraic computation trees and arithmetic networks
(joint work with A. Gabrielov). Using recent advances in o-minimal topology the classical
lower bounds of Yao and Montaña-Morais-Pardo were expanded to singular homology on
arbitrary semi-algebraic sets. Within the theme of classical complexity, K. Meer suggested a
new, algebraic, proof of the real number PCP (probabilistically checkable proof) theorem
(joint work with M. Baartse). This result is an exact match with the main motive of the
seminar: interplay between symbolic and numerical approaches to computation.

A group of seminar talks discussed aspects of computer algebra. J. Davenport reported
on practical improvements in Cylindrical Algebraic Decomposition algorithm (a subroutine
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extensively used in, e.g., Maple), in the presence of equational constraints. S. Basu presented
a theory of symmetric groups acting on symmetric real algebraic varieties, semi-algebraic
sets, and symmetric complex varieties in affine and projective spaces, defined by polynomials
of fixed degrees. He gave polynomial bounds on the number of irreducible representations of
such groups, as well as their multiplicities (joint work with C. Riener). P. Koiran explained
a version of a fewnomial theorem. It turns out that in the case of two polynomial equations
in two variables, when one has a degree d ≥ 1 and another t monomials, the number of real
solutions is polynomial in d and t when this number is finite. This result is in sharp contrast
with the famous Khovanskii’s general bound, which is exponential in t. M. Safey El Din
presented a new algorithm for computing roadmaps in smooth algebraic sets, having the
lowest complexity achieved so far (joint work with É. Schost). A classical topic in computer
algebra was re-run by E. Kaltofen, who reproduced his 1987 talk on fast multiplication of
polynomials over arbitrary rings with various modern witty comments.

The seminar featured a number of talks on a broad subject of convex geometry which are
related to both symbolic and numerical computing. D. Pasechnik considered the problem
of reconstructing a measure in Rd from a truncated multi-sequence of its moments, in an
important particular case of a measure with piecewise-polynomial density supported on a
compact polyhedron. He showed that this problem can be solved exactly (joint work with
N. Gravin, and B. and M. Shapiro). M. Lotz discussed various applications of spherical
integral geometry, in particular the complexity theory of conic optimization and convex
optimization approaches to solving underdetermined systems of equations. T. Theobald
revisited a classical problem of the complexity of deciding containment of one polyhedron
in another, where polyhedra can be defined either by linear inequalities or as convex hulls,
in any combination. The novel approach uses sums of squares technique (joint work with
K. Kellner).

Modern cryptography was represented by the talk of V. Spilrain. He explained a revolu-
tionary approach to building public key cryptosystems, based on laws of classical physics,
and not using any trapdoor functions (joint work with D. Grigoriev).

A.O. Slissenko presented a novel view on the work of an algorithm as a process of the
decreasing uncertainty (entropy) about the output. The complexity aspect of this approach
requires understanding of what is the speed of this decreasing. A technique is suggested
which allows to develop an adequate definition.

The talk by E. Hirsch was devoted to a major conjecture in proof complexity: the existence
of an algorithm, called acceptor, that is optimal on all propositional tautologies. It was
claimed that in the presence of errors such optimal algorithm exists (joint with D. Itsykson,
I. Monakhov, A. Smal).

15242
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4 Abstracts of talks

4.1 An elementary recursive bound for effective Positivstellensatz and
Hilbert 17-th problem

Marie-Françoise Roy (University of Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Marie-Françoise Roy

Joint work of Marie-Françoise Roy, Henri Lombardi, Daniel Perrucci

We prove the first elementary recursive bounds in the degrees for Positivstellensatz and
Hilbert 17-th problem, which is the expression of a nonnegative polynomial as a sum of
squares of rational functions. We obtain a tower of five exponentials. A precise bound in
terms of the number and degree of the polynomials and their number of variables is provided.
(See http://arxiv.org/abs/1404.2338v2.)

4.2 Tropical Effective Nullstellensatz
Vladimir Podolskii (Steklov Institute – Moscow, RU)

License Creative Commons BY 3.0 Unported license
© Vladimir Podolskii

Joint work of Vladimir Podolskii, Dima Grigoriev

A tropical (or min-plus) semiring is a set real numbers, possibly with infinity, endowed
with two operations: tropical addition, which is just usual minimum operation, and tropical
multiplication, which is usual addition. Tropical polynomials can be defined analogously to
classical polynomials. In tropical algebra, a tuple x is a solution to a multivariate polynomial
min(g1(x), g2(x), . . . , gk(x)), where gi(x)’s are tropical monomials, if the minimum is attained
at least twice. If we consider a convex piece-wise linear function given by a tropical
polynomials, then roots correspond to non-smoothness points of the function.

In this talk we present a tropical effective analog of Hilbert’s Nullstellensatz.

4.3 Recognizing the Cartan association schemes in polynomial time
Ilia Ponomarenko (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© Ilia Ponomarenko

It is well known that the Graph Isomorphism Problem is polynomially equivalent to finding
the automorphism group of a colored graph. In the present talk, we deal with a special
case of the latter problem. Namely, the Cartan association scheme can be thought of as
the complete colored graph the color classes of which are the orbits of a finite group with
BN-pair that acts on the cosets of the Cartan subgroup B ∩N . We show that the following
problem can be solved in a polynomial time (in the number of vertices): given a colored
complete graph check whether it is a Cartan scheme associated with a simple group and (if
so) find the automorphism group of the graph.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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4.4 Empiric investigations of some seemingly slowly growing
complexity parameters of bio-chemical reaction networks

Andreas Weber (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Weber

Joint work of Andreas Weber, Dima Grigoriev, Ovidiu Radulescu, Satya Swarup Samal

Bio-chemical reaction networks are bi-partitite graphs involving the reacting species and
the reactions as vertices. These can range from a few for so called network motifs up to
several thousands (e.g., for networks reconstructing yeast metabolism or human metabolism).
Assuming well-mixing and mass action kinetics, the dynamics of the networks is given by
a system of ordinary differential equations with polynomial vector fields. Whereas a priori
only little special structure is known to reduce the complexity of several computational
tasks on the given systems, it has recently been shown that the tree width of the networks
is growing slowly (and even being smaller than 6 for most networks). In this talk we will
focus on computing tropical equilibrations, which are important for several purposes, e.g. for
model reduction, but is an NP-complete task in general. Performing computations on the
BIOMODELS database we found that the number of maximal solution polytopes is much
smaller than had to be expected.

4.5 A Theory of Complexity, Condition, and Roundoff
Felipe Cucker (City University – Hong Kong, HK)

License Creative Commons BY 3.0 Unported license
© Felipe Cucker

We develop a theory of complexity for numerical computations that takes into account the
condition of the input data and allows for roundoff in the computations. We follow the
lines of the theory developed by Blum, Shub, and Smale for computations over R (which
in turn followed those of the classical, discrete, complexity theory as laid down by Cook,
Karp, and Levin among others). In particular, we focus on complexity classes of decision
problems and paramount among them, on appropriate versions of the classes P, NP and EXP
of polynomial, nondeterministic polynomial, and exponential time, respectively. We prove
some basic relationships between these complexity classes and exhibit natural NP-complete
problems.

4.6 On a blindspot in probabilistic analysis of condition numbers
Dennis Amelunxen (City University – Hong Kong, HK)

License Creative Commons BY 3.0 Unported license
© Dennis Amelunxen

Joint work of Dennis Amelunxen, Martin Lotz

The common practice in the probabilistic analysis of condition numbers suffers from a strange
imbalance in the model, which seems to have gone unnoticed so far. On the one hand it is
emphasized that the use of condition numbers takes into account real-world limitations of
numerical computations such as the effects of floating-point arithmetics, while on the other
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hand an overly strict mathematical model is used, which prevents the inclusion of important
effects in high-dimensional geometry that are loosely summarized by the term “concentration
of measure”.

We propose a small but decisive change in the model used in the probabilistic analysis,
which broadly consists of replacing the nullset of ill-posed inputs by an exponentially small
set. While this change is easily accepted from an applications point of view, the resulting
change in the probabilistic behavior of the condition number can be dramatic. Indeed, in the
case of the convex feasibility problem the expectation of Renegar’s condition number (not its
logarithm!) has constant “weak average-case complexity”, as opposed to infinity, which is
the answer in the classical form and which is in stark contrast to what is being observed in
practice. The argument for this result is surprisingly simple.

4.7 Subtraction-free computations and cluster algebras
Dima Grigoriev (Lille I University, FR)

License Creative Commons BY 3.0 Unported license
© Dima Grigoriev

Joint work of Dima Grigoriev, S. Fomin, G. Koshevoy

Using cluster transformations we design subtraction-free algorithms for computing Schur
polynomials and for generating spanning trees and arborescences polynomials. The latter
provides an exponential complexity gap between circuits admitting arithmetic operations
+, ×, / versus +, ×. In addition, we establish an exponential complexity gap between circuits
admitting +, −, ×, / versus +, ×, /. Together with V. Strassen’s result on “Vermeidung von
Divisionen” this closes a long-standing problem on comparative complexity power between
all possible subsets of operations +, −, ×, /.

4.8 On Entropic Convergence of Algorithms
Anatol Slissenko (Université Paris-Est Créteil, FR)

License Creative Commons BY 3.0 Unported license
© Anatol Slissenko

This talk presents an attempt to find an information based view on the work of an algorithm.
Unfortunately, there is no mathematical notion of information that adequately reflects our
intuition. The only related notion, as far as I know, is that of entropy – that is a measure of
uncertainty.

It is intuitively clear that an algorithm, while computing a function, diminishes the
uncertainty of its knowledge about the result. The question is how to estimate quantitatively
the speed of this decreasing of the uncertainty. In order to define entropy we introduce a
probabilistic measure on the domain of deterministic algorithm on the basis of principle
of Maximal Uncertainty: the uncertainty about the result is maximal if all the results are
equiprobable. The measure is over inputs of a fixed length (for better intuition one may
think that this set is of exponential size). It depends only on the graph of the computed
function, not on the algorithm. Denote by f the function computed by an algorithm A, and
by dm(f) and rn(f) the set of its inputs of a fixed size and respectively its range f(dm(f)).
The measure is P (f−1(v)) = 1

|rn(f)| , and it is uniform on f−1(v), v ∈ rn(f).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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After that, and this is the next conceptual difficulty, we introduce a mapping of events of
the algorithm under study, into partitions of subsets of dm(f). The work of A is treated
as the set of its traces. A trace tr(X) of A for an element X ∈ dm(f) is a sequence of
commands executed by A for input X (plus the initial state that we do not make explicit),
each such execution being an update (assignment) or a guard (evaluated as true); these are
events, and tr(X, t) is the event at an instant t.

The mapping of events into partitions is based on some notion of similarity ∼ of events
(which is assumed to be an equivalence). First, an event E = tr(X, t) is associated with a
set Ê of inputs X ′ such that tr(X, t) ∼ tr(X ′, t′) for some t′. This set defines its ordered
partition π(E) into intersection of Ê with f−1(v) for a fixed order of rn(f). For such a
partition its entropy conditioned by Ê is denoted D(E).

A metric function can be defined on π(E). Not all events are informative, e.g., the loop
counter gives nothing. Modulo this remark, sequences

(
D(tr(X, t))

)
t
, X ∈ dm(f), and the

space R(t) = {π(tr(X, τ)) : X ∈ dm(f) ∧ τ ≥ t} give descriptions of entropic convergence
of A.

4.9 Nature-based information security
Vladimir Shpilrain (City University of New York, US)

License Creative Commons BY 3.0 Unported license
© Vladimir Shpilrain

Joint work of Vladimir Shpilrain, Dima Grigoriev

We use various laws of classical physics to offer several solutions of Yao’s millionaires’
problem without using any one-way functions. We also describe informationally secure public
key encryption protocols, i.e., protocols secure against passive computationally unbounded
adversary. This introduces a new paradigm of decoy-based cryptography, as opposed to
“traditional” complexity-based cryptography.

4.10 Equational Constraints and Cylindrical Algebraic Decomposition
James H. Davenport (University of Bath, GB)

License Creative Commons BY 3.0 Unported license
© James H. Davenport

Quantifier Elimination by Cylindrical Algebraic Decomposition is easier if there is a global
equational constraint f = 0 ∧ · · · . We have recently extended this to local equational
constraints (R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and D.J. Wilson,
Proceedings ISSAC 2013, 125–132). We present this, and work in press (arXiv1401.0645;
1501.04466) on multiple equational constraints, and where the local equational constraints
do not give a global constraint. This last is particularly useful for motion planning and branch
cut applications. See http://staff.bath.ac.uk/masjhd/Slides/JHDatDagstuhlJune2015.pdf.
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4.11 Condition of intersecting a fixed projective variety with a given
linear subspace

Peter Bürgisser (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Peter Bürgisser

Let Z ⊆ Pn be a fixed complex projective variety of dimension m and put s := n − m.
We define the condition κ(L, z) of computing a point of intersection z ∈ Z ∩ L for an
input L ∈ Grass(Pn, s) in the Grassmann manifold of s-dimensional linear subspaces as the
operator norm of the (locally defined) solution map L 7→ z (if the intersection is transversal
and z is smooth). We characterize κ(L, z) in terms of the minimal principal angle between
the tangent spaces TzZ and TzL, and use this to prove a condition number theorem that
characterizes κ(L, z) as the inverse distance of L to a local Schubert variety of ill-posedness.
Hence a probabilistic analysis of the maximum condition number κ(L) := max{κ(L, z) |
z ∈ Z ∩ L} is reduced to bounding the volume of the ε-tube around the hypersurface
Σ ⊆ Grass(Pn, s) of ill-posed subspaces touching Z. As a first step towards this goal, we
prove that vol(Σ)/vol(Grass(Pn, s)) = deg(Σ)(s+ 1)(n− s)/π.

4.12 An algebraic proof of the real number PCP theorem
Klaus Meer (BTU Cottbus, DE)

License Creative Commons BY 3.0 Unported license
© Klaus Meer

Joint work of Klaus Meer, M. Baartse

The PCP theorem is a major achievement in theoretical computer science in the last two
decades. There exist two intrinsically different proofs of it. The original one by Arora et
al. being algebraic in nature, and a more recent one by Dinur based on graph theoretic
techniques.

We are interested in PCP theorems for the real number model of computation introduced
by Blum, Shub, and Smale. In earlier work we could prove the real number PCP theorem
to hold along the lines of Dinur’s proof. In this talk we report on an algebraic proof of the
theorem. It is close in structure to the original one by Arora et al., but needs additional
efforts to deal with several problems arising on the way.

4.13 On the isotypic decomposition of cohomology modules of
symmetric semi-algebraic sets: polynomial bounds on
multiplicities

Saugata Basu (Purdue University – West Lafayette, US)

License Creative Commons BY 3.0 Unported license
© Saugata Basu

Joint work of Saugata Basu, Cordian Riener

We consider symmetric (as well as multi-symmetric) real algebraic varieties and semi-
algebraic sets, as well as symmetric complex varieties in affine and projective spaces, defined
by polynomials of fixed degrees. We give polynomial (in the dimension of the ambient space)
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bounds on the number of irreducible representations of the symmetric group which acts
on these sets, as well as their multiplicities, appearing in the isotypic decomposition of
their cohomology modules with coefficients in a field of characteristic 0. We also give some
applications of our methods in proving lower bounds on the degrees of defining polynomials
of certain symmetric semi-algebraic sets, as well as improved bounds on the Betti numbers
of the images under projections of (not necessarily symmetric) bounded real algebraic sets.

Finally, we conjecture that the multiplicities of the irreducible representations of the
symmetric group in the cohomology modules of symmetric semi-algebraic sets defined by
polynomials of fixed degrees are computable with polynomial complexity, which would imply
that the Betti numbers of such sets are also computable with polynomial complexity. This
is in contrast with general semi-algebraic sets, for which this problem is provably hard
(#P-hard).

4.14 Rational moment generating functions and polyhedra
Dmitrii V. Pasechnik (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Dmitrii V. Pasechnik

Joint work of Dmitrii V. Pasechnik, Nick Gravin, Boris Shapiro, Michael Shapiro

The problem of reconstructing a measure in Rd from a (truncated) multi-sequence of its
moments has important applications, and is in general very hard to solve. We concentrate
on a natural case of a measure m with piecewise-polynomial density supported on a compact
polyhedron P , and show that such problems can be solved exactly, due to existence of a
natural integral transform of the measure (known as Fantappie transformation), which is a
rational function Fm(u).

The denominator of Fm(u) is the product of linear functions of the form 1− 〈u, v〉, with
v belonging to certain finite multiset V (P ). Fm(u) is closely related to a more well-known
Laplace transform Lm(u) of a related “conified” measure arising in the theory of hyperplane
arrangements. It is an interesting problem to reconstruct Fm (or Lm) from the noisy data;
this would entail approximate Pade approximation and/or factoring into linear terms.

There are interesting applications of Lm to compact (not necessarily convex) polyhedra
P . Let I(P ) be the indicator function of P . Then I(P ) can be decomposed (up to a measure
0 subset) as a sum, with +1 or −1 coefficients, of I(D), where D runs through simplices
with vertices in V (P ). This can be viewed as a non-convex generalisation of triangulations
of convex polytopes.

4.15 Optimal proving algorithms
Edward A. Hirsch (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© Edward A. Hirsch

Joint work of Edward A. Hirsch, D. Itsykson, I. Monakhov, A. Smal

The existence of a (p)-optimal propositional proof system is a major open question in (proof)
complexity; Krajíček and Pudlák (1989) show that this question is equivalent to the existence
of an algorithm (acceptor) that is optimal on all propositional tautologies.
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We show that in the presence of errors such optimal algorithms do exist. The concept is
motivated by the notion of heuristic algorithms. Namely, we allow the algorithm to claim a
small number of false “theorems” (according to any polynomial-time samplable distribution
on non-tautologies) and err with bounded probability on other inputs.

This construction can be viewed as “physical” proof as opposed to “mathematical” proof:
the validity of a candidate algorithm is established using an “experiment” (drawing non-
theorems at random and feeding them to the algorithm).

4.16 On the intersection of a sparse curve and a low-degree curve: A
polynomial version of the lost theorem

Pascal Koiran (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
© Pascal Koiran

Consider a system of two polynomial equations in two variables:

F (X,Y ) = G(X,Y ) = 0,

where F ∈ R[X,Y ], has degree d ≥ 1, G ∈ R[X,Y ] and has t monomials. We show that the
system has only O(d3t+ d2t3) real solutions when it has a finite number of real solutions.
This is the first polynomial bound for this problem. In particular, the bounds coming from
the theory of fewnomials are exponential in t, and count only nondegenerate solutions. More
generally, we show that if the set of solutions is infinite, it still has at most O(d3t+ d2t3)
connected components. By contrast, the following question seems to be open: if F and G
have at most t monomials, is the number of (nondegenerate) solutions polynomial in t?

The authors’ interest for these problems was sparked by connections between lower bounds
in algebraic complexity theory and upper bounds on the number of real roots of “sparse like”
polynomials.

4.17 Another subtraction-free algorithm for computing Schur functions
Éric Schost (University of Western Ontario – London, CA)

License Creative Commons BY 3.0 Unported license
© Éric Schost

In recent work, Fomin, Grigoriev and Koshevoy give subtraction-free algorithms for the
computation of Schur functions (and some of their generalizations), following earlier works
by Koev and Demmel. In this talk, we present another algorithm, which is hinted at as a
remark in Fomin et al.’s paper.
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4.18 On nearly optimal algorithms for computing roadmaps of real
algebraic sets

Mohab Safey El Din (UPMC – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Mohab Safey El Din

Joint work of Mohab Safey El Din, Éric Schost

Canny introduced roadmaps of semi-algebraic sets as a key tool for reducing connectivity
queries in arbitrary dimension to connectivity queries on 1-dimensional semi-algebraic sets.
Indeed, roadmaps are (semi-)algebraic curves which have a connected intersection with
all connected components of the semi-algebraic set under consideration (and contain the
query-points).

In 2010, we introduced a new technique for computing roadmaps improving the long-
standing complexity bounds derived from Canny-like procedures for computing roadmaps.
This has led to several developments by Basu et al.

We obtained recently the first nearly optimal algorithm, i.e. running in time DO(n log(n))

when the input is an n-variate reduced regular sequence of degree ≤ D defining a smooth
and bounded real algebraic set.

In this talk, we show how to remove the boundedness assumption and report on first
practical results, showing that roadmaps can now be computed in practice for non-trivial
examples.

4.19 Fast Multiplication of Polynomials over Arbitrary Rings
Erich Kaltofen (North Carolina State University – Raleigh, US)

License Creative Commons BY 3.0 Unported license
© Erich Kaltofen

As a nostalgic reprise of the time when Dima Grigoriev and I were young researchers, and in
the memory of my co-author David G. Cantor (1935–2012), I will repeat my 1987 talk at
Zürich, with overhead transparencies and such, on the algebraic complexity of polynomial
multiplication.

I will also mention Mark Giesbrecht’s 1997 application of one of our ideas to computing
integral solutions to sparse systems of linear equations, and recent results based on Martin
Führer’s fast integer multiplication algorithm.

Unfortunately, unlike the matrix multiplication exponent, the

O(n log(n) log log(n))

complexity still seems to remain the best after those 28 years.

4.20 Conic integral geometry and applications
Martin Lotz (Manchester University, GB)

License Creative Commons BY 3.0 Unported license
© Martin Lotz

Integral geometry and geometric probability, going back to the work of Blaschke and Santaló,
deal with measures on spaces of geometric objects, and can answer questions about the
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probability that random geometric objects intersect. We discuss various applications of
(spherical) integral geometry: from the complexity theory of conic optimization to the analysis
of convex optimization approaches to solving underdetermined systems of equations. In
particular, it is shown how integral geometry naturally gives rise to a complete explanation
of phase transition phenomena for the applicability of convex regularization to data recovery
problems. We also introduce combinatorial methods, based on the theory of hyperplane
arrangements, to compute the conic intrinsic volumes of various cones of interest.

4.21 Sum of squares certificates for containment of H-polytopes in
V-polytopes

Thorsten Theobald (Goethe-Universität Frankfurt am Main, DE)

License Creative Commons BY 3.0 Unported license
© Thorsten Theobald

Joint work of Thorsten Theobald, Kai Kellner

Given an H-polytope P and a V -polytope Q, the decision problem whether P is contained
in Q is co-NP-complete. This hardness remains if P is restricted to be a standard cube and
Q is restricted to be the affine image of a cross polytope. While this hardness classification
by Freund and Orlin dates back to 1985, there seems to be only limited progress on that
problem so far.

Based on a formulation of the problem in terms of a bilinear feasibility problem, we
study sum of squares certificates to decide the containment problem. These certificates
can be computed by a semidefinite hierarchy. As a main result, we show that under mild
and explicitly known preconditions the semidefinite hierarchy converges in finitely many
steps. In particular, if P is contained in a large V -polytope Q (in a well-defined sense), then
containment is certified by the first step of the hierarchy.

4.22 Topological lower bounds for computation trees and arithmetic
networks

Nicolai Vorobjov (University of Bath, GB)

License Creative Commons BY 3.0 Unported license
© Nicolai Vorobjov

Joint work of Nicolai Vorobjov, Andrei Gabrielov

We prove that the height of any algebraic computation tree for deciding membership in a
semialgebraic set Σ ⊂ Rn is bounded from below by

c1 log(bm(Σ))
m+ 1 − c2n,

where bm(Σ) is the m-th Betti number of Σ with respect to “ordinary” (singular) homology,
and c1, c2 are some (absolute) positive constants. This result complements the well known
lower bound by Yao for locally closed semialgebraic sets in terms of the total Borel-Moore
Betti number.
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We also prove that if ρ : Rn → Rn−r is the projection map, then the height of any tree
deciding membership in Σ is bounded from below by

c1 log(bm(ρ(Σ)))
(m+ 1)2 − c2n

m+ 1

for some positive constants c1, c2.
We illustrate these general results by examples of lower complexity bounds for some

specific computational problems.
An analogous theory is developed for arithmetic networks, a computational model aimed

to capture the idea of a parallel computation in its simplest form. Here we generalize
lower bounds of Montaña, Morais and Pardo (who considered locally closed semialgebraic
sets relative to Borel-Moore homology) to arbitrary semialgebraic sets relative to singular
homology.

5 Open Problems

The open problems session was held on Tuesday, the 9th of June.

5.1 Determinantal Witnesses and Matchings
Marek Karpinski (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Marek Karpinski

Given a bipartite graph G = (V,E) with n vertices and the adjacency matrix A = [aij ].
Existence of a perfect matching in G is equivalent to checking the identity to zero of a
symbolic determinant S = Det([aijxij ]). Evaluate S at the points ((p11)i, . . . , (pnn)i) for
i between 1 and n! and pjk being “consecutive” prime numbers. Denote the values of a
symbolic determinant S at those points by ai.

It is known that existence of a matching in G is equivalent to the existence of an index
i, 1 ≤ i ≤ n!, such that the number ai is nonzero (Grigoriev, Karpinski 1987). Define a
determinantal witness wt (G) of G to be a minimal index i with that property, and the
n-dimensional witness wtn to be a maximum of the determinatal witnesses of all graphs with
n vertices.

Give an explicit construction of a bipartite graph such that wt(G) ≥ 4. Can the upper
bound n! on wtn be reduced to a subexponential (or even polynomial) bound? Shedding
some light on those issues will constitute a significant progress in the area.

5.2 Complexity of solving tropical or min-plus linear systems
Dima Grigoriev (Lille I University, FR)

License Creative Commons BY 3.0 Unported license
© Diam Grigoriev

A min-plus linear system has a form

min
1≤j≤n

{aij + xj} = min
1≤j≤n

{bij + xj}, 1 ≤ i ≤ m
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where the integer coefficients aij , bij fulfil bounds |aij |, |bij | < M . Solvability is asked in
integers. This class of systems is polynomially equivalent to tropical linear systems and to
mean pay-off games.

The long-standing question is in existence of a polynomial complexity (so, polynomial in
n,m, logM) algorithm for solving min-plus (or tropical) linear system. The known algorithms
have complexity polynomial either in n,m,M or in nm, logM .

5.3 Construction of explicit disperser f : {0, 1}n → {0, 1}o(n)

E.A. Hirsch (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
© E. A. Hirsch

Construct an explicit disperser f : {0, 1}n → {0, 1}o(n) of the following kind: f should be
non-constant on every possible set of solutions of size at least 2n/100 of a set of O(n) quadratic
equations over F2.

5.4 Conjecture: Log-concavity of conic intrinsic volumes
Dennis Amelunxen (City University – Hong Kong, HK)

License Creative Commons BY 3.0 Unported license
© Dennis Amelunxen

If C ⊆ Rd is a (convex) polyhedral cone then its kth intrinsic volume can be defined as the
probability that the projection onto the cone of a uniformly random point on the unit sphere
falls into the relative interior of a k-dimensional face of C:

vk(C) = Prob{ΠC(p) ∈ relint(F )| F k-dimensional face of C},

where ΠC(z) = x with ‖z− x‖ = min{‖z− y‖ | y ∈ C} and p ∼ Uniform(Sd−1).
(For more information about conic intrinsic volumes see arXiv:1412.1569 and the references
given therein.)

Conjecture: The intrinsic volumes of a cone form a log-concave sequence.
In technical terms, if C ⊆ Rd closed convex cone, then for all 1 ≤ k ≤ d− 1,

vk(C)2 ≥ vk−1(C) vk+1(C).

It is known that these inequalities hold in dimension d ≤ 4 (which in connection with the
stability of log-concavity under convolution yields an infinite set of positive examples in any
dimension), and recent investigations about the behavior of the intrinsic volumes in high
dimensions support the plausibility of these inequalities. A proof of this conjecture could be
seen as a conic analog of the famous Alexandrov-Fenchel inequalities.
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5.5 Lower bounds for sums of powers of degree 1 univariate
polynomials

Pascal Koiran (ENS – Lyon, FR)

License Creative Commons BY 3.0 Unported license
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We consider representations of polynomials f ∈ K[X] under the form

f(X) =
k∑

i=1
αi(x+ ai)ei .

The problem is to find explicit polynomials f of degree d which require at least k = Ω(d)
terms in any representation of this form. Such polynomials are known for the field K = R,
but the problem seems to be open for K = C. Some background can be found in the paper
“lower bounds by Birkhoff interpolation” (in preparation).

5.6 Sign-representation
Vladimir Podolskii (Steklov Institute – Moscow, RU)

License Creative Commons BY 3.0 Unported license
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Consider a sequence of Boolean functions {fn}n∈N, where fn : {1, 2}n → {−1, 1}. We say
that polynomials pn ∈ Z[x1, . . . , xn] sign-represent this sequence of functions if for all n and
for all x ∈ {1, 2}n we have fn(x) = sign pn(x).

Suppose we know that the sequence {fn}n∈N can be sign-represented by a sequence of
polynomials {pn}n∈N with the number of monomials growing polynomially in n. Can we say
that the same sequence of functions can be sign-represented by a sequence of polynomials
with polynomial number of monomials and with any bound on the degree?

The background on the problem can be found in the paper http://eccc.hpi-web.de/report/
2013/021/.

5.7 Complexity of testing membership to Kronecker polytopes
Peter Bürgisser (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Peter Bürgisser

Kronecker coefficients play a crucial role in geometric complexity theory for proving lower
bounds for tensor rank and determinantal complexity.

Let λ, µ, ν be three partitions of k into at most n parts. The Kronecker coefficient
g(λ, µ, ν) is the multiplicity of the irreducible GLn(C)3-representation of type (λ, µ, ν) in
the the space of forms of degree k on Cn ⊗ Cn ⊗ Cn. Let ∆(n) denote the closure of the
set of 1

k (λ, µ, ν) such that g(λ, µ, ν) > 0. It is known that ∆(n) is a convex polytope.
We study the problem KRON− POLYTOPE of testing membership to ∆(n) for given
partitions λ, µ, ν, each given as a list of n integers encoded in binary (n is varying and part
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of the input). Recently, it was shown by Bürgisser, Christandl, Mulmuley, and Walter that
KRON− POLYTOPE ∈ NP ∩ coNP.

Is there a polynomial time algorithm for testing membership to Kronecker polytopes?

5.8 Cylindrical decomposition with topologically regular cells
Nicolai Vorobjov (University of Bath, GB)

License Creative Commons BY 3.0 Unported license
© Nicolai Vorobjov

Let X ⊂ Rn be a bounded set definable in an o-minimal structure over the reals, e.g.,
a semialgebraic or a subanalytic set. It is well known that Rn admits a cylindrical cell
decomposition compatible with X. It is obvious from the definition that each cell of the
decomposition is a topological cell, i.e., a homeomorphic image of a standard open ball.
However, there are examples (see Section 4 in S. Basu, A. Gabrielov, and N. Vorobjov,
J. European Math. Soc., 15, 2, 2013, 635-657) when a definable cylindrical cell is not
topologically regular1.

Conjecture: For any definable bounded X ⊂ Rn there is a cylindrical cell decomposition of
Rn, compatible with X, such that each cell, contained in X, is topologically regular.

This conjecture is proved in two cases: dimX ≤ 2 and dimX = 3, n = 3 (S. Basu, A.
Gabrielov, and N. Vorobjov, arXiv:1402.0460).

1 A set Y is called topologically regular cell if the pair (Y , Y ) is homeomorphic to the pair (B, B), where
B is the standard open ball, and the bar denotes the closure operation.
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