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Abstract
The research fields of harmonic analysis, approximation theory and computer algebra are seem-
ingly different domains and are studied by seemingly separated research communities. However,
all of these are connected to each other in many ways.

The connection between harmonic analysis and approximation theory is not accidental: sev-
eral constructions among which wavelets and Fourier series, provide major insights into central
problems in approximation theory. And the intimate connection between approximation theory
and computer algebra exists even longer: polynomial interpolation is a long-studied and import-
ant problem in both symbolic and numeric computing, in the former to counter expression swell
and in the latter to construct a simple data model.

A common underlying problem statement in many applications is that of determining the
number of components, and for each component the value of the frequency, damping factor,
amplitude and phase in a multi-exponential model. It occurs, for instance, in magnetic resonance
and infrared spectroscopy, vibration analysis, seismic data analysis, electronic odour recognition,
keystroke recognition, nuclear science, music signal processing, transient detection, motor fault
diagnosis, electrophysiology, drug clearance monitoring and glucose tolerance testing, to name
just a few.

The general technique of multi-exponential modeling is closely related to what is commonly
known as the Pad/’e-Laplace method in approximation theory, and the technique of sparse inter-
polation in the field of computer algebra. The problem statement is also solved using a stochastic
perturbation method in harmonic analysis. The problem of multi-exponential modeling is an in-
verse problem and therefore may be severely ill-posed, depending on the relative location of the
frequencies and phases. Besides the reliability of the estimated parameters, the sparsity of the
multi-exponential representation has become important. A representation is called sparse if it is
a combination of only a few elements instead of all available generating elements. In sparse inter-
polation, the aim is to determine all the parameters from only a small amount of data samples,
and with a complexity proportional to the number of terms in the representation.

Despite the close connections between these fields, there is a clear lack of communication in
the scientific literature. The aim of this seminar is to bring researchers together from the three
mentioned fields, with scientists from the varied application domains.
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1 Executive Summary

Annie Cuyt
George Labahn
Avram Sidi
Wen-shin Lee
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The seminar brought together a number of researchers from polynomial interpolation, rational
approximation and exponential analysis. The five day seminar centered around talks on
Exponential Analysis (Day 2), Rational Approximation (Day 3) and Sparse Interpolation
(Day 4). Applications were grouped on Day 1 in order to challenge the participants to discuss
them further while related topics, mainly from Numerical Linear Algebra, were scheduled on
Day 5.

The seminar itself started with a talk by Cuyt and Lee pointing out the considerable
intersection of the three main themes, particularly as they all strongly overlap. In order
to reach out to industry and connect the scientific research to the industrial needs, several
participants working at industrial or real-life applications were invited for a presentation
on the first day of the seminar. Then interaction about these topics would occur naturally
throughout the week. We mention talks on Mobile sampling and sensor networks (Karlheinz
Gröchenig), High-speed fluorescence lifetime imaging (David Li), The estimation of variable
star periods (Daniel Lichtblau) and Imaging of structured arrays (Adhemar Bultheel).

In the past the three communities have mostly been following distinct paths of research
and methods for computation. One of the highlights of the seminar was the realization of
significant commonalities between the communities, something nicely pointed out in the
talk of Roche. Prony’s method takes center stage in this case, with its origin in 1795 being
used to solve problems in exponential analysis. Prony’s method appeared much later in
the case of sparse polynomial interpolation with it’s use by Blahout, Ben-or/Tiwari, and
Giesbrecht/Labahn/Lee. Prony’s method takes samples at multiples of a common point to
determine the support and then makes use of separate Hankel methods for determining the
individual coefficients or weights of the expression.

Numerical conditioning was a significant issue in many talks at the seminar. Beckermann
and later Matos looked at numerical conditioning of Padé and rational approximation
problems. In the former case Beckermann used the close relationship of Padé approximation
to Prony’s method to point out that the latter is, for the most part, a provably ill-conditioned
problem. Still there were a number of approaches in both areas which attempted to address
this conditioning issue. In the case of numerical computation of sparse polynomial interpolants,
use is made of randomization to produce a better conditioning of the problem, primarily by
separating the roots appearing in Prony’s problem. A similar idea also appears in exponential
analysis making use of the notion of stride length. In both cases the object is to spread out
the roots which arise in Prony’s method.

Rather than spreading out the roots one can instead spread out the coefficients of a
sparse polynomial/exponential expression for improving numerical performance. Sparse
interpolation does this by making use of the concept of diversification where the coefficients
are spread out multiplying evaluation points using a random multiplier. A corresponding
concept in exponential analysis is the use of shifted samples which is useful to address the
problem of anti-aliasing.

Sparse interpolation also makes use of the concept of small primes sparse interpolation
where exponents are reduced modulo a small prime. This recovers the exponents modulo the
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small prime. Doing this for a number of small primes (which can be done in parallel) allows
one to reconstruct the true exponents. Of course one encounters the problem of collisions
and inadvertant combinations of exponents. It was noticed at the seminar that exponential
analysis has a corresponding technique which made use of sub-sampling. Collisions in this
case correspond to aliasing. Again the different communities reported on their methods for
overcoming such collisions/aliasing problems.

Researchers at the seminar also showed interest in multivariate Prony methods. In the
case of sparse interpolation one encounters Zippel’s method while in exponential analysis
there are projection methods. In these cases one attempts recursive methods for estimating
the support of the underlying multivariable expression. In the case of multivariate polynomial
interpolation a second approach is to convert the multivariate problem into a univariate
problem by making use of randomized Kronecker substitution. Exponential sums takes a
similar approach using random lattice projection.

While there were strong commonalities between the main research areas, there were also
some strong differences between the topics noted at the seminar. The most telling of these
differences was the analysis of exponential sums which have polynomial, rather than constant
coefficients. Such expressions appear naturally when modeling solutions of linear differential
equations where the associated polynomial has repeated roots. Of course such problems have
considerable numerical issues when the roots of the associated polynomial are close but not
numerically equal. Sidi and Batenkov both pointed out the importance and difficulties when
dealing with such problems.

The seminar was also important for illustrating the applications of the three research
areas. In many cases the applications involved the need to only work with sums having a
small sparse support rather than with the complete set of possible nonzero elements. Methods
from the multivariate Prony problem were exploited by Collowald and Hubert to determine
new cubature formulas invariant to some specific finite groups action. Markovsky showed the
similarities to the exponential sum problems with the notion of low rank approximation of
structured matrices. Software was also discussed. Numerical analysis of errors on experimental
runs also brought up the issue of the type of random distributions used when simulating
errors for the experiments.
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3 Overview of Talks

3.1 Multidimensional approximation of functions sampled at unequally
spaced points by sums of exponentials

Fredrik Andersson (Lund University, SE)

License Creative Commons BY 3.0 Unported license
© Fredrik Andersson

Joint work of Andersson, Fredrik; Carlsson, Marcus; Wendt, Herwig

Let f be sampled at unequally spaced points xm ∈ Rd. We consider the problem of finding

g(x) =
K∑
k=1

cke
2πix·ξk , (1)

so that f(xm) ≈ g(xm).
Let Ξ and Υ be subsets of equally spaced grids in Rd and let Ω = Ξ + Υ = {x + y :

x ∈ Ξ, y ∈ Υ}. Given a function g on Ω, consider the generalized multidimensional Hankel
operator

Γgh(x) =
∑
y∈Υ

g(x+ y)h(y), x ∈ Ξ (2)

By Kronecker;s theorem Γg has rank K if g is of the form (1). It also turns out that range of
Γg is the space of all linear combinations of the functions e2πix·ξk on Ξ (See Lemma 4.2 of
[1]). Let us represent the operator with the matrix Γg.

Let J be an interpolation matrix that interpolates the values at the equally spaced point
in Ω to unequally spaced points Ψ = {xm}Mm=1 in Rd. In order to approximate the function
f sampled at Ψ using K exponentials, we consider the optimization problem

minimize
g

M∑
m=1
|(Jg)m − f(xm)|2

subject to rank Γg = K

(3)

where (Jg)m is the interpolated value of g at xm.
We follow the setup in [4], and formulate (3) using the alternating direction method of

multipliers [5]. The problem formulations is not convex, and there is hence no guarantee that
the procedure will converge. However, it will typically give a matrix values of g such that the
singular values σk of Γg are small if k > K. To estimate the (multidimensional) frequencies
ξk associated with g we can then follow the approach gives in [2, 3] by solving systems of
polynomial equations with coefficients taken from the singular vectors of Γg for k > K.

References
1 Fredrik Andersson and Marcus Carlsson. On general domain truncated correlation and

convolution operators with finite rank. Integral Equations and Operator Theory, pages
1–32, 2015.

2 Fredrik Andersson, Marcus Carlsson, and V Maarten. Nonlinear approximation of functions
in two dimensions by sums of exponential functions. Applied and Computational Harmonic
Analysis, 29(2):156–181, 2010.

3 Fredrik Andersson, Marcus Carlsson, and V Maarten. Nonlinear approximation of functions
in two dimensions by sums of wave packets. Applied and Computational Harmonic Analysis,
29(2):198–213, 2010.
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4 Fredrik Andersson, Marcus Carlsson, Jean-Yves Tourneret, and Herwig Wendt. A new
frequency estimation method for equally and unequally spaced data. Signal Processing,
IEEE Transactions on, 62(21):5761–5774, 2014.

5 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundation and Trends in Machine Learning, 3(1):1–122, 2011.

3.2 Fourier-Sparsity Testing of Boolean Functions
Andrew Arnold (University of Waterloo, CA)
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We consider the problem of testing whether a function f has at most s nonzero Fourier
coefficients, in which case we say f is s-sparse, given black-box access to f . We restrict our
attention to perhaps the simplest case when f is a Boolean function acting on n bits. The
analogous problem of learning the Fourier transform of an s-sparse Boolean function f was
studied in previous work by Kushilevitz and Mansour [SIAM J. Computing, vol 22. (1992)],
and Levin [J. Symb. Logic, vol 58. (1993)], the latter resulting in an O(ns) Monte Carlo
Sparse Fourier Transform (SFT) algorithm. Their work was the foundation for subsequent
Sparse Fourier Transform algorithms in more general settings.

We say an algorithm is an ε-tester for sparse Boolean functions if it accepts if f is s-sparse
and rejects if f is ε-far from s-sparse in terms of `2 norm, each with probability at least
2/3. Gopolan et al. [SIAM J. Computing, vol 40. (2011)], gave the first such tester with
query-complexity polynomial in s and ε−1.

We improve upon this result, present a sparsity tester with query-complexity O(s log sε−2+
ε−4). Our tester relies on dimensionality-reduction techniques developed in the aforemen-
tioned previous work. Using these techniques, we reduce sparsity testing to the problem of
homomorphism testing, which in turn may be solved via the Blum- Luby-Rubinfeld (BLR)
linearity test [J. Comput. Syst. Sci. Int., vol 47. (1993)].

3.3 Numerical stability of the parameter estimation problem in sparse
generalized exponential sums

Dmitry Batenkov (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
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We consider the parameter estimation problem in sparse generalized exponential sums of the
form m(k) =

∑s
j=1 e

ıxjk
∑dj−1
`=0 a`,jk

`, when m(k) are known only approximately.
We provide estimates on the component-wise condition numbers of the parameters xj

and a`,j above, and show that they can be accurately recovered by sampling at arithmetic
progressions and polynomial homotopy methods.

We also discuss the application of these ideas to the problem of recovering a piecewise-
smooth function (including the positions of the discontinuities) from its Fourier coefficients.
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3.4 On the conditioning of the Padé map and related questions
Bernhard Beckermann (University of Lille, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Beckermann, Bernhard; Matos, Ana C.

Padé approximants play an important role in signal processing, sparse interpolation and
exponential analysis. In this talk we will report about recent results from [1] concerning the
forward and backward conditioning of the (real) Padé map, which sends a vector of Taylor
coefficients onto the normalized vector of coefficients of the Padé numerator and denominator.
In particular, we show that this map is not necessarily well conditioned for robust Padé
approximants in the sense of Trefethen et al. [2].

We will also discuss the condition number of related non-linear maps.

References
1 B. Beckermann, A. Matos, Algebraic properties of robust Padé approximants Journal of

Approx. Theory 190, 91–115 (2015)
2 P. Gonnet, S. Güttel and L.N. Trefethen, Robust Padé approximation via SVD, SIAM

Review, 55 (2013), 101–117.

3.5 Sub-Nyquist spectral analysis
Matteo Briani (University of Antwerp, BE)

License Creative Commons BY 3.0 Unported license
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Joint work of Briani, Matteo; Cuyt, Annie; Lee, Wen-shin

In the field of sparse interpolation, parametric methods aim to retrieve the values of parameters
of a linear combination of exponential functions from samples in a uniform time grid. These
samples are collected following the Shannon-Nyquist theorem that dictates the minimum
sampling rate that prevents the aliasing effect. In this paper we explain how it is possible, by
means of undersampling, to use a coarser time grid and still be able to solve the aliasing effect.
This reflects into a better conditioning of the problem and this behavior is explained by
means of the ill-disposedness and a link to Padé approximation theory. Avoiding the aliasing
effect, and using a coarser time grid, it is possible to perform several smaller independent
analysis from the original set of samples. Joining these analysis together we obtain a method
that brings higher accuracy to the existing parametric methods and introduces an extra
parameter that can be use as validator. This is especially useful when the parametric method
has to deal with signals consisting of close frequencies in a broad spectrum.

3.6 Order parameter for images of structured arrays
Adhemar Bultheel (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Adhemar Bultheel

Joint work of Bultheel, Adhemar; Kaatz, Forrest

In nature (e.g. a bee honeycomb, muscle structure, crystals) or in engineering (e.g. micro
lens arrays, nano pore/pillar arrays, solar cells) two-dimensional highly regular arrays are
produced. Hexagonal, square or triangular grids are most common. Perfect symmetry of the
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grids does not exist in practical situations. Given the image of some array, one may analyse
the properties of each of the individual nodes of the grid and compute parameters like their
size, the location of their centers, perhaps their orientation, etc. These parameters could be
combined to define some number indicating the deviation from the ideal grid.

We have tried to compute some order parameter from the Fourier transform of the image.
For example a perfect hexagonal array has a Fourier spectrum that consists of a central
peak, surrounded by six smaller peaks and their harmonics. This is a sparse exponential
representation. The more the nodes in the image are dislocated from the perfect grid, the
more noise will show up in the spectrum. Thus the amount of noise in the Fourier domain
can be used as a measure for the disorder of the original grid.

Unfortunately, images may depend on many parameters (number of nodes, size of the
nodes, shape of the nodes, orientation of the image,. . . ) so that the Fourier technique only
works in a rather restrictive number of situations and it is probably not useful in practical
situations.

3.7 A moment matrix approach to symmetric cubatures
Mathieu Collowald (INRIA Sophia Antipolis – Méditerranée, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Collowald, Mathieu; Hubert, Evelyne

Quadrature and sparse interpolation are closely linked. The common key issue is the
construction of a linear form

Λ : R[x]→ R, p 7→
r∑
j=1

ajp(ξj)

from the knowledge of its restriction to R[x]≤d. The unknowns are the weights aj and the
nodes ξj .

Cubature is a generalization of quadrature in higher dimension. An approach based on
moment matrices was proposed in [2, 4]. We give a basis-free version in terms of the Hankel
operator H associated to Λ. The existence of a cubature of degree d with r nodes boils down
to conditions of ranks and positive semidefiniteness on H. The nodes are then the solutions
of a generalized eigenvalue problem.

Standard domains of integration are symmetric under the action of a finite group. It is
natural to look for cubatures that respect this symmetry [1, 3]. Introducing adapted bases
obtained from representation theory, the symmetry constraint allows to block diagonalize
the Hankel operator H. The size of the blocks is explicitly related to the orbit types of the
nodes. From the computational point of view, we then deal with smaller-sized matrices both
for securing the existence of the cubature and computing the nodes.

References
1 R. Cools. Constructing cubature formulae: the science behind the art. Acta numerica,

6:1–54, 1997.
2 L. Fialkow and S. Petrovic. A moment matrix approach to multivariable cubature. Integral

Equations Operator Theory, 52(1):85–124, 2005.
3 K. Gatermann. The construction of symmetric cubature formulas for the square and the

triangle. Computing, 40(3):229–240, 1988.
4 J. B. Lasserre. The existence of Gaussian cubature formulas. J. Approx. Theory, 164(5):572–

585, 2012.
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3.8 Exponential analysis, Sparse interpolation and Padé approximation
Annie Cuyt (University of Antwerp, BE)

License Creative Commons BY 3.0 Unported license
© Annie Cuyt

Joint work of Cuyt, Annie; Lee, Wen-shin

A common underlying problem statement in many applications is that of determining the
number of components, and for each component the value of the frequency, damping factor,
amplitude and phase in a multi-exponential model. It occurs, for instance, in magnetic
resonance and infrared spectroscopy, vibration analysis, seismic data analysis, electronic
odour recognition, keystroke recognition, nuclear science, music signal processing, transient
detection, motor fault diagnosis, electrophysiology, drug clearance monitoring and glucose
tolerance testing, to name just a few.

The general technique of multi-exponential modeling is closely related to what is commonly
known as the Padé-Laplace method in approximation theory, and the technique of sparse
interpolation in the field of computer algebra. The problem of multi-exponential modeling
is an inverse problem and therefore may be severely ill-posed, depending on the relative
location of the frequencies and phases. Besides the reliability of the estimated parameters,
the sparsity of the multi-exponential representation has become important. A representation
is called sparse if it is a combination of only a few elements instead of all available generating
elements.

Despite the close connections between these fields, there is a clear lack of communication
in the scientific literature. The aim of this seminar is to bring researchers together from the
three mentioned fields, with scientists from the varied application domains.

3.9 Inverse Problems regularised by Sparsity
Pier Luigi Dragotti (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Pier Luigi Dragotti

Modelling signals as sparse in a proper domain has proved useful in many signal processing
tasks and, here, we show how sparsity can be used to solve inverse problems. We first recall
that many inverse problems involve the reconstruction of continuous-time or continuous-space
signals from discrete measurements and show how to relate the discrete measurements to
some properties of the original signal (e.g., its Fourier transform at specific frequencies).
Given this partial knowledge of the original signal, we then solve the inverse problem using
sparsity. We focus on two specific problems which have important practical implications:
localisation of diffusion sources from sensor measurements and reconstruction of planar
domains from samples. First, we show how to reconstruct specific planar domains whose
contours are determined using implicit functions, then we localise diffusion sources using a
variation of the ‘reciprocity gap’ method which involves analytic test functions.

In both cases, the problem is solved by building a Prony’s type system and by building
structured matrices which, in the ideal settings, are simultaneously Toeplitz and rank
deficient.
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3.10 Mobile Sampling
Karlheinz Groechenig (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Karlheinz Groechenig

Joint work of Groechenig, Karlheinz; Romero, Jose Luis; Unnikrishnan, Jayakrishnan; Vetterli, Martin

We study the design of sampling trajectories for stable sampling and the reconstruction of
bandlimited spatial fields using mobile sensors. The spectrum is assumed to be a symmetric
convex set. As a performance metric we use the path density of the set of sampling trajectories
that is defined as the total distance traveled by the moving sensors per unit spatial volume
of the spatial region being monitored. Focussing first on parallel lines, we identify the set
of parallel lines with minimal path density that contains a set of stable sampling for fields
bandlimited to a known set. We then show that the problem becomes ill-posed when the
optimization is performed over all trajectories by demonstrating a feasible trajectory set
with arbitrarily low path density. However, the problem becomes well-posed if we explicitly
specify the stability margins. We demonstrate this by obtaining a non-trivial lower bound on
the path density of an arbitrary set of trajectories that contain a sampling set with explicitly
specified stability bounds.

This is joint work with Jose Luis Romero, Univ. of Vienna, Jayakrishnan Unnikrishnan
and Martin Vetterli from Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

3.11 Error-Correcting Sparse Interpolation in Chebyshev Basis
Erich Kaltofen (North Carolina State University – Raleigh, US)

License Creative Commons BY 3.0 Unported license
© Erich Kaltofen

Joint work of Arnold, Andrew; Kaltofen, Erich L.

We present an error-correcting interpolation algorithm for a univariate black-box polynomial
that has a sparse representation using Chebyshev polynomials as a term basis. Our algorithm
assumes that an upper bound on the number of erroneous evaluations is given as input, and
is a generalization of the algorithm by Lakshman and Saunders [SIAM J. Comput., vol. 24
(1995)] for interpolating sparse Chebyshev polynomials and the techniques in error-correcting
sparse interpolation in the usual basis of consecutive powers of the variable due to Comer,
Kaltofen, and Pernet [Proc. ISSAC 2012 and 2014]. We prove the correctness of our list-
decoder-based algorithm with a Descartes-rule-of-signs-like property for sparse polynomials
in Chebyshev basis. We also give a new algorithm that reduces the sparse interpolation in
Chebyshev basis to that in power basis, thus making the many techniques for the sparse
interpolation in power basis, for instance, supersparse (lacunary) interpolation over large
finite fields, available to interpolation in Chebyshev basis. Furthermore, we can customize
the randomized early termination algorithms from Kaltofen and Lee [J. Symb. Comput., vol.
36 (2003)] to our new approach.
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3.12 A multivariate generalization of Prony’s method
Stefan Kunis (Universität Osnabrück, DE), Ulrich von der Ohe (Universität Osnabrück, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Kunis, Stefan; Peter, Thomas; Römer, Tim; von der Ohe, Ulrich

A classical solution to the problem of parameter reconstruction for an exponential sum from
a finite number of samples is given by Prony’s method and the parameters are recovered
as roots of a single univariate polynomial. We present a generalization of this method for
exponential sums in an arbitrary finite number of variables and realize the parameters as
common roots of several multivariate polynomials. Finally, the coefficients of the exponential
sum arise as solutions to a linear system of equations.

In the first part of the talk we explain this approach and its algebraic properties. Provided
we sample the exponential sum on an equidistant grid with a number of grid points in each
coordinate direction bounded from below by the number parameters, unique reconstruction
is guaranteed and this bound is shown to be sharp. In its simplest form, the reconstruction
method consists of setting up a certain multilevel Toeplitz matrix of the samples, compute a
basis of its kernel, and compute by some method of choice the set of common roots of the
multivariate polynomials whose coefficients are given in the second step.

The second part of the talk is dedicated to numerical properties of our approach. Provided
the number of grid points in each coordinate direction is bounded from below by some small
constant divided by the separation distance of the parameters, the kernel of the above
Toeplitz matrix can be stably computed. Moreover, we relate our approach to a recent
semidefinite optimization formulation and show a couple of numerical experiments.

3.13 Behavior preserving extension of univariate and bivariate functions
David Levin (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© David Levin

Given function values on a domain D0, possibly with noise, we examine the possibility
of extending the function to a larger domain D, D0 ⊂ D. In addition to smoothness at
the boundary of D0, the extension on D \D0 should also inherit behavioral trends of the
function on D0, such as growth and decay or even oscillations. The approach chosen here is
based upon the framework of linear models, univariate or bivariate, with constant or varying
coefficients.

3.14 Estimating Variable Star Periods from Unevenly Sampled Light
Curve Data

Daniel Lichtblau (Wolfram Research – Champaign, US)

License Creative Commons BY 3.0 Unported license
© Daniel Lichtblau

Joint work of Lichtblau, Daniel; Bryant, Jeffrey

A problem of interest in astronomy is determining the period of variable stars. Data collection
is of necessity irregular (can only sample on clear nights) and noisy (from light pollution,
atmospheric differences, etc.) We describe several ways in which period estimation can be
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performed on such data. Some are by now classical (from 60’s–80’s). One newer method will
use Diophantine approximation.

3.15 High-speed fluorescence lifetime imaging (FLIM) instruments
with fast hardware-friendly exponential analysis

David Li (The University of Strathclyde – Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© David Li

Fast fluorescence lifetime imaging (FLIM) techniques are powerful tools for visualising
protein interaction networks in living cells. FLIM has been used for cancer diagnosis,
assessing drug efficacy in cancer therapy, understanding brain functions, etc. It can also
sense physiological parameters such as Ca2+, pH, O2, temperature, viscosity, etc [1, 2]. For
real- time applications, such as visualising neuronal activities or fast biophysical phenomena,
it is desirable to apply innovative solid-state single-photon sensors [3, 4] and fast hardware
embedded exponential analysis processors that can boost FLIM imaging [5, 6, 7]. But is
it easy to have a hardware-friendly and high-efficient exponential analysis method for such
applications?
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3.16 Structured low-rank approximation: Theory, algorithms, and
applications

Ivan Markovsky (Free University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
© Ivan Markovsky

URL http://slra.github.io/

Mathematical engineering continuously addresses new applications and solves new problems.
The expansion of existing methods and applications makes it difficult to maintain a common
theoretical framework. This talk shows the potential of the structured low-rank approximation
setting to unify problems of data modeling from diverse application areas. An example
treated in more details in the presentation is identification of a linear time-invariant system
from observed trajectories of the system. We present an optimization method based on
the variable projection principle. The method can deal with data with exact and missing
(unknown) values. Problems with exact and missing values occur in data driven simulation
and control – a new trend of model-free methods for system dynamical analysis and control.

3.17 Well conditioned rational functions approximants versus
numerically co-prime polynomials

Ana C. Matos (Lille I University, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Matos, Ana C.; Beckermann, Bernd; Labahn, George

Rational functions like for instance Padé approximants play an important role in signal
processing, sparse interpolation and exponential analysis. However, for a successful modeling
with help of rational functions we want to make sure that there is no “similar” rational
function being degenerate, i.e., having strictly smaller degree of both degrees of numerator and
denominator. In particular, we prefer having rational functions without Froissart doublets
(i.e., roots close to a pole), and without spurious poles (i.e., simple poles having small
residuals).

In a recent paper [1] we showed that, provided that the Sylvester matrix built with the
coefficients of the numerator and denominator is well-conditioned, the corresponding rational
function has neither Froissart doublets nor spurious poles, and this is also true to sufficiently
“close” rational functions. Here closeness is measured with two different metrics, in terms of
the chordal distance of the values on the unit disk, or in terms of the distance of normalized
coefficient vectors. The paper [1] also contained a comparison of these two metrics.

In [2] the authors introduced a measure for numerical coprimeness representing the
minimal distance in the coefficient vector metric to a couple of degenerate polynomials (with
a joint root allowing for canceling the fraction). They also showed that if the underlying
Sylvester matrix is well-conditioned then a couple of polynomials is numerically coprime, the
reciprocal being wrong.

The aim of this talk is to provide precise inequalities implying that also the larger class
of rational functions with numerator and denominator being numerically coprime do not
have neither Froissart doublets nor spurious poles.

This is a joint work with Bernd Beckermann and George Labahn.
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3.18 Using noise to detect faint signals: tricks with Padé approximants
to Z-transforms

Luca Perotti (Texas Southern Unversity – Houston, US)
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Adding small amounts of noise is a recognized method to stabilize Padé approximants; due to
the nonlinearity of the Padé approximant, larger amounts of noise can be added to generate
different time series and thus increase the statistics when detection probabilities are low.
Recently we proposed a new technique based on the observation that the presence of even a
weak signal significantly perturbs the universal properties of noise poles and zeros of the Padé
approximants to the Z-transform of a data series. For data from two channels, combined in
a single complex sequence, the different behavior of poles corresponding to complex noise
and poles corresponding to coherent signal can also be used as a signature of the presence of
a signal in heavy noise.

3.19 The generalized Prony method and its application I and II
Thomas Peter (Universität Osnabrück, DE), Gerlind Plonka (Universität Göttingen, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Peter, Thomas; Plonka, Gerlind

In this paper, we want to present a new very general approach for the reconstruction of
sparse expansions of eigenfunctions of suitable linear operators. This approach provides us
with a tool to unify all Prony-like methods on the one hand and to essentially generalize the
Prony approach on the other hand. Thus it will establish a much broader field of applications
of the method. In particular, we will show that all well-known Prony-like reconstruction
methods for exponentials and polynomials known so far, can be seen as special cases of this
approach. For example, the new insight into Prony-like methods enables us to derive new
reconstruction algorithms for orthogonal polynomial expansions including Jacobi, Laguerre,
and Hermite polynomials. The approach also applies to finite dimensional vector spaces,
and we derive a deterministic reconstruction method for M -sparse vectors from only 2M
measurements.

The talk will be split into two parts given by the two authors. In the first part
we concentrate on deriving the new general approach to apply Prony’s method to sparse
expansions of eigenfunctions of linear operators and present the close connection to the
well-known Prony-method.
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The second part of the talk is especially dedicated to the advantages that the new more
general insights give us for applications, as e.g. the use of different linear operators, the
influence of the choice of functionals in case of noisy data and further numerical issues.

3.20 High dimensional approximation with trigonometric polynomials
Daniel Potts (TU Chemnitz, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Lutz Kämmerer, Lutz; Potts, Daniel; Volkmer, Toni

In this talk, we present algorithms for the approximation of multivariate functions by
trigonometric polynomials. The approximation is based on sampling of multivariate functions
on rank-1 lattices. To this end, we study the approximation of functions in periodic Sobolev
spaces of dominating mixed smoothness. The proposed algorithm based mainly on a one-
dimensional fast Fourier transform, and the arithmetic complexity of the algorithm depends
only on the cardinality of the support of the trigonometric polynomial in the frequency
domain. Therefore, we investigate trigonometric polynomials with frequencies supported
on hyperbolic crosses and energy based hyperbolic crosses in more detail. Furthermore, we
present algorithms where the support of the trigonometric polynomial is unknown.
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3.21 Using univariate algorithms to solve multivariate problems
Daniel Roche (U.S. Naval Academy – Annapolis, US)

License Creative Commons BY 3.0 Unported license
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A key feature of sparse interpolation algorithms is that their complexity should scale nicely
(often linearly) with the number of variables in the unknown function. In fact, such algorithms
can usually be decomposed into two parts: a “base case” univariate interpolation algorithm,
and a method to reduce a given multivariate problem to one or more instances of a univariate
one.

We will look at both historical and very recent approaches to the second part, the
multivariate-to-univariate reduction. As has been frequently observed, many of these reduc-
tions are essentially orthogonal to the choice of underlying univariate algorithm, allowing for
a wide range of hybrid approaches – not all of which are equally effective. We will examine
the strengths and weaknesses of the various variable reduction strategies, and aim to give
some insights into how they may be most effectively chosen and applied to new problems.
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3.22 New approaches to Vector-Valued Rational Interpolation
Avraham Sidi (Technion – Haifa, IL)
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We discuss some recent vector-valued rational interpolation procedures for vector-valued
functions F (z), F : C→ CN . The interpolants produced by these procedures are all of the
simple form

Rp,k(z) = Up,k(z)
Vp,k(z) =

∑k
j=0 cj ψ1,j(z)Gj+1,p(z)∑k

j=0 cj ψ1,j(z)
.

Here

ψm,n(z) =
n∏

r=m
(z − ξr), n ≥ m ≥ 1; ψm,m−1(z) = 1, m ≥ 1,

and Gm,n(z) is the vector-valued polynomial of interpolation to F (z) at the points ξi,
m ≤ i ≤ n. The cj are scalars, and they are determined in different ways by the different
methods. As such, Rp,k(z) interpolates F (z) at ξi, 1 ≤ i ≤ p, in the generalized Hermite
sense.

We first discuss the algebraic properties of these interpolants, namely, their uniqueness,
symmetry, and reproducing properties. We next discuss their use in approximating vector-
valued meromorphic functions F (z) in the complex plane.

Next, choosing the interpolation points appropriately, for p→∞ and k fixed, we derive
de Montessus type convergence results for the interpolants and Koenig type convergence
results for their poles and residues, which show that these interpolants, despite their simple
appearance, are effective approximation tools. Especially interesting Koenig type results
are obtained when the residues of F (z) form a mutually orthogonal set. (Note that, for any
type of rational interpolation problem, whether scalar or vector, the crucial test for deciding
whether these are useful approximation tools is the existence of de Montessus and Koenig
type theories.)

Finally, we consider the fully confluent case in which all interpolation points ξi coincide,
and show the connection of the resulting interpolants with Krylov subspace methods.
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3.23 Efficient spectral estimations by MUSIC and related algorithms
Manfred Tasche (Universität Rostock, DE)
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In the spectral estimation, one has to determine all parameters of a univariate resp. mul-
tivariate exponential sum h, if only finitely many (noisy) sampled data of h are given. A
frequently used method for spectral estimation is the known MUSIC algorithm. Another
popular methods are ESPRIT and the approximate Prony method (APM). We show that
both MUSIC and APM are based on an orthogonal projection onto a so-called noise space,
whereas ESPRIT uses an orthogonal projection onto the orthogonal complement of the noise
space, the so-called signal space. These orthogonal projections can be constructed by (partial)
singular value decomposition or QR decomposition of a rectangular Hankel matrix formed
by the given sampled data of h.

In this talk, we describe that MUSIC and the related algorithms can be efficiently realized
by sampling of h on special grids and using sparse fast Fourier transforms. Numerical
experiments illustrate the procedure.

3.24 Towards simplified construction of subresultant matrix of multiple
univariate polynomials

Akira Terui (University of Tsukuba, JP)

License Creative Commons BY 3.0 Unported license
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For three or more inputs of univariate polynomials with the real coefficients, we discuss
a new construction of subresultant-like matrix which enable us to estimate the degree of
the greatest common divisor (GCD) of the input polynomials from its rank. Such matrix
is used in approximate GCD algorithms using optimization techniques with its degree is
given in advance, especially for constructing constraints. Therefore, in these algorithms, it is
important to construct the matrix in a more simplified form to make the overall algorithm
more efficient. In this talk, for those purposes, we discuss towards a proposal of a new
simplified construction of the matrix.

3.25 Hankel and Quasi-Hankel low-rank matrix completion: a convex
relaxation

Konstantin Usevich (GRIPSA Lab – Saint Martin d’Hères, FR)

License Creative Commons BY 3.0 Unported license
© Konstantin Usevich

Joint work of Comon, Pierre; Usevich, Konstantin

The completion of matrices with missing values under the rank constraint is a non-convex
optimization problem. A popular convex relaxation is based on minimization of the nuclear
norm (sum of singular values) of the matrix. For this relaxation, an important question is
when the two optimization problems lead to the same solution. This question was addressed
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in the literature mostly in the case of random positions of missing elements and random
known elements. In this contribution, we analyze the case of structured matrices with
fixed pattern of missing values, in particular, the case of Hankel and quasi-Hankel matrix
completion, which appears as a subproblem in the computation of symmetric tensor canonical
polyadic decomposition. Similar matrix completion problems appear in other applications,
where a function can be approximated as a sum of complex exponentials (time series analysis,
medical imaging). We extend existing results on completion of rank-one real Hankel matrices
to completion of rank-r complex Hankel and quasi-Hankel matrices.

3.26 A deterministic sparse FFT algorithm for vectors with short
support

Katrin Wannenwetsch (Universität Göttingen, DE)
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It is well known that usual FFT algorithms for the discrete Fourier transform of a vector of
length N require O(N logN) arithmetical operations. Within the last years, there has been
a great interest in sublinear time Fourier algorithms for sparse vectors.

In this talk we consider the special case where a signal x ∈ CN is known to vanish outside
a support interval of length m < N . If the support length m of x or a good bound of it
is a-priori known we derive a sublinear algorithm to compute x from its discrete Fourier
transform x̂ ∈ CN . The proposed algorithm is deterministic and numerically stable.

In case of exact Fourier measurements we require only O(m logm) arithmetical operations.
For noisy measurements, we propose a stable O(m logN) algorithm.

This is joint work with Gerlind Plonka.

3.27 Sparsity with Symbolic Polynomials
Stephen M. Watt (University of Western Ontario – London, CA)
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We are interested in algorithms for “symbolic polynomials”, that is multivariate polynomials
generalized so the exponents are themeselves integer-valued multivariate polynomials, for
example xn2/2−n/2 − ym. These objects may be used to model parameterized families of
Laurent polynomials, with integer evaluations of the exponent variables giving specific
Laurent polynomials. We have shown elsewhere that when polynomials with coefficents in a
particular ring form a unique factorization domain, then so do the corresponding symbolic
polynomials. We have given algorithms to compute their GCDs and factorizations in this
case. Some of these algorithms rely on reduction to algorithms on sparse polynomials with
many more variables, as will be explored in this talk. We additionally describe some new
directions on Groebner bases for symbolic polynomials.
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3.28 Reconstruction of Structured Functions from Sparse Fourier Data
Marius Wischerhoff (Universität Göttingen, DE)
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In several scientific areas, such as radio astronomy, computed tomography, and magnetic
resonance imaging, the reconstruction of structured functions from the knowledge of samples
of their Fourier transform is a common problem. For the analysis of the examined object, it
is important to reconstruct the underlying original signal as exactly as possible. We aim
to uniquely recover structured functions from only a small number of Fourier samples. For
this purpose, the Prony method, which is a deterministic method for the recovery of sparse
trigonometric functions, is used as key instrument to derive algorithms for unique recovery
by means of a smallest possible set of Fourier data.

We will give an overview of reconstruction results for different function classes, and we
will consider two classes in detail.

First, we will examine linear combinations of N non-uniform shifts of a given bivariate
function. Here, the unknown shift parameters and corresponding coefficients in the linear
combination are recovered from sparse Fourier data. Unique recovery of the parameters is
possible by using only 3N + 1 Fourier samples on three lines through the origin. For this
purpose, two predetermined lines are considered, while the third sampling line is chosen
dependently on the results obtained by employing the samples from the first two lines. The
presented approach can be generalized to the case of d-variate functions with d > 2.

Secondly, we turn to the reconstruction of polygonal shapes in the real plane. Here, a
convex or non-convex polygonal domain D with N vertices is considered. It is shown that the
vertices and their order can be reconstructed by taking 3N samples of the Fourier transform
of the characteristic function of the polygonal domain D. Again, two predetermined sampling
lines and an appropriately chosen third line are considered.

3.29 Accuracy of Spike-Train Fourier Reconstruction for Near-Colliding
Nodes

Yosef Yomdin (Weizmann Institute – Rehovot, IL)
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We study reconstruction of “spike-train” signals F of the form

F (x) =
d∑
j=1

ajδ(x− xj),

from their Fourier transform F̂ (s), known for s ∈ [−N,N ], with an absolute error not
exceeding ε > 0. We concentrate on “near-collision” situations where the nodes xj are known
to form an l elements cluster of a size h� 1.

We show that in such situations the geometry of error amplification in the reconstruction
is governed by the “Prony foliations” Sq whose leaves are defined by the Prony equations∑d
j=1 ajx

k
j = γk, with k = 0, . . . , q ≤ l, and with the arbitrary right-hand sides γk. On this

base we give an “absolute” (i.e. valid with any reconstruction method) lower bound for the
“worst case” reconstruction error of F from F̂ . We show that for the measurement error
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ε > C1(hN)2l−1, the inside configuration of the cluster nodes (in the worst case scenario)
cannot be reconstructed at all.

Combining a proper rescaling with the “Decimation method” we show that for ε <
C2(hN)2l−1, C2 � C1, an accurate (up to an error αh, α� 1) reconstruction of the cluster
nodes is possible. The same algorithm reconstructs the non-cluster nodes and amplitudes
with the full accuracy (of order ε

N ).

3.30 Semidefinite Representations of Noncompact Convex Sets
Lihong Zhi (MMRC – Beijing, CN)

License Creative Commons BY 3.0 Unported license
© Lihong Zhi

Joint work of Guo, Feng; Wang, Chu; Zhi, Lihong

We consider the problem of the semidefinite representation of a class of non-compact basic
semialgebraic sets. We introduce the conditions of pointedness and closedness at infinity
of a semialgebraic set and show that under these conditions our modified hierarchies of
nested theta bodies and Lasserre’s relaxations converge to the closure of the convex hull of S.
Moreover, if the PP-BDR property is satisfied, our theta body and Lasserre’s relaxation are
exact when the order is large enough; if the PP-BDR property does not hold, our hierarchies
converge uniformly to the closure of the convex hull of S restricted to every fixed ball centered
at the origin. We illustrate through a set of examples that the conditions of pointedness and
closedness are essential to ensure the convergence. Finally, we provide some strategies to
deal with cases where the conditions of pointedness and closedness are violated.

3.31 Trivariate polynomial approximation on Lissajous curves
Stefano de Marchi (University of Padova, IT)

License Creative Commons BY 3.0 Unported license
© Stefano de Marchi

Joint work of Bos Len; Vianello Marco; de March, Stefano
Main reference L. Bos, S. De Marchi, M. Vianello, “Trivariate polynomial approximation on Lissajous curves,”

arXiv:1502.04114v1 [math.NA], 2015.
URL http://arxiv.org/abs/1502.04114v1

We study Lissajous curves in the 3-cube, that generate algebraic cubature formulas on a
special family of rank-1 Chebyshev lattices. These formulas are used to construct trivariate
hyperinterpolation polynomials via a single 1-d Fast Chebyshev Transform (by the Chebfun
package), and to compute discrete extremal sets of Fekete and Leja type for trivariate
polynomial interpolation. Applications could arise in the framework of Lissajous sampling
for MPI (Magnetic Particle Imaging).

4 Panel Discussions

At the closing meeting the organizers presented some slides summarizing the connections
and similarities between the techniques used by the different communities gathered at the
seminar. These slides are being complemented with reference material, an effort which is
being continued after the seminar, and made available at the seminar’s webpage or

https://www.uantwerpen.be/en/rg/cma/
as a shared document.
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