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Abstract
Following in the steps of high-throughput sequencing, mass spectrometry (MS) has become es-
tablished as a key analytical technique for large-scale studies of complex biological mixtures.
MS-based experiments generate datasets of increasing complexity and size, and the rate of pro-
duction of these datasets has exceeded Moore’s law. In recent years we have witnessed the growth
of computational approaches to coping with this data deluge.

The seminar ’Computational Mass Spectrometry’ brought together mass spectrometrists,
statisticians, computer scientists and biologists to discuss where the next set of computational
and statistical challenges lie. The participants discussed emerging areas of research such as
how to investigate questions in systems biology with the design and analysis of datasets both
large in memory usage and number of features and include measurements from multiple ‘omics
technologies.
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Motivation
Mass Spectrometry (MS) is an extremely flexible analytical technique, with applications
ranging from crime lab investigations to testing to disease biomarkers in a clinic. The
publication of the first human genome in 2001 was a key event that lead to the application of
mass spectrometry to map out the human proteome, and later the human metabolome; i.e.
all the biomolecules encoded in the genome that constitute biological function. The result
was the creation of a tremendous amount of spectrometric data and a dearth of tools for data
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analysis, motivating the development of computational tools. The tool developers came from
several expert domains; life scientists applying mass spectrometry built tools to automate their
new workflows, analytical chemists and engineers developing the instruments built software
to analyze devise measurements; network and database infrastructure professionals built
resources for storing and sharing data in the cloud, and bioinformaticians and statisticians
developed algorithms and statistical methods for data analysis. There is an ongoing need
for the different disciplines to learn each other’s languages, make tools interoperable, and
establish common goals for development.

Goals
The seminar ‘Computational Mass Spectrometry’ is a follow-up seminar to the successful
Dagstuhl seminars on ‘Computational Proteomics’ and ‘Computational Mass Spectrometry’
(05471, 08101 and 14371).

The seminar aimed at bringing together scientists from a wide range of backgrounds and
identify open issues and future research directions in computational mass spectrometry.

Results

Already on the first days the seminar resulted in very lively discussions. The time allotted to
the introductory talks had to be expanded to account for this. The discussions sparked off
during the introductory talks led to the formation of several working groups. These groups
formed and re-formed on demand, also based on discussion on the previous evenings. Section 5
documents the discussions and results in these groups through the notes taken. Some of
these discussion (e.g., the one on false discovery rates) was of interest to all participants
and took place as plenary discussions in the large lecture hall. Other discussions were more
focussed and thus had a smaller number of participants.

Some of the discussion will certainly lead to joint research participants. A first tangible
outcome is a joint paper already accepted in the Journal of Proteome Research (L. Gatto,
K.D. Hansen, M.R. Hoopmann, H. Hermjakob, O. Kohlbacher, A. Beyer, “Testing and valida-
tion of computational methods for mass spectrometry,” DOI: 10.1021/acs.jproteome.5b00852)
on benchmarking and validating computational methods for mass spectrometry. This working
group developed conceptual ideas for benchmarking algorithms and implemented a web-based
repository holding (http://compms.org/RefData) benchmark datasets that will hopefully
make comparison of algorithms more transparent in the future. We are confident that the
discussions of other working groups and the contacts made during the evening hours in
Dagstuhl will result in many more collaborations and publications in the future.

The field of computational mass spectrometry is rapidly evolving. Participants identified
a wide range of challenges arising from technological developments already at the horizon
but also from the broadening on the application side. We thus intend to revisit the field in
the coming years in a Dagstuhl seminar again, most likely organized by different leaders of
the field in order to account for these upcoming changes.

http://dx.doi.org/10.1021/acs.jproteome.5b00852
http://compms.org/RefData
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3 Structure of the Seminar

The seminar was structured into introductory talks by participants from diverse fields of
mass spectrometry. After the overview talks, proposals for break-out group topics were
collected. These were aimed at allowing for more focused discussions in smaller groups. The
participants then voted on these topics. Work groups (WG) were formed every morning over
the whole course of the Dagstuhl seminar. Overview talks were limited to the first two days
and had been solicited by the organizers well in advance. Teams of two to three participants
were given the task to present a topic they are experts in with the purpose of introducing
the other participants to the field as well as getting a personal view on the state of the field.

The first two days of the Dagstuhl seminar was intended to give a broad overview of
current topics in computational mass spectrometry with a focus on the challenges of dealing
with large data, common misconception of statistical problems associated with their analysis
as well as the integration of data of different omics technologies. The remaining days
intensified the discussion on central aspects of these challenges in break-out groups. We were
very happy to include the seminar on microfluidics (which was held in parallel at Dagstuhl)
into a joint morning session on Wednesdays.

The overall schedule of the seminar was as follows:
Monday

Welcome and introduction of participants
Computational mass spectrometry – the big picture (introductory talk)
Challenges in metabolomics
Statistical methods

Tuesday
Reproducibility and big (omics) data
Democratization of omics data
Multi-omics data integration
Spatial aspects of multi-omics
System dynamics based on multi-omics data

Wednesday
Joint session with Dagstuhl Seminar 15352 “Design of Microfluidic Biochips”
Breakout groups
1. WG ‘Big Data & repositories’
2. WG ‘Correlation vs. causality’
3. WG ‘Testing and validation of computational methods’
4. Outing: World Cultural Heritage Site Völklingen Ironworks

Thursday
Joint session: reports on the Wednesday sessions
Break-out groups
1. WG ‘Multi-omics case studies’
2. WG ‘Metabolomics and proteomics integration’
3. WG ‘Systems genetics’

Friday
Breakout groups
1. WG ‘Metaproteomics’
2. WG ‘Computational challenges in quantitative proteomics’
3. WG ‘Validation and Reference datasets’
4. WG ‘Education’
5. Seminar wrap-up and departure

15351
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Figure 1 Some impressions from the seminar and the outing at Völklingen ironworks (photos:
Oliver Kohlbacher, Pedro Navarro).
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4 Overview of Talks

4.1 Challenges in Computational Mass Spectrometry – Objectives and
Data Collection

Rudolf Aebersold, ETH Zürich, CH

License Creative Commons BY 3.0 Unported license
© Rudolf Aebersold

The proteome catalyzes and controls the ensemble of essentially all biochemical reactions of
the cell and its analysis is therefore critical for basic and translational biology. The proteome
is also exceedingly complex with potentially millions of different proteoforms being expressed
in a typical mammalian cell. In this presentation we will discuss and assess the current state
of mass spectrometric methods to identify and quantify the components of the proteome
with two primary objectives. The first objective is the generation of a complete proteome
map of a species, i.e. a database that contains experimental evidence for every protein or
proteoform expressable by a species. The second objective is the generation of large numbers
of highly reproducible, quantitative proteome datasets that represent different states of
cells and tissues to support the study of the dynamic adaptation of biological systems to
perturbations.

4.2 Challenges in Computational Mass Spectrometry – Statistics
Olga Vitek, Northeastern University – Boston, US

License Creative Commons BY 3.0 Unported license
© Olga Vitek

‘Big data’ has passed it’s ‘hype’ point, and it is now time to enter a ‘productivity stage.
Statistical methods are key for this task. They need to address several challenges, for example;
(1) larger datasets can hide small signals, (2) give rise to spurious associations, (3) encourage
researchers to mistake association for causality, and (4) give rise to bias and confounding.
The fundamental principles of statistical design and analysis, and domain knowledge, are key
for avoiding these pitfalls.

4.3 Challenges in Computational Mass Spectrometry – Data and Tools
Oliver Kohlbacher, Universität Tübingen, DE

License Creative Commons BY 3.0 Unported license
© Oliver Kohlbacher

Computational mass spectrometry currently faces several challenges from the ever growing
volume and complexity of the data. This is caused by the increase in instrument resolution
and speed, new acquisition techniques, but also by the need for parallel application of several
high-throughput methods in parallel (multi-omics). Lack of interoperability and usability
of bioinformatics tools currently hampers the analysis of large-scale data and has also
implications for reproducibility – and thus the reputation – of MS-based omics techniques.
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4.4 Spatial Metabolomics: Why, How, and Challenges
Theodore Alexandrov, EMBL Heidelberg, DE

License Creative Commons BY 3.0 Unported license
© Theodore Alexandrov

Spatial metabolomics is emerging as a powerful approach to localize hundreds of metabolites
directly from sections of biological samples with the grand challenge to be in the molecular
annotation of big data generated. We will present Why spatial metabolomics may be
important, How it can be performed and overview computational Challenges. Computational
Mass Spectrometry is essential in this field, since existing bioinformatics tools cannot be
applied directly because of the sheer data size and high complexity of spectra. We will also
present algorithms for molecular annotation for High Resolution Imaging Mass Spectrometry
that integrates both spectral and spatial filters. We will present the European project
METASPACE on Bioinformatics for Spatial Metabolomics.

4.5 Some Statistical Musings
Naomi Altman, Pennsylvania State University – University Park, US

License Creative Commons BY 3.0 Unported license
© Naomi Altman

Musings on a set of statistical topics that might be interesting in MS studies:
feature matching across samples and platforms
preprocessing and its effects on multi-omics
analysis problems when the number of features is larger than the number of samples
feature screening
replication and possibly other design issues
dimension reduction via PCA and related methods
mixture modeling

4.6 Reproducibility and Big (Omics) Data
Nuno Bandeira, University of California – San Diego, US
Henning Hermjakob, European Bioinformatics Institute – Cambridge, GB

License Creative Commons BY 3.0 Unported license
© Nuno Bandeira and Henning Hermjakob

The volume of omics data, including mass spectrometry-based proteomics, approximately
doubles every 12 months. At EMBL-EBI, mass spectrometry data is now the second largest
data type after sequence data. In the last three years, the ProteomeXchange consortium has
established a collaboration of databases to ensure efficient and safe provision of data to the
community, currently processing more than 200 submissions per month, and supporting a
download volume of 150+ TB/year. Strategies for data access comprise cloud-based processing
of raw data, common APIs for data access across multiple resources, and a transition from
static data submissions to dynamic re-analysis of data in the light of new computational
approaches and database content. Beyond data size and complexity, Proteomics now has to
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face the challenge of personally identifiable data, as the resolution of proteomics methods
now allows to associate a proteomics dataset with its source genome due to identification of
amino acid variants.

4.7 Introduction to Metabolite Mass Spectrometry
Sebastian Böcker, Universität Jena, DE
David Wishart, University of Alberta – Edmonton, CA

License Creative Commons BY 3.0 Unported license
© Sebastian Böcker and David Wishart

Metabolites, small molecules that are involved in cellular reactions, provide a direct functional
signature of cellular state. There is a large overlap between metabolomics and proteomics
with regards to the experimental platform used for high-throughput screening, namely,
mass spectrometry and tandem MS. In our talk, we have highlighted both similarities and
differences between the fields.

A particular noteworthy difference between the fields is that the identification of a peptide
via tandem MS is a somewhat straightforward problem, whereas the same is highly non-trivial
for metabolite ID. We discussed reasons for this, in particular the structural diversity of
metabolites, and our inability to predict a tandem MS for a given metabolite structure. We
then discussed approaches to overcome this problem: namely, combinatorial fragmenters
(MetFrag, MAGMa), prediction of spectra using Machine Learning and MCMC (CFM-ID),
and the prediction of molecular fingerprints from tandem MS data ((CSI:)FingerID).

4.8 Democratization of Data: Access and Review
Robert Chalkley, University of California – San Francisco, US

License Creative Commons BY 3.0 Unported license
© Robert Chalkley

Studies that are published in a peer-reviewed journal are supposed to come with a guarantee
of reliability. For large omics studies a reviewer cannot be expected to re-analyze data, so
there is a need for the community as a whole to evaluate data and results. This places a
high pressure on journals to capture sufficient meta-information about data and analysis to
permit appropriate reanalysis. This presentation describes the current status of publication
guidelines of the journal Molecular and Cellular Proteomics, as a representative of publishers
in this field. It also provides a discussion of the blurring line between a journal publication
and a submission of data and results to a public repository, which also requires provision of
certain metadata.
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4.9 Multi-omics Data Integration
Joshua Elias, Stanford University, US

License Creative Commons BY 3.0 Unported license
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As high throughput technologies for measuring biological molecules continue to improve, so will
researchers’ need to combine them. Each domain of such ‘omic’ technologies has a distinctive
set of pitfalls that may not be readily apparent to non-experts: Techniques focused on nucleic
acids (genomics, transcriptomics, metagenomics, translatomics), proteins (proteomics) and
metabolites (metabolomics, lipidomics, glycomics) range widely in several important features:
Instrumentation required for reliable measurements; methods for evaluating measurement
error, quantitation accuracy and precision, data format, and visualization tools. As a result,
experts within individual domains and often sub-domains need to cooperate in order for large,
multi-omic experiments to be carried out successfully. Major challenges and opportunities
exist for improving analytical standards within omic domains such that their results can be
directly aligned, and confidently assimilated for interdisciplinary research.

4.10 Some lessons from Gene Expression
Kasper Daniel Hansen, Johns Hopkins University – Baltimore, US

License Creative Commons BY 3.0 Unported license
© Kasper Daniel Hansen

We discuss statistical lessons learned from the analysis of gene expression data, including
experimental design, batch effects, reproducibility and data availability.

4.11 Spatial Proteomics
Kathryn Lilley, University of Cambridge, GB

License Creative Commons BY 3.0 Unported license
© Kathryn Lilley

Cells are not just collections of proteins randomly distributed in space. Proteins exist in
restricted sub-cellular niches where they have access to substrates/binding partners/appro-
priate chemical environments. Many proteins can exist in multiple locations and may adopt
different roles in a context specific manner. Sampling the spatial proteome is non trivial.
Moreover proteins redistribution upon perturbation may be as important feature to capture
as change in abundance or post translational status. There are multiple methods to capture
the spatial proteome. Some of these are based on existing hypotheses, where the proteome
is tested on a protein by protein basis per experiment, for example immunocytochemistry
approaches. Other methods capture the ‘local’ proximity of proteins by directed labelling
of surrounding proteins to the protein of interest and downstream analysis of the labelled
entities. Developing approaches attempt to establish the steady distribution of proteins
within sub-cellular niches on a cell-wide scale.

The emerging methods are highly complementary, but all are associated with technical
and analytical challenges. The different broad approaches and their specific challenges are
discussed in this presentation.
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4.12 Democratizing Proteomics Data
Lennart Martens, Ghent University, BE

License Creative Commons BY 3.0 Unported license
© Lenanrt Martens

A view on democratizing data, with emphasis on local data management and a path from
quality control to accreditation.

4.13 System Dynamics from Multi-Omics Data
Karen Sachs, Stanford University, US

License Creative Commons BY 3.0 Unported license
© Karen Sachs

Given sufficient data, it is possible to extract network regulatory information from multi-
dimensional datasets. I will first present a short tutorial on probabilistic graphical modeling
applied to network inference, using the example of single cell proteomics data. Next, I’ll
discuss the impact of time and our ability to extract dynamic models from these data.

4.14 Considerations for Large-Scale Analyses
Michael L. Tress, CNIO – Madrid, ES

License Creative Commons BY 3.0 Unported license
© Michael L. Tress

We interrogated a conservative reliable set of peptides from a number of large-scale resources
and identified at least two peptides for 12,000 genes. We found that standard proteomics
studies find peptides for genes from the oldest families, while there were very few peptides for
genes that appeared in the primate lineage and for genes without protein-like characteristics.

We found similar results for alternatively spliced exons – we found few, but those we did
find were of ancient origin. The sixty homologous exon splicing events we detected could be
traced all the way back to jawed vertebrates, 460 millions years ago.

Our results suggest that large-scale experiments should be designed with more care and
those that identify large numbers of non-conserved novel coding regions and alternative splice
events are probably detecting many false positives cases.

4.15 System Dynamics Based on Multi-Omics Data
Nicola Zamboni, ETH Zürich, CH

License Creative Commons BY 3.0 Unported license
© Nicola Zamboni

The current standards of transcriptomics, proteomics, metabolomics, etc. allow to simultane-
ously profile/quantify large number of molecules in cellular systems and biofluids. In the
field of cell biology, comparative analysis of two or more groups often results in discovering a
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multitude of statistically significant differences. Such complex patterns result from the overlap
of primary and secondary effects caused by cellular regulation and response. Translation of
such results into testable hypotheses suffers from two fundamental problems. First, human
intuition doesn’t scale enough to integrate several changes in the context of large metabolic
networks. Second, analytical methods allow us only to assess changes in composition (state),
but not on the integrated operation (activity). Hence, omics data provide only an indirect
readout that we can’t simply associate to a functional change. This calls for computational
methods that infer testable hypotheses on the basis of omics information and previously
known networks. Such approaches can be supported experimentally by (i) performing
time-resolved experiments with multiple datapoints, or (ii) generation of reference datasets
in which the omics profile has been recorded for known perturbations under comparable
conditions.

5 Results from the Working Groups

Working groups were formed and re-formed throughout the whole seminar. At the beginning
of each day, groups reported on their results. Some topics attracted the interest of the whole
audience and were selected for joint sessions. Other more specialized topics led to formation
of medium or small groups.

5.1 Big Data and Repositories
Susan Weintraub, Lennart Martens, Henning Hermjakob, Nuno Bandeira, Anne-Claude
Gingras, Bernhard Kuster, Sven Nahnsen, Timo Sachsenberg, Pedro Navarro, Robert Chalkley,
Josh Elias, Bernhard Renard, Steve Tate, and Theodore Alexandrov

License Creative Commons BY 3.0 Unported license
© Susan Weintraub, Lennart Martens, Henning Hermjakob, Nuno Bandeira, Anne-Claude Gingras,
Bernhard Kuster, Sven Nahnsen, Timo Sachsenberg, Pedro Navarro, Robert Chalkley, Josh Elias,
Bernhard Renard, Steve Tate, and Theodore Alexandrov

The group mostly focused on the question of the interactions between the mass spectrometry
repositories and the scientific community. Interactions are with publishers / reviewers,
data providers, computational tool developers, “end-user” biologists, etc. All participants
agreed that repositories are important, and that much of the minutiae of data standards
and repository organization have already been sorted out. Therefore, the discussion mostly
centered on the design of useful features for the community using the data in the repositories.
While repositories have worked in the past in a linear manner where the data depositor
(user; U), after employing tools developed by software designers (S) would submit their data
in the repositories. On the part of the user, one of the biggest incentive was to fulfill the
requirements for publications. However, now that the repositories are up and running, the
data depositor could be further incentivized by having the repositories providing additional
value to their data.

Journal deposition requirements. How to best support the publication/validation process?
Some way to support the process include; (1) automatic generation of a methods section
summary with aggregate results views (e.g., FDR/ROC curves, LC-MS thumbnail , run-to-run
or condition-to-condition comparison), (2) Ability to search for spectra (file name + scan), (3)
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derive new knowledge reprocessing guidelines “dataset notes” type of manuscripts, (4) having
living datasets for “ongoing iPRG” benchmarking. A key problem concerns metadata. For
example, submissions typically fail to include aquisition parameters in metadata. More general
metadata questions include; what should be required, what should be merely recommended
or altogether discarded? How should we distinguish technical from biological replicates?
Other avenues for improvement include e-mail or detail views (e.g. for reviewers). One issue
with multi-omics submissions is the size of the data. How to compute on big data? Should
we invest in big data analysis tools within our repositories? Medical/Clinical data cannot
(easily) move to public clouds for either private compute or repository access.

Algorithmic challenges. APIs Bringing tools to the data? What views should repositories
aim to provide to a) biologists, b) biostatisticians, c) bioinformaticians, d) other?

Data repositories from a biologist’s perspective. Biologists want: peptide and protein
expression levels across datasets and conditions. What incentives/benefits to provide to
data submitters? How to add value to the data (e.g., like genome browser)? Cover as many
instruments as possible. Spectrum clusteringto find most similar datasets. Protein view with
peptide coverage and detected PTMs. Ability to link peptides to spectrum data. Match my
search results against repository. Protein coverage.

Dataset-centric view. Which proteins/peptides/PTMs/sites does it contribute the most
to? Which proteins/peptides/PTMs/sites is the dataset missing that it should be seeing?
Links to other repositories: CRAPome, UniProt, ProteomicsDB, PDB, Protein Atlas. Sync
protein identifiers to cross-reference to AP/interactions repositories. Cross-reference peptides
by sequence Repository APIs for cross-references reference data: Bernhard Küster offered
deposition of synthetic peptide spectra.

Quantitative views. ProteomicsDB gene/protein list linked to expression levels across
datasets. Download as table, filter by type of quant (e.g., SILAC, TMT); Label-free is less
biased to experiment design.

5.2 Integration of Metabolomics and Proteomics
Jonathan O’Brien, Nicola Zamboni, Sebastian Böcker, Knut Reinert, Timo Sachsenberg,
Theodore Alexandrov, Henning Hermjakob, and David Wishart
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5.2.1 State of the Art

General Comment. Despite sharing similar instrumentation and relatively similar compu-
tational needs there is relatively little integration between the two fields. We discussed some
existing and emerging examples of where the two fields have connected or could interact.

Existing Examples. One example of proteomic/metabolomics integration has been through
systems biology studies involving the characterization of cells (yeast, E. coli) and humans
through combined experimental and computational efforts (Human Recon2, Yeast Metabolic
Reconstruction, IFBA). These have led to computational constructs that model metabolite
fluxes and flows and which could predict certain phenotypes or diseases based on mutations,
knockdowns or knockouts of genes and proteins. This work led to the development of
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SBML and the development flux-balance models, ODEs, petri-nets, PDEs and agent-based
models for cell simulation. However, the SB field struggles because the omics data is often
incomplete and insufficiently quantitative to go beyond “toy” models. Another example of
integration has been the creation of pathway databases that depict protein and metabolite
data with qualitative indications of abundance or presence/absence. Examples include
KEGG, Cyc-databases, Reactome, Wikipathways, SMPDB. However, the model needs and
mark-up languages used by the metabolomics community (KEGG-ML, SBML, PGML) are
often incompatible with the model needs or mark-up languages used by the systems biology
and proteomics community (SBGN-ML, BioPax)

Emerging Examples. An emerging area of experimental proteomics that integrates meta-
bolomics with proteomics is called Adductomics, which is part of the field of Exposomics. This
measures the chemical modifications of electrophilic adducts to free cysteines in serum albumin
or other groups in hemoglobin. This is used to detect and quantify the presence of pollutants,
toxins and reactive drug byproducts in organisms. Currently the field of adductomics lacks
software tools and databases to facilitate the characterization of the peptides and products.
Another emerging area of experimental proteomics that impacts metabolomics is MS-based
protein-ligand screening and MS-based binding constant measurement. Normally this is used
in drug discovery but potentially this could be used to rapidly screen which proteins bind to
which metabolites (proteome-to-metabolome-mapping). However, this field lacks software
tools and databases to do this rapidly and efficiently.

What can proteomics learn from metabolomics and vice versa?
1. A major focus of proteomics is on deciphering signaling networks while the major focus

on metabolomics is describing catabolism and anabolism. The result is the proteins
are viewed as “brains” in the cell while metabolites are just the bricks and mortar.
Most software tools and databases in proteomics focus on protein signaling, but most
software tools in metabolomics focus on anabolism and catabolism. The interpretation
of metabolomics data needs to include metabolite signaling. We’ve forgotten that the
primary role of metabolites is actually to signal proteins. A problem is that none of
the metabolomic databases have this information. However, some proteomics databases
(Reactome, Wikipathways, SMPDB) do – but not enough of it or not in a useable
form. Action item: The metabolomics community needs to learn from the proteomics
community and think about deciphering signaling pathways, too. Metabolite signaling
data is available in books, journals and on-line protein-pathway databases, but it is not
machine readable or not compatible with current versions of metabolomics software or
current needs of metabolomics researchers. There is a clear gap between the communities
and community standards – the two communities need to work together to get this sorted
out. It is proposed that representatives of the metabolomics community attend the next
COMBINE meeting1 (SBML/BioPAX/SBGN-ML standards meeting).

2. A major focus of metabolomics is targeted, quantitative studies where small numbers of
metabolites are measured with absolute concentrations. In contrast in proteomics, the
focus is measuring large numbers of proteins with relative or semi-relative concentra-
tions. Because metabolomics is becoming more quantitative it is allowing computational
scientists to work on biomarker identification and allowing them to mine existing data
to discover new biomarkers and biomarker combinations. It’s also allowing metabolite
discoveries to transition to clinical applications quite quickly. There are now >160

1 http://co.mbine.org/
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metabolite tests used in the clinic. More than a dozen quantitative metabolomics kits
are now commercially available and easy/cheap to run. Quantitative data also allows
researchers to compare data sets across labs or studies and to perform meta-data analysis
more consistently. However, proteomics still lags behind other fields in its ability to
quantify (absolutely or qualitatively) Action item: The proteomics community needs
to learn from the metabolomics community and think about ways of generating (via
kits?) and archiving targeted (or non-targeted) quantitative proteomics data. The use
of common data storage formats and common experimental description formats would
help. Specifically mzML, mzTAB and mzQuantML need to be used and adopted by
both communities. Agreement on how to quote or measure protein concentration data
(in absolute terms) would help. It is proposed that representatives of the metabolomics
community attend the next mzML, mzTAB and mzQuantML standards meeting (PSI
Spring meeting 2016 in Gent, Belgium).

3. Proteomics has evolved a much more sophisticated system for quality control at the
instrument and data collection level (OpenMS). Metabolomics has evolved very sophisti-
cated systems for quality control at the sample handling and sample comparison level
(MetaboAnalyst). However, the metabolomics community is not utilizing the mzTAB
format while neither community is utilizing the mzQuantML sufficiently. Action item:
The two fields should borrow the tools that the others have developed so that both can
improve QC at both the instrument and sample handling levels. Both need to make
better use of existing data standards and data exchange formats

4. Genomics measures or sequences genes at an “organism level”, Metabolomics tends
to measure fluids at the “organ level” while proteomics and transcriptomics measures
protein/gene abundance at a cell or “tissue level”. This can make integration difficult
and comparisons challenging. Action item: More discussion needs to be had about how
the fields can come to a more common unit of measurement. Should proteomics focus
more studies on biofluids? Should metabolomics focus more on studying tissues? Should
proteomics and metabolomics be done simultaneously on the same sample?

Open Questions
1. Can we go beyond mapping quantities to pathways? What about including dynamics?

How to include or measure transient protein-metabolite interactions? What about
complexes (metabolites and proteins)?

2. Can we get the 2 communities talking together on a more regular basis? (bioinformaticians,
standards and focused meetings are key)

3. Primary metabolism in good state but many difficulties with promiscuous enzymes (might
be bridges to complete network) but not secondary metabolism – we are missing most of
the proteins, interactions and pathways for these processes. What to do?

4. How to deal with the problem of relative quantification vs. absolute quantification?
5. How do the two communities handle issues of pathway plasticity?
6. Is proteo-metabolomics possible? Can the combined data be loaded into an appropriate

repository anywhere?
7. Can metabolomics be used to better characterize the phenotype to help “amplify” the

proteomic trends or proteomic findings?
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5.3 Multi-Omics Case Studies
Pedro Jose Navarro Alvarez, Joshua Elias, Laurent Gatto, Olga Vitek, Kathryn, Karen Sachs,
Rdolf Aebersold, Oliver Kohlbacher, Stephen Tate, and Christine Vogel
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This area seems to follow the same pattern as many hyped fields: excitement, confusion,
disillusion, and realism.

Excitement. First studies available – see case studies above: integrating proteomics and
transcriptomics data at steady state or from time series experiments, complemented by ribo
seq data also: papers such as Aviv Regev’s (Science 2015).

Confusion. What do correlations mean? What do we learn from them? [Olga, Christine]
We need more complex approaches, e.g. dynamic models. [Oliver] But there are many
dynamic models. It depends on your question what you need to do.

Disillusion. [Oliver] Do we have a common language for data integration? – [Kathryn] Do
we need one? How do we get started on integrating different errors/noise estimates, FDRs,
data types? So much noise, so much complexity to the data, so many different error models,
so different data structures – where do we start? Where do we start if the data type we
understand best (proteomics data) already has big problems?

Realism. What do we actually mean by integration? Be clear about your biological question
(as usual). [Ruedi] Even simple models illustrate that we do not really know how biology
works. Even in proteomics, the domain we know most about, it is difficult to make meaningful
predictions. How do we take the omics data with limited knowledge behind it and use it
in a useful way and learn something new? Go slow: carefully consider your data and its
properties. Use smaller, well-defined systems. E.g. [Karen’s example] [lunch discussion].
Don’t forget your biology (or biologist). Stare at the data (and don’t ignore odd things).
Use the scientific method: generate hypotheses based on your data and test them. Do we
need integrative tools? Is it time already? [Oliver] Yes e.g. Perseus is moving towards that –
PRIDE as well? e.g. use RNA to help identification of peptides in MS data (proteogenomics).

5.4 Testing and validation of computational methods
Participants: Andreas Beyer, Kasper Daniel Hansen, Laurent Gatto, Michael Hoopmann,
and Oliver Kohlbacher
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The goal of this group was to discuss means for testing, validating, and comparing compu-
tational methods, focusing – of course – on methods dealing with proteomics data. It is
perhaps trivial to identify bad computational methods, but more difficult to recognize the best
methods. We did not distinguish statistical and computational methods, but we distinguished
experimental method validation from computational method validation. The discussion
mostly dealt with methods for peptide identification and protein level quantification, but we
feel that the conclusions are much more widely applicable. Further, we emphasized that the
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way how methods be validated will depend a lot on the specific problem, e.g. the difference
between absolute protein quantification versus quantification of fold-changes. Hence, it is
crucial to identify and documente measurable outcomes (objective metrics) underlying the
comparison.

1. Too many user-definable parameters. Usable computational methods should not have
too many user-definable parameters. Methods with many parameters cause two problems:
(1) It becomes difficult for end-users to correctly set the parameters and experience
shows that for real-life applications most people will use default settings. (2) Comparing
methods becomes exceedingly difficult if many possible combinations of parameters have
to be tested and compared against other methods. Further, having many parameters
creates the danger that users might tweak parameters until they get a ‘desired’ result,
such as maximizing the number of differentially expressed proteins. We therefore came
up with the following recommendations: Methods should have as few user-definable
parameters as possible. If possible, parameters should be learned from the data (e.g. via
built-in cross validation.) If user-definable parameters are unavoidable there should be
very clear instructions on how to set these parameters depending on the experimental
setup. (E.g. depending on the machine used, species the samples come from, goal of the
experiment, ...)

2. Simulated data. A risk of using simulated data is that the simulation will reflect the
implicit model underlying a computational method. There is a continuum to the extend
simulated data will reflect reality. Reliance and wide acceptance of simulation might
be reached using community-accepted simulator, rather than project-specific driven
simulations. We however recognise some value to simulation, to understand method and
a sophisticated code checking mechanism, and understand effects, stability of methods
rather than compare them. Comparisons based on simulations should be interpreted with
care and complemented by utilization of real data (see below).

3. Reference data, spike in data, etc. Spike-in should be sufficiently complex to thoroughly
challenge methods (e.g. spike into a ‘real’ sample). Negative controls need to be included
(e.g. known static proteins in data mixed with proteins changing quantity). Gold-standard
sets are important, but can lead to biases the optimize against the gold-standard. More
than one reference set should be tested. Reference sets need not be immaculate data.

4. Use of real data, multi-omics. We identified an opportunity to initiate a debate on
multi-omics reference datasets to support methods development and comparison. Using
real data without a well-defined ‘ground truth’ requires creativity, but it is not impossible.
Importantly, external, independent data can be used as a common reference to compare
outputs of different analysis methods to. For example, expect that protein concentrations
should be somewhat correlated to their mRNA concentrations. Thus, protein and mRNA
data coming from identical samples could be used to evaluate the performance of different
protein quantification methods: if one method results in significantly greater correlation
between protein and mRNA than another, that could be used as a guideline for choosing
the method. We agreed that such data sets could be very valuable and should be made
available to the community. These thoughts sparked a general discussion around the
opportunities of combining multi-omics data from matching samples. We expect a great
potential of such analyses also for improving computational methods.

5. Community resource for reference datasets. We concluded that the community would
benefit from a resource with guidelines, suggestions, references, ... summarising the above
reflection, that we would like to initiate. We will reach out to the seminar delegates and
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the community for material for method development and comparison, such as reference
data sets (for example spiked-in data), data simulators, useful papers and methods.

Reference data

Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry:
http://www.gigasciencejournal.com/content/4/1/20
Data for comparison of metabolite quantification methods (including spike-in datasets
and simulated datasets):
http://www.mcponline.org/content/13/1/348.long
Protein Identification and inference benchmarking dataset:
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b00121
Corresponding datasets are in PRIDE (PXD000790-793)
Validation data set for functional metaproteomics based on stable isotope incorporation:
http://pubs.acs.org/doi/abs/10.1021/pr500245w (PRIDE PXD000382)
A published DIA/SG data set comprising 8 samples with stable HEK-293 background and
several proteins spiked in in different known absolute amounts. The spike in differences
are small changes, large changes and span a large dynamic range. The 8 samples were
measured in triplicates and in DIA and shotgun (48 measurements) on a QExactive. We
used the data set to compare the quantitative hallmarks between DIA/SG, i.e. missing
values, CVs and accurate of fold change detection. The data set can be used to benchmark
quantitation, algorithms for DIA analysis and probably other things.
https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?identifier=PASS00589
and publication http://www.mcponline.org/cgi/pmidlookup?view=long&pmid=25724911
The ABRF iPRG 2009 for label-free differentiation:
ftp://massive.ucsd.edu/MSV000078539
For PTM discovery, the FFPE tissues:
ftp://massive.ucsd.edu/MSV000078985
CPTAC provides a standard dataset (Study 6) in which Sigma UPS1 (48 equimolar
proteins) are spiked into yeast at different dilution factors. The sample is analyzed by
shotgun MS using HPLC+ESI. The dataset can be found at:
https://cptac-data-portal.georgetown.edu/cptac/study/list?scope=Phase+I
The dataset has been analyzed on multiple instruments for added versatility. I consider
the quality as medium. Several publications describing the dataset and analyses performed
are found at:
http://www.ncbi.nlm.nih.gov/pubmed/19858499
http://www.ncbi.nlm.nih.gov/pubmed/19837981 and
http://www.ncbi.nlm.nih.gov/pubmed/19921851
PXD001500 is excellent for quantitative MudPit, to be testes for carbamylation at K
and nt PXD001792 is excellent survey phosphorylation data PXD002140 is excellent
prokaryote survey data
Simulators:
http://www.ncbi.nlm.nih.gov/pubmed/25371478
http://www.ncbi.nlm.nih.gov/pubmed/24090032
http://www.ncbi.nlm.nih.gov/pubmed/21526843
http://www.biomedcentral.com/1471-2105/9/423
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5.5 Systems genetics
Andreas Beyer, Hannes Röst, Matthias Gstaiger, Lukas Käll, Bernard Rennard, Kasper
Hansen, Stefan Tenzer, and Anne-Claude Gingras

License Creative Commons BY 3.0 Unported license
© Andreas Beyer, Hannes Röst, Matthias Gstaiger, Lukas Käll, Bernard Rennard, Kasper Hansen,
Stefan Tenzer, and Anne-Claude Gingras

We primarily discussed complex diseases. For monogenic disease, omics and proteomics
in particular can be very useful in defining the mechanism underlying disease, but here
we primarily focused on complex diseases, or complex genotype-phenotype relationships.
Typically this would be taking some kind of genetic analysis, such as GWAS, or QTLs, or
cancer mutations. Then we would use omics tools (multi-omics, though proteomics and
transcriptomics were mostly discussed) to provide a better view of genotype-to-phenotype
relationships. Why multi-omics? The potential benefits of multi-omics in this context were
at least twofold: (1) Improving the identification of causing mutation and (2) improving the
understanding of the molecular mechanisms.

Improved identification of causal variants. Conceptually, Omics data can improve
genetic mapping in two ways: GWAS/QTL datasets with multiple genes in an identified
locus may be better teased apart (e.g. protein levels can help with the fine mapping of
the causal gene/protein) Multi-omics can bring increased sensitivity. Statistically weak
GWAS associations may not be found without omics data. For example, network analysis,
SNP clustering, etc. may help better interpreting the data.
Revealing molecular mechanisms. For understanding the molecular mechanisms, at the
simplest level, one can consider many multiple omics (particularly expression omics)
as a massively multiplexed phenotypical readout of the effect of the perturbed genome.
Mutations could impact the transcriptional or post-transcriptional regulation of gene
expression. This is the first manifestation of these mutations. An example is a mu-
tation in a transcriptional regulator that would generate a molecular fingerprint of its
transcriptional targets. Conversely, a kinase could potentially be identified by profiling
the phosphoproteome. Expression proteomics are important to uncover regulation, e.g.
of protein stability, that would not be uncovered by profiling RNA expression alone.
To get at the molecular mechanism underlying these changes, other omics technologies
can also be used. Differential interaction proteomics are particularly useful, but require
pre-filtering since they do not scale well to the growing list of genetic alterations.
Types of omics-data integration: There is a distinction to be made between overlapping
datasets and integrating datasets, both of which being useful. This is a continuous
scale. Overlapping datasets involve completely separate analysis of each omics technology
results and then comparing the results. There is no information feedback between omics
technologies. Integrating datasets entails simultaneous analysis of both datasets. In some
cases, one omics / analysis improves the analysis of the other. Alternatively, you can
extract new information from integrating both datasets that could not be obtained from
the analysis of each dataset in isolation.
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5.6 False Discovery Rate
All participants of Dagstuhl Seminar 15351
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Multiple testing has several contexts: Large number of statistical tests. What percentage of
the rejected H0 are actually true? ‘ome’ assembly, i.e. assemble a shotgun sample, such as
peptide and protein identification.

Statistical considerations. Definition of FDR: expected proportion of false discoveries
in the claimed set of discoveries. The keywords are ‘discovery’ (i.e., the definition of
the experimental unit), and ‘expected (i.e., this is an abstract concept that holds on
average over an infinite replication of the experiment). Complications in proteomics: the
experimental unit is not observed, but is inferred indirectly. The propagation of errors
across the levels of integration (i.e. from spectra to peptides to proteins) has a lot of
effect.
FDR estimation in microarrays. Expect a mixture of uniform distribution and of a
distribution around 0. Deviations from the uniform distribution can be due to violations
of model assumptions within the experimental unit, or violation of independence between
the experimental units.
FDR estimation in mass spectrometry. In PSM identifications, the starting point is
a score or a p-value. P-values are obtained by a generating function, separate decoy,
concatenated target-decoy, or mix-max(?). Different null distributions may be needed for
sequences of different uniqueness, some decoys look similar to true hits. Some applications
require more stringent FDR cutoffs than others. An argument can be made for less
stringent cutoffs in some cases.
Peptide and protein-level FDR. Can be done by simulation, or by probabilistic modeling.
A major problem is the fact that there are two different layers of uncertainty: in
identification and in quantification. At the end biologists are interested in quantitative
changes. How can we help them make decisions? They often do not appreciate the full
extend of uncertainty. Most likely, the right decision will be made by considering various
complementary, orthogonal types of experimental and prior information.

5.7 Correlation versus causality
Karen Sachs, Robert Ness, Kathryn Lilley, Lukas Käll, Sebastian Böcker, Naomi Altman,
Patrick Pedrioli, Matthias Gstaiger, David Wishart, Lukas Reiter, Knut Reinert, Hannes
Roest, Nicola Zamboni, Ruedi Aebersold, and Olga Vitek
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Problem statement: Extract and mechanistically characterize the regulatory relationships
in the biological system.

Biological challenges
Regulatory relationships are large-scale and complex.
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Regulatory relationships are context-specific. The context can be spatial, temporal, or
defined by interaction partners. A molecule (e.g. protein) can have different regulatory
outcomes, depending on the context.
Perturbations of a specific biochemical reaction or network (e.g., a protein KO) can have
system-wide effects, beyond the target network.

Tools for inferring causal relationships. Regulatory networks are typically inferred from
statistical associations between quantitative readouts. The networks are an intermediate
step. Their goal is to suggest hypotheses for experimental follow up. The correct resolution
(protein vs. protein complex vs. protein localization vs. protein PTMs . . . ) should be chosen.

Statistical challenges. Statistical association can hide many types of causal events. Hidden
aspects, which are not measured or not picked up by the model, complicate the task.

Big open question
How to infer regulatory networks on a large scale?
How to use networks to generate biological knowledge?

State of the art. Perturbations are key to elucidating causal events. Suppose we observe a
statistical association between events A and B. To claim that A is a cause of B (i.e., A →
B), we need to present a counterfactual argument that if A does not occur than B does not
occur as well. This is best done by designing a perturbation experiment with and without A.
The starting point is a statistical association. The association is often termed correlation.
However, correlation strictly means linear association, and the reality is much more complex.
E.g., if one protein deregulates another, the effect may not be a linear correlation, but a
change in variability.

Statistical modeling. A statistical model of joint associations is needed, because humans
cannot grasp the complexity, and can leap to erroneous conclusions too quickly. A combi-
natorial number of possible relationships is an issue. The required sample size (number of
replicates) must grow super-exponentially to avoid spurious associations. The prior informa-
tion (e.g., cell compartments, known functional associations) can impose constraints that
can provide causality for the rest of the edges. All models are wrong, but some are useful.
Correctness of a model is judged by how well it predicts the outcome of a new perturbation.
The goal is to make the simplest model that explains the data.

Questions to address
What is the available prior information?
What is the minimal set of perturbations?
How to incorporate the spatial and temporal context of the measurements? (Currently
core models do not incorporate context).
How can we understand the systems-wide effect of a perturbation, and extend the core
models to the components beyond the target pathway? Since the effects of a perturbation
are complex, small networks do not fully capture its effect, and prediction is ineffective.
Effectively use of prior data (use weights / filter prior networks).

Suggestions to move forward. An iterative discovery process: start with seeking associa-
tions at a large scale to identify key players (and possibly reduce the list of components to
be analyzed in detail), and follow up with targeted perturbation-based follow up experiments
to look for causality among selected components The statistical formalism of the model can
incorporate contextual annotations and constraints to scale the process, but the information
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is not yet available, the sample sizes are small, and the computational complexity is large.
Experts need to collaborate to put together the necessary components.

5.8 Metaproteomics
Josh Elias and Sven Nahnsen
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Problem statement: Metaproteomes are immensely complex, and require new ways to
process and evaluate data: standard proteomic strategies often do not scale.

Biological challenges
Missing sample-specific metagenome: Unclear how to construct proteome database
Dirty samples: Gel cleanup works, but is time-consuming, and may reject small, interesting
Data integration: microbe enumeration, metagenome with proteomics
Quantitation: how to normalize between heterogeneous samples? Searching “nr” database
can be challenging: Search speed, FDR assessment at the protein AND organism level
Sample storage conditions, like other body fluids, is a challenge for comparative studies
Field collection also difficult to control
Dietary components aren’t readily identified with sequencing

Tools for metaproteome analysis
MetaProteomeAnalyzer: Protein → Microbe mapping
MetaProSIP: Analysis using stable isotope probing

Statistical /computational challenges
peptide → protein → organism assignment (double FDR!!!)
Distraction problem: When there’s many more possible sequences than spectra available
for matching, it’s more likely for an incorrect match to out-rank a correct one

Big open question. What does metaproteomics get us that metagenomics does not?

Questions to address
Health: What are potential antigens? How are microbes communicating with one another
and with host (and how does this affect health)? Integration with disease biology: Make
targeted assays? How do dietary proteins affect our intestinal immune surveillance?
Systems Biology: Can we use the metaproteome to reduce the apparent complexity of the
microbiota into more discrete functional (and manipulatable) modules? Many microbes
make similar functional proteins or clusters of proteins; these functions may be more
consistent between hosts than the microbes.
Ecology: Non-gut communities are harder to assess: Oceans, soil, etc. Important aspects
of ecosystems, but very poorly understood. (Mak Saito, WHOI)

State of the art
Parallel metagenomic sequencing + proteomics; 6-frame translations (Banfield & Hettich)
Large microbe databases + Organism assembly (MetaProteome Analyzer (Martens &
Rapp)
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Suggestions to move forward. Creation of reference datasets.
In silico mixtures of discrete microbial proteomes (mono-culture datasets mixed post-
acquisition).
In vitro mixtures of known microbial cultures (mix microbial pellets at known, various
concentrations).
Co-culture of known microbes
Dietary proteomes: more species to include in databases

5.9 Challenges in Quantitation
Jonathon O’Brien, Lukas Reiter, Susan Weintraub, Robert Chalkley, Rudolf Aebersold, Bernd
Wollscheid, Pedro Navarro, Stephan Tate, Stefan Tenzer, Matthias Gsteiger, Patrick Pedrioli,
Naomi Altman, and Hannes Röst
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© Participants: Jonathon O’Brien, Lukas Reiter, Susan Weintraub, Robert Chalkley, Rudolf
Aebersold, Bernd Wollscheid, Pedro Navarro, Stephan Tate, Stefan Tenzer, Matthias Gsteiger,
Patrick Pedrioli, Naomi Altman, and Hannes Röst

Statistical limitations/problems
Peptide to protein rollup is a statistical inference problem
There exists a wide variety of ad hoc methods → repeatability problems
Different questions → different method
Inconsistency of methods is an issue. On the other hand using the same methods for
different technologies also creates problems
Missing data is a problem. In Statistics missing data is generally categorized as missing
completely at random (MCAR), missing at random (MAR) or non-ignorably missing.
Non-ignorably missing data occurs frequently in proteomics experiments, meaning that
the probability of being missing is directly dependent on the intensity value. This creates
a bias.
Pre-fractionation is difficult to handle. It doesn’t have to be a problem but the variation
in how software packages handle fractionation distorts the target of inference
Ion suppression. Jonathon O’Brien mentions that he can see ion suppression. It was
discussed whether there is really such a thing as ion suppression. If the samples are rather
similar it is probably not a major issue. One can observe that the spray efficiency varies
slightly over time but not dramatically.
Misidentifications can cause both biases in point estimates and mis-labelled proteins.

Other limitations
Many samples and runs can be problematic → forces label free, which then puts further
importance on normalization algorithms
Quality control → quality of acquisition
Making a statement on the protein quantity
Housekeeping proteins. Naomi mentions that one houskeeper didn’t work well for mi-
croarrays but using a panel of let’s say 20 proteins worked quite well.
Difference between nucleotide world is that the platforms are very homogenous → it’s
different in MS, there are distinct analyzers, different sample prep. methods
Large experiments → make a note of the acquisition sequence to account for batch effects

15351
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Suggestions for progress
Normalization in microarrays Affymetrix created a reference data set → everybody could
try → eliminated a lot of methods from the field (it wasn’t a formal process)
It was suggested to make MS sessions at statistical conferences
It was suggested to make a study comparing different quantitation strategies. Comparing
different pipelines for the same workflow was already done and with encouraging results.
Such studies have also been done in the microarray field
ABRF was also a similar aim (only few instances of certain workflows)
Methods that converted unrepeatable results to repeatable results are presented in Ting,
L., Cowley, M.J., Hoon, S.L., Guilhaus, M., Raftery, M.J., and Cavicchioli, R. (2009).
Normalization and Statistical Analysis of Quantitative Proteomics Data Generated by
Metabolic Labeling. Mol Cell Proteomics 8, 2227–2242.
Samples of e.g. three organisms mixed in different ratios can be used as benchmarking
data sets
Clinical tumor analysis consortium is setting standards. MSACL might be better suited
to set standards. MSACL conference → clinical mass spectrometry → might be a good
forum to present such a benchmarking study
CPTAC study investigated how different labs can produce similar results when using
their favourite method as compared a standard method. They only achieved consistent
results with standardized workflows.



Rudolf Aebersold, Oliver Kohlbacher, and Olga Vitek 33

Participants

Rudolf Aebersold
ETH Zürich, CH

Theodore Alexandrov
EMBL Heidelberg, DE

Naomi Altman
Pennsylvania State University –
University Park, US

Nuno Bandeira
University of California – San
Diego, US

Andreas Beyer
Universität Köln, DE

Sebastian Böcker
Universität Jena, DE

Robert Chalkley
University of California – San
Francisco, US

Joshua Elias
Stanford University, US

Laurent Gatto
University of Cambridge, GB

Anne-Claude Gingras
University of Toronto, CA

Matthias Gstaiger
ETH Zürich, CH

Kasper Daniel Hansen
Johns Hopkins University –
Baltimore, US

Henning Hermjakob
European Bioinformatics
Institute – Cambridge, GB

Michael Hoopmann
Institute for Systems Biology –
Seattle, US

Lukas Käll
KTH – Royal Institute of
Technology, SE

Oliver Kohlbacher
Universität Tübingen, DE

Bernhard Küster
TU München, DE

Kathryn Lilley
University of Cambridge, GB

Lennart Martens
Ghent University, BE

Sven Nahnsen
Universität Tübingen, DE

Pedro José Navarro Alvarez
Universität Mainz, DE

Robert Ness
Purdue University, US

Jonathon O’Brien
University of North Carolina –
Chapel Hill, US

Patrick Pedrioli
ETH Zürich, CH

Knut Reinert
FU Berlin, DE

Lukas Reiter
Biognosys AG – Schlieren, CH

Bernhard Renard
Robert Koch Institut –
Berlin, DE

Hannes Röst
Stanford University, US

Karen Sachs
Stanford University, US

Timo Sachsenberg
Universität Tübingen, DE

Albert Sickmann
ISAS – Dortmund, DE

Stephen Tate
SCIEX – Concord, CA

Stefan Tenzer
Universität Mainz, DE

Michael L. Tress
CNIO – Madrid, ES

Olga Vitek
Northeastern University –
Boston, US

Christine Vogel
New York University, US

Susan T. Weintraub
The University of Texas Health
Science Center, US

David Wishart
University of Alberta –
Edmonton, CA

Bernd Wollscheid
ETH Zürich, CH

Nicola Zamboni
ETH Zürich, CH

15351


	Executive Summary Robert Ness, Timo Sachsenberg, Rudolf Aebersold, Oliver Kohlbacher,and Olga Vitek
	Table of Contents
	Structure of the Seminar
	Overview of Talks
	Challenges in Computational Mass Spectrometry – Objectives and Data Collection Rudolf Aebersold
	Challenges in Computational Mass Spectrometry – Statistics Olga Vitek
	Challenges in Computational Mass Spectrometry – Data and Tools Oliver Kohlbacher
	Spatial Metabolomics: Why, How, and Challenges Theodore Alexandrov
	Some Statistical Musings Naomi Altman
	Reproducibility and Big (Omics) Data Nuno Bandeira and Henning Hermjakob
	Introduction to Metabolite Mass Spectrometry Sebastian Böcker and David Wishart
	Democratization of Data: Access and Review Robert Chalkley
	Multi-omics Data Integration Joshua Elias
	Some lessons from Gene Expression Kasper Daniel Hansen
	Spatial Proteomics Kathryn Lilley
	Democratizing Proteomics Data Lenanrt Martens
	System Dynamics from Multi-Omics Data Karen Sachs
	Considerations for Large-Scale Analyses Michael L. Tress
	System Dynamics Based on Multi-Omics Data Nicola Zamboni

	Results from the Working Groups
	Big Data and Repositories Susan Weintraub, Lennart Martens, Henning Hermjakob, Nuno Bandeira, Anne-Claude Gingras, Bernhard Kuster, Sven Nahnsen, Timo Sachsenberg, Pedro Navarro, Robert Chalkley, Josh Elias, Bernhard Renard, Steve Tate, and Theodore Alexandrov
	Integration of Metabolomics and Proteomics Jonathan O'Brien, Nicola Zamboni, Sebastian Böcker, Knut Reinert, Timo Sachsenberg, Theodore Alexandrov, Henning Hermjakob, and David Wishart
	Multi-Omics Case Studies Pedro Jose Navarro Alvarez, Joshua Elias, Laurent Gatto, Olga Vitek, Kathryn, Karen Sachs, Rdolf Aebersold, Oliver Kohlbacher, Stephen Tate, and Christine Vogel
	Testing and validation of computational methods Andreas Beyer, Hannes Röst, Matthias Gstaiger, Lukas Käll, Bernard Rennard, Kasper Hansen, Stefan Tenzer, and Anne-Claude Gingras
	Systems genetics Andreas Beyer, Hannes Röst, Matthias Gstaiger, Lukas Käll, Bernard Rennard, Kasper Hansen, Stefan Tenzer, and Anne-Claude Gingras
	False Discovery Rate All participants of Dagstuhl Seminar 15351
	Correlation versus causality Karen Sachs, Robert Ness, Kathryn Lilley, Lukas Käll, Sebastian Böcker, Naomi Altman, Patrick Pedrioli, Matthias Gstaiger, David Wishart, Lukas Reiter, Knut Reinert, Hannes Roest, Nicola Zamboni, Ruedi Aebersold, and Olga Vitek
	Metaproteomics Josh Elias and Sven Nahnsen
	Challenges in Quantitation Participants: Jonathon O'Brien, Lukas Reiter, Susan Weintraub, Robert Chalkley, Rudolf Aebersold, Bernd Wollscheid, Pedro Navarro, Stephan Tate, Stefan Tenzer, Matthias Gsteiger, Patrick Pedrioli, Naomi Altman, and Hannes Röst

	Participants

