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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15381 “Information
from Deduction: Models and Proofs”. The aim of the seminar was to bring together researchers
working in deduction and applications that rely on models and proofs produced by deduction
tools. Proofs and models serve two main purposes: (1) as an upcoming paradigm towards
the next generation of automated deduction tools where search relies on (partial) proofs and
models; (2) as the actual result of an automated deduction tool, which is increasingly integrated
into application tools. Applications are rarely well served by a simple yes/no answer from a
deduction tool. Many use models as certificates for satisfiability to extract feasible program
executions; others use proof objects as certificates for unsatisfiability in the context of high-
integrity systems development. Models and proofs even play an integral role within deductive
tools as major methods for efficient proof search rely on refining a simultaneous search for a model
or a proof. The topic is in a sense evergreen: models and proofs will always be an integral part
of deduction. Nonetheless, the seminar was especially timely given recent activities in deduction
and applications, and it enabled researchers from different subcommunities to communicate with
each other towards exploiting synergies.
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1 Executive Summary
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Models and proofs are the quintessence of logical analysis and argumentation. Many
applications of deduction tools need more than a simple answer whether a conjecture holds;
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often additional information – for instance proofs or models – can be extremely useful. For
example, proofs are used by high-integrity systems as part of certifying results obtained from
automated deduction tools, and models are used by program analysis tools to represent bug
traces. Most modern deductive tools may be trusted to also produce a proof or a model when
answering whether a conjecture is a theorem or whether a certain problem formalized in logic
has a solution. Moreover, major progress has been obtained recently by procedures that rely
on refining a simultaneous search for a model and a proof. Thus, proofs and models help
producing models and proofs, and applications use proofs and models in many crucial ways.

Below, we point out several directions of work related to models and proofs in which
there are challenging open questions:

Extracting proofs from derivations. An important use of proof objects from derivations is
for applications that require certification. But although the format for proof objects and
algorithms for producing and checking them has received widespread attention in the
research community, the current situation is not satisfactory from a consumer’s point of
view.
Extracting models from derivations. Many applications rely on models, and models are
as important to certify non-derivability. Extracting models from first-order saturation
calculi is a challenging problem: the well-known completeness proofs of superposition
calculi produce perfect models from a saturated set of clauses. The method is highly
non-constructive, so extracting useful information, such as “whether a given predicate
evaluates to true or false under the given saturated clauses,” is challenging. The question
of representation is not yet well addressed for infinite models.
Using models to guide the search for proofs and vice versa. An upcoming next generation
of reasoning procedures employ (partial) models/proofs for proof search. They range
from SAT to first-order to arithmetic reasoning and combinations thereof. It remains
an open question what properties of models are crucial for successful proof search, how
the models should be dynamically adapted to the actual problem, and how the interplay
between the models and proof search progress through deduction should be designed.
External applications of models and proofs. Models and proofs are used in various ways
in applications. So far application logics and automated proof search logics have been
developed widely independently. In order to get more of a coupling, efforts of bringing
logics closer together or the search for adequate translations are needed.

This Dagstuhl seminar allowed to bring together experts for these topics and invited
discussion about the production and consumption of proofs and models. The research
questions pursued and answered include:

To what extent is it possible to design common exchange formats for theories, proofs,
and models, despite the diversity of provers, calculi, and formalisms?
How can we generate, process, and check proofs and models efficiently?
How can we search for, represent, and certify infinite models?
How can we use models to guide proof search and proofs to guide model finding?
How can we make proofs and models more intelligible, yet at the same time provide the
level of detail required by certification processes?
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3 Overview of Talks

3.1 Formal Verification of Pastry Using TLA+
Noran Azmy (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Noran Azmy

Peer-to-peer protocols for maintaining distributed hash tables, such as Pastry or Chord, have
become popular for certain Internet applications. While such protocols promise certain prop-
erties concerning correctness and performance, verification attempts using formal methods
invariably discover border cases that violate some of those guarantees. For example, Zave
discovered that no previously published version of Chord maintains the invariants claimed
of the protocol. In his PhD thesis, Tianxiang Lu discovered similar correctness problems
for Pastry and also developed a model, which he called LuPastry, for which he provided
a partial proof of correct delivery assuming no node departures, mechanized in the TLA+
Proof System. We present the first complete proof of correct delivery for LuPastry, which we
call LuPastry+.

3.2 CDCL as Saturation
Peter Baumgartner (NICTA – Canberra, AU)

License Creative Commons BY 3.0 Unported license
© Peter Baumgartner

Conflict driven clause learning (CDCL) is the main paradigm for building propositional logic
SAT solvers. Saturation based theorem proving is the main paradigm for building first-order
logic theorem provers. A natural research question is to investigate the relationships between
these paradigms for, e.g., exploiting successful techniques from CDCL in first-order logic
theorem proving. To this end, techniques like splitting, dependency-directed backtracking and
lemma-learning techniques have been considered for integration in first-order logic resolution
calculi and instance-based methods.

The paper revisits this topic from a different point of view. Instead of integrating its
concepts, it shows how CDCL can be simulated by a saturation based resolution calculus.
This is not trivial, as CDCL’s splitting and backjumping operations are not compatible with
saturation. One could, of course, add an explicit splitting rule to resolution, as mentioned
above, but this would work in very restricted cases only. In contrast, our calculus approach
allows for straightforward lifting to first-order logic. Moreover, in contrast to, e.g., model
evolution calculi, it separates model representation from calculus. This supports the modular
design of theorem provers, which, this way, e.g., may arbitrarily trade-off representational
power versus efficiency, without compromising refutational completeness.

The main result for now is a refutational completeness result in presence of redundancy
criteria and deletion rules. The latter are needed for a faithful simulation of CDCL.
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3.3 Higher-Order Proofs and Models – Examples from Meta-Logical
Reasoning and Metaphysics

Christoph Benzmueller (FU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Benzmueller

Joint work of Benzmüller, Christoph; Woltzenlogel-Paleo, Bruno; Paulson, Lawrence; Brown, Chad; Claus,
Maximilian; Sutcliffe, Geoff; Sultana, Nik; Blanchette, Jasmin

Main reference C. Benzmüller, B. Woltzenlogel Paleo, “Automating Gödel’s Ontological Proof of God’s Existence
with Higher-order Automated Theorem Provers,” in Proc. of the 21st Europ. Conf. on Artificial
Intelligence (ECAI’14), Frontiers in Artificial Intelligence and Applications, Vol. 263, pp. 93–98,
IOS Press, 2014.

URL http://dx.doi.org/10.3233/978-1-61499-419-0-93

Extraction and utilization of information (by hand) from higher-order logic proofs and
countermodels has played an important role in my recent research. Two examples are
presented, one from meta-logical reasoning and one from metaphysics.

In the first example countermodels from Nitpick were utilized in a schematic process
to verify the independence of prominent modal logic axioms in Isabelle/HOL. In addition,
minimality aspects of these models were proved. The independence results constituted the
key steps in the verification of the well known modal logic cube.

In the second example, the higher-order prover LEO-II detected an inconsistency in Kurt
Gödel’s original variant of ontological argument for the existence of God. While LEO-II’s
(extensional higher-order RUE-resolution) proof object in fact contains the information
needed for the reconstruction of a human-intuitive explanation, I failed for a long time
to identify the relevant puzzle pieces. Only recently, I was able to extract (and verify) a
surprisingly easily accessible abstract-level proof. It is as in many fields in mathematics:
once a beautiful structure has been revealed, it can’t be missed anymore. Unmated low-level
formal proofs, in contrast, are lacking persuasive power.

References
1 Christoph Benzmüller and Bruno Woltzenlogel Paleo. Automating Gödel’s Ontological

Proof of God’s Existence with Higher- order Automated Theorem Provers, In ECAI 2014,
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Theory, In Logica Universalis, volume 7, number 1, pp. 7–20, 2013. http://dx.doi.org/10.
1007/s11787-012-0052-y

4 Christoph Benzmüller. Invited Talk: On a (Quite) Universal Theorem Proving Approach
and Its Application in Metaphysics, In TABLEAUX 2015, Springer, LNAI, volume 9323,
pp. 209–216, 2015. http://dx.doi.org/10.1007/978-3-319-24312-2_15

5 Christoph Benzmüller, Maximilian Claus, and Nik Sultana. Systematic Verification of the
Modal Logic Cube in Isabelle/HOL, In PxTP 2015, EPTCS, volume 186, pp. 27–41, 2015.
http://dx.doi.org/10.4204/EPTCS.186.5
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3.4 Semi-intelligible Isar Proofs from Machine-Generated Proofs
Jasmin Christian Blanchette (INRIA Lorraine – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Jasmin Christian Blanchette

Main reference J.C. Blanchette, S. Böhme, M. Fleury, S. J. Smolka, A. Steckermeier, “Semi-intelligible Isar Proofs
from Machine-Generated Proofs,” to appear in Journal of Automated Reasoning.

Sledgehammer is a component of the Isabelle/HOL proof assistant that integrates external
automatic theorem provers (ATPs) to discharge interactive proof obligations. As a safeguard
against bugs, the proofs found by the external provers are reconstructed in Isabelle. Recon-
structing complex arguments involves translating them to Isabelle’s Isar format, supplying
suitable justifications for each step. Sledgehammer transforms the proofs by contradiction
into direct proofs; it iteratively tests and compresses the output, resulting in simpler and
faster proofs; and it supports a wide range of ATPs, including E, LEO- II, Satallax, SPASS,
Vampire, veriT, Waldmeister, and Z3.

3.5 Tips and Tricks in LIA constraint solving
Martin Bromberger (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Bromberger, Martin; Sturm, Thomas; Weidenbach, Christoph

We present tips and tricks for constraint solving in the theory of linear integer arithmetic.
These tricks are sound, efficient, heuristic methods that find solutions for a large number of
problems. While most complete methods search on the problem surface for a solution, these
heuristics use balls and cubes to explore the interior of the problems. The heuristic methods
are especially efficient for problems with a large number of integer solutions. Although it
might seem that problems with a large number of integer solutions should be trivial for
complete solvers, we will show the opposite by comparing state-of-the-art SMT solvers with
our own solver that contains those heuristic methods.

3.6 Formally verified constraint solvers
Catherine Dubois (ENSIIE – Evry, FR)

License Creative Commons BY 3.0 Unported license
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Do you trust your solver ? In this talk, we focus on finite domains (FD) constraint solvers.
We have developed a family of formally verified solvers through a generic and modular solver
developed within the Coq proof assistant and proved sound and complete [CDD12]. Local
consistency property, labeling strategy are parameters of this formal development. In the talk
we present the main features and the current status of the development. Work in progress
concerns the Coq formalization and verification of the well-known filtering algorithm [Reg94]
for the alldiff constraint.
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3.7 Overview of Models in Yices
Bruno Dutertre (SRI – Menlo Park, US)
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We present a form of model-based theory combination recently implemented in Yices,
algorithms for exists/forall solving and model generalization.

3.8 Automatic Proofs of Termination and Memory Safety for
Programs with Pointer Arithmetic

Carsten Fuhs (Birkbeck, University of London, GB)

License Creative Commons BY 3.0 Unported license
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Main reference T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-Kamp, “Proving
Termination and Memory Safety for Programs with Pointer Arithmetic,” in Proc. of the 7th Int’l
Joint Conf. on Automated Reasoning (IJCAR’14), LNAI, Vol. 8562, pp. 208–223, Springer, 2014.
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While automated verification of imperative programs has been studied intensively, proving
termination of programs with explicit pointer arithmetic fully automatically was still an
open problem. To close this gap, we introduce a novel abstract domain that can track
allocated memory in detail. Automating our abstract domain with the help of SMT-based
entailment proofs, we construct a symbolic execution graph that over-approximates all
possible runs of the program and that can be used to prove memory safety. This graph is
then transformed into an integer transition system, whose termination can be proved by
standard techniques, e.g., based on models found by SMT solvers. We have implemented
this approach in the automated termination prover AProVE and demonstrate its capability
of analyzing C programs with pointer arithmetic that existing tools cannot handle.

3.9 Quantified Array Fragments: Decision Results and Applications
Silvio Ghilardi (University of Milan, IT)

License Creative Commons BY 3.0 Unported license
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Joint work of Alberti, Francesco; Ghilardi, Silvio; Sharygina, Natasha

The theory of arrays is one of the most relevant theories for software verification, this
is the reason why current research in automated reasoning dedicated so much effort in
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establishing decision and complexity results for it. As soon as quantified formulae are
concerned, however, satisfiability becomes intractable when free unary function symbols are
added to mild fragments of arithmetic [6]. Nevertheless, since applications require the use of
quantifiers, e.g. in order to express invariants of program loops, it becomes crucial to identify
sufficiently expressive tractable quantified fragments of the theory.

In this talk we first compare and discuss some state-of-the-art literature on the sub-
ject [4], [5], [2], [3] and then we show how the results can be applied to model-checking
problems in array-based systems. We finally report the status of the implementation in our
tools mcmt and Booster [1].

The original contributions of this talk come from joint work with F. Alberti and N.
Sharygina.

References
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3.10 Using Information from Deduction for Complexity Analysis
Juergen Giesl (RWTH Aachen University, DE)
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Main reference F. Frohn, J. Giesl, J. Hensel, C. Aschermann, T. Ströder, “Inferring Lower Bounds for Runtime

Complexity,” in Proc. of the 26th Int’l Conf. on Rewriting Techniques and Applications (RTA’15),
LIPIcs, Vol. 36, pp. 334–349, Schloss Dagstuhl, 2015.

URL http://dx.doi.org/10.4230/LIPIcs.RTA.2015.334

Several techniques and tools have been developed to prove termination and to verify inductive
properties of programs automatically. We report on our recent work to use information
from such automatically generated proofs in order to analyze complexity of programs. More
precisely, from automated termination proofs, one can infer upper bounds on a program’s
runtime and on the values of its variables. Moreover, from automated induction proofs, one
can infer lower bounds on the runtime of a program.
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3.11 SAT-based techniques for parameter synthesis and optimization
Alberto Griggio (Bruno Kessler Foundation – Trento, IT)

License Creative Commons BY 3.0 Unported license
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Joint work of Bittner, Benjamin; Bozzano, Marco; Cimatti, Alessandro; Gario, Marco; Griggio, Alberto;
Mattarei, Cristian

Main reference M. Bozzano, A. Cimatti, A. Griggio, C. Mattarei, “Efficient Anytime Techniques for Model-Based
Safety Analysis,” in Proc. of the 27th Int’l Conf. on Computer Aided Verification (CAV’15),
LNCS, Vol. 9206, pp. 603–621, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-21690-4_41

Many application domains can be described in terms of parameterized systems, where
parameters are variables whose value is invariant over time, but is only partially constrained.
A key challenge in this context is the estimation of the parameter valuations that guarantee
the correct behavior of the system. Manual estimation of these values is time consuming
and does not find optimal solutions for specific design problems. Therefore, a fundamental
problem is to automatically synthesize the maximal region of parameter valuations for which
the system satisfies some properties, or to find the best/most appropriate valuation with
respect to a given cost function.

In this talk, we present a technique for parameter synthesis and optimization that exploits
the efficiency of state-of-the art model checking algorithms based on SAT solvers. We will
start from a general solution applicable in various settings, and then show how to improve
the effectiveness of our procedure by exploiting domain knowledge. We demonstrate the
usefulness of our technique with a set of case studies taken from the domains of diagnosability
and safety analysis.

3.12 Exploit Generation for Information Flow Leaks in Object-Oriented
Programs

Reiner Haehnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Haehnle

Joint work of Do, Quoc Huy; Bubel, Richard; Haehnle, Reiner
Main reference Q.H. Do, R. Bubel, R. Hähnle, “Exploit Generation for Information Flow Leaks in

Object-Oriented Programs,” in Proc. of the 30th IFIP TC 11 Int’l Conf. on ICT Systems Security
and Privacy Protection (SEC’15), IFIP Advances in Information and Communication Technology,
Vol. 455, pp. 401–415, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-18467-8_27

We present a method for automated generation of exploits for information flow leaks in
object-oriented programs. Given a flow policy and a security level specification, our approach
combines self-composition, symbolic execution, computation of an insecurity formula, and
model generation to produce a test input that witnesses a security leak (if one exists). The
method is one instance of a general framework for generating test data that witnesses a given
relational program property, for example, faults, regressions, etc. A prototypic tool called
KEG implementing our method for Java target programs is available. It generates security
exploits in the form of executable JUnit tests.
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3.13 Saturation Theorem Proving for Herbrand Models
Matthias Horbach (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Horbach

In system verification, we are often interested in analyzing specific models, usually Herbrand
models over a given domain. The use of efficient first-order methods like superposition in such
a setting is unsound, because the introduction of Skolem constants for existential variables
changes the Herbrand domain.

I will present superposition calculi that can explicitly represent existentially quantified
variables in computations with respect to a given fixed domain. They give rise to new
decision procedures for minimal model validity and I will demonstrate how to employ them
for counter model generation in the analysis of Petri nets and LTL formulas, as well as in
local reasoning.

3.14 SMT-based Reactive Synthesis
Swen Jacobs (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Swen Jacobs

We consider reductions of the synthesis problem for distributed and parameterized reactive
systems to problems in satisfiability modulo theories (SMT). Given a (possibly parametric)
system architecture and an LTL specification, we use automata theory (and possibly cutoff
results from parameterized verification) to reduce the synthesis problem for implementations
that satisfy the specification to a set of first-order constraints. The problem is encoded such
that a model of the constraints represents both the desired implementation and an additional
annotation that witnesses correctness. Our experimental results with different approaches to
solve such constraints suggest that this is a very hard problem for existing SMT solvers.

3.15 Interpolation Synthesis for Quadratic Polynomial Inequalities and
Combination with EUF

Deepak Kapur (University of New Mexico – Albuquerque, US)

License Creative Commons BY 3.0 Unported license
© Deepak Kapur

Joint work of Gan, Ting; Dai, Liyun; Xia, Bican; Zhan, Naijun; Chen, Mingshuai

An algorithm for generating interpolants for formulas which are conjunctions of quadratic
polynomial inequalities (both strict and nonstrict) is proposed. The algorithm is based
on a key observation that quadratic polynomial inequalities can be linearized if they are
concave. A generalization of Motzkin’s transposition theorem is proved, which is used to
generate an interpolant between two mutually contradictory conjunctions of polynomial
inequalities, in a way similar to the linear inequalities case. This can be done efficiently
using semi-definite programming but forsaking completeness. A combination algorithm is
given for the combined theory of concave quadratic polynomial inequalities and the equality
theory over uninterpreted functions symbols using a hierarchical framework for combining
interpolation algorithms for quantifier-free theories. A preliminary implementation has been
explored.
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3.16 Obtaining Inductive Invariants with Formula Slicing
George Karpenkov (VERIMAG – Gières, FR)

License Creative Commons BY 3.0 Unported license
© George Karpenkov

Program analysis by abstract interpretation finds inductive invariants in a given abstract
domain, over-approximating the reachable state-space. This over-approximation at every
program location may lead to weak invariants, insufficient for proving a desired property.
Path focusing and large block encoding alleviate this problem by requiring abstractions only at
loop heads; at other control points, candidate invariants are expressed as first-order formulas
within a decidable theory, precisely describing possible executions from the last loop head.
This significantly improves the precision.

Our formula slicing approach goes further, by propagating first-order formulas through
loop heads: formulas are weakened until they become inductive by replacing atomic predicates
with “true”.

We show that the problem of deciding the existence of a non-trivial weakening is Σp
2-

complete. we propose the over-approximation approaches based on the existing algorithms
from the literature.

The produced inductive weakenings can be conjoined to the invariant candidates expressed
in the abstract domain, improving the analysis precision, as we demonstrate on a range of
programs from the International Competition on Software Verification (SV-COMP).

3.17 Optimization modulo quantified linear rational arithmetic
Zachary Kincaid (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Zachary Kincaid

Joint work of Kincaid, Zachary; Farzan, Azadeh

The optimization modulo theories (OMT) problem is to compute the supremum of the
value of some given objective term over all models of a given (satisfiable) formula. Recently,
techniques have been developed for optimization modulo the theories of quantifier-free linear
rational (and integer) arithmetic. In principle, these techniques can be also be applied
to formulas with quantifiers, since linear rational (integer) arithmetic admits quantifier
elimination. However, quantifier elimination is computationally expensive, and it may be
possible to avoid it. I will present an algorithm for optimization modulo quantified linear
rational arithmetic that works directly on quantified linear rational arithmetic formulas.
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3.18 EPR-based BMC and k-induction with Counterexample Guided
Abstraction Refinement

Konstantin Korovin (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Konstantin Korovin

Joint work of Khasidashvili, Zurab; Korovin, Konstantin; Tsarkov, Dmitry
Main reference Z. Khasidashvili, K. Korovin, D. Tsarkov, “EPR-based k-induction with Counterexample Guided

Abstraction Refinement,” in Proc. of the 2015 Global Conf. on Artificial Intelligence (GCAI’15),
EPiC Series, Vol. 36, pp. 137–150, EasyChair, 2015.

URL http://www.easychair.org/publications/paper/EPR-based_k-
induction_with_Counterexample_Guided_Abstraction_Refinement

In recent years it was proposed to encode bounded model checking (BMC) into the effectively
propositional fragment of first-order logic (EPR). The EPR fragment can provide for a
succinct representation of the problem and facilitate reasoning at a higher level. In this
talk we present a novel abstraction-refinement approach based on unsatisfiable cores and
models (UCM) for BMC and k-induction in the EPR setting. We have implemented UCM
refinements for EPR-based BMC and k-induction in a first-order automated theorem prover
iProver [1]. We also extended iProver with the AIGER format and evaluated it over the
HWMCC’14 competition benchmarks. The experimental results are encouraging. We show
that a number of AIG problems can be verified until deeper bounds with the EPR-based
model checking.

This talk is based on [2].

References
1 K. Korovin. Inst-Gen – a modular approach to instantiation-based automated reasoning. In

Programming Logics, ser. LNCS, A. Voronkov and C. Weidenbach, Eds., vol. 7797. Springer,
pp. 239–270, 2013.

2 Z. Khasidashvili, K. Korovin, D. Tsarkov. EPR-based k-induction with Counterexample
Guided Abstraction Refinement. EPiC Series, EasyChair, 2015.

3.19 Hyperresolution modulo Horn Clauses – generating infinite
models

Christopher Lynch (Clarkson University – Potsdam, US)

License Creative Commons BY 3.0 Unported license
© Christopher Lynch

When Ordered Resolution terminates on a satisfiable set of clauses, it is not always possible
to constructively find a model. On the other hand, in Hyperresolution a model can be easily
computed, but Hyperresolution rarely halts.

We present a method to identify some Horn clauses that lead to nontermination, and
remove them from the Hyperresolution process. Instead of resolving these clauses, unification
will be performed modulo those clauses. In many cases, this will force Hyperresolution to
halt, and the result will determine an infinite Herbrand model with nice properties, e.g,
closed under intersection.

We first apply this result to Cryptographic Protocol Analysis, where Horn clauses used
to represent Intruder Abilities cause nontermination. If Hyperresolution modulo Intruder
Abilities halts then the infinite Herbrand model gives all the messages an intruder could
learn.
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We extend this result to a more general class of Horn clauses, which may be useful for
program analysis where it is difficult or impossible to find a finite model.

The work on Cryptographic Protocol Analysis is joint with Erin Hanna, David Myers
and Corey Richardson.

3.20 Confluence and Certification
Aart Middeldorp (Universität Innsbruck, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Nagele, Julian; Felgenhauer, Bertram; Middeldorp, Aart
Main reference J. Nagele, B. Felgenhauer, A. Middeldorp, “Improving Automatic Confluence Analysis of Rewrite

Systems by Redundant Rules,” in Proc. of the 16th Int’l Conf. on Rewriting Techniques and
Applications (RTA’15), LIPIcs, Vol. 36, pp. 257–268, Schloss Dagstuhl, 2015.

URL http://dx.doi.org/10.4230/LIPIcs.RTA.2015.257

We discuss the importance of certification for confluence. A simple technique is presented
that increases the power of modern (certified) confluence tools considerably.

3.21 Mining the Archive of Formal Proofs
Tobias Nipkow (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Tobias Nipkow

Joint work of Blanchette, Jasmin C.; Haslbeck, Maximilian; Matichuk, Daniel; Nipkow, Tobias
Main reference J.C. Blanchette, M. Haslbeck, D. Matichuk, T. Nipkow, “Mining the Archive of Formal Proofs,” in

Proc. of the 2015 Int’l Conf. on Intelligent Computer Mathematics (CICM’15), LNCS, Vol. 9150,
pp. 3–17, Springer, 2015.

URL https://doi.org/10.1007/978-3-319-20615-8_1

The Archive of Formal Proofs is a vast collection of computer-checked proofs developed
using the proof assistant Isabelle. We perform an in-depth analysis of the archive, looking at
various properties of the proof developments, including size, dependencies, and proof style.
This gives some insights into the nature of formal proofs.

3.22 SMT-Based Methods for Difference Logic Invariant Generation
Albert Oliveras (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Albert Oliveras

Joint work of Candeago, Lorenzo; Oliveras, Albert; Rodríguez-Carbonell, Enric

We consider the problem of synthesizing difference logic invariants for a restricted class
of imperative programs: the ones whose transitions can be described as conjunctions of
difference logic inequalities.

Our methodology is based on the so-called constraint-based method: we consider a
template for each location as a candidate invariant, to which initiation and consecution
conditions are imposed. Unlike in the general case, where Farkas’ lemma is used to convert
these conditions into formulas over non-linear arithmetic, in our particular case we show how
we can use more efficient SMT-based techniques using only difference logic arithmetic.
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3.23 How to avoid proving the absence of integer overflows
Andrei Paskevich (University Paris-Sud, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Clochard, Martin; Filliâtre, Jean-Christophe; Paskevich, Andrei
Main reference M. Clochard, J.-C. Filliâtre, A. Paskevich, “How to avoid proving the absence of integer overflows,”

to appear in Proc. of the 7th Int’l Conf. on Verified Software: Theories, Tools, and Experiments
(VSTTE’15), as volume 9593 of LNCS; pre-print available as hal-01162661, 2016.

URL https://hal.inria.fr/hal-01162661

When proving safety of programs, we must show, in particular, the absence of integer overflows.
Unfortunately, there are lots of situations where performing such a proof is extremely difficult,
because the appropriate restrictions on function arguments are invasive and may be hard to
infer. Yet, in certain cases, we can relax the desired property and only require the absence of
overflow during the first n steps of execution, n being large enough for all practical purposes.
It turns out that this relaxed property can be easily ensured for large classes of algorithms,
so that only a minimal amount of proof is needed, if at all. The idea is to restrict the set
of allowed arithmetic operations on the integer values in question, imposing a “speed limit”
on their growth. For example, if we repeatedly increment a 64-bit integer, starting from
zero, then we will need at least 2 to the power of 64 steps to reach an overflow; on current
hardware, this takes several hundred years. When we do not expect any single execution of
our program to run that long, we have effectively proved its safety against overflows of all
variables with controlled growth speed. In this talk, we give a formal explanation of this
approach and show how it is implemented in the context of deductive verification.

3.24 Compositional Program Analysis using Max-SMT
Albert Rubio (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
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Joint work of Brockschmidt, Marc; Larraz, Daniel; Oliveras, Albert; Rodríguez-Carbonell, Enric; Rubio, Albert
Main reference M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio, “Compositional

Safety Verification with Max-SMT,” to appear in Proc. of the 2015 Conf. on Formal Methods in
Computer-Aided Design (FMCAD’15); pre-print available as arXiv:1507.03851v3 [cs.LO], 2015.

URL http://arxiv.org/abs/1507.03851v3

An automated compositional program verification technique for safety properties based on
conditional inductive invariants is presented. For a given program part (e.g., a single loop)
and a postcondition, we show how to, using a Max-SMT solver, an inductive invariant
together with a precondition can be synthesized so that the precondition ensures the validity
of the invariant and that the invariant implies the postcondition. From this, we build a
bottom-up program verification framework that propagates preconditions of small program
parts as postconditions for preceding program parts. The method recovers from failures to
prove the validity of a precondition, using the obtained intermediate results to restrict the
search space for further proof attempts.

Currently we are extending the framework to prove reachability properties by using
conditional termination.
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3.25 Exploiting Locality in Parametric Verification
Viorica Sofronie-Stokkermans (Universität Koblenz-Landau, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Damm, Werner; Horbach, Matthias; Sofronie-Stokkermans, Viorica
Main reference W. Damm, M. Horbach, V. Sofronie-Stokkermans, “Decidability of Verification of Safety Properties

of Spatial Families of Linear Hybrid Automata,” in Proc. of the 10th Int’l Symp. on Frontiers of
Combining Systems (FroCoS’15), LNAI, Vol. 9322, pp. 186–202, Springer, 2015.
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We show how hierarchical reasoning, quantifier elimination and model generation can be
used to automatically provide guarantees that given parametric systems satisfy certain
safety or invariance conditions. Such guarantees can be for instance expressed as constraints
on parameters. Alternatively, hierarchical reasoning combined with techniques for model
generation allows us to construct counterexamples which show how unsafe states can be
reached.

In this talk we focus on the case of systems composed of an unbounded number of similar
components (modeled as linear hybrid automata), whose dynamic behavior is determined
by their relation to neighboring systems. We present a class of such systems and a class
of safety properties whose verification can be reduced to the verification of (small) families
of neighboring systems of bounded size, and identify situations in which such verification
problems are decidable, resp. fixed parameter tractable. We illustrate the approach with an
example from coordinated vehicle guidance.

3.26 Verified AC-Equivalence Checking in Isabelle/HOL
Christian Sternagel (Universität Innsbruck, AT)

License Creative Commons BY 3.0 Unported license
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Joint work of Bertram, Felgenhauer; Sternagel, Christian

We present an algebraic correctness proof of an executable AC-equivalence check that we
formalized in Isabelle/HOL. This work constitutes the basis for extending our Isabelle/HOL
Formalization of Rewriting (IsaFoR) with results on rewriting modulo associativity and
commutativity.

3.27 Thousands of Models for Theorem Provers – The TMTP Model
Library

Geoff Sutcliffe (University of Miami, US)

License Creative Commons BY 3.0 Unported license
© Geoff Sutcliffe

The TPTP World is a well established infrastructure that supports research, development,
and deployment of Automated Theorem Proving (ATP) systems for classical logics. The
TPTP World includes the TPTP problem library, the TSTP solution library, standards
for writing ATP problems and reporting ATP solutions, tools and services for processing
ATP problems and solutions, and it supports the CADE ATP System Competition (CASC).
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This work describes a new component of the TPTP World – the Thousands of Models for
Theorem Provers (TMTP) Model Library. This will be a corpus of models for identified
sets of axioms in the TPTP, along with tools for interpreting formulae wrt models, tools for
translating from from model form to another, interfaces for visualizing models, etc. The
TMTP will support the development of semantically guided theorem proving ATP systems,
provide examples for developers of model finding ATP systems, and provide insights into the
semantic structure of axiom sets.

3.28 Conflict-based Quantifier Instantiation for SMT
Cesare Tinelli (University of Iowa – Iowa City, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Reynolds, Andrew; Tinelli, Cesare; de Moura, Leonardo
Main reference A. Reynolds, C. Tinelli, L. de Moura, “Finding conflicting instances of quantified formulas in

SMT,” in Proc. of the 2014 Conf. on Formal Methods in Computer-Aided Design (FMCAD’14),
pp. 195–202, IEEE, 2014.

URL http://dx.doi.org/10.1109/FMCAD.2014.6987613

Satisfiability Modulo Theories (SMT) solvers have been used successfully in a variety of
applications including verification, automated theorem proving, and synthesis. While such
solvers are highly adept at handling ground constraints in several decidable background
theories, they primarily rely on heuristic quantifier instantiation methods such as E-matching
to process quantified formulas. The success of these methods is often hindered by an
overproduction of instances, which makes ground level reasoning difficult. This talk introduces
a new technique that alleviates this shortcoming by first discovering instances of the quantified
formulas that are in conflict with the current state of the solver. The solver only resorts
to traditional heuristic methods when such instances cannot be found, thus decreasing its
dependence upon E-matching. Extensive experimental results show that this technique
significantly reduces the number of instantiations required by an SMT solver to answer
“unsatisfiable” for several benchmark libraries, and consequently leads to improvements over
state-of-the-art implementations.

3.29 Learn Fresh: Model-Guided Inferences
Christoph Weidenbach (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Alagi, Gabor; Teucke, Andreas; Weidenbach, Christoph
Main reference C. Weidenbach, “Automated Reasoning Building Blocks,” in R. Meyer, A. Platzer, H. Wehrheim

(eds.), “Correct System Design – Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion
of His 60th Birthday”, LNCS, Vol. 9360, pp. 172–188, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-23506-6_12

I investigate the relationship between candidate models, inferences and redundancy. It turns
out that clauses learned by the CDCL calculus correspond to the result of superposition
inferences and are not redundant. The result can be lifted to the Bernays Schoenfinkel
class but it is open how it can be lifted to first-order logic, in general. For-first order logic
abstraction mechanisms are needed that result in effective model representations enabling
decision procedures for clause validity.
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Maximal completion constitutes a powerful and fast Knuth-Bendix completion procedure
based on MaxSAT/MaxSMT solving. Recent advancements let Maxcomp improve over
other automatic completion tools, and produce novel complete systems [1]: (1) Termination
techniques using the dependency pair framework are encoded as satisfiability problems,
including dependency graph and reduction pair processors. (2) Instead of relying on pure
maximal completion, different SAT-encoded control strategies are exploited.

Maximal completion can also produce complete systems for subtheories (partial models):
This is done by encoding control strategies which, for instance, give preference to rewrite
systems where the number of non-joinable critical pairs is minimal.

Exploiting this feature, we use maximal completion to guide equational proof search.
More precisely, we investigate how the addition of a partial model R (and a reduction order
to prove it terminating) to unit equality problems from TPTP influences the behavior of
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provers on these problems. When restricting to reduction orders which are total on ground
terms, there always exists a ground complete system extending R, hence completeness is not
compromised. Experiments with the theorem prover SPASS show that supplying complete
systems for subtheories is indeed beneficial, though adding the respective reduction order
has more effect than the additional rewrite rules.
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