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Abstract
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Reducibilities such as many-one, Turing or polynomial-time reducibility have been an
extraordinarily important tool in theoretical computer science from its very beginning. In
recent years these reducibilites have been transferred to the continuous setting, where they
allow to classify computational problems on real numbers and other (continuous) data types.

On the one hand, Klaus Weihrauch’s school of computable analysis and several further
researchers have studied a concept of reducibility that can be seen as an analogue of many-one
reducibility for functions on such data. The resulting structure is a lattice that yields a
refinement of the Borel hierarchy and embeds the Medvedev lattice. Theorems of for-all-exists
form can be easily classified in this structure.
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On the other hand, Stephen Cook and Akitoshi Kawamura have independently introduced
a polynomial-time analogue of Weihrauch’s reducibility, which has been used to classify the
computational complexity of problems on real numbers and other objects. The resulting
theory can be seen as a uniform version of the complexity theory on real numbers as developed
by Ker-I Ko and Harvey Friedman.

The classification results obtained with Weihrauch reducibility are in striking correspond-
ence to results in reverse mathematics. This field was initiated by Harvey Friedman and
Stephen Simpson and its goal is to study which comprehension axioms are needed in order
to prove certain theorems in second-order arithmetic. The results obtained so far indicate
that Weihrauch reducibility leads to a finer uniform structure that is yet in basic agreement
with the non-uniform results of reverse mathematics, despite some subtle differences.

Likewise one could expect relations between weak complexity theoretic versions of arith-
metic as studied by Fernando Ferreira et al., on the one hand, and the polynomial-analogue
of Weihrauch reducibility studied by Cook, Kawamura et al., on the other hand.

While the close relations between all these approaches are obvious, the exact situation
has not yet been fully understood. One goal of our seminar was to bring researchers from
the respective communities together in order to discuss the relations between these research
topics and to create a common forum for future interactions.

We believe that this seminar has worked extraordinarily well. We had an inspiring meeting
with many excellent presentations of hot new results and innovative work in progress, centred
around the core topic of our seminar. In an Open Problem Session many challenging current
research questions have been addressed and several of them have been solved either during
the seminar or soon afterwards, which underlines the unusually productive atmosphere of
this meeting.

A bibliography that we have compiled during the seminar witnesses the substantial
amount of research that has already been completed on this hot new research topic up to
today.

This report includes abstracts of many talks that were presented during the seminar, it
includes a list of some of the open problems that were discussed, as well as the bibliography.

Altogether, this report reflects the extraordinary success of our seminar and we would
like to use this opportunity to thank all participants for their valuable contributions and the
Dagstuhl staff for their excellent support!



Vasco Brattka, Akitoshi Kawamura, Alberto Marcone, and Arno Pauly 79

2 Table of Contents

Executive Summary
Vasco Brattka, Akitoshi Kawamura, Alberto Marcone, and Arno Pauly . . . . . . . 77

Overview of Talks

Preliminary investigations into Eilenberg-Moore algebras arising in descriptive set
theory
Matthew de Brecht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

The mathematics and metamathematics of weak analysis
Fernando Ferreira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

The Weihrauch degrees of conditional distributions
Cameron Freer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Probabilistic computability and the Vitali Covering Theorem
Guido Gherardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Topological Complexity and Topological Weihrauch Degrees
Peter Hertling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Reverse Mathematics and Computability-Theoretic Reduction
Denis R. Hirschfeldt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Formalized reducibility
Jeffry L. Hirst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Universality, optimality, and randomness deficiency
Rupert Hölzl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Constructive reverse mathematics: an introduction
Hajime Ishihara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Decomposing Borel functions and generalized Turing degree theory
Takayuki Kihara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Convergence Theorems in Mathematics: Reverse Mathematics and Weihrauch
degrees versus Proof Mining
Ulrich Kohlenbach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

On the Uniform Computational Content of the Baire Category Theorem
Alexander P Kreuzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

From Well-Quasi-Orders to Noetherian Spaces: Reverse Mathematics results and
Weihrauch lattice questions
Alberto Marcone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Separation of randomnes notions in Weihrauch degrees
Kenshi Miyabe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

On the existence of a connected component of a graph
Carl Mummert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Closed choice and ATR
Arno Pauly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

On Weihrauch Degrees of k-Partitions of the Baire Space
Victor Selivanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

15392



80 15392 – Measuring the Complexity of Computational Content

A simple conservation proof for ADS
Keita Yokoyama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Evaluating separations in the Weihrauch lattice
Kazuto Yoshimura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Hyper-degrees of 2nd-order polynomial-time reductions
Martin Ziegler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography on Weihrauch Complexity . . . . . . . . . . . . . . . . . . . . . . . 99

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Vasco Brattka, Akitoshi Kawamura, Alberto Marcone, and Arno Pauly 81

3 Overview of Talks

3.1 Preliminary investigations into Eilenberg-Moore algebras arising in
descriptive set theory

Matthew de Brecht (NICT – Osaka, JP)

License Creative Commons BY 3.0 Unported license
© Matthew de Brecht

Recently we proposed an abstract notion of a “jump-operator” to unify characterizations of
limit-computability and other topological and recursion-theoretic complexity classes given by
V. Brattka, M. Ziegler, and others. These operators determine functors on the category of
(Baire-) represented spaces, are closely related to (strong) Weihrauch reducibility, and can
be used to represent the major complexity hierarchies in descriptive set theory. In particular,
sets of a given level of the Borel hierarchy correspond to realizable maps into particular
“jumps” of the Sierpinski-space.

In a different context, P. Taylor has been developing a re-axiomatization of topology
inspired by M. Stone’s celebrated duality theorem between topology and algebra. Within this
paradigm, P. Taylor showed that many important concepts from topology can be described
using the exponential object of maps into an object playing the role of the Sierpinski-space. In
particular, fundamental aspects of Stone duality can be expressed in terms of Eilenberg-Moore
algebras of a monad defined using the Sierpinski-space object. The resulting theory is quite
general, and much can be expressed with very little assumptions on the Sierpinski-space
object.

In this talk, we present preliminary investigations into interpreting some parts of P.
Taylor’s theory using “jumps” of the Sierpinski-space as the basic Sierpinski-space object,
and look at some examples of the resulting Eilenberg-Moore algebras. As a case study, we
make some connections with the Jayne-Rogers theorem by applying recent results on that
theorem by A. Pauly and myself.

This work was supported by JSPS Core-to-Core Program, A. Advanced Research Networks
and by JSPS KAKENHI Grant Number 15K15940.

3.2 The mathematics and metamathematics of weak analysis
Fernando Ferreira (University of Lisboa, PT)

License Creative Commons BY 3.0 Unported license
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In this survey talk, we start by remarking that it is well-known that the provably total
functions of the base theory RCA0 of reverse mathematics are the primitive recursive functions.
We show how to set up a similar theory (called BTFA, an acronym for ‘base theory for
feasible analysis’) whose provably total functions are (in an appropriate sense) the polytime
computable functions. As with RCA0, one can add to this theory weak König’s lemma
without proving new Π0

2-consequences. We draw attention to the pivotal rôle of the bounded
collection scheme in defining BTFA and in the proof of the above conservation result, and
also to some differences with the usual setting of reverse mathematics (weak König’s lemma
can be formulated in BTFA not only for set trees but, more generally, for trees defined by
bounded formulas).

15392

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


82 15392 – Measuring the Complexity of Computational Content

We describe how to introduce the real numbers in the theory BTFA. Continuous functions
can also be introduced, following the usual blueprint of reverse mathematics. The intermediate
value theorem can be proved and, in particular, the real numbers form a real closed ordered
field (but are more than just that). We discuss the rôle of (several forms of) weak König’s
lemma in the setting of BTFA in relation to the Heine-Borel theorem, the uniform continuity
theorem and the attainament of maximum for continuous real functions defined on a closed
bounded interval.

We also briefly describe two other theories of weak analysis: one related to Vaillant’s class
#P of counting functions and the other related to polyspace computability. We show how to
introduce Riemann integration in the former theory and argue that, in a sense (namely, for
continuous functions defined à la Simpson with a modulus of uniform continuity) this is the
weaker theory in which integration can be done.

References
1 F. Ferreira, A feasible theory for analysis. The Journal of Symbolic Logic 59, 1001–1011

(1994).
2 A. Fernandes & F. Ferreira, Groundwork for weak analysis. The Journal of Symbolic Logic

67, 557–578 (2002).
3 A. Fernandes & F. Ferreira, Basic applications of weak König’s lemma in feasible analysis.

In: Reverse Mathematics 2001, S. Simpson (editor), Association for Symbolic Logic / A K
Peters 2005, 175–188.

4 F. Ferreira & Gilda Ferreira, Counting as integration in feasible analysis. Mathematical
Logic Quarterly 52, 315–320 (2006).

5 A. Fernandes, F. Ferreira & G. Ferreira, Techniques in weak analysis for conservation results.
In: New Studies in Weak Arithmetics, P. Cégielski, Ch. Cornaros and C. Dimitracopoulos
(eds.), CSLI Publications (Stanford) and Presses Universitaires (Paris 12) 2013, 115–147.

6 F. Ferreira & G. Ferreira, The Riemann integral in weak systems of analysis. Journal of
Universal Computer Science 14, 908–937 (2008).

3.3 The Weihrauch degrees of conditional distributions
Cameron Freer (MIT – Cambridge, US)
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Joint work of Ackerman, Nathanael L.; Freer, Cameron; Roy, Daniel
Main reference N.L. Ackerman, C. Freer, D. Roy, “On computability and disintegration,” arXiv:1509.02992v1

[math.LO], 2015.
URL http://arxiv.org/abs/1509.02992v1

We show that the disintegration operator on a complete separable metric space along a
projection map, restricted to measures having a unique continuous disintegration, is strongly
Weihrauch equivalent to the limit operator Lim. When a measure does not have a unique
continuous disintegration, we may still obtain a disintegration when some basis of continuity
sets has the Vitali covering property with respect to the measure; the disintegration, however,
may depend on the choice of sets. We show that, when the basis is computable, the resulting
disintegration is strongly Weihrauch reducible to Lim, and further exhibit a single distribution
realizing this upper bound.
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3.4 Probabilistic computability and the Vitali Covering Theorem
Guido Gherardi (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Brattka, Vasco; Gherardi, Guido; Hölzl, Rupert

Our recent work [3] has developed our investigation on probabilistic and Las Vegas comput-
ability for sequences of infinite length, already introduced and studied in [1] and [2].

Las Vegas computable (multi-valued) functions are those (multi-valued) functions on
represented spaces that can be computed with positive success probability by non determ-
inistic TTE Turing machines. Such devices constitute a more powerful variation of TTE
Turing machines: they are allowed to integrate the information contained in the input by
accessing auxiliary information contained in a randomly selected binary string (“oracle”).
If such randomly accessed information is useful to solve the task, then a correct output
is produced. Otherwise, after finitely many steps, the machine recognizes the failure and
outputs in fact a failure message. If a (multi-valued) function f :⊆ X ⇒ Y over represented
spaces can be computed by a non deterministic TTE Turing machine under the condition
that for every possible input the set of successful oracles has positive measure in the Cantor
space, then f is said to be Las Vegas computable.

We also consider functions that can be simulated on non deterministic Turing machines
that replace the oracle space 2N by N× 2N. In reality, such functions can also be computed
by non deterministic Turing machines that maintain 2N as oracle space but that are allowed
to do finitely many corrections on the output tape. For this reason we call such functions
Las Vegas computable with finitely many mind changes. This new class of functions extends
the previous one, and both classes are contained in the wider class of probabilistic functions,
that is, the class of those functions computed by selecting the Baire space NN as oracle space
and without demanding for failure messages in case of unsuccess.

As a very significant study case we have investigated the classical Vitali covering theorem:
every sequence I of open intervals that Vitali covers a Lebesgue measurable subset A ⊆ [0, 1]
(i.e., I is such that every point of A is contained in arbitrarily small elements of I) includes
a countable sequence J eliminating A (i.e., the elements of J are pairwise disjoint and
cover A up to measure 0). Several classically equivalent versions of the statement are of
course possible. We have analyzed three natural versions for A := [0, 1] that we are going
to formulate after having introduced the following terminology. For every sequence of open
intervals I, a point x is captured by I if it is contained in elements of I of arbitrarily small
diameter. Moreover I is called saturated if every point covered by some element in I is even
captured by I (therefore, every Vitaly cover is a saturated sequence). We have then the
following versions of the theorem:
1. For every Vitali cover I of [0, 1] there exists a countable subsequence J of I that eliminates

[0, 1].
2. For every saturated sequence I of open intervals that does not admit a countable

subsequence eliminating [0, 1] there exists a point x ∈ [0, 1] that is not covered by I.
3. For every sequence I of open intervals that does not admit a countable subsequence

eliminating [0, 1] there exists a point x ∈ [0, 1] that is not captured by I.

These three classically equivalent versions define three different operators defined on Int,
the set of all sequences of open rational intervals in R:
1. VCT0 :⊆ Int⇒ Int with

VCT0(I) := {J : J is a countable subsequence of I eliminating [0, 1]}

for I a Vitali cover of [0, 1];

15392

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


84 15392 – Measuring the Complexity of Computational Content

2. VCT1 :⊆ Int⇒ [0, 1] with

VCT1(I) := {x ∈ [0, 1] : x is not covered by I}

for I saturated with no countable subsequence eliminating [0, 1];
3. VCT2 :⊆ Int⇒ [0, 1] with

VCT2(I) := {x ∈ [0, 1] : x is not captured by I}

for I with no countable subsequence eliminating [0, 1].

It turns out that these operators are computationally very significant, in particular to
characterize the notion of Las Vegas computability. In fact the following theorems hold:

I Theorem 1. VCT0 is computable.

I Theorem 2. VCT1 is Weihrauch complete with respect to the class of Las Vegas computable
functions.

I Theorem 3. VCT2 is Weihrauch complete with respect to the class of Las Vegas computable
functions with finitely many mind changes.

Theorem 2 is proved by showing that VCT1 ≡W PC[0,1], where PC[0,1] is the operator
selecting points from closed subsets of [0, 1] of positive Lebesgue measure. It was indeed
proved in [2] that this operator is Weihrauch complete with respect to the class of Las Vegas
computable functions. Analogously, Theorem 3 is proved by showing that VCT2 ≡W PCR,
where PCR is the extension of the previous positive choice operator over [0, 1] to the whole
real line (one direction of the equivalence has been proved by Arno Pauly).

We point out that the Vitali Covering Theorem has been proved to be equivalent
to the principle WWKL0 in Reverse Mathematics ([4]). In fact, in computable anlysis
WWKL ≡W PC[0,1] holds, where WWKL is the natural operational interpretation of the
proof theoretic principle WWKL0: every infinite binary tree of positive measure contains an
infinite path. Nevertheless the situation in our framework is, as we have seen, more finely
structured and at the same time particularly interesting, since the same theorem can be used
to characterize three important different computational classes.

References
1 Vasco Brattka, Guido Gherardi, Rupert Hölzl. Las Vegas computability and algorithmic

randomness. STACS 2015. Dagstuhl Publishing. 130–142. 2015
2 Vasco Brattka, Guido Gherardi, Rupert Hölzl. Probabilistic computability and choice. In-

formation and Computation. 242:249–286. 2015
3 Vasco Brattka, Guido Gherardi, Rupert Hölzl, Arno Pauly: Vitali Covering Theorem and

Las Vegas Computability. Unpublished notes.
4 Stephen Simpson: Subsystems of Second Order Arithmetic. Springer Verlag. 2009

3.5 Topological Complexity and Topological Weihrauch Degrees
Peter Hertling (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
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We describe the relation between various ways for measuring the topological complexity
of computation problems: either by counting the number of comparison nodes that a
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computation tree for the problem needs to have, or by the level of discontinuity of the
problem or by the topological Weihrauch degree of the problem. The hierarchies defined
via continuous Weihrauch reductions refine the hierarchy defined by the level. Examples
from algebraic complexity theory, from information-based complexity and from algebraic
topology are presented. Furthermore, we show that an initial segment of the topological
Weihrauch degrees of computation problems given by relations with finite discrete range can
be described by classes of labeled forests under suitable reducibility relations on the class of
labeled forests.

3.6 Reverse Mathematics and Computability-Theoretic Reduction
Denis R. Hirschfeldt (University of Chicago, US)

License Creative Commons BY 3.0 Unported license
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Reverse mathematics is a research program that aims to calibrate the strength of theorems of
ordinary mathematics in the context of subsystems of second-order arithmetic. Typically, one
performs this calibration over the weak base theory RCA0, which roughly corresponds to the
level of computable mathematics. This practice has been quite successful in many respects,
but its very success has led to a desire for more fine-grained tools than implication over
RCA0. This talk will introduce a few notions of computability-theoretic reduction between
principles of a certain form, one of which is equivalent to Weihrauch reducibility.

3.7 Formalized reducibility
Jeffry L. Hirst (Appalachian State University – Boone, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Hirst, Jeffry L.; Mummert, Carl; Gura, Kirill
Main reference K. Gura, J. L. Hirst, C. Mummert, “On the existence of a connected component of a graph,”

Computability, 4(2):103–117, 2015.
URL http://dx.doi.org/10.3233/COM-150039

Some forms of reduciblity can be formalized in higher order reverse mathematics, as axiomat-
ized by Professor Kohlenbach [1]. Proving strong Weihrauch reductions in the higher order
reverse mathematics setting yields both the usual reduction results and associated sequential
reverse mathematics results as easy corollaries.

Several natural questions arise from considering these formal proofs. For what portions
of type-2 constuctable analysis would this sort of formalization be fruitful? What is the
comparative logical strength of the various functional existence axioms generated in this
way? What foundational insights can be gained here? What about other reducibilities?

References
1 Ulrich Kohlenbach, Higher order reverse mathematics In: Reverse mathematics 2001, Lec-

ture Notes in Logic, vol. 21, Assoc. Symbol. Logic, La Jolla, CA, (2005) 281–295.

15392

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.3233/COM-150039
http://dx.doi.org/10.3233/COM-150039
http://dx.doi.org/10.3233/COM-150039


86 15392 – Measuring the Complexity of Computational Content

3.8 Universality, optimality, and randomness deficiency
Rupert Hölzl (Universität Heidelberg, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Hölzl, Rupert; Paul Shafer
Main reference R. Hölzl, P. Shafer, “Universality, optimality, and randomness deficiency,” Annals of Pure and

Applied Logic, 166(10):1049–1069, 2015.
URL http://dx.doi.org/10.1016/j.apal.2015.05.006

A Martin-Löf test U is universal if it captures all non-Martin-Löf random sequences, and it
is optimal if for every Martin-Löf test V there is a constant c such that for all n the set Vn+c
is contained Un.

We study the computational differences between universal and optimal Martin-Löf tests
as well as the effects that these differences have on both the notion of layerwise computability
and the Weihrauch degree of LAY, the function that produces a bound for a given Martin-Löf
random sequence’s randomness deficiency. We prove several robustness results concerning
the Weihrauch degree of LAY. Along similar lines we also study the principle RD, a variant
of LAY outputting the precise randomness deficiency of sequences instead of only an upper
bound as LAY.

References
1 Rupert Hölzl, Paul Shafer. Universality, optimality, and randomness deficiency. Annals of

Pure and Applied Logic, 166(10):1049–1069, Elsevier, 2015.

3.9 Constructive reverse mathematics: an introduction
Hajime Ishihara (JAIST – Ishikawa, JP)
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Main reference H. Ishihara, “Constructive reverse mathematics: compactness properties,” in L. Crosilla, P.
Schuster (eds.), “From Sets and Types to Analysis and Topology,” Oxford Logic Guides, Vol. 48,
pp. 245–267, Oxford University Press, 2005.

URL global.oup.com/uk/isbn/0-19-856651-4

A mathematical theory consists of axioms describing mathematical objects in the theory, and
logic being used to derive theorems from the axioms.

Intuitionistic logic is obtained from minimal logic by adding the intuitionistic absurdity rule
(ex falso quodlibet), and classical logic is obtained from intuitionistic logic by strengthening
the absurdity rule to the classical absurdity rule (reductio ad absurdum).

Intuitionistic mathematics has axioms: the weak continuity for numbers (WCN) and
the fan theorem (FAN), and constructive recursive mathematics has axioms: extended
Church’s thesis (ECT) and Markov’s principle (MP). A common consequence of intuitionistic
mathematics and constructive recursive mathematics is the Kreisel-Lacombe-Shoenfield-
Tsejtin theorem (KLST) which is inconsistent with classical mathematics:

Every mapping from a complete separable metric space into a metric space is continu-
ous.

The Friedman-Simpson-program (classical reverse mathematics) [2] is a formal mathem-
atics using classical logic with a very weak set existence axiom. Its main question is “Which
set existence axioms are needed to prove the theorems of ordinary mathematics?”, and many
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classical theorems have been classified by set existence axioms of various strengths. Since
classical reverse mathematics is formalized with classical logic, we cannot classify theorems in
intuitionistic mathematics nor in constructive recursive mathematics which are inconsistent
with classical mathematics such as KLST.

The purpose of constructive reverse mathematics [1] is to classify various theorems in
intuitionistic, constructive recursive and classical mathematics by logical principles, function
existence axioms and their combinations.
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3.10 Decomposing Borel functions and generalized Turing degree
theory
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The Jayne-Rogers Theorem states that a function from an absolutely Souslin-F set into
a separable metrizable space is first-level Borel measurable (that is, the preimage of each
Fσ set under the function is again Fσ) if and only if it is decomposable into countably
many continuous functions with ∆0

2 domains. Recently, Gregoriades, K., and Ng [1, 2]
used the Louveau separation theorem and the Shore-Slaman join theorem to show that
if the preimage of a Σ0

α set under a function from an analytic space into a Polish space
is again Σ0

β+1 then the function is decomposable into countably many functions each of
which is Σ0

γ+1-measurable for some γ with γ + α ≤ β. As shown by K. and Pauly [3], by
combining other computability-theoretic methods, this theorem can be used to construct a
family of continuum many infinite dimensional Cantor manifolds with property C in the sense
of Haver/Addis-Gresham whose Borel structures at an arbitrary finite rank are mutually
non-isomorphic.

Now we discuss possible extensions of this decomposition theorem of Borel functions.
Is there a generalization of the theorem in higher measurabillity levels such as Nikodym’s
hierarchy of Selivanovskii’s C-sets, Kolmogorov’s R-sets and beyond? Is there a generalization
in a wider category of topological spaces? We mainly focus on the latter problem, and give a
few results on separation axioms and quasi-minimal enumeration degrees.
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3.11 Convergence Theorems in Mathematics: Reverse Mathematics
and Weihrauch degrees versus Proof Mining

Ulrich Kohlenbach (TU Darmstadt, DE)
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We discuss the issue of how to formulate the computational content of convergence statements
and compare the information provided by reverse mathematics, Weihrauch degrees and proof
mining.
‘Proof Mining’ emerged as a systematic program during the last two decades as a new
applied form of proof theory and has successfully been applied to a number of areas of core
mathematics (see [3] for a book treatment of this paradigm covering the development up
to 2008). This program has its roots in Georg Kreisel’s pioneering ideas of ‘unwinding of
proofs’ going back to the 1950’s who asked for a ‘shift of emphasis’ in proof theory away from
issues of mere consistency of mathematical theories (‘Hilbert’s program’) to the question
‘What more do we know if we have proved a theorem by restricted means than if we merely
know that it is true?’ Proof Mining is concerned with the extraction of hidden finitary and
combinatorial content from proofs that make use of infinitary noneffective principles. The
main logical tools for this are so-called proof interpretations. Logical metatheorems based on
such interpretations have been applied with particular success in the context of nonlinear
analysis including fixed point theory (e.g. [8]), ergodic theory (e.g. [4, 11]), continuous
optimization (e.g. [9, 5] and abstract Cauchy problems ([6]). The combinatorial content can
manifest itself both in explicit effective bounds as well as in the form of uniformity results.
In this talk we focus on convergence theorems. In many cases one can show that a computable
rate of convergence cannot exist (see e.g. [12]). In terms of (intuitionistic) reverse mathematics
this usually corresponds to the fact that the Cauchy statement for the sequence (xn) at hand
implies the law-of-excluded-middle-principle for Σ0

1-formulas (Σ0
1-LEM which is also called

LPO, see [16, 10]) and that the existence of a limit requires arithmetical comprehension ACA.
In terms of Weihrauch degrees one often has, corresponding to this, that lim ≡W lim(xn)
(see [12]). We show that Proof Mining provides more detailed information on noneffective
convergence statements by extracting explicit and highly uniform subrecursive bounds on
the so-called metastable (in the sense of Tao [14, 15]) reformulation of the Cauchy property.
These bounds also allow for a detailed analysis of the convergence statements in terms of
the algorithmic learnability of a rate of convergence which under certain conditions may
result in oscillation bounds (see [10, 2]). In some cases this can be converted into full rates
of convergence. We exemplify this with strong convergence results that are based on Fejér
monotonicity of sequences defined by suitable iterations of nonlinear functions ([9]). We give
applications of this in the context of the proximal point algorithm in Hilbert spaces ([9])
and to recent results ([1]) of convex feasibility problems in CAT(κ)-spaces ([5]). We also
discuss a recent asymptotic regularity result of a general alternated iteration procedure in
CAT(0)-spaces which applies to the resolvents of lower semi-continuous convex functions
([1]). From the prima facie highly noneffective convergence proof in [1] a simple exponential
rate of convergence could be extracted using the logical machinery ([13]). In all these cases
already the proof of the Cauchy property prima facie made use of ACA which, however, gets
eliminated in the course of the extraction procedure.
We also briefly mention an explicit bound extracted recently in the context of nonlinear
semigroups from a proof based on the weak (‘binary’) König’s lemma WKL ([7]).
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3.12 On the Uniform Computational Content of the Baire Category
Theorem

Alexander P Kreuzer (National University of Singapore, SG)
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We study the uniform computational content of different versions of the Baire Category
Theorem in the Weihrauch lattice. The Baire Category Theorem can be seen as a pigeonhole
principle that states that a complete (i.e., “large”) metric space cannot be decomposed into
countably many nowhere dense (i.e., “small”) pieces. The Baire Category Theorem is an
illuminating example of a theorem that can be used to demonstrate that one classical theorem
can have several different computational interpretations. For one, we distinguish two different
logical versions of the theorem, where one can be seen as the contrapositive form of the other
one. The first version aims to find an uncovered point in the space, given a sequence of
nowhere dense closed sets. The second version aims to find the index of a closed set that is
somewhere dense, given a sequence of closed sets that cover the space. Even though the two
statements behind these versions are equivalent to each other in classical logic, they are not
equivalent in intuitionistic logic and likewise they exhibit different computational behavior
in the Weihrauch lattice. Besides this logical distinction, we also consider different ways how
the sequence of closed sets is “given”. Essentially, we can distinguish between positive and
negative information on closed sets. We discuss all the four resulting versions of the Baire
Category Theorem. Somewhat surprisingly it turns out that the difference in providing the
input information can also be expressed with the jump operation. Finally, we also relate the
Baire Category Theorem to notions of genericity and computably comeager sets.

3.13 From Well-Quasi-Orders to Noetherian Spaces: Reverse
Mathematics results and Weihrauch lattice questions

Alberto Marcone (University of Udine, IT)
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We study some theorems by Goubalt-Larrecq from the viewpoint of reverse mathematics.
These theorems deal with the relationship between well-quasi-orders and Noetherian spaces.
The main result is the following:

I Theorem 1 (RCA0). The following are equivalent:
1. ACA0;
2. if Q is wqo then A(P[f (Q)) is Noetherian;
3. if Q is wqo then U(P[f (Q)) is Noetherian;
4. if Q is wqo then U(P]f (Q)) is Noetherian;
5. if Q is wqo then U(P[(Q)) is Noetherian;
6. if Q is wqo then U(P](Q)) is Noetherian.
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These statements are of the form:

∀X(∀Z Φ(X,Z) =⇒ ∀Y Ψ(X,Y ))

with Φ and Ψ arithmetical (because both “Q is wqo” and “U(Q) is Noetherian” are Π1
1).

Thus, even if they are Π1
2, they do not fit nicely in the problem/solution pattern usually used

to translate Π1
2 statements into multi-valued functions analyzed in the Weihrauch lattice

setting.
We suggest to rewrite

∀X(∀Z Φ(X,Z) =⇒ ∀Y Ψ(X,Y ))

as

∀X ∀Y (¬Ψ(X,Y ) =⇒ ∃Z ¬Φ(X,Z)).

Now a problem is a pair consisting of a quasi-order Q and a witness to the fact that U(P](Q))
is not Noetherian. Its solutions are the sequences witnessing that Q is not wqo.

In fact the proofs of both directions of the reverse mathematics results actually work with

if U(P](Q)) is not Noetherian then Q is not wqo

so the above translation in problem/solution form is quite faithful.

3.14 Separation of randomnes notions in Weihrauch degrees
Kenshi Miyabe (Meiji University – Kawasaki, JP)
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We consider randomness notions in the Weihrauch degrees. Let WR, SR, CR, MLR, W2R,
DiffR, and 2R be the classes of Kurtz random sets, Schnorr random sets, computably random
sets, ML-random sets, weakly 2-random sets, difference random sets, and 2-random sets,
respectively. These notions naturally induce operations in the Weihrauch degrees, that we
denote by the same notations. In particular, MLR has been studied in the literature. Here,
we only consider the usual Turing relativization.

We have the following reductions:

WR <W SR ≤W CR <W MLR <W W2R <W 2R.

The strictness of the inequalities above can be proved by looking at hyperimmune degrees,
high degrees, and minimal degrees.

In contrast, we need to make use of uniformity to prove the separation between MLR
and DiffR.

Whether the Weihrauch degrees of SR and CR can be separated remains an open question.
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3.15 On the existence of a connected component of a graph
Carl Mummert (Marshall University – Huntington, US)

License Creative Commons BY 3.0 Unported license
© Carl Mummert

Joint work of Gura, Kirill; Hirst, Jeffry L.; Mummert, Carl
Main reference K. Gura, J. L. Hirst, C. Mummert, “On the existence of a connected component of a graph,”

Computability, 4(2):103–17, 2015.
URL http://dx.doi.org/10.3233/COM-150039

We study the reverse mathematics and computable analysis properties of countable graph
theory. We focus on two problems. The first is to construct a single connected component
of a countable graph, while the second is to decompose a countable graph into connected
components. We show that each of these problems is strongly Weihrauch equivalent to its
parallelized form and to the parallelized form of LPO. We also study problems relating to
countable graphs in which each connected component is finite, and countable graphs with a
finite number of connected components.

3.16 Closed choice and ATR
Arno Pauly (University of Cambridge, GB)
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The concept of “iterating taking a limit over some countable ordinal” can be formalized as a
Weihrauch degree, and this Weihrauch degree is shown to be equivalent to UCNN (unique
choice on Baire space). UCNN is strictly below CNN (choice on Baire space), which is another
candidate for a Weihrauch degree corresponding to ATR0.

Looking at determinacy principles, in reverse math ∆0
1-determinacy on Cantor space,

∆0
0-determinacy on Baire space and Σ0

1-determinacy on Baire space are all equivalent to
ATR0. For Weihrauch degrees, the two former are equivalent to UCNN , whereas the latter is
at least as hard as CNN .

3.17 On Weihrauch Degrees of k-Partitions of the Baire Space
Victor Selivanov (A. P. Ershov Institute – Novosibirsk, RU)
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In [7] K. Weihrauch introduced some notions of reducibility for functions on topological
spaces turned out useful for understanding the non-computability and non-continuity of
decision problems in computable analysis and constructive mathematics. In particular, the
following three notions of reducibility between functions f, g : X → Y on topological spaces
were introduced: f ≤0 g (resp. f ≤1 g, resp. f ≤2 g) iff f = g ◦ H for some continuous
function H : X → X (resp. f = F ◦ g ◦ H for some continuous functions H : X → X,
resp. F : Y → Y , f(x) = F (x, g(H(x))) for some continuous functions H : X → X and
F : X × Y → Y ). In this way we obtain preorders (Y X ;≤i), i ≤ 2, on the set Y X of all
functions from X to Y .
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The notions are nontrivial even for the case of discrete spaces Y = k = {0, . . . , k−1} with
k < ω points (we call functions A : X → k k-partitions of X because they are in a natural
bijective correspondence with the partitions (A0, . . . , Ak−1) of X where Aj = f−1(j)). E.g.,
for k = 2 the relation ≤0 coincides with the classical Wadge reducibility [3].

In [1, 2] P. Hertling gave useful “combinatorial” characterizations of initial segments of the
degree structures under Weihrauch reducibilities on k-partitions of the Baire space N = ωω

whose components are finite boolean combinations of open sets. The Baire space is important
in this context because it is commonly used in computable analysis [8] for representing many
other spaces of interest. In particular, the structure (kN ;≤0) induces (via total admissible
representations) the fine hierarchies of k-partitions of quasi-Polish spaces discussed in [6].

In this work we attempt to extend the characterizations from [1, 2] to as large segments of
Weihrauch degrees of k-partitions as possible. In particular, for any countable ordinal α ≥ 2
we try to characterize the quotient-posets of the preorders ((∆0

α)k;≤i) for any i ≤ 2, where
(∆0

α)k is the class of k-partitions of N with components in ∆0
α. It is easy to see that (∆0

α)k
is an initial segment of (kN ;≤i) for each i ≤ 2, i.e. A ≤i B ∈ (∆0

α)k implies A ∈ (∆0
α)k.

By a forest we mean a poset without infinite chains in which every upper cone {y | x ≤ y}
is a chain. A k-forest is a triple (F ;≤, c) consisting of a forest (F ;≤) and a labeling c : F → k.
Let F̃k denote the class of countable k-forests without infinite chains. Note that we use tilde
in our notation in order to distinguish F̃k from the class Fk of finite k-forests considered in
a series of previous publications.

A 0-morphism (resp. 1-morphism, resp. 2-morphism) f : (P ;≤, c)→ (P ′;≤′, c′) between
k-forests is a monotone function f : (P ;≤)→ (P ′;≤′) satisfying c = c′ ◦ f (resp. satisfying
∀p, q ∈ P (c(p) 6= c(q) → c′(f(p)) 6= c′(f(q))), resp. satisfying ∀p, q ∈ P (p ≤ q ∧ c(p) 6=
c(q)→ c′(f(p)) 6= c′(f(q)))).

For i ≤ 2, the i-preorder on F̃k is defined as follows: (P,≤, c) ≤i (P ′,≤′, c′), if there is
an i-morphism from (P,≤, c) to (P ′,≤′, c′). Obviously, ≤0 implies ≤1 and ≤1 implies ≤2.

A basic result of this work is the following:

I Theorem 1. For all 2 ≤ k < ω and 0 ≤ i ≤ 2, the quotient-posets of (F̃k;≤i) and
((∆0

2)k;≤i) are isomorphic.

This results extends the mentioned characterizations from [1, 2]. For ≤0 the result was
in fact established in [4, 5]. Although for i = 1, 2 the isomorphism is induced by the same
function from F̃k to (∆0

α)k as in [4, 5], the proof requires some additional considerations. We
believe that the result may be extended to a characterization of ((∆0

α)k;≤i) for any α ≥ 3,
although the proof becomes technically much more involved. So far we succeeded with the
proof only for i = 0.
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3.18 A simple conservation proof for ADS
Keita Yokoyama (JAIST – Ishikawa, JP)
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It is known that the first-order part of infinite Ramsey’s theorem can be approximated by
a version of Paris/Harrington Principle. In this talk, I will give a simple proof of a partial
conservation result for ADS based on this idea.

3.19 Evaluating separations in the Weihrauch lattice
Kazuto Yoshimura (JAIST – Ishikawa, JP)
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This research aims to develop a method of evaluating separation results in the Weihrauch
lattice. Two multi-valued functions, or their degrees, are said to be separated if and only if
they are not Weihrauch equivalent, i.e. at least one direction of the mutual reducibilities
fails. A number of separation results are already established by existing researches, though,
the strengths of those separations have never been discussed.

Our proposal is to use a suitable ideal notion for evaluating the strengths of separations.
Say a non-empty downward closed subset of the pointed Weihrauch lattice is a stable ideal if
it is closed under the compositional product. Given a stable ideal I and two degrees F and
G, if we define F ≤I G by the existence of an I ∈ I for which F ≤W I · G · I, the relation
≤I turns out to be a preorder. We shall then ask an appropriate I, for separated degrees,
such that they are still separated with respect to ≤I . The strength of the separation will
approximately be evaluated by such an I. In what follows we list some concrete examples of
stable ideals.

The most primary example is given by continuous degrees. A continuous degree is
the degree of a multi-valued function having a continuous choice function. The class of
continuous degrees is indeed a stable ideal, and the induced partial order is characterized by
the continuous Weihrauch reducibility.

Next let us introduce an ideal which captures the rigidness of the hierarchy of LLPOn’s
[1]. A multi-valued function F is said to be properly discontinuous if its restriction to
{limαi, αi | i ∈ ω} does not have a continuous choice function for some converging sequence
{αi}α∈ω on dom(F ) whose limit is still in dom(F ), and to be improperly discontinuous
otherwise. All LLPOn’s and LPO are properly discontinuous. Accordingly a degree is
proper and improper in cases that its arbitrary representative is properly and improperly
discontinuous, respectively. The class L of improper pointed degrees turns out to be a stable
ideal while that of proper degrees is a filter of the Weihrauch lattice. If we say, given a
reduction F ≤W G, that G is rigidly separated from F in case G ≤W G/F, where (−/−) is the
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residual implication of the compositional product, then rigid separations never happen in
above LPO since LPO ≤ F,G implies G/F ∈ L; while the following hierarchy can be shown
via rigid separations.

· · · <L LLPOn+1 <L LLPOn <L · · · <L LLPO2 <L LPO

In particular LPO is the top with respect to ≤L. Hence the above earliest hierarchy found by
K. Weihrauch in 1990s has a remarkable rigidness, which, for example, the classifications of
closed choices (see [2]) do not have. We also remark to the fact that every improper degree
is ω-indiscriminative. Hence for instance ω-indiscriminativeness of the cohesiveness COH is
automatically derived from its implicational presentation COH ≡W WKL′/ lim [1].

For further variations of stable ideals, let us consider on analogs of the big five systems in
reverse mathematics [4]. As usual, we interpret a conditional Π1

2-formula, i.e. a formula of the
form ϕ ≡ ∀X.(ϕ0(X)→ ∃Y.ϕ1(X,Y )) where ϕ0 and ϕ1 are arithmetical, as the multi-valued
function α 7→ {β | (ω,Pow(ω)) |= ϕ0(α) ∧ ϕ1(α, β)}. If we say a multi-valued function F is
a uniformity when F

[
α
]
contains an α-computable point for every α ∈ dom(F ), and say

a degree is a uniformity degree when its arbitrary representative is a uniformity, then all
conditional Π1

2-theorems of RCA are interpreted as uniformities. Moreover the reducibility
≤U , where U is the stable ideal of pointed uniformity degrees, is characterized by computable
reducibility proposed in [3]. It would not go too far to say that this ideal U is the most
natural one among all thinkable analogs of RCA. Also etting U(WKL) and U(lim) be the
smallest stable ideals containing U ∪{WKL} and U ∪{lim}, respectively, we obtain the similar
soundness works for WKL and ACA. In particular U(lim) can be obtained as the downward
closure of {limi ·F | i ∈ ω,F ∈ U}. As expected, the three ideals U , U(WKL) and U(lim)
behaves as good steps for evaluating separation results.

It is very likely that natural analogs of ATR and Π1
1-CA can also be found, according

to the characterizations of their ω-models. However, on another front, most pre-known
separations in the Weihrauch lattice do not have the strengths of above ATR, and the above
three ideals suffice.

As future directions, we suggest the following three. Firstly it would be significant to
have a general result which enable us to convert a separation to a stronger separation;
namely a pair of a stable ideal I, probably one of the above listed examples, and a mapping
(F,G) 7→ (FI , GI) such that F 6≡W G implies FI 6≡I GI . Secondly the correctness of the
analogs for the big five systems should be concerned; in particular it is natural to ask if
the provability of a conditional Π1

2-sentence in RCA(0) is equivalent to the condition that
its interpretation is a uniformity in every model of RCA(0). The similar questions should
be asked for WKL(0), ACA(0) and possibly also for the rest two. Finally a deep result on
the relationship of the induced reducibility ≤U and the computable entailment (see [3]) is
strongly desirable. Such a result would show a formal connection of reverse mathematics
and the classification of Weihrauch degrees.
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3.20 Hyper-degrees of 2nd-order polynomial-time reductions
Martin Ziegler (KAIST – Daejeon, KR)
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Ko, Friedman, and Kawamura et al. have shown common operators in analysis to map
polynomial-time computable arguments to NP-hard ones, thus gauging their non-uniform
complexity. 2nd-order polynomial-time reductions compare the uniform computational
complexity of operators in analysis, that is, functionals on Baire space NN, respectively;
cmp. [2]. They (have to) grant more runtime on ‘long’ arguments, expressed by 2nd-order
polynomials, that is, terms P (n, µ) over +, ·, 1 and 1st and 2nd-order variables n ∈ N and
µ ∈ NN, respectively; cmp. Mehlhorn (1976) – but are criticized for permitting, on arguments
of exponential length, runtimes bounded by any constant-height exponential tower. We
suggest a refined analysis in terms of the hyperdegree of the 2nd-order polynomial bounds
according to the following

I Lemma 1. Let P denote a 2nd-order polynomial.
(a) For every integer d, P (n, n 7→ nd) is an ordinary integer polynomial.
(b) The (thus well-defined) mapping N 3 d 7→ DEG

(
P
)
(d) := deg

(
P (n, n 7→ nd)

)
is in turn

an integer polynomial in d.
(c) For every fixed ordinary polynomial µ it holds deg(P (n, µ)) = DEG

(
P
)
(degµ).

(d) It holds DEG
(
P (Q, ·)

)
= DEG(P ) ·DEG(Q).

(e) It holds DEG
(
P (·, Q)

)
= DEG

(
P
)(

DEG(Q)
)
.

(f) The integer deg
(

DEG(P )
)
coincides with the depth of P as defined in [1].

In particular 2nd-order polynomials of hyperdegree one are closed under composition. This
suggests to try to refine recent reductions [3, 6, 5].
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4 Open Problems

Question (Ackerman, Freer, Pauly, Roy). “Does currying give rise to an interesting
operator?”
Suppose f : X × Y → Z is such that for all x, the map f(x, · ) : Y → Z is continuous.
One could instead consider the “curried” version F : X → C(Y, Z), defined by x 7→ f(x, · ).
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Clearly f ≤W F . If Y = N then F ≤W f̂ . In general, can f 7→ F be seen as an interesting
operator? What can one say about this map in general?
Background: For continuous f , the currying map is computable; see [8, Prop. 3, part 2].
In probability theory and elsewhere, often both the curried and uncurried functions are
of interest; see, e.g., the discussion of disintegration and conditional distributions in [1,
Def. 2.1].
Question (Brattka). Does strong Weihrauch reducibility induce a lattice structure?
It is clear that the sum operation induces an infimum and that the coproduct, which
induces the supremum with respect to ordinary Weihrauch reducibility, does not yield
a supremum for strong Weihrauch reducibility. But currently it is not known whether
there is some other way to obtain a supremum for strong Weihrauch reducibility.
Question (Brattka). How do different combinations of the stable version of Ramsey’s
Theorem for pairs and the cohesiveness problem compare to Ramsey’s Theorem for pairs?
We have

SRT2
2 t COH ≤W SRT2

2 × COH ≤W SRT2
2 ∗ COH

and

SRT2
2 t COH ≤W RT2

2 ≤W SRT2
2 ∗ COH.

What else can be said?
In an upcoming paper initiated during the seminar, Damir Dzhafarov, Denis
Hirschfeldt and Ludovic Patey establish several negative results about some
of the remaining reductions.
Problem (Fernandes, Ferreira and Ferreira [2]) Define a notion of integration
within BTFA that works well for a sufficiently robust class of continuous functions (e.g., a
class that contains many analytical functions).
Conjecture (Fernandes, Ferreira and Ferreira [2]) Show that over BTFA (and
within the framework of [3]), Weierstrass approximation theorem is equivalent to the
totality of the exponential function.
Question (Fouché). Complexity of Fourier dimension: Write M+[0, 1] for the Radon
probability measures on the unit interval. An s-Fourier measure on the unit interval is a
Radon measure µ such that its Fourier transform satisfies

|µ̂(ξ)|2 ≤ 1
(1 + |ξ|)s ,

for all real ξ. Define
Fourm :⊆ A[0, 1]× [0, 1]⇒M+[0, 1]

by
µ ∈ Fourm(A, s)↔ µ is an s-Fourier measure and suppµ ⊆ A.

Determine the Weihrauch degree of Fourm.
Conjecture (Hölzl and Shafer [4]). There exist universal tests U and V such that

RDU 6≡sW RDV .

Question (Le Roux & Pauly [5]) Is there some k ∈ N such that XC[0,1] ?XC[0,1] ≤W
XCk[0,1]?
Here XC[0,1] is the restriction of closed choice on the unit interval to convex sets, i.e. in-
tervals. ? denotes the sequential composition of Weihrauch degrees.
After the seminar, this question has been answered in the negative by Takay-
uki Kihara.
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Question (Marcone) “What do the Weihrauch hierarchies look like once we go to very
high levels of reverse mathematics strength?”
So far the Weihrauch hierarchies have been used to obtain a finer picture of the relation-
ships between statements that are provable in ACA0. Yet the reverse mathematics picture
of the relationships between mathematical statements goes well beyond ACA0. Can we
use the Weihrauch hierarchies to obtain information about the relationships between
statements that are equivalent to ATR0 or to Π1

1-CA0? One could start by looking at
different forms of the perfect tree theorem.
Question (Pauly [7]) Is there some k ∈ N such that AoUC[0,1] ? AoUC[0,1] ≤W
AoUCk[0,1]?
Here AoUC[0,1] is the restriction of closed choice on the unit interval to sets that are
either the entire unit interval or singletons. ? denotes the sequential composition of
Weihrauch degrees.
After the seminar, this question has been answered in the negative by Takay-
uki Kihara.
Question (Yokoyama) For given a coloring P : [N]2 → 2, a grouping for P is an infinite
family of ω-large finite sets {F0 < F1 < . . . } such that

∀i1 < · · · < in ∃c < k ∀x1 ∈ Fi1 , . . . ,∀xn ∈ Fin P (x1, . . . , xn) = c

Now GP (grouping principle for ω-largeness) asserts that for any coloring P : [N]2 → 2,
there exists an infinite grouping for P . Then, what is the reverse mathematical strength
of GP? Trivially, it is a consequence of RT2

2.
Ludovic Patey answered this question as follows. He showed that GP does not
imply ADS, and it implies RRT2

2. Also, he showed that there exists an ω-model of
RCA0 + SGP with only low sets, where SGP is a grouping principle for stable colorings.
The second result give a good information to calibrate the proof theoretic strength of
RT2

2. See [6].
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