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Abstract
The vision-based autonomous driving and navigation of vehicles has a long history. In 2013,

Daimler succeeded autonomous driving on a public drive way. Today, the Curiosity mars rover
is sending video views from Mars to Earth. Computer vision plays a key role in advanced
driver assistance systems (ADAS) as well as in exploratory and service robotics. Continuing
topics of interest in computer vision are scene and environmental understanding using single-
and multiple-camera systems, which are fundamental techniques for autonomous driving, navig-
ation in unknown environments and remote visual exploration. Therefore, we strictly focuses on
mathematical, geometrical and computational aspects of autonomous vehicles and autonomous
vehicular technology which make use of computer vision and pattern recognition as the central
component for autonomous driving and navigation and remote exploration.

Seminar November 8–13, 2015 – http://www.dagstuhl.de/15461
1998 ACM Subject Classification I.2.9 Robotics, I.2.10 Vision and Scene Understanding, I.4.5

Reconstruction, I.4.6 Segmentation, I.4.8 Scene Analysis
Keywords and phrases Vision-based autonomous driving and navigation, Exploratory rovers,

Dynamic 3D scene understanding, Simultaneous localization and mapping, On-board al-
gorithms

Digital Object Identifier 10.4230/DagRep.5.11.36
Edited in cooperation with Akihiro Torii (Tokyo Institute of Technology, JP) and Hayato Itoh

(Chiba University, JP)

1 Executive Summary

Andrés Bruhn
Atsushi Imiya
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Computer vision plays a key role in advanced driver assistance systems (ADAS) as well as in
exploratory and service robotics. Visual odometry, trajectory planning for Mars exploratory
rovers and the recognition of scientific targets in images are examples of successful applications.
In addition, new computer vision theory focuses on supporting autonomous driving and
navigation as applications to unmanned aerial vehicles (UAVs) and underwater robots. From
the viewpoint of geometrical methods for autonomous driving, navigation and exploration,
the on-board calibration of multiple cameras, simultaneous localisation and mapping (SLAM)
in non-human-made environments and the processing of non-classical features are some of
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current problems. Furthermore, the adaptation of algorithms to long image sequences, image
pairs with large displacements and image sequences with changing illumination is desired
for robust navigation and exploration. Moreover, the extraction of non-verbal and graphical
information from environments to remote driver assistance is required.

Based on these wide range of theoretical interests from computer vision for new possibility
of practical applications of computer vision and robotics, 38 participants (excluding organisers)
attended from variety of countries: 4 from Australia, 3 from Austria, 3 from Canada, 1 from
Denmark, 11 from Germany, 1 from Greece, 1 from France, 3 from Japan, 4 from Spain, 2
from Sweden, 4 from Switzerland and 3 from the US.

The seminar was workshop style. The talks are 40 mins and 30 mins for young researchers
and for presenters in special sessions. The talks have been separated into sessions on aerial
vehicle vision, under water and space vision, map building, three-dimensional scene and
motion understanding as well as a dedicated session on robotics. In these tasks, various types
of autonomous systems such as autonomous aerial vehicles, under water robots, field and
space probes for remote exploration and autonomous driving cars were presented. Moreover,
applications of state-of-the-art computer vision techniques such as global optimization
methods, deep learning approaches as well as geometrical methods for scene reconstruction
and understanding were discussed. Finally, with Seminar 15462 a joint session on autonomous
driving with leading experts in the field was organised.

The working groups are focused on “Sensing,” “Interpretation and Map building” and
“Deep leaning.” Sensing requires fundamental methodologies in computer vision. Low-level
sensing is a traditional problem in computer vision. For applications of computer-vision al-
gorithms to autonomous vehicles and probes, reformulation of problems for various conditions
are required. Map building is a growing area including applications to autonomous robotics
and urban computer vision. Today, application to autonomous map generation involves
classical SLAM and large-scale reconstruction from indoor to urban sizes. Furthermore, for
SLAM on-board and on–line computation is required. Deep learning, which goes back its
origin to ’70s, is a fundamental tool for image pattern recognition and classification. Although
the method showed significant progress in image pattern recognition and discrimination,
for applications to spatial recognition and three-dimensional scene understanding, we need
detailed discussion and developments.

Through talks-and-discussion and working-group discussion, the seminar clarified that
for designing of platforms for visual interpretation and understanding of three-dimensional
world around the system, machine vision provides fundamental and essential methodologies.
There is the other methodology which uses computer vision as a sensing system for the
acquisition of geometrical data and analysis of motion around cars. For these visual servo
systems, computer vision is a part of the platform for intelligent visual servo system. The
former methodology is a promising one to provide a fundamental platform which is common
to both autonomous vehicles, which are desired for consumer intelligence, and probes, which
are used for remote exploration.
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3 Overview of Talks

35 talks have been categorised as follows.

Vision for Mapping, Reconstruction and SLAM
Hayko Riemenschneider Efficient Multi-view Semantic Segmentation
Michal Havlena Hyperpoints and Fine Vocabularies for Large-Scale Location

Recognition
Antonios Gasteratos Semantic Maps for High Level Robot Navigation
Daniel Cremers Dense and Direct Methods for 3D Reconstruction and Visual

SLAM
Vladyslav Usenko Direct SLAM Techniques for Vehicle Localization and Autonom-

ous Navigation
Akihiko Torii Large-scale visual place recognition and online 3D reconstruction
Yasutaka Furukawa Structured Indoor Modeling and/or Uncanny Valley for 3D Re-

construction
Torsten Sattler The Limits of Pose Estimation in Very Large Maps

Vision for Aerial, Space and Underwater Robotics
Friedrich Fraundorfer Drone Vision – Computer vision algorithms for drones
Davide Scaramuzza From Frames to Events: Vision for High-speed Robotics
Takashi Kubota Image based Navigation for Exploration Probe
Lazaros Nalpantidis Stereo Vision for Future Autonomous Space Exploration Robots
Ben Huber Planetary Robotic Vision Processing for NASA and ESA Rover

Missions
Rafael Garcia Underwater Vision: Robots that “see” beneath the surface

Vision for Scene Understanding
Jürgen Sturm Tracking and Mapping in Project Tango
Raquel Urtasun 3D Scene Understanding for Autonomous Driving
Andreas Geiger High-level Knowledge in Low-level Vision
Bernt Schiele Towards 3D Scene Understanding

Vision for Motion Analysis
Cédric Demonceaux Pose Estimation and 3D Segmentation using 3D Knowledge in

Dynamic Environments
Florian Becker Recursive Joint Estimation of Dense Scene Structure and Camera

Motion in an Automotive Scenario
Johannes Berger Second-Order Recursive Filtering on the Rigid-Motion Group

SE(3) Based on Nonlinear Observations from Monocular Videos
Michael Felsberg Learning to Drive
Mikael Persson Structure and Motion -Challenges and solutions for real time

geometric estimation from video
Reihard Koch Model-based Object and Deformation Tracking with Robust

Global Optimization
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Vision for Autonomous Driving and Robotics
Heiko Hirschmueller Visual-Inertial Navigation for Mobile Robots
Sven Behnke Semantic RGB-D Perception for Cognitive Robots
Darius Burschka Robust Coupling of Perception to Actuation in Dynamic Envir-

onments
Juan Andrade-Cetto Perception for Mobile Robotics
Niko Sünderhauf Deep Learning for Visual Place Recognition and Online 3D

Reconstruction
David Vázquez Bermudez Learning See in a Virtual World
José Alvaerz Real-world Semantic Segmentation
Steven Beauchemin Vehicular Instrumentation for the Study of Driver Intent and

Related Applications
Danil Prokhorov Toward Highly Intelligent Automobiles
Andres Wendel Realizing Self-Driving Car
Thomas Pock Efficient Block Optimization Methods for Computer Vision

4 Talks Abstracts

4.1 Real-world Semantic Segmentation
José M. Alvarez (NICTA – Canberra, AU)
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© José Alvarez

Semantic segmentation is a key low-level task to fully understand the environment of vehicle.
Ideal semantic segmentation algorithms have four desirable properties: fast, robust, accurate
and compact. Semantic segmentation methods must be fast to enable real-time high-level
reasoning; Robust to operate at any-time in any weather conditions; Accurate enough to
be reliable and, compact to facilitate functionalities in embedded platforms where power
and resources are relevant. In this talk we present our recent work towards fast, robust and
accurate semantic segmentation in embedded platforms.

4.2 Perception for Mobile Robotics
Juan Andrade-Cetto (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Juan Andrade-Cetto

Joint work of Andrade-Cetto, Juna; Andreasson, Henrik; Corominas, Andreu; Fleuret, Francois; Ila, Viorela;
Lippiello, Vincenzo; Moreno-Noguer, Françesc; Peñate-Sanchez, Adriàn; Porta, Josep M.; Sanfeliu,
Alberto; Teniente, Ernesto H.; Saarinen, Jari; Santamaria-Navarro, Ángel; Valencia, Rafael; Solá,
Joan; Vallvè, Joan; Villamizar, Michael

In this talk I addressed several challenges on perception for mobile robotics. First I overview
a pair of object detection and pose recognition algorithms that have the property of being
very fast to compute. The first exploits the bootstrapping of very simple features on a
boosting classifier. For the second one we propose the use of 3D annotated features. This
allows camera pose estimation from low quality monocular images of a previously learned
scene. Further in the talk I described our research on visual servoing for UAV manipulation
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and UAV odometry estimation using tight sensor data fusion. I then proceeded talking about
mapping for mobile robots, and in particular about using principled information theoretic
metrics to keep the map size tractable. These very same information metrics can also be used
for optimal navigation, exploration and optimal sensor placement as explained also in the
talk. I concluded the talk with the application of these research results for the autonomous
driving of trucks and heavy load AGVs in cargo container terminals.
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4.3 Vehicular Instrumentation for the Study of Driver Intent and
Related Applications

Steven S. Beauchemin (University of Western Ontario – London, CA)
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In this contribution we describe a vehicular instrumentation for the study of driver intent.
Our instrumented vehicle is capable of recording the 3D gaze of the driver and relating it
to the frontal depth map obtained with a stereo system in real-time, including the sum
of vehicular parameters actuator motion, speed, and other relevant driving parameters.
Additionally, we describe other real-time algorithms that are implemented in the vehicle,
such as a frontal vehicle recognition system, a free lane space estimation method, and a GPS
position-correcting technique using lane recognition as land marks.

4.4 Recursive Joint Estimation of Dense Scene Structure and Camera
Motion in an Automotive Scenario

Florian Becker (Sony – Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
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The optical flow induced by a camera moving through a static 3d scene contains valuable
information on the geometry. We present an approach to jointly estimating camera motion
and a depth map from real-life monocular image sequences which parametrize a flow field.
Temporal consistency is exploited in a recursive manner which allows to reduce the estimation
task to a series of two-frame problems complemented by an additional temporal smoothness
prior. Results for image sequences recorded in a real world traffic scenario are presented.

4.5 Semantic RGB-D Perception for Cognitive Robots
Sven Behnke (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
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Cognitive robots need to understand their surroundings not only in terms of geometry, but
they also need to categorize surfaces, detect objects, estimate their pose, etc. In the talk, I
will report on efficient methods to address these tasks, which are based on RGB-D sensors.
We learn semantic segmentation using random forests and aggregate the surface category in
3D by RGB-D SLAM. We use deep learning methods to categorize surfaces, to recognize
objects and to estimate their pose. Efficient RGB-D registration methods are the basis for
the manipulation of known objects. They have been extended to non-rigid registration, which
allows for transferring manipulation skills to novel objects.
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4.6 Second-Order Recursive Filtering on the Rigid-Motion Group
SE(3) Based on Nonlinear Observations from Monocular Videos

Johannes Berger (Universität Heidelberg, DE)

License Creative Commons BY 3.0 Unported license
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Joint camera motion and depth map estimation from observed scene features is a key task in
order to reconstruct 3D scene structure using low-cost monocular video sensors. Due to the
nonlinear measurement equations that connect ego-motion with the high-dimensional depth
map and optical flow, the task of stochastic state-space filtering is intractable.

After introducing the overall problem, the talk focuses on a novel second-order minimum
energy approximation that exploits the geometry of SE(3) and recursively estimates the state
based on a higher-order kinematic model and the nonlinear measurements. Experimental
results for synthetic and real sequences (e.g. KITTI benchmark) demonstrate that our
approach achieves the accuracy of modern visual odometry methods.

4.7 Robust Coupling of Perception to Actuation in Dynamic
Environments

Darius Burschka (TU München, DE)

License Creative Commons BY 3.0 Unported license
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I will present methods to represent the state of dynamic environments at a level that is least
sensitive to errors in calibration parameters of the sensors. The method is used for a fail-safe
implementation of instinctive behaviours on vehicles, like obstacle avoidance. The presented
method allows a monitoring of large areas around the vehicle, where a Cartesian representation
is not appropriate due to the with distance increasing error in the reconstruction of the
three-dimensional information. I will present also the first implementations of this system on
a car.

4.8 Direct and Dense Methods for 3D Reconstruction and Visual
SLAM

Daniel Cremers (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Daniel Cremers

Joint work of Cremers, Daniel; Engel, Jakob; Kerl, Christian; Oswald, Martin R; Stuckler, Jorg; Sturm, Jürgen;
Stuhmer, Jan; Usenko, Vladyslav

The reconstruction of the 3D world from images is among the central challenges in computer
vision. Having started in the 2000s, researchers have pioneered algorithms which can
reconstruct camera motion and sparse feature-points in real-time. In my talk, I will present
spatially dense methods for camera tracking and reconstruction. They do not require feature
point estimation, they exploit all available input data and they recover dense geometry rather
than sparse point clouds.
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4.9 Pose Estimation and 3D Segmentation using 3D Knowledge in
Dynamic Environments

Cédric Demonceaux (University of Bourgogne, FR)

License Creative Commons BY 3.0 Unported license
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When 2D and 3D cameras observe the same scene, their measurements are usually com-
plementary to each other for scene reconstruction and understanding. A classic example
includes 2D cameras capturing high quality texture information and 3D cameras providing
accurate location of the scene points. Fusing these complementary measurements has many
potential applications such as change detection, scene gaps filling, camera pose correction,
and visual odometry. In this talk, we show that the 3D localization of 2D cameras can
be improved knowing 3D structure of the scene. Thus, we develop two methods using 3D
information on the scene for camera pose estimation. The first one doesn’t require 3D feature
extraction and doesn’t need any geometric hypothesis but it converges in a local optimum.
The second one supposes that the scene is composed of planar patches and converges to
the global optimum. Then, this 3D information will be used conjointly with 2D images for
extracting and reconstructing the background and the dynamic objects of the scene.

4.10 Learning to Drive
Michael Felsberg (Linköping University, SE)

License Creative Commons BY 3.0 Unported license
© Michael Felsberg

Driving a car is a prototypical example for graded autonomy, where the human driver
and the assistance system co-operate. There are various legal, technological, and practical
reasons why the human driver is kept in the loop and should be able to override the system’s
decisions. However, the co-operation, and thus graded autonomy, should be more than just
taking over power of command. It is desirable that the assistance system seamlessly acquires
new capabilities during the driver’s manual intervention, in order to increase the level of
autonomy in subsequent operation. Thus, the task for the system is to use input, or precepts,
as observed by the human user and output, or actions, as provided by the human user to
extend the systems capabilities on the fly. We address this task in the present work and
propose a novel approach to online perception-action learning, which lifts human-machine
interaction clearly beyond current methods based on switching command. We evaluate our
approach on the problem of road following with a model RC-car on reconfigurable tracks
indoors, outdoors, and at night. The system’s capabilities are continuously extended by
interchangeably applying supervised learning (by demonstration), instantaneous reinforcement
learning, and unsupervised learning (self-reinforcement learning). The resulting autonomous
capabilities go beyond those of existing methods and of the human driver with respect to
speed, accuracy, and functionality.
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4.11 Drone Vision – Computer Vision Algorithms for Drones
Friedrich Fraundorfer (TU Graz, AT)

License Creative Commons BY 3.0 Unported license
© Friedrich Fraundorfer

Drone Vision – Computer Drones are small scale flying robots and it is predicted that
the drone market will see a major growth in the near future. Computer vision will play a
major role in controlling and developing autonomous drones. My proposal is to utilize tight
IMU-vision coupling for ego-motion estimation of drones. This will result in a new class of
fundamental algorithms for ego-motion estimation, being more robust and lots faster. IMU
measurements can be used to transform the complex estimation problems into a simpler
formulation of vision algorithms for drones.

4.12 Structured Indoor Modeling and/or Uncanny Valley for 3D
Reconstruction

Yasutaka Furukawa (Washington University – St. Louis, US)

License Creative Commons BY 3.0 Unported license
© Yasutaka Furukawa

Depending on how our discussion will go, I will give a talk on one of the following two topics
or a mix.

Structured indoor reconstruction. We propose a novel indoor scene reconstruction al-
gorithm. The approach produces a structured 3D model in a top-down manner. The
reconstruction algorithm is driven by a indoor structure grammar. The new model represent-
ation enables many new applications such as novel indoor scene visualization, inverse CAD,
floorplan generation, and tunable reconstruction.

Uncanny Valley for 3D Reconstruction. Accurate 3D reconstruction is usually the key
to high quality visualization applications. However, very often, improving reconstruction
accuracy degrades the quality of visualization. This issue is little known to researchers, yet
very important in practice.

4.13 Underwater Vision: Robots that “see” beneath the surface
Rafael Garcia (University of Girona, ES)

License Creative Commons BY 3.0 Unported license
© Rafael Garcia

Using vision underwater is a difficult endeavor due to the transmission properties of the
medium. Light is absorbed and scattered by the particles suspended in the water column,
producing degraded images with limited range, blurring, low contrast and weak colours,
among other effects. Moreover, artificial lighting tends to provide non-uniform illumination
and introduces shadows in the scene, generating a motion flow that does not obey the
dominant motion of the camera.
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However, with the adequate processing pipeline, vision can be a powerful tool for under-
water robots to explore the ocean.

In this talk we will explain how computer vision techniques can be adapted to the
underwater environment if we understand and deal with the different associated problems.
An approach to create accurate three-dimensional textured models of the seafloor will be
presented. The method de-hazes the images to improve signal-to-noise ratio, then generates
a dense cloud of 3D points and is able to compute a meshed surface being robust to common
defects in underwater imaging such as high percentage of outliers (due to light backscatter)
and point-cloud noise (due to the blurring of forward scattering).

4.14 Semantic Maps for High Level Robot Navigation
Antonios Gasteratos (Democritus University of Thrace – Xanthi, GR)

License Creative Commons BY 3.0 Unported license
© Antonios Gasteratos

In the near future domestic robots should be equipped with the potential of producing
meaningful internal retalks of their own environment, allowing them to cope a wide range of
real-life tasks. Intense research efforts occur to build cognitive robots able to perceive and
understand their surroundings in a human-centred manner. Semantic mapping in mobile
robotics can constitute a definite solution for this challenge. The semantic map is an aug-
mented representation of the environment that –supplementary to the geometrical knowledge
– encapsulates characteristics compatible with human understanding. It provides several
algorithmic opportunities for innovative development of applications that will eventually lead
to the human robot interaction. This talk will describe the construction of accurate and
consistent semantic maps facilitating adequate robot deployment in domestic environments.

4.15 High-level Knowledge in Low-level Vision
Andreas Geiger (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Geiger

1. Stereo techniques have witnessed tremendous progress over the last decades, yet some
aspects of the problem still remain challenging today. Striking examples are reflecting and
textureless surfaces which cannot easily be recovered using traditional local regularizers.
In this work, we therefore propose to regularize over larger distances using object-
category specific disparity proposals (displets) which we sample using inverse graphics
techniques based on a sparse disparity estimate and a semantic segmentation of the
image. The proposed displets encode the fact that objects of certain categories are not
arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local
regularizer for the challenging object class “car” into a superpixel based CRF framework
and demonstrate its benefits on the KITTI stereo evaluation.

2. This work proposes a novel model and dataset for 3D scene flow estimation with an
application to autonomous driving. Taking advantage of the fact that outdoor scenes
often decompose into a small number of independently moving objects, we represent each
element in the scene by its rigid motion parameters and each superpixel by a 3D plane
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as well as an index to the corresponding object. This minimal representation increases
robustness and leads to a discrete-continuous CRF where the data term decomposes into
pairwise potentials between superpixels and objects. Moreover, our model intrinsically
segments the scene into its constituting dynamic components. We demonstrate the
performance of our model on existing benchmarks as well as a novel realistic dataset with
scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from
the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion.
Our experiments also reveal novel challenges which can’t be handled by existing methods.

4.16 Hyperpoints and Fine Vocabularies for Large-Scale Location
Recognition

Michal Havlena (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Michal Havlena

Structure-based localization is the task of finding the absolute pose of a given query image
w.r.t. a pre-computed 3D model. While this is almost trivial at small scale, special care must
be taken as the size of the 3D model grows, because straight-forward descriptor matching
becomes ineffective due to the large memory footprint of the model, as well as the strictness
of the ratio test in 3D. Recently, several authors have tried to overcome these problems,
either by a smart compression of the 3D model or by clever sampling strategies for geometric
verification. Here we explore an orthogonal strategy, which uses all the 3D points and standard
sampling, but performs feature matching implicitly, by quantization into a fine vocabulary.
We show that although this matching is ambiguous and gives rise to 3D hyperpoints when
matching each 2D query feature in isolation, a simple voting strategy, which enforces the
fact that the selected 3D points shall be co-visible, can reliably find a locally unique 2D-3D
point assignment. Experiments on two large-scale datasets demonstrate that our method
achieves state-of-the-art performance, while the memory footprint is greatly reduced, since
only visual word labels but no 3D point descriptors need to be stored.

4.17 Visual-Inertial Navigation for Mobile Robots
Heiko Hirschmuller (Roboception GmbH – München, DE)

License Creative Commons BY 3.0 Unported license
© Heiko Hirschmuller (Roboception GmbH – München, DE)

Joint work of Hirschmuller, Heiko; Schmid, Korbinian; Suppa, Michael; Lutz, Philipp; Tomic, Teodor; Mair
Elmar

Navigation of mobile robots is still challenging, especially in environments that are not
prepared for robotics, like at home or outdoors. At the German Aerospace Center (DLR)
we have developed passive stereo-vision based navigation that is supported by an inertial
measurement unit (IMU). The ego-motion estimation is precise due to visual odometry,
robust due to the IMU and fulfils hard-real time constraints for using it directly in the control
loop of robots, like for autonomously flying highly agile quadcopters. Several experiments
with rovers and flying systems in mixed indoor/outdoor settings proved the concept.
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In the DLR spin-off Roboception GmbH we are going to bring such technology as plug
and play device into the marked. The talk covers the main concepts and new developments.
One of them is the extension of the Semi-Global Matching method for delivering not just
disparity, but also error and confidence values for each pixel. The error is given in disparities
and has a value of 0.5 for most of the pixels, but can go up to 2. The confidence is the
probability that the true disparity is within a three times error interval around the measured
disparity. Thus, the error is seen as the standard deviation of an Gaussian error, while the
confidence is the probability that the measured value is not an outlier.

References
1 Heiko Hirschmuller, Korbinian Schmid and Michael Suppa, Computer vision for mobile

robot navigation, Proceedings of Photogrammetric Week 2015:Stuttgart, 143–154, 2015.
2 Korbinian Schmid, Philipp Lutz, Teodor Tomic, Elmar Mair and Heiko Hirschmuller,

Autonomous vision-based micro air vehicle for indoor and outdoor navigation, Journal
of Field Robotics, Special Issue on Low Altitude Flight of UAVs, 31(4), 537–570 2014.

3 Heiko Hirschmuller, Stereo Processing by semi-global matching and mutual information,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328–341, 2008.

4.18 Planetary Robotic Vision Processing for Rover Missions
Ben Huber (Joanneum Research – Graz, AT)

License Creative Commons BY 3.0 Unported license
© Ben Huber

The international community of planetary science and exploration has successfully launched,
landed and operated about thirty human and robotic missions to the planets and the Moon.
They have collected differing numbers of surface imagery that have only been partially
utilized throughout these missions and thereafter for further scientific application purposes.
The data for most of these missions including meta-data is publicly available. Many of the
mentioned missions rely on stereo imagery for navigation and offer huge datasets that can be
reconstructed in 3D and put into a common coordinate context. By doing this we generate
datasets with a huge benefit for scientific geological analysis in rendered 3D space based on
mission data that has been almost forgotten in planetary data archives.

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 312377
PRoViDE.

4.19 Model-based Object and Deformation Tracking with Robust
Global Optimization

Reinhard Koch (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Reinhard Koch

Model-based analysis, also termed Analysis-by-Synthesis or Analysis from Generative models,
is a powerful tool to solve ill-posed problems like 3D object surface tracking from images. A
parametric model of the object in focus is generated and the visual appearance and motion
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of the object is synthesized from the model and compared with the visual input by a cost
or fitness function. Adapting the model parameters according to the cost function solves
the tracking problem. In order to cope with possibly high-dimensional parameter space,
efficient and robust non-local stochastic estimators are needed. In my talk I will outline the
AbS principle and discuss the optimizer and applications. Examples are tracking of multiple
animals in confined housing, deformation of thin plate models for human user interaction,
and others.

4.20 Image based Navigation for Exploration Probe
Takashi Kubota (ISAS/JAXA, JP)

License Creative Commons BY 3.0 Unported license
© Takashi Kubota

This talk firstly introduces future lunar or planetary exploration plans, which consist of lunar,
Mars and asteroid exploration. Then robotics technology is shown for lunar or planetary
exploration. Vision system makes important roles in deep space exploration for efficient and
safe exploration. This talk presents the intelligent system for navigation, path planning,
sampling, etc. Especially image based navigation schemes are presented in detail.

4.21 Stereo Vision for Future Autonomous Space Exploration Robots
Lazaros Nalpantidis (Aalborg University Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Lazaros Nalpantidis

Space exploration rovers need to be highly autonomous because the vehicle should spend
as much of its traverse time as possible moving, rather than waiting for delayed and often
interrupted teleoperation commands. Autonomous behavior can be supported by vision
systems that provide wide views to enable navigation and 3D reconstruction, as well as
close-up views ensuring safety and providing reliable odometry data.

This talk presents the design, development and testing of such a stereo vision system for
a space exploration rover. This system was designed with the intention of being efficient,
low-cost, accurate and was ultimately implemented on an FPGA platform. We are discussing
our experiences with this system and highlight useful lessons learned.

4.22 Structure and Motion – Challenges and solutions for real time
geometric estimation from video

Mikael Persson (Linköping University, SE)

License Creative Commons BY 3.0 Unported license
© Mikael Persson

In this talk I introduce the cv4x SfM system, which achieved state of the art results on the
challenging KITTI odometry benchmark earlier this year(2015). I motivate the choice in
reconstruction method, the bootstrap tracking by matching scheme used and how perceptual
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aliasing was addressed. Visual odometry systems such as cv4x, in particular if fused with a
strong loop closure system, achieve excellent and more importantly sufficient results, but
several challenges remain: The trajectory prediction of independently moving objects is of
particular interest in autonomous driving and is principally, if not practically, the same
problem as IMU-free VO and as such my current focus of research.

4.23 Efficient Block Optimization Methods for Computer Vision
Thomas Pock (TU Graz, AT)

License Creative Commons BY 3.0 Unported license
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In this talk I will discuss recent advances in block optimization methods for minimizing
non-smooth optimization problems in computer vision and image processing. It turns out
that a large class of 2D and 3D total-variation regularized problems can be reduced to an
algorithm that computes exact solutions with respect to certain subsets of the variables in
each iteration. For example, if the subsets are 1D total variation problems, we can efficiently
compute their solutions based on dynamic programming. Furthermore, we can make use
of gradient acceleration techniques to additionally speed up the algorithms. I will show
applications to computing globally optimal minimizers of total variation regularized stereo
problems.

4.24 Toward Highly Intelligent Automobiles
Danil V. Prokhorov (Toyota Research Institute North America – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Danil V. Prokhorov

Intelligent automobiles a.k.a. self-driving, autonomous or highly automated cars are capturing
people’s imagination while opening up new opportunities for research in many areas including
robotics, machine learning and vision. In my talk I overview the state of art in highly
automated cars and discuss an example of near-production AHDA car of Toyota, as well as
my personal experience with ACC-equipped vehicles. Then I discuss an example of on-going
research project of a car capable of making a variety of autonomous decisions on public roads,
with the focus on the roundabout maneuver. This maneuver illustrates an importance of the
holistic perception-action system approach, rather than module-by-module considerations
still prevalent in this field. In conclusion I offer my view of open challenges for intelligent
automobiles.
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4.25 Efficient Multi-view Semantic Segmentation
Hayko Riemenschneider(ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
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There is an increasing interest in semantically annotated 3D models, e.g. of cities. The typical
approaches start with the slow semantic labelling of all the images used for the 3D model.
The inherent redundancy among the overlapping images calls for more efficient solutions.
This work deals with two an alternative approaches. First, we exploit the geometry of a 3D
mesh model to predict the best view before the actual labelling. For this we find the single
image part that bests supports the correct semantic labelling of each face of the underlying
3D mesh. Second, we directly use the 3D point cloud itself, skipping any image processing
entirely. This pure 3D approach relies solely on 3D surface features (and a bit of classic RGB)
and provides state-of-the-art results without any heavy 2D image features. In both works we
show how to significantly speedup the semantic segmentation and even increase the accuracy
– leaving the question – how much of 2D images is needed for 3D semantic segmentation?

4.26 The Limits of Pose Estimation in Very Large Maps
Torsten Sattler (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Torsten Sattler

In many applications of autonomous vehicles, we can safely assume that there exists a 3D map
of the scene the vehicle operates in, which can be used for navigation and localization. One
major problem of maps covering a very large area is that they contain many structures with
globally repeating appearance, causing problems when trying to match structures between a
query image and the map. Common large-scale localization approaches operate under the
assumption that we can recover the pose of the query image as long as we find enough good
matches and as long as the pose estimation process is robust enough to large quantities of
wrong matches. Unfortunately, current pose estimation strategies have problems dealing
with too many matches. In this talk, I will discuss a truly scalable pose estimation strategy.
Using this strategy, we will show that there are limits to the approach of just using more
and more matches and hoping that pose estimation will be able to recover the correct pose.

4.27 From Frames to Events: Vision for High-speed Robotics
Davide Scaramuzza (Universität Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Davide Scaramuzza

Autonomous micro drones will soon play a major role in search-and-rescue and remote-
inspection missions, where a fast response is crucial. They can navigate quickly through
unstructured environments, enter and exit buildings through narrow gaps, and fly through
collapsed buildings. However, their speed and maneuverability are still far from those of
birds. Indeed, agile navigation through unknown, indoor environments poses a number of
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challenges for robotics research in terms of perception, state estimation, planning, and control.
In this talk, I will give an overview of my research activities on visual inertial navigation of
quadrotors, from slow navigation (using standard frame-based cameras) to agile flight (using
event-based cameras).

4.28 Towards 3D Scene Understanding
Bernt Schiele (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Bernt Schiele

Inspired by the ability of humans to interpret and understand 3D scenes nearly effortlessly, the
problem of 3D scene understanding has long been advocated as the "holy grail" of computer
vision. In the early days this problem was addressed in a bottom-up fashion without enabling
satisfactory or reliable results for scenes of realistic complexity. In recent years there has
been considerable progress on many sub-problems of the overall 3D scene understanding
problem. As the performance for these sub-tasks starts to achieve remarkable performance
levels we argue that the problem to automatically infer and understand 3D scenes should be
addressed again.

This talk highlights recent progress on some essential components (such as object recog-
nition and person detection), on our attempt towards 3D scene understanding, as well as on
our work towards activity recognition and the ability to describe video content with natural
language. These efforts are part of a longer-term agenda towards visual scene understanding.
While visual scene understanding has long been advocated as the “holy grail” of computer
vision, we believe it is time to address this challenge again, based on the progress in recent
years.

4.29 Tracking and Mapping in Project Tango
Jürgen Sturm (Google – München, DE)

License Creative Commons BY 3.0 Unported license
© Jürgen Sturm

Google’s Project Tango aims to provide a mobile solution for visual-inertial 6-DOF motion
estimation and dense 3D reconstruction. In my talk, I will give a technical presentation of
the algorithms underlying the Tango API, including visual-inertial odometry, SLAM, loop
closure detection, re-localization and 3D reconstruction. During my talk, I will present
several live demos on a Tango tablet.
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4.30 Deep Learning for Visual Place Recognition and Online 3D
Reconstruction

Niko Sünderhauf (Queensland University of Technology – Brisbane, AU)

License Creative Commons BY 3.0 Unported license
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In the first part of this talk I will summarize our recent work on visual place recognition in
changing environments using deep convolutional network features.

In the second part I talk about some lessons learned when applying ConvNets in robotics
(e.g. for object detection on a mobile robot) and the gaps between the computer vision
community and robotics in that particular area. I hope to induce a discussion on what we as
a community can do to bridge this gap.

4.31 Large-scale Visual Place Recognition – Current challenges
Akihiko Torii (Tokyo Institute of Technology, JP)

License Creative Commons BY 3.0 Unported license
© Akihiro Torii

Large-scale visual place recognition (VPR) takes an important role for localization of robots
and autonomous cars, e.g. rough initial localization. In this seminar, we first compare key
properties of compact image descriptors – Bag of Visual Words (BoVW) and Vector of Locally
Aggregated Descriptors (VLAD) – popularly used in VPR. On top of the decent analysis
of these image retalks, we discuss challenges in VPR, e.g. repetition, illumination changes,
change of seasons, and aging that give major appearance changes among testing-query and
database images. We show that the adaptive soft-assignment scheme on BoVW is effective
on the street-level visual place recognition. We also show dense feature detection followed
by VLAD representation gives a significant improvement in localization performance and
expanding the database by view synthesis gives an additional gain on the challenging datasets.

4.32 3D Scene Understanding for Autonomous Driving
Raquel Urtasun (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Raquel Urtasun

Developing autonomous systems that are able to assist humans in everyday’s tasks is one of
the grand challenges in modern computer science. Notable examples are personal robotics for
the elderly and people with disabilities, as well as autonomous driving systems which can help
decrease fatalities caused by traffic accidents. In order to perform tasks such as navigation,
recognition and manipulation of objects, these systems should be able to efficiently extract
3D knowledge of their environment. In this talk, I’ll show how graphical models provide a
great mathematical formalism to extract this knowledge. In particular, I’ll focus on a few
examples, including 3D reconstruction, 3D object and layout estimation and self-localization.
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4.33 Direct SLAM Techniques for Vehicle Localization and
Autonomous Navigation

Vladyslav Usenko (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Vladyslav Usenko

Joint work of Cremers, Daniel; Engel, Jakob; Jorg Stuckler, Jorg; von Stumberg, Lukas; Usenko, Vladyslav

Localization and mapping are two very important challenges for autonomous vehicles. Even
though many different types of sensors can be used for this purpose, camera based solutions
gain popularity because of the low costs, small weight and simple mechanical design. In
my talk I present several extensions to the LSD-SLAM – camera based large-scale direct
semi-dense slam method, that enable reliable operation on the real-world data from the
vehicles. In particular, I present an extension of the method to the stereo-camera setup
and tight integration with Inertial Measurement Unit, and demonstrate an autonomous
exploration and control on a consumer grade flying robot.

4.34 Learning See in a Virtual World
David Vázquez Bermudez (Autonomous University of Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© David Vázquez Bermudez

The ADAS group from the Computer Vision Center based at the Universitat Autònoma de
Barcelona, has an extensive experience developing ADAS systems such as Lane Departure
Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights
Control, etc. Currently ADAS is developing an Autonomous Vehicle based on relatively
cheap sensors such cameras, IMU and GPS. In this talk we will give a short overview of the
ADAS systems developed until now by the group and the Autonomous Vehicle project. Then
we will explain in more detail two parts of the autonomous vehicle that has been awarded by
the IEEE Intelligent Transportation Systems Society Spanish Chapter. The use of virtual
images to training models that are able to operate in a real world (Best Ph.D. Thesis award)
and a vehicle localization system based on GPS, IMU and cameras (Accesit M.Sc award).

4.35 Realizing Self-Driving Car
Andres Wendel (Google Inc. – Mountain View, US)

License Creative Commons BY 3.0 Unported license
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Self-driving vehicles are coming. They will save lives, save time and offer mobility to those
who otherwise don’t have it. Eventually they will reshape the world we live in. A dedicated
team at Google has spent the last few years moving self-driving vehicles closer to reality.
New algorithms, increased processing power, innovative sensors and massive amounts of data
enable our vehicles to see further, understand more and handle a wide variety of challenging
driving scenarios. Our vehicles have driven over a million miles on highways, suburban and
urban streets. Through this journey, we’ve learned a lot; not just about how to drive, but
about interacting with drivers, users and others on the road, and about what it takes to
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bring an incredibly complex system to fruition. In my talk, I share some insights in how the
technology works, how we have rolled out our new prototype vehicles to public roads, and
which edge case situations we have to solve.

5 Working groups

5.1 Sensing
Editor: Andrés Bruhn
Topic: Low-Level Sensing

5.1.1 Workgroup members in alphabetical order

Andrés Bruhn (Universität Stuttgart, DE)
Florian Becker (Sony – Stuttgart, DE)
Johannes Berger (Universität Heidelberg, DE)
Darius Burschka (TU München, DE)
Ben Huber (Joanneum Research-Graz, AT)
Reinhard Koch (Universität Kiel, DE)
Lazaros Nalpantidis (Aalborg University Copenhagen, DK)
Thomas Pock (TU Graz, AT)

5.1.2 Discussion Summary

This working group discussed aspects of low-level sensing methods for autonomous vehicles
and probes. While most systems for autonomous driving rely on the same types of modules –
e.g. algorithms for motion estimation, stereo reconstruction, and scene flow computation –
those modules are typically designed and evaluated separately from the remaining system.
Evidently, this makes it difficult to integrate feedback in terms of scene understanding,
which would be likely to improve the robustness of such algorithms in difficult situations,
i.e. under adverse weather conditions. Moreover, the learning of suitable models or model
components for specific scenarios is becoming increasingly important as the integration of
previously learned priors may improve the quality of the algorithms as well. Also from an
evaluation viewpoint, there is a clear need for improvement. Currently there is a clear lack
of suitable benchmarks to evaluate the quality of vision algorithms for autonomous driving.
While there are at least some benchmarks that can be used to evaluate the performance of
low-level algorithms separately (e.g. the KITTI Benchmark Suite), it remains unclear which
accuracy and robustness demands complex systems for autonomous driving actually have
w.r.t. to the performance of their underlying modules. Hence it is hardly possible to predict
the performance and robustness of such methods for real applications such as autonomous
driving. Finally, the use of different hardware for image acquisition may significantly improve
both performance and speed of low-level algorithms. One the one hand, one may consider
the use of high speed cameras to avoid ambiguous large displacements which still pose a
problem for most applications. On the other hand, it may be worthwhile to investigate the
usefulness of “differential” cameras that allow an reduction of the processed data by only
providing information in terms of image changes. In detail, the following research questions
have been discussed:
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How can low-level models be further improved?
flexible system design (modules) vs. robustness (high level knowledge).
however: jointly solving strongly related tasks may improve performance.
need of joint modelling and inference in terms of holistic approaches.
moreover: learning of model components based on given application.

How can benchmarking be improved towards practical relevance?
in practice: absolute accuracy not that important.
algorithm must be “sufficiently accurate” for a certain application.
evaluation as part of the entire vision system.
robustness matters: determine breaking point under certain degradations.

How can the image acquisition process be improved?
in general: higher frame rates desirable for motion estimation.
simpler algorithms sufficient → faster computation.
less complex motion, smaller displacements → higher accuracy.

What are suitable representations when extracting information?
typically: not all pixels needed for making decisions.
only consider locations that deviate from expected behaviour
(e.g. intensity changes, deviations from high-level models).
“differential” cameras (e.g. event cameras).

5.2 Mapping for Autonomous Vehicles and Probes
Editor: Hayko Riemenschneider
Topic: Offline Mapping

5.2.1 Workgroup members in alphabetical order

Yasutaka Furukawa (Washington University St. Louis, US)
Antonios Gasteratos (Democritus University of Thrace – Xanthi, GR)
Michal Havlena (ETH Zürich, CH)
Hayko Riemenschneider (ETH , Zürich, CH)
Torsten Sattler (ETH Zürich, CH)
Akihiko Torii (Tokyo Institute of Technology, JP)
Vladyslav Usenko (TU München, DE)

5.2.2 Discussion Summary

The what, where, when, how, and who of mapping. This working group defined map-
ping as the process to create (offline/online) environment maps including road an urban
environment, lane markings and traffic symbols as well as dynamic obstacles like pedestrians
or weather conditions. One main topic is the distinction between offline prior mapping and
online mapping. The group concluded that the hard cases, those which currently pose the
most challenges (dynamic objects and up to date information), can only be solved in online
mapping whereas offline mapping can provide a solid environment yet by definition will
always be out of date. Hence, the question arises of the use cases for offline mapping, e.g.
route navigation planning.
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How to technically create environment maps?
offline mapping will benefits from the richness of all sensors (vision, LIDAR, etc).
online mapping also, yet for real time purposes needs specializations (instant LIDAR
results vs stixel like abstractions).
transfer manual annotation from 2D to 3D or vice versa, needed for guarantee on quality.
define levels of details for roads, surroundings and buildings.
formalism of maps, structures, relationships of contents in there (roads are connecting).

When to create environment maps?
temporally changing maps, need for continuously updating.
integrating visual information acquired by different companies, people, cars, ...
collecting data, by own cars, taxi, trams, community services.
how fast should be the update vs on the drive will always be fastest.
how to integrate multimodal data coming apart from visual data.
long term changes, building construction.
short term changes, e.g. parking cars, construction sites, people movement updating maps
give more useful prior information for autonomous driving/routing, e.g. once construction
signs found, we have no need to drive there.
other important issues: security, redundancy, fall back of the map creation.

Who is responsible for the creation of maps?
service levels agreement for quality.
will there be a uniform/standard format of global map?
consortium of car companies and users to define these standards no common maps since
business model. coverage of the countries in terms of where are maps needed and to what
detail.
accuracy of the maps w.r.t. coverage, not everywhere is a cm/time accuracy needed.
crowdsourcing for every car.
human control and verification of structural changes (suggested by vision, LIDAR).

Where and what is included in the environment maps?
we should know limitations of online/offline mapping!
what is the difference between online/offline mapping?
online: annotation, change detection → impossible to do online. only the surrounding
areas.
only does simple dynamic obstacles/events detection (no understanding what it is).
what if non standard events happen. if the roads are covered by bus. deadlock situation.
offline: semantics: soft not binary decision: continuous occlusion space and object classes.
classifiers on actions/intent of others, to allow high level interpretation when breaking
rules.
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5.3 Beyond Deep Learning
Editor: Michael Felsberg
Topic: Deep Learning

5.3.1 Workgroup members in alphabetical order

Andreas Geiger (MPI für Intelligente Systeme – Tübingen, DE)
Atsushi Imiya (Chiba University, JP)
Bernt Schiele (MPI für Informatik – Saarbrücken, DE)
José M. Alvarez (NICTA – Canberra, AU)
Jürgen Sturm (Google – München, DE)
Michael Felsberg (Linköping University, SE)
Niko Sünderhauf (Queensland University of Technology – Brisbane, AU)
Rafael Garcia (University of Girona, ES)
Raquel Urtasun (University of Toronto, CA)
Sven Behnke (Universität Bonn, DE)

5.3.2 Discussion Summary

Recurrent and Dynamic Networks with Structural Models. Future work will have to
address procedural fundamentals of the learning algorithm and the network:

How to realize deep learning of recurrent networks?
How to realize networks that learn layered dynamic processes?
How to regularize with known structural and geometrical models?
How to enforce invariance beyond shift invariance?
How to inject hard constraints?

These issues establish an engineering – understanding trade-off. Advanced visualizations and
modelling of solution manifolds are required for future progress.

Learning Process and Training Data. It has been reflected that previous research often
evaluated sub-tasks, such as detection or recognition, instead of system-level performance.
The latter will, in most cases, require embodiment and thus perception-action learning.
Future challenges will include:

How to perform reinforcement learning on deep networks?
How to generate training data with sufficient volume and quality?
How to synthesize and augment data?
How to regularize learning with known stochastic models to avoid overfitting?
How to assess performance on system-level tasks in relation to other techniques such as
random forests?

These issues establish a major challenge on the empirical analysis of deep learning. An
evaluation methodology has to be developed to assess progress properly.
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