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Abstract
The seminar focused on satisfiability checking for combinations of first-order logic and sub-

classes thereof with arithmetic theories in a very liberal sense, also covering quantifiers and
parameters. It gathered members of the two communities of symbolic computation (or computer
algebra) and satisfiability checking (including satisfiability modulo theories). Up-to-now, these
two communities have been working quite independently. We are confident that the seminar will
initiate cross-fertilization of both fields and bring improvements for both satisfiability checking
and symbolic computation, and for their applications.
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The seminar focused on satisfiability checking for combinations of first-order logic and
subclasses thereof with arithmetic theories in a very liberal sense, also covering quantifiers
and parameters.

The development of decision procedures for corresponding theories started in the early
20th century in the area of mathematical logic. In the second half of the 20th century it
played a prominent role within the development of algebraic model theory. Finally, around
1970, one important research line, viz. algebraic decision methods for real arithmetics, shifted
its focus from theoretical results towards practically feasible procedures. That research line
was one of the origins of an area known today as symbolic computation or computer algebra.

More recently, the satisfiability checking community, which originated from propositional
SAT solving and which is surprisingly disconnected from symbolic computation, began to
develop highly interesting results with a particular focus on existential decision problems,
following the track of SAT solving towards industrial applications. Powerful satisfiability
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modulo theories (SMT) solvers were developed, which enrich propositional SAT solving with
components for different theories. We understand satisfiability checking in a broad sense,
covering besides SMT solving also theorem proving with arithmetic.

The two communities of symbolic computation and satisfiability checking have been
quite disjoint, despite strong reasons for them to discuss together. The communities share
interests, e.g., examining arithmetic expressions, that are central to both. As a matter of
fact, the symbolic computation community has been mostly unaware of basic insights in
the satisfiability checking community, such as the efficiency of conflict-driven search with
learning, as well as of their fundamental requirements, e.g., incrementality or explanations in
the unsatisfiable case. Vice versa, researchers in satisfiability checking have adopted decision
procedures from symbolic computation, such as CAD for real closed field, only quite naively,
so that they do not really benefit from the considerable experience gained by the original
community during 45 years. It is our hope that our seminar contribute to bringing the
two communities together, and that they will be much stronger at tackling problems that
currently defeat them both, separately.

The seminar offered its participants an opportunity to exchange knowledge about existing
methods and applications, to push forward the communication of needs and interests, and to
draw attention to challenging open research questions. The participants included researchers
from all relevant research areas and with affiliations in academia and as well as in industry.
The program was a balanced combination of presentations and tutorials, but also offering
time for small group discussions and exchange of ideas.

To the best of our knowledge, the seminar was the first global meeting of the two
communities of symbolic computation and satisfiability checking. We are confident that it
will initiate cross-fertilization of both fields and bring improvements for both satisfiability
checking and symbolic computation, and for their applications.
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3 Overview of Talks

3.1 Quick Intro to CoCoA/CoCoALib
John Abbott (Universität Kassel, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Anna Maria Bigatti
URL http://cocoa.dima.unige.it/

The CoCoA software suite implements many algorithms in the realm of Computational Com-
mutative Algebra (especially ideals in multivariate polynomial rings). These implementations
are accessible both via a user-friendly interactive system (called CoCoA-5), and more directly
as functions in an open-source (GPL3) C++ library (called CoCoALib). There is also a
prototype CoCoAServer which uses an OpenMath-like language.

Great emphasis has been placed on making the C++ library easy to use for mathem-
aticians without requiring that they learn advanced features of the C++ language (though
such features are used “invisibly” inside the CoCoALib implementations). CoCoALib comes
with extensive documentation including around 100 illustrative example programs. Co-
CoALib has also been interfaced with a number of other specialized C++ libraries (including
Normaliz, Frobby and GFan); the design of CoCoALib deliberately aims to accommodate
such “collaborations”.

To help understand how simple it is to use CoCoALib, we illustrate how to derive Heron’s
Formula for the area of a triangle, firstly using the CoCoA-5 interactive system (just 8 lines of
program code), then using CoCoALib (just 9 lines of C++ beyond the standard “boilerplate”
code). This particular example includes the computation of a Groebner basis.

For those with little experience of symbolic computation, we point out some of the
strengths and weaknesses which seem most relevant to SMT computations.

An interesting strength is the ability to factorize polynomials. It is even not too costly to
find all irreducible factors over the rationals (e.g. CoCoA takes about 1 millisecond for a
degree 10 polynomial), so a strategy of “speculative factorization” might be worth considering.
There are algorithms for factorizing over algebraic fields, but these are more costly.

Using symbolic computation we can compute exactly in algebraic extensions: numbers
are represented as symbolic expressions such as 12

√
2− 17, so with this approach there are

no problems of “loss of precision”. In contrast, arithmetic with such symbolic expressions is
relatively costly (especially if the extension degree is high).

To help relate an algebraic number to the real world, symbolic computation also includes
techniques for computing guaranteed approximations to solutions of systems of polynomial
equations – the easiest case is just a single polynomial. Currently CoCoA can compute
approximations only to real roots; it can handle polynomials of degree up to 100 in just a
few seconds. Very close approximations can also be obtained relatively quickly.

One important point to note is that there is often a large difference in computation time
between a result guaranteed to be absolutely correct, and a result which is correct with
very high probability (e.g. 1-epsilon where epsilon is less than 10−15): a typical example is
testing a number for primality. Truly guaranteed results would require certified source code,
a certified compiler, and certified hardware; with this viewpoint perhaps a probably correct
result is more acceptable?

CoCoA also offers “heuristically guaranteed” floating-point arithmetic (called Twin-Floats).
This can allow faster computation with real algebraic numbers, but the correctness of the
final result is only “probable” – however greater probability incurs greater computational
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cost. Note that, if asked, CoCoA can recognize when a twin-float represents a simple rational
number; more generally it can also find the simplest rational number in a given real interval.

References
1 J. Abbott, A. Bigatti. CoCoALib: A C++ Library for Computations in Commutative

Algebra . . . and Beyond. In Proceedings ICMS 2010, pages 73–76, 2010.
2 J. Abbott, A. Bigatti. What Is New in CoCoA? In Proceedings ICMS 2014, pages 352–358,

2014.
3 J. Abbott, A.M. Bigatti, C. Soeger. Integration of Libnormaliz in CoCoALib and CoCoA-5.

In Proceedings ICMS 2014, pages 647–653, 2014.

3.2 Building Bridges between Symbolic Computation and Satisfiability
Checking

Erika Ábrahám (RWTH Aachen, DE)
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Main reference E. Ábrahám, “Building Bridges between Symbolic Computation and Satisfiability Checking,” in
Proc. of the 2015 ACM on Int’l Symp. on Symbolic and Algebraic Computation (ISSAC’15),
pp. 1–6, ACM, 2015.

URL http://dx.doi.org/10.1145/2755996.2756636

The satisfiability problem is the problem of deciding whether a logical formula is satisfiable.
For first-order arithmetic theories, in the early 20th century some novel solutions in form of
decision procedures were developed in the area of mathematical logic. With the advent of
powerful computer architectures, a new research line started to develop practically feasible
implementations of such decision procedures. Since then, symbolic computation has grown
to an extremely successful scientific area, supporting all kinds of scientific computing by
efficient computer algebra systems.

Independently, around 1960 a new technology called SAT solving started its career.
Restricted to propositional logic, SAT solvers showed to be very efficient when employed
by formal methods for verification. It did not take long till the power of SAT solving
for Boolean problems had been extended to cover also different theories. Nowadays, fast
SAT-modulo-theories (SMT) solvers are available also for arithmetic problems.

Due to their different roots, symbolic computation and SMT solving tackle the satisfiability
problem differently. In this talk we illustrated SMT solving techniques to introduce them
to the Symbolic Computation Community, discussed differences and similarities in their
approaches, highlighted potentials of combining their strengths, and showed up the challenges
that come with this task.

3.3 Open Non-uniform Cylindrical Algebraic Decomposition
Christopher W. Brown (U.S. Naval Academy – Annapolis, US)

License Creative Commons BY 3.0 Unported license
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Computation with real polynomial equalities and inequalities is an area that has already seen
productive interaction between the SMT and computer algebra communities. Many present-
ations throughout the week highlighted this. For example, Viorica Sofronie-Stokkermans’

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2755996.2756636
http://dx.doi.org/10.1145/2755996.2756636
http://dx.doi.org/10.1145/2755996.2756636
http://dx.doi.org/10.1145/2755996.2756636
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Erika Ábrahám, Pascal Fontaine, Thomas Sturm, and Dongming Wang 77

presentation described how computer algebra software for such computations were used as
part of an SMT solving approach to problems in hybrid and reactive systems. This talk
concerns interaction the other way, with ideas from the SMT community leading to new
results in computer algebra, specifically new results in computing with real polynomial
equalities and inequalities. In another presentation, Dejan Jovanovic described joint work
with Leonardo de Moura that adapted Cylindrical Algebraic Decomposition (CAD) in a
novel way as part of an SMT-style SAT solver for real polynomial equalities and inequalities.
One of the key insights of that work was that in following an SMT-style approach, one
incrementally builds a model (in this case a point in real space), and that model can be
used to optimize certain aspects of CAD construction. This talk describes Non-uniform
Cylindrical Algebraic Decomposition (NuCAD), a new kind of CAD that is inspired by their
work. It takes the idea of the “model point” and how it can optimize certain aspects of CAD
construction, and uses it to to construct NuCADs. As the talk describes, NuCADs can be
constructed particularly efficiently, and they can represent solutions of sets of polynomial
equalities and inequalities with far fewer cells than CADs.

3.4 Computer Algebra for SAT People
James H. Davenport (University of Bath, GB)

License Creative Commons BY 3.0 Unported license
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A brief introduction to computer algebra, focusing on basic tools and on cylindrical algebraic
decomposition.

Complexity of dense polynomial arithmetic is well-understood, sparse (and more realistic)
polynomial arithmetic less so [4]. Despite the theoretical advances, factoring is still best
avoided, and implementations try to: replacing “irreducible” by “square-free and relatively
prime” where possible

Cylindrical algebraic decomposition has its roots in [3] who first defined them and gave
the first algorithm. Since then, many improvements on this ([5] for the latest), and alternative
algorithms base don Regular Chains [2] or Comprehensive Gröbner Bases [6]. The complexity
is doubly-exponential in the number of variables, and [1] shows this is inherent, but also that
some examples might have this complexity for one variable order, and trivial for a different
order.

References
1 C.W. Brown and J.H. Davenport. The Complexity of Quantifier Elimination and Cyl-

indrical Algebraic Decomposition. In C.W. Brown, editor, Proceedings ISSAC 2007, pages
54–60, 2007.

2 C. Chen and M. Moreno Maza. An Incremental Algorithm for Computing Cylindrical Al-
gebraic Decompositions. In R. Feng, W.-S. Lee, and Y. Sato, editors, Proceedings Computer
Mathematics ASCM 2009 and 2012, pages 199–221, 2014.

3 G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic De-
composition. In Proceedings 2nd. GI Conference Automata Theory & Formal Languages,
pages 134–183, 1975.
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ceedings SYNASC 2009, pages 3–7, 2010.
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3.5 Introduction to Floating-Point Arithmetic
James H. Davenport (University of Bath, GB)
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This was a brief introduction to floating-point arithmetic (restricted to IEEE [4], where
numbers are ±m2e and, generally, m ∈ [1, 2) is a 53-bit number and −1022 ≤ e ≤ 1023,
so the largest finite number is > 10308) from an algebraic point of view. If · is one of the
arithmetic operators {+,−,×, /} and � the floating-point equivalent, then a� b is defined
to be [a · b] where [· · · ] denotes the nearest representable number (with precise rules for
tie-breaking etc.). Therefore ⊕ and ⊗ are commutative, and a	 b = 	(b	 a). Admittedly
a� b 6= 1� (b� a) and a⊗ (b⊗ c) 6= (a⊗ b)⊗ c, but the differences are trivial (at least for
“sensibly-sized” numbers). What, then, are the problems? This list is not exhaustive, and
the first three, at least, would hold for any floating-point system.
1. Computing other functions, e.g. � when · ∈ {sin, log, . . .}, is much harder, as in general

we have no idea how many extra places we need to compute with internally. This is a
problem known as the “Table Maker’s Dilemma” [3]. If we relax [· · · ] to denotes the
nearest representable number or its neighbor, then the problem is much more tractable
for computation, but much messier for verification, as well as being non-deterministic.

2. ⊕ is wildly non-associative: (1 ⊕ 1020) ⊕ (−1020) = 0 but 1 ⊕ (1020 ⊕ (−1020)) = 1.
Slightly more subtly, (5⊕ 253)⊕ (−253) = 4.

? Some languages have rules about what re-arrangements are permissible, and some
compilers adhere to these, at least with some compiler options [5].

3. “sensibly-sized” is far easier to prescribe than to define precisely, or check for.
4. Operations that we would generally think of as “errors” such as 10200 ⊗ 10200, generate

either representations of ±∞ (e = 1024, m = 0), or, as in ∞ −∞, “Not a Number”
(e = 1024, m 6= 0) by default, rather than causing an error.

? The speaker recalled seeing a supermarket where the “unit prices”, instead of being, say
69 p/litre were all NaN p/litre.

5. As we get very close to 0, there are concepts of “denormalised numbers” and “gradual
underflow”, which give results with less precision than usual, rather than just 0, which
are generally good for the numerical results but hard to model formally (bit-blasting?).

6. Every number is signed, including zero. While this has theoretical advantages when
treating complex functions and branch cuts [2], and means that 1� (1� x) = x when
x = ±∞, it can complicate other areas: xy ⇒ 1/x = 1� yis not true when x = +0 and
y = −0.

See, e.g., [3] in general, and [1] about verification.
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3.6 Speed Maple
Jürgen Gerhard (Maplesoft – Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Jürgen Gerhard

Main reference L. Bernardin, P. Chin, P. DeMarco, K.O. Geddes, D. E.G. Hare, K.M. Heal, G. Labahn, J. P. May,
L. McCarron, M.B. Monagan, D. Ohashi, S.M. Vorkoetter, “Maple Programming Guide,”
Maplesoft, 2015.

URL http://www.maplesoft.com/documentation_center

A brief introduction to the internals of Maple’s mathematical engine was given. Maple’s
architecture, the available data types, and the algorithms implemented for polynomial and
semi-algebraic systems, and beyond, were summarized.

3.7 Adapting Real Quantifier Elimination Methods for Conflict Set
Computation

Maximilian Jaroschek (MPI für Informatik – Saarbrücken, DE), Pascal Fontaine (LORIA –
Nancy, FR), and Pablo Federico Dobal (LORIA – Nancy, FR)
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The satisfiability problem in real closed fields is decidable. In the context of satisfiability
modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of
polynomial constraints, is of particular importance. One of the central problems is the
computation of good explanations of the unsatisfiability of such sets, i.e. obtaining a small
subset of the input constraints whose conjunction is already unsatisfiable. We adapt two
commonly used real quantifier elimination methods, cylindrical algebraic decomposition and
virtual substitution, to provide such conflict sets and demonstrate the performance of our
method in practice.
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3.8 Turning CAD Upside Down
Dejan Jovanovic (SRI – Menlo Park, US)
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We present the NLSAT decision procedure for solving the existential fragment of non-linear
arithmetic. The classic approach to the problem is to project the problem polynomials,
followed by model construction (lifting). The new procedure performs the lifting optimistically,
and performs focused model-based projection only on the polynomials that are relevant
in inconsistencies. The new approach, and the leaner projection operator, are effective in
practice, which we support with an extensive experimental evaluation of the implementations
in Yices2 and Z3 SMT solvers.

3.9 Constructing a Single CAD Cell
Marek Kosta (MPI für Informatik – Saarbrücken, DE) and Christopher W. Brown (U.S.
Naval Academy – Annapolis, US)
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We present an algorithm which, given a point and a set of polynomials, constructs a single
cylindrical cell containing the point, such that the polynomials are sign-invariant in the
computed cell. To represent a single cylindrical cell, a novel recursive data structure is
introduced. The algorithm works with the data structure and proceeds by incrementally
merging the input polynomials into the cell. A merge procedure realizing this refinement
is described. The merge procedure is based on McCallum’s operator, but uses geometric
information relative to the test point to reduce the projection set. The use of McCallum’s
operator implies the incompleteness of our algorithm in general. However, the algorithm is
complete for well-oriented sets of polynomials. Moreover, the incremental approach described
can be easily adapted to a different projection operator. Our cell construction is an alternative
to the “model-based” method described by D. Jovanovié during this seminar.

3.10 Symbol Elimination for Program Analysis
Laura Kovács (Chalmers UT – Göteborg, SE)

License Creative Commons BY 3.0 Unported license
© Laura Kovács

Joint work of Laura Kovács and Andrei Voronkov
Main reference L. Kovács, A. Voronkov, “Finding Loop Invariants for Programs over Arrays Using a Theorem

Prover,” in Proc. of the 12th Int’l Conf. on Fundamental Approaches to Software Engineering
(FASE’09), LNCS, Vol. 5503, pp. 470–485, Springer, 2009.

URL http://dx.doi.org/10.1007/978-3-642-00593-0_33

I describe our new symbol elimination method [1, 2] for generating and proving properties
about software systems. Symbol elimination uses first-order theorem proving and symbolic
computation techniques to automatically discover non-trivial program properties, such as
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loop invariants and loop bounds. Moreover, symbol elimination can be used as an alternative
to interpolation for software verification. The talk will describe how symbol elimination
can be used for polynomial and quantified invariant generation, by using Groebner basis
computation, quantifier elimination and saturation-based first-order theorem proving. Symbol
elimination is implemented in the award-winning first-order theorem prover Vampire and
successfully evaluated on a large number of examples coming from academic and industrial
benchmarks.

References
1 Laura Kovács and Andrei Voronkov. Finding Loop Invariants for Programs over Arrays

Using a Theorem Prover. FASE 2009: 470-485.
2 Laura Kovács and Andrei Voronkov. Interpolation and Symbol Elimination. CADE 2009:

199-213.

3.11 SMT-RAT: An Open Source C++ Toolbox for Strategic and
Parallel SMT Solving

Gereon Kremer (RWTH Aachen, DE) and Florian Corzilius (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
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Toolbox for Strategic and Parallel SMT Solving,” in Proc. of the 18th Int’l Conf. on Theory and
Applications of Satisfiability Testing (SAT’15), LNCS, Vol. 9340, pp. 360–368, Springer, 2015.
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During the last decade, popular SMT solvers have been extended step-by-step with a wide
range of decision procedures for different theories. Some SMT solvers also support the
user-defined tuning and combination of such procedures, typically via command-line options.
However, configuring solvers this way is a tedious task with restricted options.

In this paper we present our modular and extensible C++ library SMT-RAT, which
offers numerous parameterized procedure modules for different logics. These modules can be
configured and combined into an SMT solver using a comprehensible whilst powerful strategy,
which can be specified via a graphical user interface. This makes it easier to construct a
solver which is tuned for a specific set of problem instances. Compared to a previous version,
we have extended our library with a number of new modules and support for parallelization
in strategies. An additional contribution is our thread-safe and generic C++ library CArL,
offering efficient data structures and basic operations for real arithmetic, which can be used
for the fast implementation of new theory-solving procedures.
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3.12 An Invitation to Numerical Algebraic Geometry
Viktor Levandovskyy (RWTH Aachen, DE)
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Joint work of Levandovskyy, Viktor; Hauenstein, Jonathan
Main reference J.D. Hauenstein, V. Levandovskyy, “Certifying solutions to square systems of

polynomial-exponential equations,” arXiv:1109.4547v1 [math.NA], 2011; to appear in Journal of
Symbolic Computation.

URL http://arxiv.org/abs/1109.4547v1

In this ad-hoc contributed talk we present some basic facts from the emerging theory called
“Numerical Algebraic Geometry”. In particular, the results from the Smale’s alpha-theory
will be explained. There is an algorithm, allowing one to certify a solution of a system of
nonlinear polynomials equations. Moreover, for some number of close candidate solutions, it
is possible either to distinguish their associated solutions or to conclude that there is one
associated solution with multiplicity greater than one. Since very recently there evolve more
and more advanced algorithms, based on these two fundamental ones. These algorithms are
often implemented in a freely available package “alphaCertified” and use a freely available
system “bertini”. A live demonstration of the former is presented as well.

3.13 A Presentation of Satisfiability Modulo Theory for Nonspecialists
David Monniaux (VERIMAG – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
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Satisfiability modulo theory (SMT) extends propositional satisfiability (SAT) by allowing
arithmetic predicates, or more generally predicates within a theory. a ∧ (b ∨ ¬c) is a SAT
formula whose solutions are (a = true, b = true, c = true), (a = true, b = true, c = false),
(a = true, b = false, c = false). (x > 0) ∧ (y > 0) ∧ (x + y < 1) is an SMT formula over linear
real arithmetic (LRA) whose solutions include e.g. (x = 1

4 , y = 1
4 ), but the same formula

admits no solution over linear integer arithmetic (LIA). f(x) 6= f(y) ∧ x = y, where f stands
for an unspecified (“uninterpreted”) function (UF) from integers to integers, has no solution
since if x = y, for any function f , f(x) = f(y). Examples of SMT theories include LRA, LIA,
UF, and combinations thereof. SMT solvers may allow quantifiers inside formulas, though
these quickly make the problem undecidable (e.g. UF+LIA+∀ is undecidable).

The most common way of implementing SMT is by the “DPLL(T)” framework, in which
a SAT solver based on the CDCL (constraint-driven clause learning) principle (a modern
evolution of Davis-Putnam-Logemann-Loveland) interacts with a decision procedure for
conjunctions of predicates from the theory. The formula is stripped to its propositional
structure, e.g. (x > 0) ∧ (y > 0) ∧ (x + y < 1 ∨ y < 0) is replaced by a ∧ b ∧ (c ∨ d) where
a stands for x > 0, b for y > 0, c for x + y < 1 and d for y < 0. An assignment a = true,
b = true, c = true is made but the decision procedure for LIA informs the SAT solver than
this assignment is inconsistent. A clever decision procedure will strive to inform the SAT
solver than a sub-part of the assignment only is inconsistent, since this will rule out a larger
part of the propositional state space.

More recently, alternatives to DPLL(T) such as MCSAT or the extension of DPLL to
values outside of Booleans have been proposed. They have in common that they reason directly
about rational, integer etc. values instead of going through a propositional abstraction.
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Satisfiability testing is typically used in program analysis to prove that a finite sequence
(including tests and other control flow) of statements is infeasible (in program verification),
or to find concrete values going through that sequence (in automated test case generation).
The use cases can be more complicated; for instance satisfying assignments may be used to
automatically refine the search for inductive invariants in program verification.

Finally, Craig interpolation is another outcome of satisfiability testing. Given A(x, y),
B(y, z) and C(z, t), a Craig interpolant is a pair (I, J) such that for all x, y, z, t:

A(x, y) =⇒ I(y), I(y) ∧B(y, z) =⇒ J(z), J(z) ∧ C(z, t) =⇒ false.

Such interpolants are used in program analysis to give “local arguments” why a trace with
steps A,B,C is infeasible. Finding simple interpolants likely to generalize to other traces and
becoming inductive is an active area of research.

3.14 Triangular Sets over F2 vs. Satisfiability Checking: A Potential
Connection and Interaction?

Chenqi Mou (Beihang University – Beijing, CN) and Dongming Wang (Beihang University –
Beijing, CN)

License Creative Commons BY 3.0 Unported license
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In this talk the concepts of triangular sets and triangular decomposition are presented. In
particular, a typical splitting strategy in triangular decomposition and then a refined and
easier one in Boolean rings are illustrated, with efforts to reveal the similarity between
Boolean triangular sets and SAT solving.
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2 M. Kalkbrener. A generalized Euclidean algorithm for computing triangular representations
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3.15 raSAT: SMT Solver for Nonlinear Arithmetic
Mizuhito Ogawa (JAIST – Ishikawa, JP)

License Creative Commons BY 3.0 Unported license
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We present the raSAT SMT solver for polynomial constraints, which aims to handle them over
both reals and integers with simple unified methodologies: (1) raSAT loop for inequalities,
which extends the interval constraint propagation with testing to accelerate SAT detection,
and (2) a non-constructive reasoning for equations over reals, based on the generalized
intermediate value theorem. raSAT has participated SMT-COMP 2015, and was 3rd (among
6) in QF_NRA and 2nd (among 7) in QF_NIA categories of main tracks.

3.16 Using Instantiation-Based Approaches for Quantifier Elimination
in SMT

Andrew Joseph Reynolds (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
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This talk presents instantiation-based decision methods for determining the satisfiability
of quantified formulas in first-order theories. Using this framework, we obtain decision
procedures for linear real arithmetic (LRA) and linear integer arithmetic (LIA) formulas with
one quantifier alternation. Our procedure can be integrated into the solving architecture
used by typical SMT solvers. Experimental results on standardized benchmarks from model
checking, static analysis, and synthesis show that our implementation of the procedure in
the SMT solver CVC4 outperforms existing approaches for quantified linear arithmetic.

3.17 How Far We Can Eliminate Quantified Variables Using Equalities
Yosuke Sato (Tokyo University of Science, JP)

License Creative Commons BY 3.0 Unported license
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When a given quantified formula contains equalities not only explicitly but also implicitly,
we can use them for eliminating quantifies. In order to use all such equalities we need
computation of comprehensive Groebner bases. In the talk we introduce our work which
gives a sufficiently practical such method.

3.18 Introduction to iSAT3
Karsten Scheibler (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Herde, Christian; Kupferschmid, Stefan; Teige, Tino; Eggers, Andreas; Neubauer, Felix; Mahdi,
Ahmed

We present iSAT3, a satisfiability checker for Boolean combinations of arithmetic constraints
over real- and integer-valued variables. The solver supports constraints containing linear
and non-linear arithmetic as well as transcendental functions. iSAT3 tightly integrates
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Interval-Constraint-Propagation (ICP) into the Conflict-Driven Clause-Learning (CDCL)
framework.

3.19 Hierarchical Reasoning for the Verification of Parametric Systems
Viorica Sofronie-Stokkermans (Universität Koblenz-Landau, DE)

License Creative Commons BY 3.0 Unported license
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We show how hierarchical reasoning and quantifier elimination can be used to automatic-
ally provide guarantees that given parametric systems satisfy certain safety or invariance
conditions. Such guarantees can be expressed as constraints on parameters.

We present several examples (from the verification of reactive (or discrete time) systems
and of linear hybrid automata) and point out some challenges we encountered when using
existing systems for quantifier elimination.

3.20 The Rodin Platform and SMT Solvers
Laurent Voisin (SYSTEREL Aix-en-Provence, FR)

License Creative Commons BY 3.0 Unported license
© Laurent Voisin

Event-B is a formal notation for modelling discrete transition systems. It is based on
first-order predicate calculus with equality completed with typed set theory and integer
arithmetics. The system is modelled by a state and its properties as invariants. Transitions
are described by guarded events that can fire atomically as soon as their guard holds.

The Rodin platform is the reference tool for modelling with the Event-B notation and
proving the model correct. It has been developed for more than ten years and is freely
available from http://event-b.org under an Eclipse license. The main design principles of
the platform are openness (open source and open syntax), extensibility (more than thirty
plug-ins are available) and a reactive modelling process (tools are run automatically in the
background).

The interactive prover of the Rodin platform is tactic based. The prover just maintains
a proof tree in the sequent calculus. The rules of the proof tree are not predefined, but
produced by reasoners (which are invoked by the tactics). The reasoners can be either
internal (provided by the core platform) or external (provided by plug-ins). In order to foster
reuse after model modification (which always happens), the proof rules shall be as small as
possible.

The SMT plug-in works as follows: It first translates an Event-B sequent to its negation
in the SMT-LIB format, then invokes an SMT solver. If the solver returns SAT, then the
sequent is not valid and the reasoner fails. If the solver returns UNSAT, then the sequent is
valid and the UNSAT core provided by the solver is used to build the proof rule.

Two examples are particularly interesting. One is a simple property of a barycenter. It
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consists in proving that

0 ≤ N ∧ 0 ≤ a ∧ 0 ≤ b

x ∈ 0 .. N ∧ y ∈ 0 .. N

` (a ∗ x + b ∗ y)÷ (a + b) ∈ 0 .. N

No solver currently connected to the Rodin platform can prove this property, as it uses
non-linear arithmetic. Consequently, one has to prove it manually by unfolding the definitions
of the operators, which is quite tedious.

A second example consists in stating that an acylic relation is non-reflexive:

r ∈ S ↔ S

∀p · p ⊆ r−1[p] =⇒ p = ∅
` id ∩ r = ∅

Surprisingly, this example is proved by the CVC3 solver, although it needs second order
instantiation to find the right instance for p.

3.21 The SMT Theory of Floating-Point Arithmetic
Christoph M. Wintersteiger (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
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URL http://smtlib.cs.uiowa.edu/theories-FloatingPoint.shtml

The Satisfiability Modulo Theories (SMT) community recently added a standard for floating-
point arithmetic (SMT FP) to its set of theories. This enables many verification techniques
that already build on SMT solvers to add support for floating-point arithmetic at a very low
cost. In this presentation I summarize and demonstrate the scope of the new theory; it is,
to a large extent, based on the IEEE-754 standard, but there are some intricacies in which
SMT FP departs from IEEE-754 in an effort to simplify and streamline common problems,
and I will point some of those intricacies out. Support for SMT FP in actual SMT solvers
exists, but is not commonplace yet; those solvers that support it are either pure translation
to Boolean logic (bit-blasters), or they employ abstraction refinement schemes that promise
to be more efficient on many problems. At the time, the solvers with support for SMT FP
are MathSAT, Sonolar, CVC4, and Z3.

3.22 Stability of Parametric Decomposition
Kazuhiro Yokoyama (Rikkyo University – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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Main reference Kazuhiro Yokoyama, “Stability of Parametric Decomposition,” in Proc. of the 2nd Int’l Congress
on Mathematical Software (ICMS’06), LNCS, Vol. 4151, pp. 391–402, Springer, 2006.

URL http://dx.doi.org/10.1007/11832225_39

We deal with ideals generated by polynomials with parametric coefficients, and introduce
“stabilities on ideal structures” based on stability of forms of Gröbner bases. Then, we extend
those stabilities to radicals and irreducible decompositions and show the computational
tractability on those computations by integrating existing techniques.
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Making these computational realizations efficient and practical is still ongoing, but it
is very challenging for Computer Algebra not only in theory, but also in application. It
will certainly help to develop the abilities of Computer Algebra and widen its application,
including Quantifier Elimination and Satisfiability Checking.

4 Panel discussions

4.1 SMT Solvers and Computer Algebra Systems: Potentials of
Technology Transfer

Erika Ábrahám (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
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During and after the talk “Building Bridges between Symbolic Computation and Satisfiability
Checking”, we discussed different issues of connecting algorithms and implementations rooted
in the two communities of Symbolic Computation and Satisfiability Checking.

On the one hand, SMT solving has its strength in efficient techniques for exploring Boolean
structures, learning, combining solving techniques, and developing dedicated heuristics, but
its current focus lies on easier theories and it makes use of symbolic computation results only
in a rather naive way. There are fast SMT solvers available for the satisfiability check of
linear real and integer arithmetic problems, but just a few can handle non-linear arithmetic.

On the other hand, Symbolic Computation is strong in providing powerful procedures
for sets (conjunctions) of arithmetic constraints, but it does not exploit the achievements
in SMT solving for efficiently handling logical fragments, using heuristics and learning to
speed-up the search for satisfying solutions.

The SMT-solving community could definitely profit from further exploiting Symbolic
Computation achievements and adapt and extend them to comply with the requirements on
embedding in the SMT context. However, it is a highly challenging task, as it requires a deep
understanding of complex mathematical problems, whose embedding in SMT solving is far
from trivial and needs their adaptation and extension. Symmetrically, Symbolic Computation
could profit from exploiting successful SMT ideas, but it requires expertise in efficient solver
technologies and their implementation, like dedicated data structures, sophisticated heuristics,
effective learning techniques, and approaches for incrementality and explanation generation
in theory solving modules.

We discussed how we could overcome these problems: on the one hand, how to adapt
implementations of decision procedures in computer algebra systems to satisfy the require-
ments for SMT-embedding, supporting incrementality, the generation of models for satisfiable
problems and explanations for unsatisfiable problem instances, and to offer suitable interfaces
for SMT calls; on the other hand, how to adapt successful SAT and SMT technologies to
improve the efficiency of computer algebra systems, making use of efficient handling of logical
structures, learning, and developing dedicated search heuristics.
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4.2 SMT-LIB: An Introduction
Pascal Fontaine (LORIA – Nancy, FR)
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Joint work of Barrett, Clark; Ranise, Silvio; Stump, Aaron; Tinelli, Cesare
Main reference C. Barrett, P. Fontaine, C. Tinelli, “The SMT-LIB Standard: Version 2.5,” 2015.

URL http://smtlib.cs.uiowa.edu/language.shtml
URL http://www.SMT-LIB.org

The Satisfiability Modulo Theories (see [2] for a survey on SMT) community is built around
the SMT-LIB initiative (http://smtlib.cs.uiowa.edu/). The aim of this initiative was at
first to collect a library of benchmarks. The emergence of the SMT-LIB language quickly
followed, as a necessity for exchanging benchmarks and unambiguously interpreting them.
This also involved being able to describe precisely the underlying concepts behind SMT,
i.e. the theories and their combinations. The SMT-LIB standard is constantly improving,
and aims at tackling always richer languages while at the same time keeping the standard
simple. Nowadays, SMT-LIB is supported by all the main SMT solvers. It is used as the
interface language of many tools (e.g. verification platforms) with their SMT solver backends.
It is also the official language of the SMT-COMP (http://www.smtcomp.org/), the annual
competition of solvers.

We discussed the SMT-LIB language version 2.5 [1], with a focus on arithmetic theories
and logics. The discussion was also the opportunity to compare its features with other
languages in use in the Symbolic Computation community. The SMT-LIB language version
2.5 is not extendable but version 3.0 should be more flexible, and could accommodate some
of the needs for a language suitable in a larger context.
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