Report of Dagstuhl Seminar 15491
Approximate and Probabilistic Computing: Design,
Coding, Verification

Edited by

Antonio Filieri!, Marta Kwiatkowska?, Sasa Misailovic®, and
Todd Mytkowicz*

Imperial College London, GB, a.filieri@imperial.ac.uk

University of Oxford, GB, marta.kwiatkowska@cs.ox.ac.uk

University of Illinois at Urbana-Champagin, US, misailo@illinois.edu
Microsoft Corporation — Redmond, US, toddm@microsoft.com

=W N =

—— Abstract

Computing has entered the era of approximation, in which hardware and software generate and
reason about estimates. Navigation applications turn maps and location estimates from hard-
ware GPS sensors into driving directions; speech recognition turns an analog signal into a likely
sentence; search turns queries into information; network protocols deliver unreliable messages;
and recent advances promise that approximate hardware and software will trade result quality for
energy efficiency. Millions of people already use software which computes with and reasons about
approximate/probabilistic data daily. These complex systems require sophisticated algorithms
to deliver accurate answers quickly, at scale, and with energy efficiency, and approximation is
often the only way to meet these competing goals.

Despite their ubiquity, economic significance, and societal impact, building such applications
is difficult and requires expertise across the system stack, in addition to statistics and application-
specific domain knowledge. Non-expert developers need tools and expertise to help them design,
code, and verify these complex systems.

The aim of this seminar was to bring together academic and industrial researchers from the
areas of probabilistic model checking, quantitative software analysis, probabilistic programming,
and approximate computing to share their recent progress, identify challenges in computing with
estimates, and foster collaboration with the goal of helping non-expert developers design, code,
and verify modern approximate and probabilistic systems.

Seminar November 29-4, 2015 — http://www.dagstuhl.de/15491

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.3.3 Language Con-
structs and Features, F.3.2 Semantics of Programming Languages, F.1.2 Modes of Computa-
tion

Keywords and phrases approximation, model checking, performance, probability, program ana-
lysis, systems, verification

Digital Object Identifier 10.4230/DagRep.5.11.151

Edited in cooperation with Sara Achour

Except where otherwise noted, content of this report is licensed
37 under a Creative Commons BY 3.0 Unported license

Approximate and Probabilistic Computing: Design, Coding, Verification, Dagstuhl Reports, Vol. 5, Issue 11, pp.
151-179
Editors: Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

\\v oagsTunL Dagstuhl Reports
ReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/15491
http://dx.doi.org/10.4230/DagRep.5.11.151
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

152

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

1 Executive Summary

Antonio Filieri
Marta Kwiatkowska
Sasa Misailovic
Todd Mytkowicz

License) Creative Commons BY 3.0 Unported license
© Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

Uncertainty and approximation are becoming first class concepts in software design and
development. Many application domains, including biology, multimedia processing, finance,
engineering, and social sciences, need software to formalize and study intrinsically uncertain
phenomena. Furthermore, the ubiquity of software, especially driven by the Internet and
mobility — such as driving applications that estimate routes, speech processing applications
that estimate most likely sentences, or fitness applications that estimate heart-rate — require
software engineers to design their applications taking into account unpredictable and volatile
operational conditions, and noisy data, despite the limited support provided by current
unintuitive design and quality assurance methodologies. Finally, the hardware community is
designing devices that trade result accuracy for computational efficiency and energy saving,
providing only probabilistic guarantees on the correctness of the computed results.

Several research communities are independently investigating methodologies and tech-
niques to model, analyze, and manage uncertainty in and through software systems. These
areas include (1) probabilistic model checking, (2) quantitative software analysis, (3) probabil-
istic programming, and (4) approximate computing. However, despite the substantial overlap
of interests, researchers from different communities rarely have the opportunity to meet at
conferences typically tailored to single specific areas. Therefore, we organized this seminar
as a forum for industrial and academic researchers from these areas to share their recent
ideas, identify the main research challenges and future directions, and explore collaborative
research opportunities on problems that span across the boundaries of the individual areas.

This report presents a review of each of the main areas covered by the seminar and
summarizes the discussions and conclusions of the participants.

Acknowledgements. The organizers would like to express their gratitude to the participants
and the Schloss Dagstuhl team for a productive and exciting seminar. We thank Prof. Martin
Rinard for his support and contribution to the organization of the seminar. We thank Sara
Achour for her help with preparing this report.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

2 Table of Contents

Executive Summary
Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

Research Areas
Probabilistic Model Checking oo 0o
Quantitative Program Analysis
Probabilistic Programming L o

Approximate Computing

Overview of Talks

Approximate computation with outlier detection in Topaz
Sara Achour L

Numerical Program Analysis Tools: A Wish List
David Bindel e

Optimizing Synthesis with Metasketches (for Automated Approximate Program-
ming)
James Bornholt

Stochastic approximations for Stochastic Model Checking
Luca Bortolussi e

Counterexample Explanation by Learning Small Strategies in Markov Decision
Processes
Tomas Brazdil e

Approximate Computing on Unreliable Silicon
Andreas Peter Burg e e

Approximate Overview of Approximate Computing
Luis Ceze e e

Programming with Numerical Uncertainties
Eva Darulova e

The dual value of Probabilistic Abstract interpretation
Alessandra Di Pierro e e

Termination of Probabilistic Programs
Luis Maria Ferrer Fioriti e

Quality-Energy Aware System Design
Andreas Gerstlauer

Probabilistic Programming Process Algebra
Jane Hillston e

On Quantification of Accuracy Loss in Approximate Computing
Ulya R. Karpuzeuw 0 o 00 s e e

Understanding and Analysing Probabilistic Programs
Joost-Pieter Katoen e e

. 152

153

15491

154

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

Computing Reliably with Molecular Walkers

Marta Kwiatkowska e e e e e 170

Approximate counting for SMT

Rupak Majumdar e 171

Smoothed Model Checking: A Machine Learning Approach to Probabilistic Model
Checking under Uncertainty

Dimitrios Milios e e e e 171

Accuracy-Aware Compiler Optimizations

Sasa Misailovic e e e e e e 172

Intuitors, Computers and Validators: Towards Effective Decision-Making Systems

Ravi Nair e e e e e e e e 172

Error Resilient Systems and Approximate Computing: Conjoined Twins Separated
at Birth

Karthik Pattabiraman e e e e e e 173

ACCEPT: We Built an Open-Source Approximation Compiler Framework So You
Don’t Have To

Adrian Sampson e e e e 173

Approximate Storage

Karin Strauss e e e e e e e e 174

DNA Storage

Karin Strauss e e 174

Quantifying Program Differences

Willem Visser o o e e e 175

On a Framework for Quantitative Program Synthesis

Herbert Wiklicky o 0 o o e 175
Achievements of this Seminar 175

Participants 179

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

3 Research Areas

3.1 Probabilistic Model Checking

Probabilistic modelling is widely used in the design and analysis of computer systems,
and has been rapidly gaining in importance in recent years. Traditionally, models such as
Markov chains have been used to analyse system performance, where typically queuing
theory is applied to obtain quantitative characteristics. Probability is also needed to
quantify unreliable or unpredictable behaviour, for example in fault-tolerant systems and
communication protocols, where properties such as component failure and packet loss can be
described probabilistically. Probabilistic models with nondeterminism, e.g., Markov decision
processes, are employed for modelling of distributed co-ordination protocols which use
randomisation as a symmetry breaker, in wireless medium-access control, and probabilistic
routing in security and anonymity protocols. More generally, Markovian models are useful
to support decision making, for example in economics, operations research, planning and
robotics, to optimise a certain goal function.

Probabilistic model checking [66, 29, 5, 27] is an automatic procedure for establishing if a
desired property holds in a probabilistic system model. Conventional model checkers input a
description of a model, representing a state-transition system, and a specification, typically
a formula in some temporal logic, and return “yes” or “no”, indicating whether or not the
model satisfies the specification. In the case of probabilistic model checking, the models
are probabilistic (typically variants of Markov chains), in the sense that they encode the
probability of making a transition between states instead of simply the existence of such a
transition. A probability space induced on the system behaviours enables the calculation
of likelihood of the occurrence of certain events during the execution of the system. This
in turn allows one to make quantitative statements about the system [37], in addition to
the qualitative statements made by conventional model checking. Probabilities are captured
via probabilistic operators that extend conventional (timed or untimed) temporal logics,
affording the expression of probabilistic specifications such as minimising the probability of a
security attack, reliability of a nanotechnology design, and ensuring that expected energy
usage of the protocol is below a specified bound.

Probabilistic model checking combines graph-theoretic analysis, drawn from conventional
model checking, together with probabilistic analysis. The latter involves numerical computa-
tion, such as solving linear equations or linear programming problems, which for scalability
reasons is typically implemented using iterative methods in symbolic data structures [3, 36].
This lends itself to approximate computation, where one can trade off accuracy for speed
by terminating the computation early. The models are described in high-level modelling
notations, or can be extracted from, e.g., C programs extended with random assignment [34].
An alternative approach, called approximate or statistical model checking [30, 68, 67], is based
on simulating execution runs and applying statistical techniques such as hypothesis testing
to estimate the probability or expectation of some event holding. However, no inference on
data is currently combined with probabilistic model checking techniques, which focus on
system dynamics. An important new direction is synthesis, which aims to construct a model
that is guaranteed to satisfy a given probabilistic specification. Recently formulated and
implemented simpler variants of this problem include parameter synthesis [14, 16], which
finds optimal parameter values that satisfy the property and for model repair, and control-
ler /strategy synthesis [17], with which one can generate correct-by-construction controllers
from specifications.

Probabilistic model checking algorithms were proposed in the 1980s [66, 15], but it
was not until early 2000s when the first industrially-relevant tools were released, notably

155

15491

156

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

PRISM [38] and MRMC [33]. PRISM, in particular, is based on symbolic techniques that
provide compact storage for probabilistic models and ensure efficiency of (approximate)
computation of the probability. In [9], the performance of PRISM was recently improved by
incorporating machine learning, with which one can obtain guarantees on accuracy while
exploring only a portion of the state space. PRISM supports five probabilistic models,
including probabilistic timed automata and stochastic games, for both verification and
strategy synthesis. Applications of probabilistic model checking using PRISM have spanned
multiple fields, from wireless protocols and source code analysis of Linux networking utilities,
through debugging DNA computing designs, to smart energy grids and strategy synthesis
for autonomous urban driving. The software technology underpinning probabilistic model
checking has matured; it has been applied to analyse the reliability of NAND gates design,
detecting a bug in an analytical model, and is being adopted, for example, in software
engineering and resource management of cloud computing systems.

3.2 Quantitative Program Analysis

Probabilistic model checking developed a set of theories, algorithms, and tools aimed at
verifying the properties of a variety of stochastic models. However, their applications to
software engineering is mostly limited to early stages of development, where design models
are translated in a more or less automatic way to corresponding stochastic models. These
semantic views on the software to-be are valuable decision support systems for designers
that can quantitatively evaluate the impact of their choices, especially with respect to
nonfunctional requirements such as reliability or performance. However, design models
are hard to keep consistent with implementation, where code artifacts are in general only
partially compliant with their intended design. To mitigate this inconsistency the three
main approaches are simulation [43], profiling [28], and keeping models “alive” at runtime
via continuous monitoring [20]. The goal of these techniques is to perform additional
measurements on the implemented artifacts in order to update the initial design assumptions
as captured by design-stage models. However, these approaches can only provide coarse
grained information on the implemented software that can hardly be linked to the code.

Furthermore, the widespread use of agile development processes makes the code the
central, and often unique, formal model of the program. Several reverse engineering ap-
proaches attempted to automatically extract models from the code, however the extraction
of meaningful models remains an open problem [10]. Black-box analysis approaches have
also been proposed [64]; though useful for overall quality assessment, these approaches do
not support the localization of errors or otherwise drive the improvement of the program.

Static program analysis techniques aim at checking a variety of properties of an application
starting from its source code. These properties include, for example, correctness, robustness,
liveness or reachability of specific statements. However, most of these techniques cannot
take advantage of the characterization of uncertainty about a program inputs or about its
execution flow, providing in turn less informative true-false answers. Probabilistic analysis
has to be brought at the code level to support the entire development processes, from design
to code and quality assurance.

Several researchers have proposed probabilistic variants of static analysis techniques,
such as data flow analyses [56, 50]. In these approaches the distributions determining the
probability of following each of the edges of an execution branch are supposed to be provided
by the users or are coarsely estimated by monitoring a set of program executions as in [1].

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

Neither of these approaches is fully satisfactory since they characterize the probability of a
given branch independently from the program state when the branch occurs, limiting the
precision of the resulting quantitative analysis.

Probabilistic symbolic execution (PSE) is a recent technique that can be directly applied,
in combination with an input probability distribution, to compute information about the
probability of executing a program path, statement, or branch or, more generally, of reaching
a program state [23, 21]. This technique is an example of white-box source code analysis
that relies only on program semantics to quantify program behavior, taking also into
account probabilistic information about its execution environment, including its deployment
environment and the interaction with users and third-party components. Among the recent
PSE-based techniques, [23, 21] perform an exhaustive analysis of Java programs whose branch
conditions are limited to linear numeric constraints, providing precise results but suffering
from scalability issues; [6] addresses the approximate analysis of non-linear constraints; [41]
deals with nondeterminism and multithreaded programs; [22] provides incremental statistical
analysis with quantified confidences on the results.

3.3 Probabilistic Programming

Quantitative program analysis is focused on general programs dealing with probabilistic
phenomena (e.g., unpredictable interaction with users). On the other hand, probabilistic
programming makes uncertainty a first-class concept and thus enables probabilistic inference.

Probabilistic programming languages augment existing programming languages with
probabilistic primitives [26]. The major goal of these languages is the efficient implementation
of probabilistic inference, which combines a model (written in the probabilistic programming
language) with observed evidence to infer a distribution over variables in the program in
light of that evidence. These languages abstract the details of inference, and so see frequent
use by machine learning experts when building their models. Probabilistic programming has
made significant strides in democratizing probabilistic inference; they let machine learning
experts encode models and then ask complicated and computationally demanding queries via
probabilistic inference, of those models. While, in general probabilistic inference is NP-Hard,
probabilistic programming languages work hard to make (potentially approximate) inference
efficient for many applications of practical interest.

Probabilistic programming is a well-studied field: some probabilistic programming lan-
guages such as Church [25] are theoretically universal, in that they can perform inference on
any distribution they can represent. Venture [44] extends Church to allow the programmer
to determine the inference algorithm to use on each part of the model. Other probabilistic
programming languages restrict the distributions they allow, to make inference more tractable
and efficient. Infer. NET [45, 7] uses various approximate and exact inference engines, each
of which has different restrictions. For example, its Gibbs sampling [24] engine requires the
distributions of related variables to be conjugate, a very strong restriction. These restrictions
often require statistical expertise to evaluate, making such algorithms inappropriate for an
abstraction aimed at non-experts.

Park et al.[54] propose a probabilistic programming language based upon sampling
functions [54] which represents distributions as sampling functions, and uses operations
from the probability monad [57] to build more complex distributions. Bornholt et al. [8]
extends this idea to treat normal imperative programs, which compute with estimates, as
sampling functions, thus lowering the expertise required to write a probabilistic program.

157

15491

158

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

However, Bornholt et al.’s approach does not yet allow full probabilistic inference, like the
aforementioned probabilistic programming languages.

3.4 Approximate Computing

Many modern applications are inherently approximate. For instance, multimedia processing,
machine learning, and big-data analytics applications perform approximate operations on
large data sets. Applications that run on today’s mobile and wearable computing devices
make decisions based on data from approximate hardware components (e.g., GPS, gyroscope,
or accelerometer).

Up to now, developers of approximate applications had to manually reason about accuracy,
energy consumption, and timely execution. Design and implementation of these applications
have often been ad-hoc — hardware and software would be developed independently of each
other, and integration required significant expertise at each layer of the system stack.

Approximate computing is an emerging research area that focuses on devising systematic
approaches for automating development and compilation of approximate software that runs
on today’s commodity and approximate hardware, or tomorrow’s more exotic approximate
hardware. Its goal is to (1) empower a developer with the understanding of how approximate
hardware and software affect the application’s accuracy results, and (2) automate the manage-
ment of application’s accuracy, energy consumption, and performance. To achieve this goal,
approximate computing brings together researchers from software systems — programming
languages and software engineering — and hardware systems — circuit design and hardware
architecture.

Researchers have recently proposed a number of approximate hardware designs and
software optimization techniques that trade accuracy for performance and/or energy savings:

Approzimate Hardware Architectures. Researchers in academia have proposed a number

of hardware designs with approximate accelerators or cores [39, 19, 51], ALUs [52, 18, 51],

and memories [40, 61]. Typically, these designs specify the frequency of failure of their

components (e.g., an addition instruction may produce a wrong result with a small
probability), and/or the magnitude of error (e.g., an addition instruction may produce

a small bounded noise). Researchers in industry have also proposed novel approximate

hardware components, including Qualcomm’s and IBM’s neuromorphic accelerators [55,

32], Intel’s approximate Minerva ALU design [35], and Lyric Semiconductor’s (now a part

of Analog Devices) belief propagation accelerator [42].

Approximation-Aware Compiler Optimizations. These transformations automatically

change the semantics of programs that execute on reliable (commodity) hardware to

trade the accuracy of the program’s result for the improved performance and/or energy
consumption [58, 49, 13, 69, 47, 59]. For instance, loop perforation is a software-only
technique that modifies the program to execute fewer loop iterations and therefore make
the program run faster [49]. A compiler can also automate placement of operations that

execute on approximate hardware [46].

Approximation-Aware Programming Languages and Libraries. Programming languages

such as Eon [65], EnerJ [60], and Rely [11] expose the hardware-level approximation to

the developer through specific language constructs. Libraries, such as Uncertain<T> [§],
provide abstractions that encapsulate approximate data within standard object-oriented

programming languages. Runtime systems, such as those in Green [2], Dynamic Knobs [31],

and Paraprox [59] dynamically adapt an approximate application to maintain desired

result accuracy or responsiveness.

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

Key challenges to adopting these and other approximation techniques include characteriz-

ing their effects on the accuracy of program results and program performance. We discuss
these challenges below.

Modeling Uncertainty: Uncertainty can enter computation through inputs, hardware,
or emerge in computation by using probabilistic language constructs. Researchers have
often modeled this uncertainty probabilistically. For instance, hardware instructions
produce correct results with a specified probability, a computation specifies probabilities
of executing one of several approximate function versions, or the input noise has a specific
probability distribution [60, 69, 48].

Accuracy Analysis: Probabilistic static program analyses compute conservative bounds
on the probability of large output deviations. These analyses reason about programs that
operate on approximate hardware [46], programs transformed using accuracy-aware trans-
formations [48, 69, 13], and programs that operate on uncertain inputs [63, 62]. Sampling
and sensitivity testing based dynamic program analyses estimate the probability of large
output deviations by running these programs on representative inputs [58, 12, 49, 4].
Searching for Optimal Tradeoffs: Approximate hardware components and program
transformations induce a tradeoff space between application’s accuracy and performance.
Optimization techniques therefore explore the tradeoff space looking for the approximate
program configurations that maximize performance or energy savings subject to constraints
on the accuracy of the results. Exploration can be performed using dynamic testing [58,
49, 2, 31, 59, 53], or statically reducing computation optimization to linear or integer
mathematical programming [69, 46].

References

1

Glenn Ammons and James R. Larus. Improving data-flow analysis with path profiles. In
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, PLDI’98, pages 72-84. ACM, 1998. doi:10.1145/277650.277665.
Woongki Baek and Trishul M. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. In Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI'10,
pages 198-209, New York, NY, USA, 2010. ACM. doi:10.1145/1806596.1806620.
Christel Baier, Edmund M. Clarke, Vasiliki Hartonas-Garmhausen, Marta Kwiatkowska,
and Mark Ryan. Symbolic model checking for probabilistic processes. In Pierpaolo Degano,
Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors, Automata, Languages and
Programming, volume 1256 of Lecture Notes in Computer Science, pages 430-440. Springer,
1997. doi:10.1007/3-540-63165-8_199.

Tao Bao, Yunhui Zheng, and Xiangyu Zhang. White box sampling in uncertain data pro-
cessing enabled by program analysis. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA’12, pages
897-914. ACM, 2012. doi:10.1145/2384616.2384681.

Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nondeterministic
systems. In P.S. Thiagarajan, editor, Foundations of Software Technology and Theoretical
Computer Science, volume 1026 of Lecture Notes in Computer Science, pages 499-513.
Springer, 1995. doi:10.1007/3-540-60692-0_70.

Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Pasireanu, and Willem
Visser. Compositional solution space quantification for probabilistic software analysis. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’14, pages 123-132. ACM, 2014. doi:10.1145/2594291.2594329.

159

15491

http://dx.doi.org/10.1145/277650.277665
http://dx.doi.org/10.1145/1806596.1806620
http://dx.doi.org/10.1007/3-540-63165-8_199
http://dx.doi.org/10.1145/2384616.2384681
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1145/2594291.2594329

160

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

10

11

12

13

14

15

16

17

18

19

Johannes Borgstrom, Andrew D. Gordon, Michael Greenberg, James Margetson, and Jur-
gen Van Gael. Measure transformer semantics for bayesian machine learning. In Gilles
Barthe, editor, Programming Languages and Systems, volume 6602 of Lecture Notes in
Computer Science, pages 77-96. Springer, 2011. doi:10.1007/978-3-642-19718-5_5.
James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. Uncertain<t>: A first-
order type for uncertain data. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS’14,
pages 51-66, New York, NY, USA, 2014. ACM. doi:10.1145/2541940.2541958.

T. Bréazdil, K. Chatterjee, M. Chmelik, V. Forejt, J. Kfetinsky, M. Kwiatkowska, D. Parker,
and M. Ujma. Verification of markov decision processes using learning algorithms. In
Proc. 12th International Symposium on Automated Technology for Verification and Analysis
(ATVA’14), LNCS. Springer, 2014. To appear.

Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and challenges
in software reverse engineering. Commun. ACM, 54(4):142-151, April 2011. doi:10.1145/
1924421 .1924451.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative reli-
ability for programs that execute on unreliable hardware. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA’13, pages 33-52, New York, NY, USA, 2013. ACM.
doi:10.1145/2509136.2509546.

Michael Carbin and Martin C. Rinard. Automatically identifying critical input regions and
code in applications. In Proceedings of the 19th International Symposium on Software Test-
ing and Analysis, ISSTA’10, pages 37-48. ACM, 2010. doi:10.1145/1831708.1831713.
Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour. Proving
programs robust. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE’11, pages 102
112, New York, NY, USA, 2011. ACM. doi:10.1145/2025113.2025131.

Taolue Chen, E.M. Hahn, Tingting Han, M. Kwiatkowska, Hongyang Qu, and Lijun Zhang.
Model repair for markov decision processes. In Theoretical Aspects of Software Engineering
(TASE), 2013 International Symposium on, pages 85-92, July 2013. doi:10.1109/TASE.
2013.20.

Costas Courcoubetis and Mihalis Yannakakis. Markov decision processes and regular events.
In MichaelS. Paterson, editor, Automata, Languages and Programming, volume 443 of Lec-
ture Notes in Computer Science, pages 336-349. Springer, 1990. doi:10.1007/BFb0032043.
M. Diciolla, C. H. P. Kim, M. Kwiatkowska, and A. Mereacre. Synthesising optimal timing
delays for timed i/o automata. In 14th International Conference on Embedded Software
(EMSOFT’1}), 2014 - to appear.

Klaus Drager, Vojtéch Forejt, Marta Kwiatkowska, David Parker, and Mateusz Ujma.
Permissive controller synthesis for probabilistic systems. In Erika Abraham and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 8413 of Lecture Notes in Computer Science, pages 531-546. Springer, 2014. doi:
10.1007/978-3-642-54862-8_44.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture support
for disciplined approximate programming. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, pages 301-312. ACM, 2012. doi:10.1145/2150976.2151008.

Hadi Esmacilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural accelera-
tion for general-purpose approximate programs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages 449-460.
IEEE Computer Society, 2012. doi:10.1109/MICR0.2012.48.

http://dx.doi.org/10.1007/978-3-642-19718-5_5
http://dx.doi.org/10.1145/2541940.2541958
http://dx.doi.org/10.1145/1924421.1924451
http://dx.doi.org/10.1145/1924421.1924451
http://dx.doi.org/10.1145/2509136.2509546
http://dx.doi.org/10.1145/1831708.1831713
http://dx.doi.org/10.1145/2025113.2025131
http://dx.doi.org/10.1109/TASE.2013.20
http://dx.doi.org/10.1109/TASE.2013.20
http://dx.doi.org/10.1007/BFb0032043
http://dx.doi.org/10.1007/978-3-642-54862-8_44
http://dx.doi.org/10.1007/978-3-642-54862-8_44
http://dx.doi.org/10.1145/2150976.2151008
http://dx.doi.org/10.1109/MICRO.2012.48

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz 161

20 Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. A formal approach to adaptive
software: continuous assurance of non-functional requirements. Formal Aspects of Comput-
ing, 24(2):163-186, 2012. doi:10.1007/s00165-011-0207-2.

21 Antonio Filieri, Corina S. Pasareanu, and Willem Visser. Reliability analysis in symbolic
pathfinder. In Proceedings of the 2013 International Conference on Software Engineering,
ICSE’13, pages 622—631. IEEE Press, 2013. doi:10.1109/ICSE.2013.6606608.

22 Antonio Filieri, Corina S. Pasareanu, Willem Visser, and Jaco Geldenhuys. Statistical
symbolic execution with informed sampling. In Proceedings of the ACM SIGSOFT 22nd
International Symposium on the Foundations of Software Engineering, FSE’14. ACM, 2014.
URL: http://goo.gl/ GXxFLi.

23 Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic execution.
In Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, pages 166-176. ACM, 2012. doi:10.1145/2338965.2336773.

24 Stuart Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
PAMI—G(G):7217741, Nov 1984. doi:10.1109/TPAMI.1984.4767596.

25 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: A language for generative models. In Uncertainty in Artificial Intel-
ligence, pages 220-229, 2008. URL: http://arxiv.org/pdf/1206.3255.

26 Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani.
Probabilistic programming. In Proceedings of the on Future of Software Engineering, FOSE
2014, pages 167-181, New York, NY, USA, 2014. ACM. doi:10.1145/2593882.2593900.

27 Christel gordon and Marta Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125-155, 1998. doi:10.1007/
s004460050046.

28 K. Goseva-Popstojanova, M. Hamill, and R. Perugupalli. Large empirical case study of
architecture-based software reliability. In Software Reliability Engineering, 2005. ISSRE
2005. 16th IEEFE International Symposium on, pages 52—61, Nov 2005. doi:10.1109/ISSRE.
2005.25.

29 Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512-535, 1994. doi:10.1007/BF01211866.

30 Thomas Herault, Richard Lassaigne, Frederic Magniette, and Sylvain Peyronnet. Ap-
proximate probabilistic model checking. In Bernhard Steffen and Giorgio Levi, edit-
ors, Verification, Model Checking, and Abstract Interpretation, volume 2937 of Lecture
Notes in Computer Science, pages 73—-84. Springer Berlin Heidelberg, 2004. doi:10.1007/
978-3-540-24622-0_8.

31 Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic knobs for responsive power-aware computing. In Proceedings of the
Sizteenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 199-212, New York, NY, USA, 2011. ACM.
doi:10.1145/1950365.1950390.

32 New ibm synapse chip could open era of vast neural networks. http://www-03.ibm.com/
press/us/en/pressrelease/44529.wss.

33 Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N.
Jansen. The ins and outs of the probabilistic model checker mrme. Perform. Eval., 68(2):90-
104, February 2011. doi:10.1016/j.peva.2010.04.001.

34 M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker. Abstraction refinement
for probabilistic software. In N. Jones and M. Muller-Olm, editors, Proc. 10th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’09), volume 5403 of LNCS, pages 182-197. Springer, 2009.

15491

http://dx.doi.org/10.1007/s00165-011-0207-2
http://dx.doi.org/10.1109/ICSE.2013.6606608
http://goo.gl/GXxFLi
http://dx.doi.org/10.1145/2338965.2336773
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://arxiv.org/pdf/1206.3255
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1007/s004460050046
http://dx.doi.org/10.1007/s004460050046
http://dx.doi.org/10.1109/ISSRE.2005.25
http://dx.doi.org/10.1109/ISSRE.2005.25
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://dx.doi.org/10.1145/1950365.1950390
http://www-03.ibm.com/press/us/en/pressrelease/44529.wss
http://www-03.ibm.com/press/us/en/pressrelease/44529.wss
http://dx.doi.org/10.1016/j.peva.2010.04.001

162

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

35

36

37

38

39

40

41

42

43

44

45

46

47

48

H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Krishnamurthy, and
S. Borkar. A 1.45ghz 52-to-162gflops/w variable-precision floating-point fused multiply-
add unit with certainty tracking in 32nm cmos. In Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2012 IEEE International, pages 182-184, Feb 2012. doi:
10.1109/ISSCC.2012.6176987.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with
PRISM: A hybrid approach. International Journal on Software Tools for Technology Trans-
fer (STTT), 6(2):128-142, 2004.

Marta Kwiatkowska. Quantitative verification: Models techniques and tools. In Proceedings
of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-FSE’07, pages
449-458. ACM, 2007. doi:10.1145/1287624.1287688.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of probab-
ilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification, volume 6806 of Lecture Notes in Computer Science, pages 585—591.
Springer, 2011. doi:10.1007/978-3-642-22110-1_47.

L. Leem, Hyungmin Cho, J. Bau, Q.A. Jacobson, and S. Mitra. Ersa: Error resilient
system architecture for probabilistic applications. In Design, Automation Test in Europe
Conference Fzhibition (DATE), 2010, pages 1560-1565, March 2010. doi:10.1109/DATE.
2010.5457059.

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. Flikker:
Saving dram refresh-power through critical data partitioning. In Proceedings of the Siz-
teenth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 213-224. ACM, 2011. doi:10.1145/1950365.
1950391.

Kasper Luckow, Corina S. Pasareanu, Matthew B. Dwyer, Antonio Filieri, and Willem Vis-
ser. Exact and approximate probabilistic symbolic execution for nondeterministic programs.
In Proceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE’14, pages 575-586. ACM, 2014. doi:10.1145/2642937.2643011.
Lyriclabs: High probability —of success. http://newsoffice.mit.edu/2013/
ben-vigoda-lyric-0501.

Michael R. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill, Inc.,
Hightstown, NJ, USA, 1996.

Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-order prob-
abilistic programming platform with programmable inference. CoRR, abs/1404.0099, 2014.
URL: http://arxiv.org/abs/1404.0099.

T. Minka, J.M. Winn, J.P. Guiver, and D.A. Knowles. Infer.NET 2.5, 2012. Microsoft
Research Cambridge. URL: http://research.microsoft.com/infernet.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. Chisel:
Reliability- and accuracy-aware optimization of approximate computational kernels. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA’14, pages 309-328. ACM, 2014. doi:10.
1145/2660193.2660231.

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. Parallelizing sequential programs
with statistical accuracy tests. ACM Trans. Embed. Comput. Syst., 12(2s):88:1-88:26, May
2013. doi:10.1145/2465787.2465790.

Sasa Misailovic, Daniel M. Roy, and MartinC. Rinard. Probabilistically accurate program
transformations. In Eran Yahav, editor, Static Analysis, volume 6887 of Lecture Notes in
Computer Science, pages 316—-333. Springer, 2011. doi:10.1007/978-3-642-23702-7_24.

http://dx.doi.org/10.1109/ISSCC.2012.6176987
http://dx.doi.org/10.1109/ISSCC.2012.6176987
http://dx.doi.org/10.1145/1287624.1287688
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1109/DATE.2010.5457059
http://dx.doi.org/10.1109/DATE.2010.5457059
http://dx.doi.org/10.1145/1950365.1950391
http://dx.doi.org/10.1145/1950365.1950391
http://dx.doi.org/10.1145/2642937.2643011
http://newsoffice.mit.edu/2013/ben-vigoda-lyric-0501
http://newsoffice.mit.edu/2013/ben-vigoda-lyric-0501
http://arxiv.org/abs/1404.0099
http://research.microsoft.com/infernet
http://dx.doi.org/10.1145/2660193.2660231
http://dx.doi.org/10.1145/2660193.2660231
http://dx.doi.org/10.1145/2465787.2465790
http://dx.doi.org/10.1007/978-3-642-23702-7_24

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz 163

49 Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Quality of service
profiling. In Proceedings of the 82Nd ACM/IEEE International Conference on Software
Engineering, ICSE’10, pages 25-34, New York, NY, USA, 2010. ACM. doi:10.1145/
1806799.1806808.

50 David Monniaux. An abstract monte-carlo method for the analysis of probabilistic pro-
grams. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL’01, pages 93-101. ACM, 2001. doi:10.1145/360204.
360211.

51 Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. Scalable stochastic
processors. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE’10, pages 335-338. European Design and Automation Association, 2010. doi:10.
1109/DATE.2010.5457181.

52 K.V. Palem. Energy aware computing through probabilistic switching: a study of limits.
Computers, IEEE Transactions on, 54(9):1123-1137, Sept 2005. doi:10.1109/TC.2005.
145.

53 J. Park, X. Zhang, K. Ni, H. Esmaeilzadeh, and M. Naik. Expectation-oriented frame-
work for automating approximate programming. Technical Report GT-CS-14-05, Georgia
Institute of Technology, 2014. URL: https://smartech.gatech.edu/handle/1853/49755.

54 Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based on
sampling functions. ACM Trans. Program. Lang. Syst., 31(1):4:1-4:46, December 2008.
doi:10.1145/1452044.1452048.

55 Introducing qualcomm zeroth Processors: Brain-inspired com-
puting. https://www.qualcomm.com/news/onq/2013/10/10/
introducing-qualcomm-zeroth-processors-brain-inspired-computing.

56 G. Ramalingam. Data flow frequency analysis. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation, PLDI’96, pages
267-277. ACM, 1996. doi:10.1145/231379.231433.

57 Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of prob-
ability distributions. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’02, pages 154-165. ACM, 2002. doi:
10.1145/503272.503288.

58 Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks. In Proceedings of the 20th Annual International Conference on Supercomputing,
1CS’06, pages 324-334. ACM, 2006. doi:10.1145/1183401.1183447.

59 Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. Paraprox:
Pattern-based approximation for data parallel applications. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS’14, pages 35-50, New York, NY, USA, 2014. ACM. doi:
10.1145/2541940.2541948.

60 Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and
Dan Grossman. Enerj: Approximate data types for safe and general low-power computa-
tion. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’11, pages 164-174. ACM, 2011. doi:10.1145/1993498.
1993518.

61 Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate storage in solid-
state memories. In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-46, pages 25-36, New York, NY, USA, 2013. ACM. doi:
10.1145/2540708.2540712.

62 Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S. McKinley, Dan Gross-
man, and Luis Ceze. Expressing and verifying probabilistic assertions. In Proceedings of

15491

http://dx.doi.org/10.1145/1806799.1806808
http://dx.doi.org/10.1145/1806799.1806808
http://dx.doi.org/10.1145/360204.360211
http://dx.doi.org/10.1145/360204.360211
http://dx.doi.org/10.1109/DATE.2010.5457181
http://dx.doi.org/10.1109/DATE.2010.5457181
http://dx.doi.org/10.1109/TC.2005.145
http://dx.doi.org/10.1109/TC.2005.145
https://smartech.gatech.edu/handle/1853/49755
http://dx.doi.org/10.1145/1452044.1452048
https://www.qualcomm.com/news/onq/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing
https://www.qualcomm.com/news/onq/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing
http://dx.doi.org/10.1145/231379.231433
http://dx.doi.org/10.1145/503272.503288
http://dx.doi.org/10.1145/503272.503288
http://dx.doi.org/10.1145/1183401.1183447
http://dx.doi.org/10.1145/2541940.2541948
http://dx.doi.org/10.1145/2541940.2541948
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/2540708.2540712
http://dx.doi.org/10.1145/2540708.2540712

164

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

63

64

65

66

67

68

69

4
4.1

the 35th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI’14, pages 112-122, New York, NY, USA, 2014. ACM. doi:10.1145/2594291.
2594294.

Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. Static analysis for
probabilistic programs: Inferring whole program properties from finitely many paths. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI'13, pages 447-458, New York, NY, USA, 2013. ACM. doi:
10.1145/2491956.2462179.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-
box probabilistic systems. In Rajeev Alur and Doron A. Peled, editors, Computer Aided
Verification, volume 3114 of Lecture Notes in Computer Science, pages 202-215. Springer,
2004. doi:10.1007/978-3-540-27813-9_16.

Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D. Corner,
and Emery D. Berger. Eon: A language and runtime system for perpetual systems. In
Proceedings of the 5th International Conference on Embedded Networked Sensor Systems,
SenSys’07, pages 161-174. ACM, 2007. doi:10.1145/1322263.1322279.

M.Y. Vardi. Automatic verification of probabilistic concurrent finite state programs. In
Foundations of Computer Science, 1985., 26th Annual Symposium on, pages 327-338, Oct
1985. doi:10.1109/SFCS.1985.12.

HakanL.S. Younes, EdmundM. Clarke, and Paolo Zuliani. Statistical verification of prob-
abilistic properties with unbounded until. In Jim Davies, Leila Silva, and Adenilso Simao,
editors, Formal Methods: Foundations and Applications, volume 6527 of Lecture Notes in
Computer Science, pages 144-160. Springer, 2011. doi:10.1007/978-3-642-19829-8_10.
HékanL.S. Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. Numerical
vs. statistical probabilistic model checking. International Journal on Software Tools for
Technology Transfer, 8(3):216-228, 2006. doi:10.1007/s10009-005-0187-8.

Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. Random-
ized accuracy-aware program transformations for efficient approximate computations. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’12, pages 441-454. ACM, 2012. doi:10.1145/2103656.
2103710.

Overview of Talks

Approximate computation with outlier detection in Topaz

Sara Achour (MIT — Cambridge, US)

License) Creative Commons BY 3.0 Unported license
© Sara Achour

Joint work of Achour, Sara; Rinard, Martin

Main reference S. Achour, M. C. Rinard, “Approximate computation with outlier detection in Topaz,’

5

in Proc. of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’15), pp. 711-730, ACM, 2015.

URL http://dx.doi.org/10.1145/2814270.2814314

We present Topaz, a new task-based language for computations that execute on approximate

computing platforms that may occasionally produce arbitrarily inaccurate results. Topaz
maps tasks onto the approximate hardware and integrates the generated results into the
main computation. To prevent unacceptably inaccurate task results from corrupting the
main computation, Topaz deploys a novel outlier detection mechanism that recognizes and
precisely re-executes outlier tasks. Outlier detection enables Topaz to work effectively with

http://dx.doi.org/10.1145/2594291.2594294
http://dx.doi.org/10.1145/2594291.2594294
http://dx.doi.org/10.1145/2491956.2462179
http://dx.doi.org/10.1145/2491956.2462179
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1145/1322263.1322279
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/s10009-005-0187-8
http://dx.doi.org/10.1145/2103656.2103710
http://dx.doi.org/10.1145/2103656.2103710
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2814270.2814314
http://dx.doi.org/10.1145/2814270.2814314
http://dx.doi.org/10.1145/2814270.2814314
http://dx.doi.org/10.1145/2814270.2814314

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

approximate hardware platforms that have complex fault characteristics, including platforms
with bit pattern dependent faults (in which the presence of faults may depend on values stored
in adjacent memory cells). Our experimental results show that, for our set of benchmark
applications, outlier detection enables Topaz to deliver acceptably accurate results (less than
1% error) on our target approximate hardware platforms. Depending on the application
and the hardware platform, the overall energy savings range from 5 to 13 percent. Without
outlier detection, only one of the applications produces acceptably accurate results.

4.2 Numerical Program Analysis Tools: A Wish List
David Bindel (Cornell University, US)

License) Creative Commons BY 3.0 Unported license
© David Bindel

In my scientific computing work, I am constantly faced with different sources of error: model
error, stochastic error, discretization error, error due to approximation of some difficult
term, error due to termination of iterations, and error due to roundoff effects. I deal with
these errors by reasoning about forward and backward errors, stability and conditioning
of iterations and of problems, the role of singularities, and structural properties of the
computation must be retained for meaningful results. I dream of compilers with which I can
share optimizations that I know are possible (and those that will break my code) and PL
tools that understand enough to help me check my error analyses. I will share some of my
own preliminary work in this direction, and will make an appeal to the audience to help
produce the tools I wish I knew how to write.

4.3 Optimizing Synthesis with Metasketches (for Automated
Approximate Programming)

James Bornholt (University of Washington — Seattle, US)

License) Creative Commons BY 3.0 Unported license
© James Bornholt
URL http://synapse.uwplse.org/

An ideal programming model for approximate computing would apply approximations
automatically, translating an exact program and a quality specification into the most efficient
program that meets that specification. Program synthesis is the task of automatically
generating a program that meets a given specification, and sounds like a good fit for the
approximate computing problem. But existing synthesis tools rarely consider the efficiency of
solutions, because the required techniques require substantial domain-specific modifications
to existing solvers. Optimal synthesis is the task of producing a solution that not only
satisfies the specification but also minimizes a desired cost function.

We present metasketches, a general framework for specifying and solving optimal synthesis
problems. Metasketches offer strategic control over the underlying synthesizer by specifying
a fragmentation of the search space into an ordered set of classic sketches. We provide two
cooperating search algorithms to effectively solve metasketches. A global optimizing search
coordinates the activities of local searches, informing them of the costs of potentially-optimal
solutions as they explore different regions of the candidate space in parallel. The local searches

165

15491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://synapse.uwplse.org/

166

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

execute an incremental form of counterexample-guided inductive synthesis to incorporate
information sent from the global search.

We present Synapse, an implementation of these algorithms, and show that it effectively
solves optimal synthesis problems with a variety of different cost functions. In particular,
we show that Synapse can find novel approximations to computational kernels that achieve
speed-ups of between 1.6x and 35x without hardware support.

4.4 Stochastic approximations for Stochastic Model Checking
Luca Bortolussi (University of Trieste, IT)

License @ Creative Commons BY 3.0 Unported license
© Luca Bortolussi
Main reference L. Bortolussi, J. Hillston, “Model checking single agent behaviours by fluid approximation,”
Information and Computation, Vol. 242, pp. 183-226, 2015.
URL http://dx.doi.org/10.1016/j.ic.2015.03.002

We will briefly review a recent line of work trying to exploit different types of stochastic
approximation (fluid approximation, linear noise approximation, moment closures) to model
check a Markov population model against specific classes of properties. In the talk, we will
focus mostly on individual properties, specified by CSL with rewards or by DTA.

4.5 Counterexample Explanation by Learning Small Strategies in
Markov Decision Processes

Tomas Brdazdil (Masaryk University — Brno, CZ)

License) Creative Commons BY 3.0 Unported license
© Tomas Brazdil
Main reference T. Brazdil, K. Chatterjee, M. Chmelik, A. Fellner, J. Kfetinsky, “Counterexample Explanation by
Learning Small Strategies in Markov Decision Processes,” arXiv:1502.02834v1 [cs.LO], 2015.
URL http://arxiv.org/abs/1502.02834v1

While for deterministic systems, a counterexample to a property can simply be an error
trace, counterexamples in probabilistic systems are necessarily more complex. For instance,
a set of erroneous traces with a sufficient cumulative probability mass can be used. Since
these are too large objects to understand and manipulate, compact representations such as
subchains have been considered. In the case of probabilistic systems with non-determinism,
the situation is even more complex. While a subchain for a given strategy (or scheduler,
resolving non-determinism) is a straightforward choice, we take a different approach. Instead,
we focus on the strategy — which can be a counterexample to violation of or a witness
of satisfaction of a property — itself, and extract the most important decisions it makes,
and present its succinct representation. The key tools we employ to achieve this are (1)
introducing a concept of importance of a state w.r.t. the strategy, and (2) learning using
decision trees. There are three main consequent advantages of our approach. Firstly, it
exploits the quantitative information on states, stressing the more important decisions.
Secondly, it leads to a greater variability and degree of freedom in representing the strategies.
Thirdly, the representation uses a self-explanatory data structure. In summary, our approach
produces more succinct and more explainable strategies, as opposed to e.g. binary decision
diagrams. Finally, our experimental results show that we can extract several rules describing
the strategy even for very large systems that do not fit in memory, and based on the rules
explain the erroneous behaviour.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1502.02834v1
http://arxiv.org/abs/1502.02834v1
http://arxiv.org/abs/1502.02834v1

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

4.6 Approximate Computing on Unreliable Silicon
Andreas Peter Burg (EPFL — Lausanne, CH)

License) Creative Commons BY 3.0 Unported license
© Andreas Peter Burg
Joint work of Burg, Andreas; Karakonstantis, Georgios; Constantin, Jeremy; Teman, Adam

Approximate computing refers not only to approximating complex computations and al-
gorithms with less complex ones, but can also be the basis for providing robustness against
errors due to reliabilities of the underlying hardware. In this talk, we consider two types of
hardware failure: timing errors and reliability issues in memories. We describe their impact
and critically discuss their potential and issues in the context of approximate computing.
We show that tolerating timing errors is particularly tricky, while errors in memories are
more straightforward to model and exploit. For the latter, we also point out strategies for
testing and quality assurance of unreliable hardware and we mention algorithm techniques
to reduce the impact of errors on quality.

4.7 Approximate Overview of Approximate Computing
Luis Ceze (University of Washington — Seattle, US)

License) Creative Commons BY 3.0 Unported license
© Luis Ceze

Motivation for approximate computing. Overview of approximate computing techniques
from language to hardware.

4.8 Programming with Numerical Uncertainties

Fva Darulova (MPI-SWS - Saarbriicken, DE)

License () Creative Commons BY 3.0 Unported license
© Eva Darulova

Numerical software, common in scientific computing or embedded systems, inevitably uses
an approximation of the real arithmetic in which most algorithms are designed. Finite-
precision arithmetic, such as fixed-point or floating-point, is a common and efficient choice, but
introduces an uncertainty on the computed result that is often very hard to quantify. We need
adequate tools to estimate the errors introduced in order to choose suitable approximations
which satisfy the accuracy requirements. I will present a new programming model where the
scientist writes his or her numerical program in a real-valued specification language with
explicit error annotations. It is then the task of our verifying compiler to select a suitable
floating-point or fixed-point data type which guarantees the needed accuracy. I will show
how a combination of SMT theorem proving, interval and affine arithmetic and function
derivatives yields an accurate, sound and automated error estimation which can handle
nonlinearity, discontinuities and certain classes of loops.

167

15491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

168

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

4.9 The dual value of Probabilistic Abstract interpretation
Alessandra Di Pierro (University of Verona, IT)

License) Creative Commons BY 3.0 Unported license
© Alessandra Di Pierro

Probabilistic Abstract Interpretation is a framework for program analysis that allows us
to accommodate probabilistic properties and properties of probabilistic computations. We
illustrate the dual value of this framework for both deducing and inferring probabilities. More
specifically we show the use of PAI for both static analysis and statistical reasoning. The
basic ingredient of the PAI framework that makes this possible is the notion of Moore-Penrose
pseudo inverse and its least-square approximation property.

Suppose that we want to analyse a program to check whether it is secure up to a given
level of accuracy. We can use probabilistic abstract interpretation as follows:

Define mathematically what ‘secure’ means (e.g. as a probabilistic relation)

Consider the semantics of the program restricted to this property (abstraction)

Construct the Moore-Penrose generalised inverse of the abstraction in order to identify

an ideal concrete system that satisfies the property up to the fixed accuracy.

Note that the concrete probabilities defining the concrete ideal system are just assumed
and may have no relation with the real world.

Now suppose that we have some observations y at hand and we want to use them in order
to define an ideal concrete system which is closer to the real one. To this purpose we can use
probabilistic abstract interpretation as a linear statistical model in the way explained below:

Consider the space V of all possible ideal concrete semantics (abstract domain)

Define a mapping X from V to all possible observations (design matrix)

Construct the MP generalised inverse of X in order to obtain the best estimate b of the

concrete semantics that realises y.

Note that this is nothing else than the application of the Gauss-Markov theorem for linear
regression in its simplest version.

4.10 Termination of Probabilistic Programs
Luis Maria Ferrer Fioriti (Universitit des Saarlandes, DE)

License @@ Creative Commons BY 3.0 Unported license
© Luis Marfa Ferrer Fioriti
Main reference L. M.Ferrer Fioriti, H. Hermanns, “Probabilistic Termination: Soundness, Completeness, and
Compositionality,” in Proc. of the 42nd Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’15), pp. 489-501, ACM, 2015.
URL http://dx.doi.org/10.1145/2775051.2677001

The talk is an overview of the ranking supermartingale framework to prove almost sure
termination of probabilistic programs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2775051.2677001
http://dx.doi.org/10.1145/2775051.2677001
http://dx.doi.org/10.1145/2775051.2677001
http://dx.doi.org/10.1145/2775051.2677001

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

4.11 Quality-Energy Aware System Design
Andreas Gerstlauer (University of Texas — Austin, US)

License) Creative Commons BY 3.0 Unported license
© Andreas Gerstlauer
URL http://www.ece.utexas.edu/~gerstl/research.html#approximate

Approximate computing has emerged as a novel paradigm for achieving significant energy
savings by trading off computational precision and accuracy in inherently error-tolerant
applications. This introduces a new notion of quality as design parameter. Such approaches
will only be successful, however, if quality can be guaranteed and design spaces can be
efficiently explored. While ad-hoc solutions have been explored, systematic approaches
are lacking. We have been investigating such quality-energy aware system design. At the
hardware level, design strategies for synthesis of approximate arithmetic and logic circuits,
including adders and multipliers demonstrate existence of a large design space of Pareto-
optimal solutions. Such building blocks in turn form the basis for high-level synthesis of
hardware and software into approximate datapaths of custom or programmable processors
under a range of statistical quality constraints. Finally, at the system level, we envision a key
question to be how to address the problem of quality-energy aware mapping and scheduling
of application tasks onto general, quality-configurable system platforms.

4.12 Probabilistic Programming Process Algebra
Jane Hillston (University of Edinburgh, GB)

License) Creative Commons BY 3.0 Unported license
© Jane Hillston
Joint work of Hillston, Jane; Georgoulas, Anastasis; Sanguinetti, Guido
Main reference A. Georgoulas, J. Hillston, D. Milios, G. Sanguinetti, “Probabilistic Programming Process
Algebra,” in Proc. of the 11th Int’l Conf. on Quantitative Evaluation of Systems (QEST’14),
LNCS, Vol. 8657, pp. 249-264, Springer, 2014.
URL http://dx.doi.org/10.1007/978-3-319-10696-0_ 21

Formal modelling languages such as process algebras are effective tools in computational
biological modelling. However, handling data and uncertainty in these representations in
a statistically meaningful way is an open problem, limiting their usefulness in many real
biological applications. In contrast, the machine learning community have recently proposed
probabilistic programming as a way of expressing probabilistic models in a language which
incorporates distributions and observations, and offers automated inference to update the
likely distribution over values given the observations.

I will present work which seeks to combine these approaches allowing formal mechanistic
models which encompass uncertainty, observations and inference.

169

15491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ece.utexas.edu/~gerstl/research.html#approximate
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-10696-0_21
http://dx.doi.org/10.1007/978-3-319-10696-0_21
http://dx.doi.org/10.1007/978-3-319-10696-0_21
http://dx.doi.org/10.1007/978-3-319-10696-0_21

170

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

4.13 On Quantification of Accuracy Loss in Approximate Computing
Ulya R. Karpuzcu (University of Minnesota — Minneapolis, US)

License) Creative Commons BY 3.0 Unported license
© Ulya R. Karpuzcu

Emerging applications such as R(ecognition), M(ining), and S(ynthesis) suit themselves well
to approximate computing due to their intrinsic noise tolerance. RMS applications process
massive, yet noisy and redundant data by probabilistic, often iterative, algorithms. Usually
the solution space has many more elements than one, rendering a range of application outputs
valid, as opposed to a single golden value. A critical step in translating this intrinsic noise
tolerance to energy efficiency is quantification of approximation-induced accuracy loss using
application-specific metrics. This article covers pitfalls and fallacies in the development and
deployment of accuracy metrics.

4.14 Understanding and Analysing Probabilistic Programs
Joost-Pieter Katoen (RWTH Aachen, DE)

License () Creative Commons BY 3.0 Unported license
© Joost-Pieter Katoen

We develop program analysis techniques, based on static program analysis, deductive veri-
fication, and model checking, to make probabilistic programming more reliable, i.e., less
buggy. Starting from a profound understanding from the intricate semantics of probabilistic
programs (including features such as observations, possibly diverging loops, continuous
variables, non-determinism, as well as unbounded recursion), we study fundamental problems
such as checking program equivalence, loop-invariant synthesis, almost-sure termination,
and pre- and postcondition reasoning. The aim is to study the computational hardness of
these problems as well as to develop (semi-) algorithms and accompanying tool-support. The
ultimate goal is to provide lightweight automated means to the probabilistic programmer so
as check elementary program properties.

4.15 Computing Reliably with Molecular Walkers
Marta Kwiatkowska (University of Oxford, GB)

License) Creative Commons BY 3.0 Unported license
© Marta Kwiatkowska
Main reference F. Dannenberg, M. Kwiatkowska, C. Thachuk, A.J. Turberfiled, “DNA walker circuits:
computational potential, design, and verification,” Natural Computing, 14(2):195-211, 2015;
pre-print available from project repository.
URL http://dx.doi.org/10.1007/s11047-014-9426-9
URL http://www.veriware.org/bibitem.php?key=DKTT15

DNA computing is emerging as a versatile technology that promises a vast range of applica-
tions, including biosensing, drug delivery and synthetic biology. DNA logic circuits can be
achieved in solution using strand displacement reactions, or by decision-making molecular
robots-so called ‘walkers’-that traverse tracks placed on DNA ‘origami’ tiles. Similarly to
conventional silicon technologies, ensuring fault-free DNA circuit designs is challenging, with
the difficulty compounded by the inherent unreliability of the DNA technology and lack of

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s11047-014-9426-9
http://dx.doi.org/10.1007/s11047-014-9426-9
http://dx.doi.org/10.1007/s11047-014-9426-9
http://dx.doi.org/10.1007/s11047-014-9426-9
http://www.veriware.org/bibitem.php?key=DKTT15

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz 171

scientific understanding. This lecture will give an overview of computational models that
capture DNA walker computation and demonstrate the role of quantitative verification and
synthesis in ensuring the reliability of such systems. Future research challenges will also be
discussed.

4.16 Approximate counting for SMT
Rupak Majumdar (MPI-SWS — Kaiserslautern, DE)

License) Creative Commons BY 3.0 Unported license
© Rupak Majumdar

#SMT, or model counting for logical theories, is a well-known hard problem that generalizes
such tasks as counting the number of satisfying assignments to a Boolean formula and
computing the volume of a polytope. In the realm of satisfiability modulo theories (SMT)
there is a growing need for model counting solvers, coming from several application domains
(quantitative information flow, static analysis of probabilistic programs). We show a reduction
from an approximate version of §SMT to SMT.

We focus on the theories of integer arithmetic and linear real arithmetic. We propose
model counting algorithms that provide approximate solutions with formal bounds on the
approximation error. They run in polynomial time and make a polynomial number of queries
to the SMT solver for the underlying theory. We show an application of fSMT to the value
problem for a model of loop-free probabilistic programs with nondeterminism.

4.17 Smoothed Model Checking: A Machine Learning Approach to
Probabilistic Model Checking under Uncertainty

Dimitrios Milios (University of Edinburgh, GB)

License) Creative Commons BY 3.0 Unported license
© Dimitrios Milios

Probabilistic model checking can provide valuable insights on the properties of stochastic
systems. In many application fields however, it is not always possible to accurately identify
some of the parameters of the model in question. It is therefore desirable to be able to
perform model checking in presence of uncertainty. We show that the satisfaction probability
of a temporal logic formula is a smooth function of the model parameters. This smoothness
property enables us to construct an analytical approximation of the satisfaction function by
using a well-established machine learning framework for approximating smooth functions.
Extensive experiments on non-trivial case studies show that the approach is accurate and
several orders of magnitude faster than naive parameter exploration with standard statistical
model checking methods.

15491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

172

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

4.18 Accuracy-Aware Compiler Optimizations
Sasa Misailovic (MIT — Cambridge, US)

License) Creative Commons BY 3.0 Unported license
© Sasa Misailovic
Joint work of Martin Rinard, Michael Carbin, Hank Hoffmann, Stelios Sidiroglou, Sara Achour, Zichao Qi, and
Sasa Misailovic

Many modern applications (such as multimedia processing, machine learning, and big-data
analytics) exhibit a natural tradeoff between the accuracy of the results they produce and
the application’s execution time or energy consumption. These applications allow us to
investigate new, more aggressive optimization approaches.

I present a novel approximate optimization framework based on accuracy-aware program
transformations. These transformations trade accuracy in return for improved performance,
energy efficiency, and/or resilience. The optimization framework includes program analyses
that characterize the accuracy of transformed programs and search techniques that navigate
the tradeoff space induced by transformations to find approximate programs with profitable
tradeoffs. T will present how we can use this accuracy-aware optimization framework to 1)
automatically generate approximate programs with significantly improved performance and
acceptable accuracy, and 2) automatically generate approximate functions that maximize
energy savings when executed on approximate hardware platforms, while ensuring that the
generated functions satisfy the developer’s accuracy specifications.

4.19 Intuitors, Computers and Validators: Towards Effective
Decision-Making Systems

Ravi Nair (IBM TJ Watson Research Center — Yorktown Heights, US)

License) Creative Commons BY 3.0 Unported license
© Ravi Nair

Traditional computer systems are designed for applications such as transaction processing
and physical simulations, largely using systematic algorithms with reliable computation and
data movement. Machines are increasingly being asked to produce actionable results to
large scale problems for which neither the data nor the available contextual information is
100% reliable. Approximate computing has been making significant headway towards better
resource utilization for such new workloads, but the machines executing them still largely
maintain the logical and deliberate nature of computer systems designed for traditional
workloads. In several respects, today’s computers are analogous to the slow, logical, and
deliberate System 2 mode of human thought as described in the Nobel Laureate, Daniel
Kahneman’s book, “Thinking, Fast and Slow.” We postulate that Kahneman’s System 1 mode
of thought, characterized by fast, intuitive, and energy-efficient decision making, suggests
a new type of machine for new workloads, which we call an intuitor, which is different
from a traditional computer. The incorporation of a validator which monitors the validity
of the decision produced by an intuitor, allows the system to tolerate extreme forms of
approximation, employing new types of devices and non-traditional architectures, in the
design of intuitors. This talk will outline the symbiotic role of intuitors, computers, and
validators in future decision-making systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz 173

4.20 Error Resilient Systems and Approximate Computing: Conjoined
Twins Separated at Birth

Karthik Pattabiraman (University of British Columbia — Vancouver, CA)

License @ Creative Commons BY 3.0 Unported license
© Karthik Pattabiraman
Main reference A. Thomas, K. Pattabiraman, “Error detector placement for soft computation,” in Proc. of the
43rd Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN), pp. 1-12, IEEE,
2013.
URL http://dx.doi.org/10.1109/DSN.2013.6575353

)

The fields of approximate computing and error resilient systems have evolved independently,
though they have a shared origin, namely how to ensure correctness in the presence of
hardware faults 7 In this talk, I will examine the similarities and differences between the two
fields and how we can learn from each other. I will also present an example of a system that
my students and I have worked on that attempts to bridge the gap between the two areas. 1
will conclude by presenting future challenges and opportunities in this area.

4.21 ACCEPT: We Built an Open-Source Approximation Compiler
Framework So You Don’t Have To

Adrian Sampson (University of Washington — Seattle, US)

License) Creative Commons BY 3.0 Unported license
© Adrian Sampson
Main reference A. Sampson, “Probabilistic Programming,” Lecture notes, 2015.
URL http://adriansampson.net/notes/5d3mpq5r6ab0/
Main reference ACCEPT — An Approximate Compiler, Documentation.
URL http://accept.rocks/

Building and evaluating a new technique for approximate computing involves a lot of boring
infrastructure work that can be far afield from the core of your work. You need a program
annotation system to choose what to approximate, and you will want help writing annotations.
You will want to tune each benchmark to take the best advantage of your new technique,
and you will need to evaluate the final results on new inputs. If your technique works at a
coarse grain, like a hardware accelerator does, you will need to search for large approximate
regions to maximize the technique’s effectiveness.

If every researcher continues to plod through these same steps independently, the com-
munity will waste a tragic amount of time in aggregate. As a fledgling research community,
we need to collaborate on common infrastructure to build momentum in the field.

ACCEPT, the Approximate C Compiler for Energy and Performance Trade-offs, is
an open-source framework that includes all the boring parts of building and evaluating an
approximation technique. It has an annotation system, compiler feedback for the programmer,
region inference, an auto-tuner, and Pareto frontier evaluation output. It comes with a suite
of C and C++ benchmarks ready to run through the system. The source and documentation
for ACCEPT are available now at http://accept.rocks/.

15491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/DSN.2013.6575353
http://dx.doi.org/10.1109/DSN.2013.6575353
http://dx.doi.org/10.1109/DSN.2013.6575353
http://dx.doi.org/10.1109/DSN.2013.6575353
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://adriansampson.net/notes/5d3mpq5r6ab0/
http://adriansampson.net/notes/5d3mpq5r6ab0/
http://accept.rocks/
http://accept.rocks/

174

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

4.22 Approximate Storage
Karin Strauss (Microsoft Corporation — Redmond, US)

License) Creative Commons BY 3.0 Unported license
© Karin Strauss
Joint work of Sampson, Adrian; Guo, Qing; Nelson, Jacob; Strauss, Karin; Ceze, Luis; Malvar, Henrique
Main reference A. Sampson, J. Nelsen, K. Strauss, L. Ceze, “Approximate Storage,” in Proc. of the 46th Annual
IEEE/ACM Int’l Symp. on Microarchitecture, pp. 25-36, ACM, 2013; pre-print available from
company’s repository.
URL http://dx.doi.org/10.1145/2540708.2540712
URL http://research.microsoft.com/apps/pubs/default.aspx?id=207379
Main reference Q. Guo, K. Strauss, L. Ceze, R. Malvar, “High-Density Image Storage Using Approximate Memory
Cells,” to appear in Proc. of the 21th ACM Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’16); pre-print available from company’s repository.
URL http://research.microsoft.com/apps/pubs/default.aspx?id=258662

In this talk, I will present the concept of approximate storage. Certain applications have
inherent levels of noise and imprecision in them, yet memories still provide very high fidelity
storage. However, scaling these memories to higher density is ever more challenging, and
relaxing high fidelity requirements for tolerant applications may come to the rescue. I will
show how to do this in a disciplined manner and report on the benefits of such approach.
I will then describe our experience with storing images in approximate storage. If done
naively, the quality degradation can be unacceptable. I will present an algorithm that takes
importance of encoded bits on output quality into account during the encoding process to
appropriately leverage approximate storage. It requires a small modification to an existing
algorithm, yet it reduces quality degradation to practically imperceptible levels.

4.23 DNA Storage
Karin Strauss (Microsoft Corporation — Redmond, US)

License @ Creative Commons BY 3.0 Unported license
© Karin Strauss
Joint work of Bornholt, James; Lopez, Randolph; Carmean, Douglas M.; Ceze, Luis; Seelig, Georg; Strauss, Karin

Main reference J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, K. Strauss, “A DNA-Based Archival
Storage System,” to appear in Proc. of the 21th ACM Int’] Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’16); pre-print available from company’s
repository.

URL http://research.microsoft.com/apps/pubs/default.aspx?id=258661

In this talk, I will describe our project on using a DNA substrate to store digital data. DNA
is dense, can be made very durable, and is easy to manipulate. I will explain how data can be
stored in DNA, its advantages and challenges, and how to address some of these challenges.
In specific, I will provide an overview of how to implement random access by leveraging
existing protocols very common in life sciences research, and one way to encode digital data
in DNA to improve its reliability while keeping overheads low.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2540708.2540712
http://dx.doi.org/10.1145/2540708.2540712
http://dx.doi.org/10.1145/2540708.2540712
http://dx.doi.org/10.1145/2540708.2540712
http://research.microsoft.com/apps/pubs/default.aspx?id=207379
http://research.microsoft.com/apps/pubs/default.aspx?id=258662
http://research.microsoft.com/apps/pubs/default.aspx?id=258662
http://research.microsoft.com/apps/pubs/default.aspx?id=258662
http://research.microsoft.com/apps/pubs/default.aspx?id=258662
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://research.microsoft.com/apps/pubs/default.aspx?id=258661
http://research.microsoft.com/apps/pubs/default.aspx?id=258661
http://research.microsoft.com/apps/pubs/default.aspx?id=258661
http://research.microsoft.com/apps/pubs/default.aspx?id=258661
http://research.microsoft.com/apps/pubs/default.aspx?id=258661

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

4.24 Quantifying Program Differences
Willem Visser (Stellenbosch University — Matieland, ZA)

License) Creative Commons BY 3.0 Unported license
© Willem Visser

We will show to calculate the difference between two programs using Probabilistic Symbolic
Execution. More specifically we will show that one can count the number of solutions to a
path condition during symbolic execution and use this to calculate the percentage of inputs
on which two programs give different outputs. A brief example will be given of how this
work to analyse program mutations.

4.25 On a Framework for Quantitative Program Synthesis
Herbert Wiklicky (Imperial College London, GB)

License) Creative Commons BY 3.0 Unported license
© Herbert Wiklicky
Main reference H. Wiklicky, “Program Synthesis and Linear Operator Semantics,” in Proc. of the 3rd Workshop
on Synthesis (SYNTH’14), EPTCS, Vol. 157, pp. 17-33, 2014.
URL http://dx.doi.org/10.4204/EPTCS.157.6

Arguably most work on the problem of program synthesis is based on various models based
in discrete structures, e.g. related to model checking, game theoretic models, combinatorial
optimisation, etc. In this talk we aim in recasting program synthesis as a non-linear,
continuous optimisation problem. This allows among other things for a smoother integration
of non-functional constraints. Initial experiments demonstrate that, maybe surprisingly, it
is possible to avoid algebraic reasoning for algebraic problems and replace it entirely by
continuous optimisation constraints.

5 Achievements of this Seminar

Participants attending the seminar represented all four themes of the seminar. The program
consisted of (1) tutorials, which introduced each of the main areas to all of the participants
on the first day of the seminar, (2) 15-minute individual talks, which presented current
research of the participants during the remaining days, (3) breakout sessions, during which
the participants had an opportunity to discuss in more details specific points of interest, and
(4) a panel, which discussed the main challenges and interactions between the areas.

Relations between the Areas. The participants identified probability and probabilistic
reasoning as the underlying basis of all four areas. Figure 1 presents the main interactions
between the areas!. For instance, some of the existing and anticipated interactions include:
Probabilistic model checking, with its ability to establish whether a desired property
of a probabilistic system holds, can be used to (1) verify the properties of approximate
hardware and software systems against the formal specifications of their desired behavior,
and (2) verify probabilistic assertions in probabilistic programs. In addition, probabilistic

! Figure 1 was compiled by Luis Ceze.

175

15491

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4204/EPTCS.157.6
http://dx.doi.org/10.4204/EPTCS.157.6
http://dx.doi.org/10.4204/EPTCS.157.6

176

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

Approximate

Computing
&3
‘27&’(\ ((fb"@
J
ob"} ,5(_‘?5’ Makes
W W Faster
Probabilistic Probabilistic
Programming Program Analysis
Verifies
» Against
Verifies Model
Probabilistic

Model Checking

Figure 1 The main identified interactions among the areas.

model checking techniques based on dynamic programming have the flavor of any-time
computation, and naturally lend themselves to approximate computation.

Quantitative program analysis, such as probabilistic symbolic execution, can be used to (1)
help find bugs and analyze properties of approximate software, which often implements
randomized and/or probabilistic algorithms, and (2) improve testing of probabilistic
inference engines and provide alternative strategies for computing results for some classes
of probabilistic inference problems.

Probabilistic programming, with its ability to represent complicated probabilistic models
as computer programs and automate inference, can, in principle, represent a basis for
specifying rich models of approximate software and hardware systems and enable Bayesian
reasoning about the properties and self-adaptability of such systems.

Approximate computing, with its ability to find efficient architecture and system level
approximations for many emerging application domains, including probabilistic inference,
has the potential to speed up various common inference tasks in probabilistic computing.
But as it requires qualitative assurance of accuracy, it represents a potentially fruitful
domain for applying systematic probabilistic reasoning studied in the remaining three
areas, and thus creating novel expressive, precise, and scalable program/system analyses.

Open Research Questions. During the individual talks and the breakout sessions the
participants identified and discussed many open research challenges and potentially fruitful
directions, including the following:

A key challenge for applying probabilistic reasoning to analyze approximate hardware is
precise-enough modeling of the underlying phenomena that lead to approximate and/or
unreliable results produced by a device. To that end, future research includes (1) selecting
an appropriate levels of abstraction for a variety of hardware models and sources of result
inaccuracy and (2) exposing inaccuracy and unreliability via appropriate specifications
to the software level of the computing stack are open research problems. The approx-
imate computing community, along with researchers from probabilistic programming,
probabilistic model checking, and probabilistic verification, all need to develop a cogent
specification of what it means to be approximate.

Specifying and checking quality of approximate programs can be more systematized.
Further work on benchmark suites for approximate computing — including specifications
of representative inputs, quality metrics, and acceptable tolerance — can improve design

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz 177

of future approximation and optimization techniques, and provide researchers from other
areas with representative programs for testing their analyses. Furthermore, the develop-
ment of domain-agnostic, standardized quality measures to push the interoperability of
approximate computing applications.

Understanding quality requirements of approximate subcomputations and code-level
specifications, such as the frequency and/or magnitude of the errors of approximate
subcomputations, can lead to new numerical analysis approaches that take advantage of
system-level approximations, while providing theoretical guarantees for the behavior (for
instance convergence) of the full algorithm.

Some software is inherently resilient. For example, many numerical methods (e.g., iterative
methods to learn a linear model) are naturally robust to noise. These algorithms offer
a special playground for approximate hardware: if their robustness is sufficient to deal
with the weak, non deterministic guarantees of an approximate hardware, the latter
can be used for a faster and cheaper execution; otherwise the program can fall back to
non-approximate hardware. Identifying for which algorithm this pattern can be fruitfully
applied can drive a new generation of numerical libraries and pave the way to the definition
of design guidelines for extending the approach to other classes of algorithms.

Thinking, Fast and Slow is a best-selling book by Daniel Kahneman which posits humans
use two high level modes of thought: “system 1”7, which is a fast and instinctive judgement
and “system 27, which is computationally demanding and logical. This insight has been
discussed in the context of approximate computing, where a cheap, fast to compute
system 1 approximate solution may be enhanced with a quantified confidence measure;
the lack of a sufficient confidence on system 1 results may trigger the use of a more
deliberate, expensive, and proof-based system 2, which can provide more accurate results
and reasons about whether the model uses by system 1 is sufficient. This two-level
pattern for building approximate systems seems promising for a variety of applications.
Developing verification and abstraction techniques for probabilistic programs is a critical
issue. The specification of probabilistic programs, as well as the meaning of correctness
in this quantitative domain, have no generally accepted formalization. The semantics
of simplified languages (e.g., constraining the input domain or the language operations)
has been successfully abstracted into established stochastic models, such as Markov
chains or Bayesian networks, inheriting the corpus of techniques developed in that area.
However, the abstraction of more complex language constructs is still an open challenge.
Furthermore, the generalization of recent results on probabilistic termination have to be
investigated for complex probabilistic programming languages.

Probabilistic programming and probabilistic program analysis share the development of
a core of inference techniques. During the seminar, some inference problem arising from
probabilistic programming have been efficiently solved using solution space quantification
techniques from quantitative program analysis. However, the expressiveness of probabil-
istic programming goes beyond the current capabilities of quantitative program analysis,
pushing for the study of new and more efficient solution space quantification techniques.
Quantitative information about a program execution can inform program synthesis and
repair approaches. Their usage at compiler level can be the basis of program optimization
tailored to specific usage profiles. At the application level, quantitative information may
guide the developer in representing the impact different code blocks have on the satisfaction
of a program requirements, guiding debugging and prioritizing code refinements.

Case Studies. The seminar participants discussed various applications that can be used as
inspiration for new research ideas that span multiple areas, in addition to classical application

15491

178

15491 — Approximate and Probabilistic Computing: Design, Coding, Verification

domains previously discussed in the literature. Two new emerging applications that span the
spectrum include self-driving cars (investigated by several car manufacturers) and mobile
personal assistant programs (such as Apple Siri, Google Now, and Microsoft Cortana). Both
of these applications are characterized by uncertain data (e.g., coming from sensors) and
environment (e.g., physical properties of the hardware), and their operation is routinely
affected by human interaction.

However, the approaches for developing these applications have different objectives and
different complementary expertise of the designers. Self-driving cars require strict certification,
which in most cases includes formal verification of various timing and safety properties of
the car components. Probabilistic verification, analysis, and control under uncertainty can,
in principle, provide required guarantees that these properties hold. For this example,
system-level approximations have the potential to help meet timing deadlines, but they need
to be rigorously modeled and controlled.

In contrast, the tasks of personal assistant programs, which extract information and
provide recommendations/opinions to the user, are considered best-effort computations.
These applications typically perform natural language processing, probabilistic inference,
and learning, for which guarantees of desirable program properties are welcome, they are
typically not required for an end-to-end result quality. Personal assistant programs running
on mobile devices therefore have more freedom to select the type and level of approximation,
especially using new configurable approximate hardware components that give promise to
significantly increase battery life.

Conclusion. The main objective of this seminar has been to discuss approaches to model and
enable programs to seamlessly operate on uncertain data and computations. It has brought
together academic and industrial researchers from the areas of probabilistic model checking,
quantitative software analysis, probabilistic programming, and approximate computing.
The discussion, enriched by the heterogeneity of the participants’ perspectives, allowed the
identification of several intersections among the interests of the four areas and a variety or
research challenges that span across their boundaries. We anticipate that these together will
contribute to the definition of the shared agenda among the four research communities.

Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz

Participants

Sara Achour
MIT — Cambridge, US
David Bindel
Cornell University, US

Mateus Araidjo Borges
Universitat Stuttgart, DE

James Bornholt
University of Washington —
Seattle, US
Luca Bortolussi
University of Trieste, IT
Tomas Brazdil
Masaryk University — Brno, CZ
Andreas Peter Burg
EPFL — Lausanne, CH
Luis Ceze
University of Washington —
Seattle, US
Eva Darulova
MPI-SWS — Saarbriicken, DE
Alessandra Di Pierro
University of Verona, IT
Luis Maria Ferrer Fioriti
Universitat des Saarlandes, DE

Antonio Filieri
Imperial College London, GB

Jaco Geldenhuys
University of Stellenbosch, ZA

Andreas Gerstlauer
University of Texas — Austin, US

Lars Grunske
HU Berlin, DE

Jane Hillston
University of Edinburgh, GB

Ulya R. Karpuzcu
University of Minnesota —
Minneapolis, US

Joost-Pieter Katoen
RWTH Aachen, DE

Marta Kwiatkowska
University of Oxford, GB

Rupak Majumdar
MPI-SWS — Kaiserslautern, DE

Dimitrios Milios
University of Edinburgh, GB
Sasa Misailovic
MIT — Cambridge, US

179

Subhasish Mitra
Stanford University, US

Todd Mytkowicz
Microsoft Corporation —
Redmond, US

Ravi Nair
IBM TJ Watson Res. Center —
Yorktown Heights, US

Karthik Pattabiraman
University of British Columbia —
Vancouver, CA

Adrian Sampson
University of Washington —
Seattle, US

Karin Strauss
Microsoft Corporation —
Redmond, US

Willem Visser
Stellenbosch University —
Matieland, ZA

Herbert Wiklicky
Imperial College London, GB

15491

	Executive Summary Antonio Filieri, Marta Kwiatkowska, Sasa Misailovic, and Todd Mytkowicz
	Table of Contents
	Research Areas
	Probabilistic Model Checking
	Quantitative Program Analysis
	Probabilistic Programming
	Approximate Computing

	Overview of Talks
	Approximate computation with outlier detection in Topaz Sara Achour
	Numerical Program Analysis Tools: A Wish List David Bindel
	Optimizing Synthesis with Metasketches (for Automated Approximate Programming) James Bornholt
	Stochastic approximations for Stochastic Model Checking Luca Bortolussi
	Counterexample Explanation by Learning Small Strategies in Markov Decision Processes Tomas Brázdil
	Approximate Computing on Unreliable Silicon Andreas Peter Burg
	Approximate Overview of Approximate Computing Luis Ceze
	Programming with Numerical Uncertainties Eva Darulova
	The dual value of Probabilistic Abstract interpretation Alessandra Di Pierro
	Termination of Probabilistic Programs Luis María Ferrer Fioriti
	Quality-Energy Aware System Design Andreas Gerstlauer
	Probabilistic Programming Process Algebra Jane Hillston
	On Quantification of Accuracy Loss in Approximate Computing Ulya R. Karpuzcu
	Understanding and Analysing Probabilistic Programs Joost-Pieter Katoen
	Computing Reliably with Molecular Walkers Marta Kwiatkowska
	Approximate counting for SMT Rupak Majumdar
	Smoothed Model Checking: A Machine Learning Approach to Probabilistic Model Checking under Uncertainty Dimitrios Milios
	Accuracy-Aware Compiler Optimizations Sasa Misailovic
	Intuitors, Computers and Validators: Towards Effective Decision-Making Systems Ravi Nair
	Error Resilient Systems and Approximate Computing: Conjoined Twins Separated at Birth Karthik Pattabiraman
	ACCEPT: We Built an Open-Source Approximation Compiler Framework So You Don't Have To Adrian Sampson
	Approximate Storage Karin Strauss
	DNA Storage Karin Strauss
	Quantifying Program Differences Willem Visser
	On a Framework for Quantitative Program Synthesis Herbert Wiklicky

	Achievements of this Seminar
	Participants

