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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15511 “The Graph
Isomorphism Problem”. The goal of the seminar was to bring together researchers working on the
numerous topics closely related to the Isomorphism Problem to foster their collaboration. To this
end the participants of the seminar included researchers working on the theoretical and practical
aspects of isomorphism ranging from the fields of algorithmic group theory, finite model theory,
combinatorial optimization to algorithmics. A highlight of the conference was the presentation
of a new quasi-polynomial time algorithm for the Graph Isomorphism Problem, providing the
first improvement since 1983.
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The Graph Isomorphism Problem remains one of the two unresolved computational problems
from Garey and Johnson’s list dating back to 1979 of problems with unknown complexity
status. In very rough terms the problems asks to decide whether two given graphs are
structurally different or one is just a perturbed variant of the other. The problem naturally
arises when one is faced with the task of classifying relational structures (e.g., chemical
molecules, websites and links, road networks).

While the Graph Isomorphism Problem was intensively studied from the point of view of
computational complexity in the 1980s and early 1990s, in later years progress became slow
and interest in the problem stalled. However, recent years have seen the emergence of a variety
of results related to graph isomorphism in a number of research areas including algorithmic
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group theory, finite model theory, combinatorial optimization and parameterized algorithms,
not to mention graph theory itself. Indeed, having been open and quite prominent for such a
long time, the Graph Isomorphism Problem is repeatedly attacked with the abundance of
algorithmic techniques that have been developed over the decades. While this has not led
to resolution of the problem, it has led to applications of methods originally developed for
the Graph Isomorphism Problem in other areas (such as machine learning and constraint
satisfaction problem solving). It has also sparked fascinating concepts in complexity theory,
led to a thriving compilation of techniques in algorithmic group theory, the development of
software packages (such as canonical labeling tools) and perpetuating effects in algorithmic
graph theory in general.

While a lot of other computational problems have a specific community associated with
them, resulting in dedicated conferences, the situation for the isomorphism problem is
different. This is due to the fact that the background of people working on the isomorphism
problem is quite diverse which leads to infrequent encounters at regular conferences or other
events. Moreover, there is a big gap between theory and practice, a phenomenon verbalized
by Brendan McKay as two distinct galaxies with very few stars in between them. Indeed, the
algorithms that are asymptotically fastest in theory are very different to the ones that prove
to be the fastest in practical implementations. The original motivation of the seminar was to
bring together researchers working on the many topics closely related to the Isomorphism
Problem to foster their collaboration.

However, the face of the seminar was to change, as one of the organizers (László Babai)
published a proof on the arXiv (http://arxiv.org/abs/1512.03547) on the night before the
seminar that shows that graph isomorphism can be solved in quasi-polynomial time (see the
abstract to the talk below). This is the first improvement over the moderately exponential
algorithm for general graphs by Luks from 1983. Babai gave three intense blackboard
presentations each with a duration of two hours on the new quasi-polynomial time algorithm.
Apart from the presentations, there were a number of excellent talks including expository
surveys on recent advances in a variety of aspects of the Graph Isomorphism Problem as
detailed below.

Overall a memorable event, we hope that the seminar has encouraged future collaboration
across the different areas which eventually brings us closer to the theoretical and practical
resolution of the problem.

http://arxiv.org/abs/1512.03547
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3 Overview of Talks

3.1 Graph Indistinguishability Through Hierarchies of Relaxations
Albert Atserias (UPC – Barcelona, ES)

License Creative Commons BY 3.0 Unported license
© Albert Atserias

Joint work of Atserias, Albert; Maneva, Elitza
Main reference A. Atserias, E.N. Maneva, “Sherali-Adams Relaxations and Indistinguishability in Counting

Logics”, SIAM Journal on Computing, 42(1):112–137, 2013.
URL http://dx.doi.org/10.1137/120867834

As with all other problems in NP, one can write the graph isomorphism problem as a 0-1
integer linear programming feasibility problem. The straightforward relaxations into a real or
rational-valued linear program leads to the concept of fractional isomorphism as first studied
by Tinhofer. A natural question to ask is what the levels of the Sherali-Adams (SA) hierarchy
of linear programming relaxations give when they are applied to fractional isomorphism.
In this talk I will spend a significant amount of time explaining what the SA-hierarchy of
relaxations is, and what the answer to this natural question is.

3.2 Graph Isomorphism in Quasipolynomial Time
László Babai (University of Chicago, US)

License Creative Commons BY 3.0 Unported license
© László Babai

Main reference L. Babai, “Graph Isomorphism in Quasipolynomial Time”, arXiv:1512.03547 [cs.DS], 2015.
URL http://arxiv.org/abs/1512.03547v2

We show that the Graph Isomorphism (GI) problem and the related problems of String
Isomorphism (under group action) (SI) and Coset Intersection (CI) can be solved in quasipoly-
nomial (exp

(
(log n)O(1))) time. The best previous bound for GI was exp(O(

√
n log n)),

where n is the number of vertices (Luks, 1983); for the other two problems, the bound was
similar, exp(Õ(

√
n)), where n is the size of the permutation domain (Babai, 1983).

The algorithm builds on Luks’s SI framework and attacks the barrier configurations
for Luks’s algorithm by group theoretic “local certificates” and combinatorial canonical
partitioning techniques. We show that in a well–defined sense, Johnson graphs are the only
obstructions to effective canonical partitioning.

Luks’s barrier situation is characterized by a homomorphism ϕ that maps a given
permutation group G onto Sk or Ak, the symmetric or alternating group of degree k, where
k is not too small. We say that an element x in the permutation domain on which G acts is
affected by ϕ if the ϕ-image of the stabilizer of x does not contain Ak. The affected/unaffected
dichotomy underlies the core “local certificates” routine and is the central divide-and-conquer
tool of the algorithm.
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3.3 A Near-Optimal Lower Bound on the Number of Refinement Steps
of the Weisfeiler-Leman Algorithm

Christoph Berkholz (HU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Berkholz

Joint work of Berkholz, Christoph; Nordström, Jakob

We show that there are pairs of non-isomorphic n-element relational structures that can be
distinguished by the k-dimensional Weisfeiler-Leman Algorithm, but not within no(k/ log k)

refinement steps. This lower bound holds for all k < n0.01 and nearly matches the nk upper
bound, the best previous lower bound was linear in n [Fürer 2001]. The hard examples are
based on unsatisfiable XOR formulas (encoded as relational structures) and it remains open
to prove a similar lower bound for graphs.

This result is part of an unpublished joint work with Jakob Nordström.

3.4 Query Complexity for Testing Graph Isomorphism and Related
Questions

Sourav Chakraborty (Chennai Mathematical Institute, IN)

License Creative Commons BY 3.0 Unported license
© Sourav Chakraborty

Joint work of Alon, Noga; Babai, László; Blais, Eric; Chakraborty, Sourav; Fischer, Eldar; Garcia-Soriano, David;
Matsliah, Arie

Main reference L. Babai, S. Chakraborty, “Property Testing of Equivalence under a Permutation Group Action”,
Electronic Colloquium on Computational Complexity (ECCC), 15(040), 2008.

URL http://eccc.hpi-web.de/eccc-reports/2008/TR08-040/index.html

We study the graph isomorphism from the point of view of query complexity. That is, how
many queries to the adjacency matrix of the graph is necessary to decide if two graphs
are isomorphic (or “far” from isomorphic). We also study generalizations of the graph
isomorphism problem: namely the uniform hyper-graph isomorphism problem and the string
isomorphism under the action of a transitive group. We also talk about the query complexity
for function isomorphism.

References
1 Eldar Fischer, Arie Matsliah. Testing Graph Isomorphism. SIAM Journal on Computing,

38(1):207–225, 2008. DOI: 10.1137/070680795
2 Noga Alon, Eric Blais, Sourav Chakraborty, David García-Soriano, Arie Matsliah. Nearly

Tight Bounds for Testing Function Isomorphism. SIAM Journal on Computing, 42(2):459–
493, 2013. DOI: 10.1137/110832677
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3.5 Finding Canonical Representations for Circular-Arc Graphs
Maurice Chandoo (Leibniz Universität Hannover, DE)

License Creative Commons BY 3.0 Unported license
© Maurice Chandoo

Main reference M. Chandoo, “Deciding Circular-Arc Graph Isomorphism in Parameterized Logspace”, in Proc. of
the 33rd Symp. on Theoretical Aspects of Computer Science (STACS’16), LIPIcs, Vol. 47,
pp. 26:1–26:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2016.26

In [1] it is shown how to find canonical representations for Helly CA graphs by reducing it to
the problem of finding a canonical representation for interval graphs. The idea is to find a
sequence of algebraic flips [2] that turns a Helly CA graph into an interval graph. Such a
sequence corresponds to a subset of vertices, which we shall call flip set.

We show that for a large subclass of CA graphs containing HCA graphs it is quite easy
to find such flip sets. More interestingly, however, is the fact that the remaining class of
CA graphs have a quite restricted structure and finding flip sets for this class boils down to
developing an understanding of a certain substructure in these graphs. The goal of the talk
is to give a rough understanding of what these difficult CA graphs look like and what the
substructure of interest is.

References
1 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky. Helly Circular-Arc Graph Iso-

morphism Is in Logspace. In Proceedings of MFCS 2013, vol. 8087 of LNCS, pp. 631–642,
Springer, 2013. DOI: 10.1007/978-3-642-40313-2_56

2 Ross M. McConnell. Linear-Time Recognition of Circular-Arc Graphs. Algorithmica,
37(2):93–147, 2003. DOI: 10.1007/s00453-003-1032-7

3.6 Isomorphism through Coherent Algebras on Finite Fields
Anuj Dawar (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Anuj Dawar

Joint work of Dawar, Anuj; Holm, Bjarki

The k-dimensional Weisfeiler-Lehman method for distinguishing graphs is usually described
in combinatorial terms as an iterative refinement procedure classifying k-tuples of vertices.
The method also has an alternative characterization through coherent algebras (also called
cellular algebras or coherent configuratios) of complex matrices. This was the original form
proposed by Weisfeiler and Lehman, for the 2-dimensional case. In this talk, I explore a
variation of the method obtained by considering coherent algebras over finite fields, instead
of the complex field. This yields a family of isomorphism tests which are polynomial-time
decidable and of strictly wider applicability than the Weisfeiler-Lehman method. I explore the
extent and limitations of the method, showing in particular that it can decide isomorphism
on graphs of colour-class size 4.
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3.7 Logspace Canonizations for Graphs of Bounded Tree Width and
Graphs of Bounded Genus

Michael Elberfeld (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
© Michael Elberfeld

Finding a polynomial-time canonization algorithm for a class of graphs opens up the question
of whether we can improve the algorithm with respect to its sequential and parallel runtime
or memory footprint. This talk presents two recently developed canonization algorithms that
have a logarithmic memory (logspace) footprint. The first applies to every class of graphs
with a constant tree width [2] while the second applies to every class of graphs with a constant
genus [1]. After motivating and presenting the results, we focus on the proof techniques: The
first technique is an extension of Lindell’s tree canonization [4] to dynamically refining tree
decompositions and the second extends the idea of using universal exploration sequences for
traversing 3-connected planar graphs [3] to uniquely-embeddable graphs of bounded genus.

References
1 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and Canonizing Graphs of

Bounded Genus in Logspace. In Proceedings of STOC 2014, pp. 383–392, ACM, 2014.
DOI: 10.1145/2591796.2591865

2 Michael Elberfeld and Pascal Schweitzer. Canonizing Graphs of Bounded Tree Width in
Logspace. In Proceedings of STACS 2016, vol. 47 of LIPIcs, pp. 32:1–32:14, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2016. DOI: 10.4230/LIPIcs.STACS.2016.32

3 Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. 3-connected Planar Graph
Isomorphism is in Log-space. In Proceedings of FSTTCS 2008, vol. 2 of LIPIcs,
pp. 155–162, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2008. DOI:
10.4230/LIPIcs.FSTTCS.2008.1749

4 Steven Lindell. A Logspace Algorithm for Tree Canonization (Extended Abstract). In
Proceedings of STOC 1992, pp. 400–404, ACM, 1992. DOI: 10.1145/129712.129750

3.8 Decomposition Techniques for Graph Isomorphism Testing
Martin Grohe (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
© Martin Grohe

My talk was about various types of decompositions of graphs and other structures, such
as tree decompositions, rank decompositions, and more generally branch decompositions
of general connectivity systems, and their applications in graph isomorphism testing. Two
such applications are our recent polynomial isomorphism tests for graph classes excluding a
topological subgraph (with Daniel Marx) and for graph classes of bounded rank width (with
Pascal Schweitzer).
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3.9 Graphs Identified by the Weisfeiler-Leman Algorithm
Sandra Kiefer (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
© Sandra Kiefer

Joint work of Kiefer, Sandra; Schweitzer, Pascal; Selman, Erkal
Main reference S. Kiefer, P. Schweitzer, E. Selman, “Graphs identified by logics with counting”, arXiv:1503.08792

[cs.LO], 2015.
URL http://arxiv.org/abs/1503.08792v1

I present a classification of graphs and, more generally, finite relational structures that are
identified by Color Refinement, i.e., by the 1-dimensional Weisfeiler-Leman algorithm. Using
this classification, I describe how it can be decided in almost linear time whether a structure
is identified by Color Refinement. The classification implies that for every identified graph,
all vertex-colored versions of it are also identified. A similar statement is true for finite
relational structures. The classification yields another nice result: Every class of graphs
indistinguishable by Color Refinement contains a graph whose orbits are exactly the classes
of the color partition of its vertex set and which has a single automorphism witnessing this
fact. Considering higher-dimensional versions of the Weisfeiler-Leman algorithm, I explain
why such statements are not true: I present examples of graphs of size linear in k which are
identified by the 2-dimensional Weisfeiler-Leman algorithm but for which the orbit partition
is strictly finer than the partition induced by the k-dimensional algorithm. These graphs
have vertex-colored versions that are not identified by the k-dimensional algorithm, which
can be seen using a pebble game argument.

This is joint work with Pascal Schweitzer and Erkal Selman.

3.10 Canonical Representation of Some Classes of Circular-Arc Graphs
Sebastian Kuhnert (HU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Kuhnert

Joint work of Köbler, Johannes; Kuhnert, Sebastian; Laubner, Bastian; Verbitsky, Oleg

The frontier for efficient isomorphism testing runs right through the class of circular-arc (CA)
graphs. On the one hand, the isomorphism problem is L-complete for important subclasses
like interval graphs [1], proper CA graphs [2] and Helly CA graphs [3]. On the other hand, it
remains open whether isomorphism of general CA graphs is in P; cf. [4].

This talk surveys the logspace algorithms of [1, 2, 3], which actually compute canonical
representations for the respective graph classes. That is, for a given graph, they compute an
intersection representation of the respective type such that isomorphic graphs are mapped to
identical intersection models. This implies that both the recognition and the canonization
problem of these graph classes are in logspace.

References
1 Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky. Interval

Graphs: Canonical Representations in Logspace. SIAM Journal on Computing, 40(5):1292–
1315, 2011. DOI: 10.1137/10080395X

2 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky. Solving the Canonical Represent-
ation and Star System Problems for Proper Circular-Arc Graphs in Logspace. In FSTTCS
2012, vol. 18 of LIPIcs, pp. 387–399, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2012. DOI: 10.4230/LIPIcs.FSTTCS.2012.387
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3 Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky. Helly Circular-Arc Graph Iso-
morphism Is in Logspace. In MFCS 2013, vol. 8087 of LNCS, pp. 631–642, Springer, 2013.
DOI: 10.1007/978-3-642-40313-2_56

4 Andrew R. Curtis, Min Chih Lin, Ross M. McConnell, Yahav Nussbaum, Francisco
J. Soulignac, Jeremy P. Spinrad, and Jayme Luiz Szwarcfiter. Isomorphism of graph
classes related to the circular-ones property. Discrete Mathematics & Theoretical Computer
Science, 15(1):157–182, 2013. http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/
view/2298

3.11 Representation of Groups on Graphs
Piyush P. Kurur (Indian Institute of Technology – Kanpur, IN)

License Creative Commons BY 3.0 Unported license
© Piyush P. Kurur

Joint work of Dutta, Sagarmoy; Kurur, Piyush P.
Main reference S. Dutta, P. P. Kurur, “Representing Groups on Graphs”, in Proc. of the 34th Int’l Symp. on

Mathematical Foundations of Computer Science (MFCS’09), LNCS, Vol. 5734, pp. 295–306,
Springer, 2009; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1007/978-3-642-03816-7_26
URL http://cse.iitk.ac.in/users/ppk/research/publication/DK2009.pdf

A representation of a group G on a graph X is a homomorphism from the group G to the
automorphism subgroup Aut(X) of X. In this talk, I study the following problem: Given a
group G as a Cayley table and a graph X, decide whether there is a non-trivial representation
of G on X (there is always the trivial one which sends all elements of G to the identity
automorphism). We call this problem the group representability problem and the main goal
is to understand its relative complexity w.r.t. the graph isomorphism problem.

It turns out that graph isomorphism problem reduces to abelian group representability
problem. In the other direction even solvable group representability problem reduces to graph
isomorphism problem. However, nothing is know about the general problem. In particular,
for a fixed non-solvable group like say A5 we do not know the hardness of deciding whether
it is representable on a graph X.

This is joint work with Sagarmoy Dutta.

3.12 Group Isomorphism via Fixed Composition Series
Eugene M. Luks (University of Oregon – Eugene, US)

License Creative Commons BY 3.0 Unported license
© Eugene M. Luks

Main reference E.M. Luks, “Group Isomorphism with Fixed Subnormal Chains”, arXiv:1511.00151 [cs.CC], 2015.
URL http://arxiv.org/abs/1511.00151v1

In recent work, David Rosenbaum and Fabian Wagner showed that, for p-groups of order n

given by Cayley tables, isomorphism-testing is in time n(1/2) logp n+O(p) time, where n is the
group order; this is roughly a square-root of the classical bound. Rosenbaum subsequently
extended the result to solvable groups achieving an n(1/2) logp n+O(log n/ log log n) time, where
p is the smallest prime divisor of n. The nO(p) and nO(log n/ log log n) factors, respectively, are
contributed by the cost of testing for isomorphisms that match fixed composition series in
the two groups. Their results then follow by bounding the number of possible composition
series.
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We focus now on that fixed-composition-series-isomorphism subproblem and show it
is in polynomial-time even for general groups. This immediately implies isomorphism-
testing of groups in time n(1/2) logq n+O(1) and polynomial space, where q can even be taken
to be the minimum order of a composition factor. Furthermore, an extension to fixed-
composition-series-canonization together with Rosenbaum’s “bidirectional collision” yields
group isomorphism-testing and canonization with time and space balanced at n(1/4) logq n+O(1).

3.13 Practical Graph Isomorphism
Brendan McKay (Australian National University – Canberra, AU)

License Creative Commons BY 3.0 Unported license
© Brendan McKay

Joint work of McKay, Brendan; Piperno, Adolfo
Main reference B.D. McKay, A. Piperno, “Practical graph isomorphism, II”, Journal of Symbolic Computation,

60:94–112, 2014.
URL http://dx.doi.org/10.1016/j.jsc.2013.09.003

The first practical solutions to the graph isomorphism problem appeared in 1964, mostly
motivated by the problem of identifying chemical structures. Now there are a great many
applications and several programs with strong performance.

The talk surveyed the development of the field, focusing mostly on the individualization-
refinement paradigm that has been the most successful. In particular, we described the
techniques used by the nauty family of programs that have been the most popular for almost
40 years [1, 2]. The manner in which the search tree is generated and pruned with the help
of discovered automorphisms and invariant bounding was explained. Finally, we hinted at
the innovative changes made most recently by Adolfo Piperno’s program Traces, which is
the current champion for difficult graphs, described in detail in Prof Piperno’s talk.

References
1 Brendan D. McKay. Practical graph isomorphism. 10th Manitoba Conference on Numerical

Mathematics and Computing (Winnipeg, 1980); Congressus Numerantium, 30:45–87, 1981.
http://users.cecs.anu.edu.au/~bdm/nauty/pgi.pdf

2 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60:94–112, 2014. DOI: 10.1016/j.jsc.2013.09.003

3.14 Fixed-Parameter Tractable Canonization and Isomorphism Test
for Graphs of Bounded Treewidth

Michał Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Michał Pilipczuk

Joint work of Lokshtanov, Daniel; Pilipczuk, Marcin; Pilipczuk, Michał; Saurabh, Saket
Main reference D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, “Fixed-Parameter Tractable Canonization

and Isomorphism Test for Graphs of Bounded Treewidth”, in Proc. of the 2014 IEEE 55th Annual
Symp. on Foundations of Computer Science (FOCS’14), pp. 186–195, IEEE Computer Society,
2014; to appear in SIAM Journal on Computing.

URL http://dx.doi.org/10.1109/FOCS.2014.28

During the talk we will present an algorithm for Graph Isomorphism on graphs of treewidth
k that runs in time 2O(k5 log k) · n5. This is the first fixed-parameter algorithm for GI under
this parameterization. The algorithm actually computes some form of a canonical tree
decomposition of the graph, which can be of independent interest.
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3.15 Some Practical Graph Isomorphism Issues
Adolfo Piperno (Sapienza University of Rome, IT)

License Creative Commons BY 3.0 Unported license
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Traces is a tool for graph canonical labeling and automorphism group computation, included
in the nauty & Traces package [1, 2, 3].

In this talk I have presented some new features of Traces, such as the possibility of
treating graphs with weighted edges; some issues in the implementation of Traces heve been
discussed; among these:

preprocessing trees;
use of the breadth first search;
fine tuning on the use of the Schreier-Sims algorithm;
different choices of individualized vertices.

References
1 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of

Symbolic Computation, 60:94–112, 2014. http://dx.doi.org/10.1016/j.jsc.2013.09.003
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3.16 On the Isomorphism Problem for Central Cayley Graphs
Ilia Ponomarenko (Steklov Institute – St. Petersburg, RU)

License Creative Commons BY 3.0 Unported license
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A Cayley graph Cay(G, X) of a group G is called central if the set X is a union of conjugacy
classes of G. We discuss two problems. In the first one, given a group G and a graph D with
|G| vertices, one should test whether D is isomorphic to a central Cayley graph of G. In the
second one, we are interested in testing isomorphism of given two central graphs Cay(G, X)
and Cay(G′, X ′). Both problems are solved in polynomial time, when G is an abelian group
“close” to cyclic. Concerning the second problem, we will talk on the case, when G is an
almost simple group.
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3.17 The Parameterized Complexity of Geometric Graph Isomorphism
Gaurav Rattan (The Institute of Mathematical Sciences, IN)

License Creative Commons BY 3.0 Unported license
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pp. 51–62, Springer, 2014.
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In this talk, we discuss our recent work on the Geometric Graph Isomorphism (GGI) problem.
The problem is defined as follows: given two sets of points A and B in Qk, does there exist
a Euclidean-distance-preserving bijection between the two sets? The dimension k of the
underlying space is an important parameter of interest. We discuss our kO(k) FPT algorithm
for this problem, and the associated canonization problem [1]. The algorithm uses techniques
from lattices. We also discuss the recent work of Haviv and Regev [2] regarding isomorphism
of lattices.

References
1 Vikraman Arvind and Gaurav Rattan. The Parameterized Complexity of Geometric

Graph Isomorphism. In IPEC 2014, vol. 8894 of LNCS, pp. 51–62, Springer, 2014. DOI:
10.1007/978-3-319-13524-3_5
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pp. 391–404, SIAM, 2014. DOI: 10.1137/1.9781611973402.29

3.18 Bidirectional Collision Detection and Group Isomorphism
David J. Rosenbaum (University of Tokyo, JP)

License Creative Commons BY 3.0 Unported license
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Main reference D. J. Rosenbaum, “Bidirectional Collision Detection and Faster Deterministic Isomorphism
Testing”, arXiv:1304.3935 [cs.DS], 2013.

URL http://arxiv.org/abs/1304.3935v2

In this talk, we introduce bidirectional collision detection – a new algorithmic tool that
applies to isomorphism testing in any class of objects that satisfies certain mild assumptions.
We show that bidirectional collision detection yields a deterministic n(1/2) log n+O(1) time
algorithm for testing isomorphism of general groups whereas previously the nlog n+O(1)

generator-enumeration algorithm was the best bound for several decades. Later, Laci Babai
and Eugene Luks independently improved this result to n(1/4) log n+O(1) using two different
methods in combination with bidirectional collision detection. Faster quantum versions of
our bidirectional collision detection results also exist. Although the space requirements for
our algorithms are greater than those for previous isomorphism tests, we show time-space
tradeoffs that interpolate between the resource requirements of our algorithms and previous
work.
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3.19 Parameterizations and the Graph Isomorphism Problem
Pascal Schweitzer (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
© Pascal Schweitzer

Historically, right from the beginning of the theoretical studies of the graph isomorphism
problem, researchers have investigated the complexity of the isomorphism problem on
restricted graph classes. Early examples are polynomial-time isomorphism tests for planar
graphs and interval graphs, as well as isomorphism-completeness results for bipartite graphs,
regular graphs and so on. For parameterized graph classes, such as graphs of genus at most
k or graphs of degree at most k, an aim was to design fixed parameter tractable algorithms,
which have a running time polynomial for each fixed k, such that the degree of the polynomial
is independent of k.

In my talk I survey the results and some techniques that have been obtained over the last
several decades, including fixed-parameter tractable algorithms, intermediate graph classes,
and parameterizations by input similarity. I also discuss intricacies concerning techniques
supposed to rule out fixed-parameter tractable algorithms and kernelization results.

3.20 Structure and Automorphisms of Primitive Coherent
Configurations

Xiaorui Sun (Columbia University – New York, US)

License Creative Commons BY 3.0 Unported license
© Xiaorui Sun

Joint work of Sun, Xiaorui; Wilmes, John
Main reference X. Sun, J. Wilmes, “Faster Canonical Forms for Primitive Coherent Configurations”, in Proc. of

the 47th Annual ACM Symp. on Theory of Computing (STOC’15), pp. 693–702, ACM, 2015;
pre-print available as arXiv:1510.02195v1 [math.CO].

URL http://dx.doi.org/10.1145/2746539.2746617
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Primitive coherent configurations (PCCs) are colored directed graphs that generalize strongly
regular graphs (SRGs), a class perceived as difficult for GI. Moreover, PCCs arise naturally
as obstacles to combinatorial divide-and-conquer approaches for general GI.

We prove that PCCs have at most exp
(
O(n1/3)

)
automorphisms, with known exceptions.

This is the first improvement over Babai’s 1981 bound of exp
(
O(n1/2)

)
. Our result also

implies an exp
(
O(n1/3)

)
upper bound on the order of primitive but not doubly transitive

permutation groups (with known exceptions). This bound was previously known (Cameron,
1981) only through the Classification of Finite Simple Groups.

For the analysis we develop a new combinatorial structure theory for PCCs that in
particular demonstrates the presence of “clique geometries” among the constituent graphs of
PCCs in certain range of the parameters.
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3.21 Complexity Classes and the Graph Isomorphism Problem
Jacobo Torán (Universität Ulm, DE)

License Creative Commons BY 3.0 Unported license
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It is well known that the Graph Isomorphism problem is in NP, but not expected to be NP
complete and not known to be in P. In this talk I review some of the attempts that have been
made in order to provide a better classification of the problem. I give an overview on the
know upper and lower bounds for the Graph Isomorphism problem in terms of complexity
classes.

3.22 On Tinhofer’s Linear Programming Approach to Isomorphism
Testing

Oleg Verbitsky (HU Berlin, DE)

License Creative Commons BY 3.0 Unported license
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Science (MFCS’15), LNCS, Vol. 9235, pp. 26–37, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-662-48054-0_3

Exploring a linear programming approach to Graph Isomorphism, Tinhofer [1] defined
the concept of a compact graph: A graph is compact if the polytope of its fractional
automorphisms is integral. Tinhofer noted that isomorphism testing for compact graphs can
be done quite efficiently by linear programming. However, the problem of characterizing and
recognizing compact graphs in polynomial time remains an open question.

We relate this approach to the classical color-refinement (CR) procedure. We call a
graph CR-definable if the CR procedure distinguishes it from any non-isomorphic graph.
Babai, Erdős, and Selkow [2] showed that random graphs are CR-definable with high
probability. Immerman and Lander [3] showed that the CR-definable graphs are exactly
the graphs definable in two-variable first-order logic with counting quantifiers. An efficient
characterization of this class of graphs has been obtained recently in [4] and [5].

Using the last result, we prove that all CR-definable graphs are compact. In other words,
the applicability range for Tinhofer’s linear programming approach to isomorphism testing is
at least as large as for the combinatorial approach based on color refinement.
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3.23 Canonical Forms for Steiner Designs in time vO(log v)

John Wilmes (University of Chicago, US)
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A Steiner S(t, k, v) design is a collection of v points, along with a collection of k-subsets of
points, called blocks, such that every set of t points is contained in a unique block.

We produce canonical forms, and hence decide isomorphism for Steiner S(2, k, v) designs in
time vO(log v). Previously, a quasipolynomial time-complexity bound was known for bounded
k [1], while the best overall time-complexity bound was vO(

√
v log v) [2, 5]. A vt+O(log v)

time-complexity bound for Steiner S(t, k, v) designs follows immediately from our result.
In fact, we analyze the individualization/refinement process on Steiner designs, and prove

that O(log v) individualizations suffices to completely split an S(2, k, v) design into uniquely
colored vertices after naive refinement. In particular, our analysis gives a vO(log v) bound on
the number of automorphisms of a nontrivial Steiner design.

A simultaneous, independent proof of the same time-complexity bound was given by
Chen, Sun, and Teng, and presented together with the present result at STOC’13 [4, 3].
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3.24 Group Isomorphism Is Tied up in Knots
James B. Wilson (Colorado State University, US)
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After a century of attention, our understanding of isomorphisms between groups is rich
and full of questions. The results have implications to Topology, Computer Science, Logic,
and Algebra. Some recent projects are moving beyond established barriers while others are
demonstrating why lack of progress is to be expected.
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