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1 Executive Summary
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Biological evolution has produced an extraordinary diversity of organisms, even the simplest
of which is highly adapted, with multiple complex structures. Dynamic structures at even
higher levels emerge from collective and social behaviour. These phenomena have traditionally
been studied in population genetics, ecology and related disciplines.

However, theoretical computer scientists, endowed with a wide variety of tools, have
recently made progress in describing and characterising the computational capabilities of
evolution, analyzing natural algorithms, obtaining quantitative bounds for evolutionary
models and understanding the role of sex in evolution. The field of evolutionary computation
has found that many innovative solutions to optimisation and design problems can be achieved
by simulating living processes, such as evolution via random variation and selection, or social
behaviour in insects. Researchers in evolutionary computation have recently started applying
techniques from theoretical computer science to analyze the optimization time of natural
algorithms.

To further the connections and consolidate this burgeoning new discipline, this Dagstuhl
seminar brought together participants from the population genetics, mathematical biology,
theoretical computer science, and evolutionary computation communities. The seminar
opened with a round of introductions, followed by five introductory talks presenting the
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2 16011 – Evolution and Computing

perspectives of the disciplines attending. Benjamin Doerr introduced runtime analysis of
evolutionary algorithms, Paul Valiant discussed evolution from the perspective of learning,
Joachim Krug and Nick Barton introduced population genetics, and Nisheeth Vishnoi
discussed evolutionary processes from the perspective of theoretical computer science. In
addition to talks contributed by participants, there were several breakout sessions on topics
identified during the seminar.

The organisers would like to thank the Dagstuhl team and all the participants for making
the seminar a success.
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3 Overview of Talks

3.1 Ancestral selection graph meets lookdown construction
Ellen Baake (Universität Bielefeld, DE)

License Creative Commons BY 3.0 Unported license
© Ellen Baake

Population genetics today relies crucially on mathematical concepts such as ancestral lineages
and random genealogies. The talk provided an overview. It started from an interacting
particle system that describes the joint action of random reproduction, mutation, and
selection; then explained the constructions used to trace back the ancestry of individuals
and their genealogy, and presented some recent results. In particular, it presented a novel
approach that unifies the two established concepts in the field, namely, the ancestral selection
graph of Krone and Neuhauser (1997) and the lookdown construction of Donnelly and Kurtz
(1999).

References
1 P. Donnelly and T. G. Kurtz. Genealogical processes for fleming-viot models with selection

and recombination. Ann. Appl. Probab., 9(4):1091–1148, 11 1999.
2 S. M. Krone and C. Neuhauser. Ancestral processes with selection. Theoretical Population

Biology, 51(3):210–237, 1997.
3 U. Lenz, S. Kluth, E. Baake, and A. Wakolbinger. Looking down in the ancestral selection

graph: A probabilistic approach to the common ancestor type distribution. Theoretical
Population Biology, 103:27–37, 2015.

3.2 Population genetics and recombination
Nick Barton (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 3.0 Unported license
© Nick Barton

There has been a long-standing interest in evolutionary theory in how sex and recombination
are maintained, despite their obvious costs. In an infinite population, one can find a
general formula for the selection on a gene that slightly modifies recombination; this is
derived assuming that interactions between genes (epistasis) are weak. The selection on
recombination is expressed in terms of the effect of recombination in reducing mean fitness,
and in increasing the additive variance in fitness. These results should be applicable to
analogous problems concerning evolutionary algorithms.

3.3 The effect of epistasis on the response to selection
Nick Barton (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 3.0 Unported license
© Nick Barton

Quantitative genetics describes the evolution of complex traits, which depend on many genes
with interacting effects. In 1960, Robertson derived a remarkably simple expression for the
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total change in mean of a trait, that can be produced by selecting on a population: this equals
the population size times the change in the first generation. Robertson’s result assumed an
additive model, but it can be generalised to arbitrary gene interactions (i.e., epistasis). It is
an application of the “infinitesimal model”, which approximates the evolution of traits that
depend on large numbers of freely recombining genes. I review this and other results that
attempt to set general limits on the possible response to selection, and discuss approaches to
the same problem from computer science.

3.4 Game Dynamics and Population Genetics
Erick Chastain (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Erick Chastain

This is a review of recent work by C, Livnat, Papadimitriou & Vazirani on the connection
between Game Theory, Algorithms, and Evolution. We also mention some interesting open
problems and the progress we have made on them (including a partial extension of our results
to Diploid organisms), indicating promising directions for those interested.

3.5 Analysis of Evolutionary Algorithms
Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 3.0 Unported license
© Benjamin Doerr

In this first talk of the Dagstuhl seminar “Evolution and Computation”, I will give an easy
introduction to the field of analyses of evolutionary algorithms, aimed at an audience with
backgrounds in general algorithms or theoretical biology.

To get a quick start into the topic, I will present a particular, but typical result first, namely
how simple evolutionary algorithms optimize pseudo-Boolean linear functions, and show-case
how narrow occasionally our understanding is, namely by discussing that comparable results
for monotonic functions are a famous open problem.

I will then give a broader introduction to this field, discuss the main research goals, the
types of results targeted and the methods typically used. I will finally make some language
precise that will help the audience to follow the other talks from this field in this seminar.

3.6 Crossover as Repair Mechanism and the Usefulness Self-Adjusting
Parameter Settings: The (1 + (λ, λ)) GA

Carola Doerr (UPMC – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Carola Doerr

Joint work of Benjamin Doerr, Carola Doerr, Franziska Ebel

We present an evolutionary algorithm using crossover that performs better than any purely
mutation-based algorithm on the Hamming distance problem. The main idea behind our
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approach is a novel use of crossover as repair mechanism. We also discuss that for this
algorithm self-adjusting parameter settings are provably superior to any static parameter
choices.

3.7 Eco-evolutionary dynamics Modeling evolution without defining
fitness/pay-off

Paulien Hogeweg (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Paulien Hogeweg

In this talk I addressed the following questions earlier raised in this workshop:
Can we model evolution without prior fitness (or pay-off) definition?
How/when do functionally differentiated ecosystems evolve
Self-adaptation in evolution: evolution of genotype-phenotype mapping

Using the RNA world as an example, I showed that, if we include structure evolution can
be modelled without apriori fitness or payoff definition: the inherent structure in the RNA
model provides the substrate for the evolution, in which evolution chooses its own fitness.
Multi-species communities can evolve, in which the various lineages have different roles in
the ecosystem (niche creation). Mutation rate plays a crucial role in the type of community
which evolves, i.e. mutation rate has qualitative effect rather than just influencing speed
and degree of adaptation. Important in these results is spatial pattern formation: higher
order of selection emerges automatically. Moreover we see in this system the evolution of
genotype-phenotype mapping in such a way that the mutant cloud (i.e. the quasispecies) is
shaped by evolution such that it contains non-fit mutants which nevertheless play a crucial
role in the evolved ecosystem, and can lead to fast adaptation to novel circumstances.

Finally I discussed the question: “can we derive general conclusion by studying specific
(structured) examples”. My answer is yes we can. Features as discussed reoccur in many very
differently structured models, and can be seen as generic properties of evolution provided
enough degrees of freedom are available to the evolutionary process.

3.8 Evolution of mutation rates
Kavita Jain (JNCASR – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Kavita Jain

Because most mutations are deleterious, the mutation rate can not be too high and an upper
bound is provided by error threshold. The mutation rate is not zero either. I will describe
our results on the fixation probability of a nonmutator using a branching process and arrive
at a lower bound on the mutation rate in a finite population.
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3.9 Basic concepts of population genetics: Adaptation in rugged
fitness landscapes

Joachim Krug (Universität Köln, DE)

License Creative Commons BY 3.0 Unported license
© Joachim Krug

The purpose of the lecture was to introduce some basic concepts of evolutionary adaptation
that appear in similar form in biological and computational contexts. Starting from the
standard Wright-Fisher model of finite populations, the stochastic dynamics of fixation was
introduced and used to identify the evolutionary regimes of periodic selection and clonal
interference. The main part of the lecture was devoted to genotypic fitness landscapes, their
empirical basis, probabilistic modeling, and exploration by random adaptive walks. Finally,
the effects of recombination on adaptation in rugged fitness landscapes was briefly addressed.

3.10 Genetic mechanisms for the advantage of recombination
Joachim Krug (Universität Köln, DE)

License Creative Commons BY 3.0 Unported license
© Joachim Krug

Joint work of Joachim Krug, Su-Chan Park

I will describe two results pertaining to the effect of recombination on the efficacy of
evolutionary searches. First, I present a solvable model for the Fisher-Muller effect that
predicts a twofold speedup of adaptation in a linear fitness gradient. Second, I discuss
a minimal deterministic two-locus model which shows a phase transition as a function of
recombination rate. Beyond the transition the model displays bistability in the dynamical
systems sense and the escape time from a local fitness peak is infinite.

3.11 Negative Drift in Populations
Per Kristian Lehre (University of Nottingham, GB)

License Creative Commons BY 3.0 Unported license
© Per Kristian Lehre

The expected running times of evolutionary algorithms are often analysed using so-called
drift analysis where the current state of the algorithm is mapped to a real-valued potential.
Bounds on the running time are derived from the expected change in the potential per
generation. However, finding an appropriate potential function is non-trivial, particularly for
population-based evolutionary algorithms.

In this talk, I presented an alternative drift theorem that provides tail bounds on the
running time of population-based evolutionary algorithms given simple conditions on the
variation operator and selection mechanism employed by the algorithm. I outlined the ideas
behind the proof, which uses a combination of multi-type branching processes and classical
drift analysis.

References
1 Per Kristian Lehre. Negative Drift in Populations. In Proc. of Parallel Problem Solving

from Nature (PPSN XI), LNCS, Vol. 6238, pp. 244–253, Springer, 2011.
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3.12 Mutation as a computational event
Adi Livnat (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Adi Livnat

In recent years it has become clear that germline mutation is affected by DNA sequence and
structure and by complex biological mechanisms. Can this new empirical knowledge tell us
something about how evolution works? I argue that opening up the black box of the nature
of mutation affects fundamental concepts in our understanding of evolution, including the
role of sex in evolution.

3.13 The Slime Mold Computer: Physarum can compute shortest
paths

Kurt Mehlhorn (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Kurt Mehlhorn

The slime mold Physarum can apparently compute shortest paths. Nakagaki, Yamada, and
Tóth (Nature 2000) performed the following experiment: They prepared a maze, covered it
with Physarum, and provided food at two locations. After a few hours, the slime mold had
retracted to the shortest path connecting the two food sources. Tero et al (J. Theoretical
Biology, 2007) provided a mathematical model for the dynamics of the slime mold and
verified in computer simulations that the model converges to the shortest path. In the first
part of the talk, I survey the experiments (a video is available at http://people.mpi-inf.mpg.
de/~mehlhorn/ftp/SlimeAusschnitt.webm) and introduce the mathematical model. In the
second part, I describe the path towards a proof of convergence. In the third part, I look
into the future. The slime mold can also build beautiful networks. How can we understand
its network building capabilities?

References
1 T. Nakagaki, H. Yamada, and A. Tóth. Maze-solving by an amoeboid organism. Nature,

407(6803):470, oct 2000.
2 A. Tero, R. Kobayashi, and T. Nakagaki. A mathematical model for adaptive transport

network in path finding by true slime mold. Journal of theoretical biology, 244(4):553–64,
feb 2007.

3.14 The long-term response to directional selection
Tiago Paixao (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 3.0 Unported license
© Tiago Paixao

The role of gene interactions in the response to selection has long been a controversial subject;
while some have dismissed them as an important influence on adaptation, others have argued
that their long-term effects are of high significance. Here, we derive simple and general
predictions for the effect of gene interactions on the long-term response to selection from
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standing variation (excluding new mutations). We show that when the dynamics of allele
frequencies are dominated by genetic drift, the long-term response is surprisingly simple,
depending only on the initial components of the trait variance, regardless of the detailed
genetic architecture. Moreover, we show that this result applies when many gene contribute
to fitness.

3.15 Natural Selection, Game Theory and Genetic Diversity
Georgios Piliouras (Singapore University of Technology and Design, SG)

License Creative Commons BY 3.0 Unported license
© Georgios Piliouras

Joint work of Ruta Mehta, Ioannis Panageas, Georgios Piliouras

In a recent series of papers a strong connection has been established between standard
models of sexual evolution in mathematical biology and Multiplicative Weights Updates
Algorithm, a ubiquitous model of online learning and optimization. These papers show that
mathematical models of biological evolution are tantamount to applying discrete replicator
dynamics, a close variant of MWUA on (asymmetric) partnership games. We show that in
the case of partnership games, under minimal genericity assumptions, discrete replicator
dynamics converge to pure Nash equilibria for all but a zero measure of initial conditions.
This result holds despite the fact that mixed Nash equilibria can be exponentially (or even
uncountably) many, completely dominating in number the set of pure Nash equilibria. Thus,
in haploid organisms the long term preservation of genetic diversity needs to be safeguarded
by other evolutionary mechanisms, such as mutation and speciation.

3.16 Benefits of Crossover in Combinatorial Search
Adam Prugel-Bennett (University of Southampton, GB)

License Creative Commons BY 3.0 Unported license
© Adam Prugel-Bennett

Crossover often proves to be a powerful research tool in finding good solutions to combin-
atorial optimisation problems. The landscape of such problems are very complex so that
understanding why crossover is beneficial is difficult. To help elucidate possible mechanisms
where population-based search, particularly using crossover, is beneficial we consider three
‘toy’ problems. The first demonstrates how a hybrid algorithm combining crossover with
local search can solve a problem by combining building blocks. The second problem looks
at how a population can efficiently explore a plateau region, while the third problem looks
at how a population can solve a problem despite a very large of noise. In each case these
problems require super-polynomial time for local search. The talk describes empirical work
which has previously been published in [1]. We also describe a run time analysis carried
out by Jonathan Shapiro, Jonathan Rowe and the author. Preliminary results have been
published in [2].

References
1 A. Prügel-Bennett. Benefits of a population: Five mechanisms that advantage population-

based algorithms. Trans. Evol. Comp, 14(4):500–517, Aug. 2010.
2 A. Prugel-Bennett, J. Rowe, and J. Shapiro. Run-time analysis of population-based evolu-

tionary algorithm in noisy environments. In Proc. of the 2015 ACM Conf. on Foundations
of Genetic Algorithms XIII (FOGA’15), pp. 69–75, New York, NY, USA, 2015. ACM.
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3.17 Mixing time of stochastic evolutionary dynamics
Piyush Srivastava (California Institute of Technology – Pasadena, US)

License Creative Commons BY 3.0 Unported license
© Piyush Srivastava

We study the time it takes for stochastic evolutionary dynamics to achieve a stationary
steady state (i.e., its mixing time). We prove that the the mixing time of a wide class of such
dynamics grows only logarithmically in the size of the state space. The class of dynamics
we study includes as a special case a finite population stochastic version of the quasispecies
model of molecular evolution.

Such dynamics, in particular the finite population quasispecies model, have been used to
study the evolution of viral populations with applications to drug design strategies countering
them. Here the time it takes for the population to reach a steady state is important both
for the estimation of the steady-state structure of the population as well in the modeling
of the treatment strength and duration. Our result, that such populations exhibit rapid
mixing, may be seen as a theoretical justification for numerical simulations that use the
above approach.

3.18 Slime Mold Dynamics for Flows and Linear Programming
Damian Mateusz Straszak (EPFL Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Damian Mateusz Straszak

Joint work of Damian Mateusz Straszak, Nisheeth K. Vishnoi

We study dynamics inspired by Physarum polycephalum (a slime mold) for solving network
flow problems and linear programs. These dynamics are arrived at by a local and mechanistic
interpretation of the inner workings of the slime mold and a global optimization perspective
has been lacking even in the simplest of instances. Our first result is an interpretation of
the dynamics as an optimization process. We show that Physarum dynamics can be seen as
a steepest-descent type algorithm on a certain Riemannian manifold. Moreover, we prove
that the trajectories of Physarum are in fact paths of optimizers to a parametrized family of
convex programs, in which the objective is a linear cost function regularized by an entropy
barrier. Subsequently, we rigorously establish several important properties of solution curves
of Physarum. We prove global existence of such solutions and show that they have limits,
being optimal solutions of the underlying problems.

3.19 The impact of genetic drift on the runtime of simple
estimation-of-distribution algorithms

Dirk Sudholt (University of Sheffield, GB) and Carsten Witt (Technical University of Denmark
– Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Dirk Sudholt and Carsten Witt

In this talk, we will consider simple estimation-distribution algorithms, including the so-called
compact GA (cGA), on the classical OneMax benchmark problem. The perspective is runtime
analysis. We will derive lower bounds on the runtime of the cGA, and discuss how genetic
drift affects the optimal parameter setting of the algorithm.
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3.20 Understanding Diversity and Recombination in Simple
Evolutionary Algorithms

Dirk Sudholt (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
© Dirk Sudholt

I presented an open problem in runtime analysis: trying to understand the benefit of
recombination in the context of a simple (µ+1) Genetic Algorithm on the OneMax problem.
Experiments suggest that crossover is beneficial, especially for large populations. Yet despite
the seeming simplicity of the setting, existing runtime analyses are restricted to small
populations and often ignore the initial diversity in the population. Can we use techniques
from Population Genetics or other fields to show that Genetic Algorithms exploit this diversity
efficiently through recombination?

3.21 The speed of adaptation of complex traits
Barbora Trubenova (IST Austria – Klosterneuburg, AT) and Jorge Perez Heredia (University
of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
© Barbora Trubenova and Jorge Perez Heredia

Many adaptations are complex; they involve large numbers of genes that may interact in
non-additive ways. The efficacy of natural selection to produce these adaptations has been a
long-standing question. In particular, how long does it take for natural selection to evolve
such complex adaptations?

Here, we address this question by making use of tools from computer science to characterize
the time it takes for a population to reach a particular genotype sequence. We focus on how
this time scales with the complexity of the trait, and find the conditions on selection strength
that enable efficient adaptation. We quantify the ‘cost of complexity’ on several classes of
fitness landscapes and show that this cost depends strongly on the details of the genetic
architecture. We distinguish between polynomial and exponential scalings as efficient and
inefficient adaptation and show that there is sharp threshold between the two for populations
in the weak mutation regime. Moreover, we show that even when the loci contributing to
the trait interact in an extreme form of epistasis, the time required to reach the fitness peak
scales polynomially.

3.22 Evolutionary Dynamics
Nisheeth K. Vishnoi (EPFL Lausanne, CH)
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In this talk we survey two fundamental models in evolutionary dynamics: the infinite
population Quasispecies model and the stochastic, finite population Wright-Fisher model.
Subsequently, we discuss the notions of error threshold, time to convergence and mixing time
rigorously.
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3.23 Coalescent trees, induced subtrees, their topology and site
frequency spectrum

Thomas Wiehe (Universität Köln, DE)
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© Thomas Wiehe

Genealogies, when viewed forward-in-time, are equivalent to certain types of branching
processes, for instance the Yule process. We are interested in measuring topological properties
of binary trees which are generated by a Yule process. An easily accessible topological
parameter is tree balance at (upper) internal nodes. Tree balance affects the mutation site
frequency spectrum (SFS) and can introduce a bias in typical SFS-based statistics. For
practical applications it is of interest to understand the dependence of topological properties –
and hence of the SFS – in induced subtrees, when conditioned on the topology of a supertree.
Furthermore, it is of interest to understand the impact of recombination in changing tree
topologies. Last, I will shortly describe a ‘topological’ measure of linkage disequilibrium.
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