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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16022 “Geometric
and Graph-based Approaches to Collective Motion”.

The seminar brought together a group of enthusiastic researchers with a diverse background.
To create a shared body of knowledge the seminar featured a number of survey talks that were
planned early in the week. The survey talks were rather engaging: the audience learned for
instance at what scale one should look at a painting of Van Gogh, how bats chase each other,
what size of clumps mussels make and why, and how to interact with a computational geometer.

Seminar January 10–15, 2016 – http://www.dagstuhl.de/16022
1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.5 Pattern

Recognition
Keywords and phrases Geometry, Graph, Interaction, Motion, Pattern, Trajectory
Digital Object Identifier 10.4230/DagRep.6.1.55
Edited in cooperation with Tim Ophelders

1 Executive Summary

Giuseppe F. Italiano
Marc van Kreveld
Bettina Speckmann
Guy Theraulaz

License Creative Commons BY 3.0 Unported license
© Giuseppe F. Italiano, Marc van Kreveld, Bettina Speckmann, and Guy Theraulaz

A trajectory is a time-stamped sequence of locations which represents the movement of
entities in space. Trajectories are often created by sampling GPS locations and attaching a
time-stamp, but they can also originate from RFID tags, video, or radar analysis. Huge data
sets exist for entities as diverse as birds, deer, traveling humans, sports players, vehicles, and
hurricanes.

During recent years analysis tools for trajectory data have been developed within the areas
of GIScience and algorithms. Analysis objectives include clustering, performing similarity
analysis, segmenting a trajectory into characteristic sub-trajectories, finding patterns like
flocking, and several others. Since these computations are mostly spatial, algorithmic
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solutions have been developed in the areas of computational geometry and GIScience.
Although trajectories store only the location of a single point of reference on a moving entity,
this is acceptable for the common large-scale analysis tasks. However, for the study of more
complex phenomena like interaction and collective motion, it is often insufficient and the
basic trajectory representation must be extended.

Simultaneously, in the area of ecology the study of motion of animals has also become a
topic of increasing interest. Many animal species move in groups, with or without a specific
leader. The motivation for motion can be foraging, escape from predators, changing climate,
or it can be unknown. The mode of movement can be determined by social interactions,
energy efficiency, possibility of discovery of resources, and of course the natural environment.
The more fascinating aspects of ecology include interaction between entities and collective
motion. These are harder to grasp in a formal manner, needed for modelling and automated
analysis.

The seminar brought together a group of enthusiastic researchers with a diverse back-
ground. To create a shared body of knowledge the seminar featured a number of survey talks
that were planned early in the week. The survey talks were rather engaging: the audience
learned for instance at what scale one should look at a painting of Van Gogh, how bats
chase each other, what size of clumps mussels make and why, and how to interact with a
computational geometer.

Probably the main research result was a momentum started up by interaction and
awareness of an exciting direction of research where a lot can still be accomplished.

More specific research accomplishments included a methodology for evaluating whether
fish or other animals have their movement mostly influenced by closest neighbors, and how
to reconstruct movement just based on counts at different time steps.
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3 Overview of Talks

3.1 Multidisciplinary challenges concerning self-organization in
ecological systems.

Johan van de Koppel (Royal Netherlands Inst. for Sea Research – Yerseke, NL)
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I discussed the emergence of theory of spatial self-organization in ecology, focussing on the
formation of regular spatial patterns. Past research on for instance arid systems or mudflats
have highlighted Turing’s activator-inhibitor principle to explain pattern formation. I have
highlighted a different form of self- organization in mussel beds, where mussels aggregate to
form regular patterns. This form of pattern formation follows a different mechanism that is
similar to the physical process of phase-separation, as formulated by Cahn and Hilliard in
1958. Individual-based models of pattern formation in mussel beds indicate that patterns
have a important effect on ecosystem functioning, increasing mussel bed resilience.

I finished with highlighting a number of outstanding challenges in the field of spatial
self-organization of ecosystems:

Understanding critical transitions: How to distinguish ecosystems with and without
tipping points?
Can we determine the process driving self-organization from the observed patterns?
How do patterns affect ecosystem functioning?
Can we find self-organization in “everyday”, human modified ecosystems?
How do organisms adapt to/in self-organizing systems?
How can we best translate individual behavior to population dynamics?

Technical issues
Multidisciplinary – bridging the culture gap between physics, computer sciences, math-
ematics, and biology.
How do we overcome scale differences in ecosystems?
Communication – how to explain our results to the general public?

3.2 Multiscale inference in collective behaviour
Richard Philipp Mann (University of Leeds, GB)
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How do groups of animals act cohesively and make collective decisions? How do complex
patterns of collective motion emerge in groups of individually simple organisms? Simulation
studies show that simple interaction rules between individuals and their local neighbours are
sufficient to produce complex group behaviours, but the specific nature of these interactions
is often unclear. Large scale group behaviours often fall into generic ‘universality’ classes
such as spinning balls or polarised flocks, obscuring the precise interactions at the individual
level.

In this talk I demonstrate a technique of theory-driven model comparison based on
individual agent motions alongside group level observations. I phrase alternative hypothesised
interactions as models which predict the behaviour of individuals, using a Bayesian model
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comparison to select between competing theories, and combine this with model simulations
to detect emergent effects. I show examples of this approach in the context of the collective
motion of glass prawns and decision-making in damselfish, and discuss how to take this
method forward.

3.3 Self-Organization in Complex Systems
Nicholas Ouellette (Stanford University, US)
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Complex systems – that is, systems that consist of many simple but coupled degrees of
freedom – generically and spontaneously form structure. Over the past several decades, this
process of self-organization has been identified as driving the formation of patterns and
structure at nearly every scale in nature. Here, I will give a brief overview of some of the key
results that have come out of the study of self-organization from a physicist’s perspective.
I will then connect these ideas to the study of collective behavior in animals, as well as
outlining some caveats. Finally, I will pose some questions that deserve future study.

3.4 Dynamic Graph Algorithms
Giuseppe F. Italiano (University of Rome “Tor Vergata”, IT)
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In my talk, I will survey dynamic graph algorithms. In particular, I will consider a fundamental
problem in this area: the dynamic maintenance of shortest paths. Although research on this
problem spans over almost 50 years, progress has been achieved only recently through the
introduction of many novel algorithmic techniques. I will make a special effort to abstract
some basic combinatorial properties that are at the base of some of those techniques. This
will help presenting some of the most efficient algorithms in a unifying framework so that
they can be better understood and deployed also by non-specialists.

3.5 Topological Data Analysis in Real Applications
Brittany Terese Fasy (Montana State University – Bozeman, US)

License Creative Commons BY 3.0 Unported license
© Brittany Terese Fasy

Persistent homology is a method for probing topological properties of point clouds and
functions. The mathematical concepts stem from Morse theory, but the use of topology in
data analysis is fairly recent. In this talk, we draw an analogy between looking at homology
at different parameter values and at a painting at different distances. These parameters
(distances) give different insights as the values change. Persistence tells us which of these
insights lasts through large intervals of the parameter. For example, the parameter can be
time and the persistence may explain the dynamics of animals moving in a collective motion.
After giving an intuition for persistent homology, we briefly explain how it can be sued to
describe, compare and analyze data.
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3.6 Analysing spatio-temporal patterns of delayed alignment
interactions

Luca Giuggioli (University of Bristol, GB)
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Animal coordinated movement interactions are commonly explained by assuming unspecified
social forces of attraction, repulsion and alignment with parameters drawn from observed
movement data. Very little is done to connect the sensory ecology with the movement and
interaction of the individuals. On trajectories of two interacting trawling bats flying over a
water pond we have shown how to extract delays with which individuals respond by copying
each other’s heading. Using that information it is possible to reconstruct the echolocation
field strength and directionality of the bats [1].

References
1 L. Giuggioli, T.J. McKetterick & M. Holderied, Delayed response and biosonar perception

explain movement coordination in trawling bats, PLoS Comput. Biol. 1(3):e1004089 (2015)

3.7 Computational Geometry for Collective Motion
Maarten Löffler (Utrecht University, NL)
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The main challenge in applying techniques from computational geometry to solve real-world
problems in collective motion analysis is deciding on the correct mathematical model. A
mathematical model, or problem description, in this context, is a precise description of the
input and output of a problem. In particular, given the problem description and an input, it
must be clear (unambiguous) what the resulting output is.

On the one hand, a problem description must then be validated in the application. Both
the input and output can be interpreted in collective motion – for instance biological or
ecological – terms, and the ability to convert the input to the output has a clear value.

On the other hand, given a problem description, we can design efficient and provably
correct algorithms to arrive at the desired output. For this, we leverage 50 years of research in
geometric algorithms, combined with new solutions that are tailored to the unique challenges
in the problem at hand.

3.8 Challenges for movement analytics: A GI science perspective
Matt Duckham (RMIT University – Melbourne, AU)
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This talk examined three of the key challenges and trends in movement analytics, from
the perspective of the field of GI science. The first challenge concerns the structure of
movement data. Whilst there has in the past been a strong focus on the Lagrangian
trajectory data view of movement, Eulerian checkpoint or “cordon-structured” data is often
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under researched. A wide range of familiar and voluminous data sources, including social
media check-ins, electronic tolling, public transport smart cards, generate data structured as
Eulerian checkpoints, rather than Lagrangian trajectories. The second challenge concerns
the integration of information about the drivers of movement into movement analytics.
In particular, the context and causes of movement are often of overriding importance in
understanding movement. The third challenge relates to the interaction between moving
objects in the production of collectives. These collectives are more than the sum of there
parts, and so cannot be adequately captured purely by looking at the movement of individuals
in the collective. Underlying these challenges is the maxim that there is “more to movement
than geometry”, and a comprehensive approach to movement analytics must incorporate
non-geometric movement structure, the context and causes of movement, and the role of
collectives.

4 Extra Event

4.1 DYNAMO: Dynamic Visualization of Movement and the
Environment

Somayeh Dodge (University of Colorado – Colorado Springs, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Somayeh Dodge, Glenn Xavier
URL http://dynamovis.com

Movement is highly influenced by its embedding spatiotemporal context, a geographic
context that changes over time, such as the ambient environment, terrain, and landscape. In
essence, movement occurs in both spatiotemporal space and a multidimensional attribute
space (i.e. environmental and geographic context of movement). The syntheses of these
two spaces need new tools suitable for dynamic visualization of the traversal through
these dimensions. These tools can play a major role as a fundamental component of
spatiotemporal computing systems for the comprehension and understanding of complex
spatiotemporal processes and patterns of movement. This presentation provides an overview
of a visualization tool, called “DYNAMO: Dynamic Visualization of Movement and the
Environment” (http://dynamovis.com), developed for the exploratory analysis of movement
in relation to the environment and geographic context. DYNAMO applies visual variables
such as point and line width, color, and directional vector to visualize and animate movement
tracks in their attribute space (e.g. movement parameters and context attributes).
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5 Working groups

5.1 Analysis on Check-in Data
Karl Bringmann (MPI für Informatik – Saarbrücken, DE), Oliver Burkhard (Universität
Zürich, CH), Brittany Terese Fasy (Montana State University – Bozeman, US), Giuseppe F.
Italiano (University of Rome “Tor Vergata”, IT), Martin Nöllenburg (TU Wien, AT), Frank
Staals (Aarhus University, DK), Goce Trajcevski (Northwestern University – Evanston, US),
and Carola Wenk (Tulane University, US)
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Most current work in trajectory and movement analysis assumes that the input trajectories
are precise enough to capture the exact movement of the entities, that is, it is assumed that
the trajectories are either (piecewise linear) functions mapping time to a location, or a dense
sample of (time,location) pairs from such a function. A large amount of such trajectory data
is available. However, systems such as cell towers, wireless sensor networks, electronic travel
cards (e.g. Oister card, ov-chipkaart), and social networks such as Foursquare generate much
sparser trajectory data. They capture the location of an entity only at very few, and often
wide spread, times. This means that the usual assumption that the entity moves linearly in
between two trajectory vertices does not make sense, and thus the traditional algorithms and
analysis techniques are not applicable. We refer to such sparse trajectory data as check-in
data, and identify several interesting questions and analysis tasks for check-in data.

We assume that the entities move in a network, which we model as a (planar) directed
weighted graph, where the edge weights model travel time. Some of the edges are equipped
with a beacon that registers when an entity traverses the edge. Beacons register the time at
which an entity starts traversing the edge, and the identity of the entity. For every moving
entity, we thus obtain a (sparse) trajectory, a sequence of (time,edge) pairs. Note that not
every edge is equipped with a beacon, hence the trajectory of an entity will, in general, not
be known completely. We are then interested in the following problem:

Given all sparse trajectories, an edge e of the graph, and a time interval I, compute
how many entities start traversing edge e during I.

We identified and formalized several subproblems toward solving the above problem.
Furthermore, we discussed variations of the model, e.g. incorporating uncertainty, delay,
placing beacons at vertices rather than at edges etc. We aim to solve these problems in the
near future.

5.2 Detecting Avoidance Interaction in Trajectory Data
Luca Giuggioli (University of Bristol, GB), Johan van de Koppel (Royal Netherlands Institute
for Sea Research – Yerseke, NL), Andrea Perna (Paris Diderot University, FR), Robert
Weibel (Universität Zürich, CH), and Carola Wenk (Tulane University, US)
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The purpose of the working group was to explore ideas and methods to detect avoidance
behaviour by looking at trajectories of an habitauted population of dwarf mongoose in the
wild. The data consists of gps tracking at approximately 30 second sampling based on each
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of the location on the researchers following simultaneously different groups of mongooses
of 5–7 individuals. Biologists expect a scent-mediated interaction to occur as individuals
detect fresh scent left by other groups and move away to avoid costly confrontations. As we
played with the dataset at our disposal, we realized that the locations of individuals were
potentially too far apart for scent to be detected and no-delayed crossing of the trajectories
appeared. We hypothesized that individuals may respond instantaneously through visual
detection of other groups from a distance. By looking at the vegetation in South Africa
where data were collected we saw that trees and high bushes may constrain the distance
at which such detection occurs. We thus concluded that sentinels on trees, usually used
for detecting predators, may also be involved in identifying the presence of other mongoose
groups.

5.3 Detecting Interactions Given Trajectory Information
Somayeh Dodge (University of Colorado – Colorado Springs, US), Brittany Terese Fasy
(Montana State University – Bozeman, US), Tim Ophelders (TU Eindhoven, NL), Nicholas
Ouellette (Stanford University, US), and Kevin Verbeek (TU Eindhoven, NL)
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Our group was tasked with developing strategies to answer a question that seems straightfor-
ward but that in practice is quite difficult: given trajectory information from one or more
individuals, can we identify where and when interactions occurred?

This question is particularly difficult given that in general we do not know what the
signature of an interaction is; and indeed, it will likely be different for different specific
problems. We therefore modified the question to something we felt was more tractable. If we
make the hypothesis that interactions result in some (possibly transient) change in behavior,
then identifying these interaction events becomes a problem of segmenting the trajectory.
This approach will miss interactions that do not result in a measurable change in behavior;
such events, however, will likely never be detectable without additional information.

We had some discussion as to whether considering single trajectories is sufficient for this
problem, or whether we must look at explicitly pairwise or higher-order quantities. Although
we did not reach a general consensus on this point, we settled on considering only single
trajectories initially, as in general the signature of interactions should be reflected in single
trajectories as well as in pairs.

The problem is thus one of trajectory segmentation into “normal” and “unusual” parts.
How to do this in a meaningful, objective way, however, is not obvious. We considered
approaches based on simple global statistics, such as segmenting based on the mean speed or
the velocity variance, but found these to be unsatisfying. Instead, we proposed a kind of
“auto-segmentation”, which we expressed as an optimization problem. The ideal segmentation
for our purposes would cut the trajectories into pieces that are as different as possible. That
is, if we cut a trajectory into segments of type A and B, the information content in the A
and B segments should be as different as possible. To accomplish this, we thought of taking
an iterative approach. Suppose we begin with some initial, arbitrary segmentation. We can
then calculate the statistics of the A and B segments separately, and define a cost function
based on the difference between these statistics (the mutual information, for example, or the
Kolmogorov distance between their PDFs). By then optimizing this cost function, one could
come up with an objective segmentation, which could then hopefully be interpreted.
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5.4 Distinguishing Real and Artifactual Social Interactions
Martin Beye (Universität Düsseldorf, DE), Oliver Burkhard (Universität Zürich, CH),
Brittany Terese Fasy (Montana State University – Bozeman, US), Richard Philipp Mann
(University of Leeds, GB), Bettina Speckmann (TU Eindhoven, NL), and Kevin Verbeek (TU
Eindhoven, NL)
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We started by considering whether one could use purely trajectory data from groups (e.g.
pairs) of animals to decide whether a social interaction took place, as opposed to correlated
responses to an environmental stimulus.

In general the problem appears insoluble, since an arbitrary unseen stimulus could exactly
mimic another animal. Therefore in principle the two could not be distinguished.

However, if we have some idea what the external stimuli might look like we can either:
Do experiments to determine response to these, and look for differences in later data.
This is the approach taken by Gautrais et al. in PLoS Comput. Biol. 2012.
Try to theorise what a response might look like, e.g. a fleeing response to a point source
might be spherically symmetric around that point

We considered whether there would be differences in the noise structure between two
individuals following each other versus two individuals following a common route, since the
noise from one would become part of the signal the other follows. This might lead to an
entangled noise signature that would be indicative of interactions.

Then we moved onto larger scale observations of collectives and whether we could assess
whether an aggregation was due to self organisation rather than an environmental cue. This
led us onto a detailed discussion of to what extent persistent homology methods could
be used to classify different groups collective behaviour as being distinct from each other.
Unfortunately it seems necessary to be quite sure what types of structure you want to pick
out in the combined trajectories before designing a persistent homology metric to find them.

5.5 Identifying Influential Neighbors in Animal Flocking
Martin Beye (Universität Düsseldorf, DE), Anael Engel (The Hebrew University of Jerusalem,
IL), Ramon Escobedo (Université Paul Sabatier – Toulouse, FR), Luca Giuggioli (University
of Bristol, GB), Marc van Kreveld (Utrecht University, NL), Andrea Perna (Paris Diderot
University, FR), Frank Staals (Aarhus University, DK), Guy Theraulaz (CNRS and Université
Paul Sabatier – Toulouse, FR), and Goce Trajcevski (Northwestern University – Evanston,
US)

License Creative Commons BY 3.0 Unported license
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Frank Staals, Guy Theraulaz, and Goce Trajcevski

One important issue that is largely discussed in the community dealing with collective motion
in animal groups concerns the number of neighbors each individual in a flock of birds or a
school of fish is interacting with. Indeed, it has been shown that the properties that emerge
at the level of a flock or a school largely depend on the number and position of neighbors
each individual is paying attention to. Is it possible to analyze the trajectories of individuals
moving in groups in such a way to get access to this information?
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To identify the influential neighbors, we propose first to detect the correlation between the
velocity changes of a focal individual and the corresponding velocity changes of individuals
moving in its close vicinity. Obvious choices are to compute: (1) the normalized cross-velocity
correlation (difference in headings) and (2) the non-normalized cross-velocity correlation. In
addition one has to take into account the fact that the focal individual will also react with a
certain time delay. One good method to extract the values of delays as a function of time
from one or all of the correlation plots would be to use the pairwise method developed by
Giuggioli et al. (2015). The problem with that method is that it is only pairwise, and in some
instances of time the extracted delays have inconsistencies (the order is not maintained if
one looks at all pairwise possibilities). Another method recently developed by Kevin Buchin
(Konzack et al., 2015) that we also intend to use is in principle capable of extracting delays
for N animals without these inconsistencies.

Then, we will analyze the time-average correlation value between a focal individual as
a function of either the distance or the number of neighbors. This analysis should also
distinguish individuals that are located either in the centre or in the periphery of the flock.
The results can then be used to get histograms of the maximum correlation values as a
function of the k-nearest neighbor or distance for each moment of time. If each individual
pay attention to only a limited number of individuals within their perception field, one can
expect that it can strongly affect the distribution of correlation values on these histograms.
However one cannot know if a given individual focuses its attention on only one of its close
neighbors at a time or if it responds to some “average information”. In order to test this
hypothesis, one can perform the same analysis as the one described before, but with some
average quantity associated with the (linear or non-linear) combinations of neighbors, e.g. the
simplest one is the average.

In order to test our method, we will use controlled simulations of a model of collective
movement with known rules (i.e. how many influential neighbors, if they influence by rank or
by distance) and use our method to test if it can detect and distinguish between the different
rules. In addition we will perform this analysis on trajectory data on groups of fish, moving
in an annular arena and we will only focus on spontaneous U-turn events to minimize the
effects of the constraining geometry.
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5.6 Mussel Bed Connectivity and its Influence on Survival
Johan van de Koppel (Royal Netherlands Inst. for Sea Research – Yerseke, NL), Maarten
Löffler (Utrecht University, NL), and Tim Ophelders (TU Eindhoven, NL)
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We want to understand how the spatial structure of a mussel bed influences the survival
or persistence of groups of mussels. It seems that net-shaped structures may provide a
more stable landscape, with less vulnerability to waves. Models that account for the effect
of such grouping structure on mussel survival may provide a better understanding of 1)
self-organization in mussels, and 2) stability of mussel beds as a key habitat to many species.
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Waves put force on a limited section of the bed (say 25x25 cm). Small clumps of mussels
get dislodged easily, while larger clumps that are connected to the larger bed, are not
dislodged. A binary test is needed, that checks which of the mussels are sufficiently connected
not to break free after a wave impact.

Given a geometric graph of mussels and a disk representing the wave impact zone, we
define a score F (M) for each set of mussels M . If F (M) is above a certain threshold H, the
set M gets dislodged. In order to define this F (M), we are going to count three things:
1. C The number of connections between M and the rest of the mussels;
2. I The number of mussels of M that are inside the disk;
3. O The number of mussels of M that are outside the disk.

In addition, we define three weights:
1. WC The strength of the glue between connected mussels;
2. WI The force applied by a wave to the mussels inside the disk;
3. WO The force required to move a mussel that is outside the disk.

We define F (M) = WCC(M) − WII(M) + WOO(M), and take the minimum of F (M)
over all sets M to compare with our threshold H.

If the mussel connections are directed, we can model this as a minimum closure problem.
Minimum closures can be computed in quadratic time using an approach based on MinCut.
One way to get a directed graph is to direct all edges to the center of the wave impact zone.
It is likely that undirected graphs can be handled by a similar approach.

6 Schedule

Monday
09.00–10.30: Survey lectures: Johan van de Koppel, Richard Mann
10.50–12.00: Quick introductions of participants, Dagstuhl explanations
14.00–15.30: Survey lectures: Nicholas Ouellette, Giuseppe Italiano
16.00–18.00: Open problems + break-out

Tuesday
09.00–10.15: Survey lectures: Brittany Therese Fasy, Luca Giuggioli
10.40–12.00: Continue break-out
13.00–15.30: Personal discussions with colleagues at Dagstuhl on collective motion
16.00–18.00: Continue break-out

Wednesday
09.00–10.15: Survey lectures: Maarten Löffler, Matt Duckham
10.40–12.00: Reporting back from break-out, discussion
Afternoon excursion

Thursday
09.00–10.15: New open problems and groups
10.40–12.00: Second break-out set
14.00–15.30: Break-out
16.00–17.30: Break-out
17.30–18.00: Extra event

Friday
09.00–10.15: Reporting from second break-out
10.40–12.00: Future plans of research in collective motion
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