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Abstract
This seminar discussed educational outcomes for first-year (university-level) computer science.
We explored which outcomes were widely shared across both countries and individual universit-
ies, best practices for assessing outcomes, and research projects that would significantly advance
assessment of learning in computer science. We considered both technical and professional out-
comes (some narrow and some broad) as well as how to create assessments that focused on
individual learners. Several concrete research projects took shape during the seminar and are
being pursued by some participants.
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The goal of the seminar was to focus on several broadly applicable learning outcomes for
first year university computer science courses, looking at what it would take to understand
and assess them in multiple pedagogic contexts.

In preparation for the seminar, we surveyed participants to get an understanding of a
what could be a common denominator of CS1/2 learning outcomes, using the outcomes from
the ACM CC 2013 curriculum as a starting point. We asked participants to (a) identify ones
that are covered in their institution’s CS1/2 courses, and (b) to identify ones that they have
either experience or interest in investigating further. Participants also suggested objectives
that were not included in CC 2013.

Of these candidate outcomes, we studied a subset during the seminar, as voted by
the participants. We used breakout sessions to get small groups of participants to focus
on individual outcomes, reporting on what is known about each outcome, its underlying
challenges and/or relevant underlying theory, how to best assess it, and what sorts of research
questions should be asked to advance educational research on that outcome. We had three
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separate sets of breakout sessions, so each participant had the chance to work on three
outcomes in detail during the week. The discussion of some sessions was continued in a
following session.

Rather than have most individual participants give talks, we ran three speed-dating
poster sessions on the first afternoon: each person got to put up a poster on some outcome
that they have studied, so others could see the research of other attendees.

In addition, we had three invited presentations focussing on workload and determinants
of study success (Schulmeister), types of prior knowledge and their relation to study success
(Theyssen), and Concept Inventories (Kaczmarczyk and Wolfman). The abstracts of these
presentations are included in this report.
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3 Overview of Talks

3.1 A Concept Inventory Crash Course
Lisa C. Kaczmarczyk (San Diego, US) and Steven A. Wolfman (University of British Columbia
– Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Lisa C. Kaczmarczyk and Steven A. Wolfman

Concept Inventories (CIs) are short, low-stakes, often multiple-choice assessments used to
guage students’ learning surrounding specific concepts within and across courses. Their ease
of administration–both having students write the CI and analysing results–makes them ideal
as sustainable instruments for measuring the impact of changes in teaching, particularly
pedagogical shifts. CIs have been widely used in science fields, most famously and earliest the
physics Force Concept Inventory. Well-designed CIs aim to not only assess whether students
have expert-like conceptions of course material but also to identify commonly occurring
misconceptions through their questions’ distractors. By providing evidence of difficulty
learning fundamental concepts and of widespread misconceptions, CIs can be instruments of
change in teaching practice. Designing a CI requires a careful, multi-step process to identify
the often-narrow scope of the assessment, solicit common misconceptions among students,
craft assessment items targeting these concepts and misconceptions, and validate the items
with both experts and students. While progress has been made on CIs for some topics in
computing, significant challenges remain including the diversity of programming languages,
the rapid pace of change in the field, fundamentally different programming paradigms, and
codification of processes such as design and debugging as concepts.

Partial List of Concept Inventory Publications of Interest to Computing
Education Researchers

W.K. Adams and C.E. Wieman. Development and validation of instruments to measure
learning of expert-like thinking. Int’l. J. of Science Ed., 33(9):1289–1312, 2011.
V. L. Almstrum, P.B. Henderson, V. Harvey, C. Heeren, W. Marion, C. Riedesel, L.-K.
Soh, and A.E. Tew. Concept inventories in computer science for the topic discrete
mathematics. In Working Group Reports on Innov. and Tech. in CS Ed., pages 132–145,
2006.
Goldman, Ken, Gross, Paul, Heeren, Cinda, Herman, Geoffrey, Kaczmarczyk, Lisa,
Loui, Michael, Zilles, Craig. (2010, June). “Setting the Scope of Concept Inventories
for Introductory Computing Subjects”. ACM Transactions on Computing Education
(TOCE).
Goldman, Ken, Gross, Paul, Heeren, Cinda, Herman, Geoffrey, Kaczmarczyk, Lisa,
Loui, Michael, Zilles, Craig. (2008). “Identifying Important and Difficult Concepts in
Introductory Computing Courses using a Delphi Process”. Presented at the 39th Annual
Technical Symposium on Computer Science Education (SIGCSE 2008), Portland, Oregon.
R.R. Hake. Interactive-engagement versus traditional methods: A six-thousand-student
survey of mechanics test data for introductory physics courses. American Journal of
Physics, 66(1):64–74, 1998.
Herman, Geoffrey L., Loui, Michael C., Kaczmarczyk, Lisa, Zilles, Craig. (2012, March).
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“Describing the What and Why of Students’ Difficulties in Boolean Logic”. ACM Trans-
actions on Computing Education (TOCE) 12(1), 3:1–28.
Herman, Geoffrey, Kaczmarczyk, Lisa, Loui, Michael, Zilles, Craig. (2008). “Proof by
Incomplete Enumeration and Other Logical Misconceptions”. Presented at the Fourth
International Computing Education Research Workshop (ICER 2008), Sydney, Australia.
D. Hestenes, M. Wells, and G. Swackhamer. Force concept inventory. The Physics
Teacher, 30(3):141–158, March 1992.
Kaczmarczyk, Lisa, Petrick, Elizabeth, East, J. Philip, Herman, Geoffrey L. (2010).
“Identifying Student Misconceptions of Programming”. Presented at the 41st Annual
Technical Symposium of Computer Science Education (SIGCSE 2010), Milwaukee, Wis-
consin
E. Mazur. Qualitative vs. quantitative thinking: are we teaching the right thing?
International Newsletter on Physics Education, 32, April 1996.
K. Karpierz and S.A. Wolfman. 2014. Misconceptions and concept inventory questions
for binary search trees and hash tables. In Proceedings of the 45th ACM technical
symposium on Computer science education (SIGCSE ’14). ACM, New York, NY, USA,
pp. 109–114.
R.A. Streveler, R. L. Miller, A. I. Santiago-Roman, M.A. Nelson, M.R. Geist, B.M.
Olds “Rigorous methodology for concept inventory development: Using the ‘assessment
triangle’ to develop and test the thermal and transport science concept inventory (TTCI)”,
International Journal of Engineering Education Vol. 27, No. 5, pp. 968–984, 2011
C. Taylor, D. Zingaro, L. Porter, K.C. Webb, C.B. Lee, and M. Clancy. Computer
science concept inventories: past and future. Computer Science Education, 24(4):253–276,
2014

3.2 ZEITLast-Project (workload project): List of research activities
with reference to computer science

Rolf Schulmeister (Universität Hamburg, DE)
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The ZEITLast-project aimed to find out more about the real workload of our bachelor students
by measuring the time needed to attend lectures and courses, for self study, preparing for
exams, as well as used for extracurricular activities. Students used a web-based time budget
or diary method to enter data daily during five months of a semester in order to cover the
lecture period, the exam phase, and the self study activities during lecture free weeks. Data
entered were controlled every day.

Time diary studies (time use, time budget) have been conducted in following IT curricula
or computer science courses:

B.Sc. Engineering Informatics, TU Ilmenau, no innovation, Summer 2010, 4th term:
Workload 21.9 hours/week
B.Sc. Engineering Informatics, TU Ilmenau, partly blocked modules, Summer 2011, 4th
term: Workload 24.5 hours/week
B.Sc. IT Security, St. Pölten, completely blocked modules, Winter 2011/12, 1st term:
Workload 32 hours/week
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B.Sc. Informatik, Universität Paderborn, no innovation, Summer 2015, 2nd term: Work-
load 18.95 hours/week
B.Sc. IT Security, St. Pölten, completely blocked modules, Winter 2015/16, 1st term:
ongoing
M.Sc. IT Security, St. Pölten, completely blocked modules, Winter 2015/16, 1st term:
ongoing

The data of further 30 time diary studies in subjects other than computer science may
be compared with the results of the computer science studies, e.g. architecture, mechanical
engineering, culture, economy, education, mathematics, media science, media technology,
mechatronics, ship building, medicine, electrical engineering, physics, etc. The mean workload
in all 35 subjects tested so far is 23 hours per week. Even if the only data of the 14 weeks of
lecturing are calculated, the mean workload is less than 30 hours per week and much less than
expected by the Bologna system. An important finding is that the inter-individual variance
and the intra-individual variance are enormously big, meaning that no student manages his
or her time, attendance, and self study phases day for day or week for week in the same way.
This finding throws a critical light at surveys that ask for data of one week and generalize
them for a whole semester. Then mean values and percentages are misleading.

Some of the time use studies were followed up by a test on learning motivation and
study habit based on an Integrated Model of Learning Activity and Motivation (according
to Deci & Ryan, Julius Kuhl, and Thomas Martens). These tests were applied to students
in education, economy, and computer science. The test generates motivational profiles of
students focussing on learning behavior: anxiety, responsibility, distraction vs concentration,
persistence vs procrastination, control of negative emotions etc.

Two meta-studies have been written in order to generalize the results of the empirical
analyses:
1. “Auf der Suche nach Determinanten des Studienerfolgs”. in J. Brockmann/A. Pilniok

(Hrsg.), Studieneingangsphase in der Rechtswissenschaft, Nomos: Baden-Baden 2014,
S. 72–205.

300 international studies dealing with determinants of learning success have been
analyzed and summarized. This essay includes a paragraph on time diary analysis and
an overview over international studies reaching comparable workload data (21–28 hours
per week). The studies on study habits prove that traditional variables e.g. gender,
social status, family etc. do not influence the learning outcome but motivational
study habits, endurance, concentration, attendance etc. are determinants of GPA and
learning success.

2. “Abwesenheit von Lehrveranstaltungen Ein nur scheinbar triviales Problem. Eine Meta-
Studie von 300 empirischen Arbeiten.” Hamburg 2015.

An analysis of 300 international studies dealing with the attendance in lectures or
absence of students from lectures and courses and the effect on the GPA. The degree
of attendance is a good determinant of success in exams. Students missing three or
more times a lecture or a seminar have lesser chances to reach an A or B.

References
1 Schulmeister, R. & Ch. Metzger (Hrsg.) (2011): Die Workload im Bachelor: Zeitbudget

und Studierverhalten. Eine empirische Studie. Münster [u.a.]: Waxmann (report about the
first 12 time use studies)

2 Schulmeister, Rolf, Christiane Metzger & Thomas Martens (2012): Heterogenität und Stud-
ienerfolg. Lehrmethoden für Lerner mit unterschiedlichem Lernverhalten. Paderborner Uni-
versitätsreden Heft 123. Paderborn.
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3 Christiane Metzger, Rolf Schulmeister & Thomas Martens (2012): Motivation und Lehror-
ganisation als Elemente von Lernkultur. Zeitschrift für Hochschulentwicklung. ZFHE Jg.7
/ Nr.3 (Juni 2012).

4 Rolf Schulmeister, Christiane Metzger: Zur Rolle der Lehrorganisation bei der Gestaltung
des studentischen Selbststudiums In: Brigitte Kossek / Markus F. Peschl (Hg.): Digital
Turn? Zum Einfluss digitaler Medien auf Wissensgenerierungsprozesse von Studierenden
und Hochschullehrenden. V&R unipress Vienna University Press 2012, S. 77–92.

3.3 Types of prior knowledge and academic success in biology and
physics

Heike Theyssen (Universität Duisburg-Essen, DE)
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High dropout rates in science, mathematics and engineering programs of study give reason
to investigate predictors for academic success. Academic success is influenced by a variety of
general and subject-specific factors. So far, most studies in this field have focused on general,
non-specific factors like grade point average (Dochy, Segers & Bühl, 1999). The project
presented in this talk is part of the research unit “Academic learning and study success in
the entry phase of science and technology study programs” (https://www.uni-due.de/zeb/
alster/index_engl) funded by the German Research Foundation. In our project we focus on
students’ subject-specific prior knowledge that has proven to be a good predictor of learning
success. According to Hailikari and her colleagues (2007, 2009, 2010) we distinguish different
types of prior knowledge: knowledge of facts, knowledge of meaning, integration of knowledge
and application of knowledge. In the talk, the theoretical background is introduced and the
test instruments used to assess the different types of prior knowledge are presented.

4 Working groups

4.1 Decomposition and Algorithm Selection
Notes by Mirko Westermeier

License Creative Commons BY 3.0 Unported license
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The process of decomposition plays a central role while problem solving. The skills required
to approach problems and split them into subtasks is essential not only for programmers but
also for most (technical) problem solvers in life, regardless of their discipline. So it seems to
be easy to motivate teaching these skills. Open questions are when to teach them, how they
could optimally sequenced and whether decomposition should be taught explicitly.
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4.2 Notional Machine
Notes by Mirko Westermeier

License Creative Commons BY 3.0 Unported license
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While trying to understand what hinders students by solving their programming tasks in a
(for the teacher) straight-forward way, it sometimes turns out that their mental model of the
machine on which the program runs is the problem. The biggest misconception here seems
to be that the computer is somehow trying to understand what the student is doing.

The interesting part of this problem is, that most of these mental models (“Notional
Machines”) are consistent and therefore their behaviour is reasonable even if it can not be
synchronized with reality when going into depth. The notional machine can be a collection
of consistent misconceptions.

Attendees agreed that it is important to find out something about the teacher’s own
misconceptions and how they (if existent) match with the ones of the students. It seems
to be important to know whether students have gaps in their mental models which lead to
misconceptions and how tow design the teaching such that it is covering these gaps. The
open research question here seems to be how to find and assess gaps in notional machines.

4.3 Processes and Decomposition
Notes by Mirko Westermeier

License Creative Commons BY 3.0 Unported license
© Notes by Mirko Westermeier

This breakout group discussed assessments in the context of understanding processes and
decomposition of complex (programming) problems. An obvious starting point is debugging:
while trying to fix a broken component or problem, students have to understand how the parts
of the component work together and how the system changes over time processing different
inputs. It seems that program comprehension and tracing of programs are prerequisites while
becoming a successful programmer, but it is not so clear how to teach these skills. Attendees
also were concerned that it could be dissatisfying to have students learn something that
does not feel like coding to them. It could be necessary to do extra work to make these
activities make sense to students. Therefore, teachers should have a clear awareness for these
skills and need to motivate teaching them, which seems not be easy in an obvious way. It
was mentioned that these activities need an amount of creativity and somehow collide with
usual computer science matters. Attendees are unsure how to assess the understanding of
decomposition strategies.
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Michael E. Caspersen, Kathi Fisler, and Jan Vahrenhold 87

4.4 Social and Professional Issues
Notes by Mirko Westermeier

License Creative Commons BY 3.0 Unported license
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In this breakout group, attendees started with discussing what skills would be needed,
required and useful in an industry position. It was stated that this is of course not the only
important measure. Communities of Practice share these skills and a central question was
what the intersections between common professional practices was. Another problem was
the difference between these common professional practices and student’s expectations and
how to synchronize these: To eventually accomplish this and establish it in education, one
not only needs to identify these professional practices but also to convey authenticity before
even beginning to teach required skills.

Following questions would be to find out how to design curricula and tasks addressing
identified communities of practice and how much of this would be able to teach and asses in
student’s first year.

4.5 Spatial Thinking
Notes by Mirko Westermeier
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In this breakout session attendees discussed the connection of spatial thinking with computer
science, its possibilities and what it implies. For example was asked whether spatial reasoning
skills of different types of teachers were also different and if different sub-disciplines in
computer science lead to different spatial reasoning. Considering students, a main touch
point of spatial thinking with computer science is data structures, e.g. different expressions
of binary, balanced trees and how the intuitive balancing model possibly translates into code.
Also applied to mental models of heaps (graphical and text-based) the special manifestation
of spatial thinking obviously makes a difference.

4.6 Tracing and Debugging
Notes by Mirko Westermeier

License Creative Commons BY 3.0 Unported license
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To define the skills neccessary for tracing and debugging a specific program, students have
to develop a line-by-line understanding because the have to identify and leave out not-so-
important parts. To follow the control flow and variable states, they have to use some kind
of a notional machine and mentally execute parts of the program. Tracing therefore also
requires a good understanding of the program’s object graph, which object is doing what
and how they change state during execution. This can be hard to accomplish depending
on the complexity of components. In a linear program, students just have to follow the
variables while in complex nested object interaction even using polymorphism, misconceptions
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in the mental model can become a real problem. Several tools to support better overall
understanding were discussed. It was agreed that visualization tools (on different levels) help
at first, but then a correct mental model is crucial.

The question how to assess tracing and debugging skills however remains hard. Attendees
stated that it mostly never happened or failed because it was too hard. It seems important
to watch students while trying to solve a problem and identify specific solving strategies in
debugging. A defined set of these strategies should be testable. A belt system like in martial
arts to state on which competence level a student is able to solve a task and wha she has to
master before was discussed.

Most ideas from this breakout session were discussed later in the Notional Machine
breakout.

4.7 Assessments with Learners in Mind
Steven A. Wolfman (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
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The design of learning assessments – widely construed to include both research instruments
and formative or summative instructional instruments – often focuses on qualities like validity
and reliability that speak to properties of the data produced by the assessment. Both the
process and results of assessment also have a powerful impact on learners’ journey through
their course of study. We believe that instructors and researchers will benefit from becoming
more mindful of the impact of their assessments on the assessed learners’ affinity for their
course of study.

To change this situation, we propose a new dimension which – for the time being – we call
affinity with which to design and consider assessments. Affinity is conceptually orthogonal to
existing dimensions like validity and reliability. We anticipate that an assessment with high
affinity empowers and motivates students to engage in their course of study and conversely,
that an assessment with low affinity disengages and isolates students from their course of
study. The affinity dimension will explicitly reflect the student voice in the assessment
process, structured by established, research-based frameworks [Resnick and Shaffer, Ryan
and Deci, Bandura, and Engle] exploring the fit and effect of instructional processes on
students’ mindset, motivation, and perceptions within a course of study.

We intend to explore, explain, and validate the nature of this affinity dimension and – in
the process – develop a pair of instruments, one usable by researchers investigating this new
affinity dimension to guide and frame the data they collect, and another related instrument
usable by instructors to improve the affinity of their designed assessments. We hope that
students will benefit from both of these through assessments with higher affinity that improve
their learning process and trajectory.

This agenda will involve collecting and analysing a corpus of existing assessments em-
bedded in their contexts; observing and interviewing students as they journey through an
assessment process; observing and interviewing instructors and possibly researchers as they
design and manage assessments; iteratively designing the instruments described above; and,
of course, exploring the validity, reliability, and affinity of the assessment instruments and
practice we design.

At Schloss Dagstuhl, over the course of three consecutive breakout sessions, we began this
process by discussing the impact of assessments on students and their utility for students.

http://creativecommons.org/licenses/by/3.0/
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In search of concrete data to frame our conversation, we collected from the educators and
researchers at the seminar a wide set of examples of assessments (assessments with no special
expectation that they are exceptional) and selected a small set of exemplars of assessments
(assessments where there is reason to believe they display best practices with regard to
affinity). We brainstormed a set of questions representative of the student voice in the
assessment process; and collected research-based frameworks to guide our analysis of the
impact of assessment on students’ mindset, motivation, and perceptions of their course of
study. We are now engaged in iterative adaptation of an existing instrument for exploring
users’ journeys through use of a service to the context of assessment, using the student voice
questions, research frameworks, and concrete examples described above.

Our next steps include two ongoing agendas and a set of precise goals. On an ongoing
basis, we will continue to expand and organize our corpus of assessment examples. We will
also begin the design of a “dashboard” learners can use to integrate the process and results
of assessments into their ongoing course of study. This dashboard creates a frequent series of
touchpoints between the learner and the instructor/researcher, which represent opportunities
to both improve and explore the affinity of assessments.

5 Panel discussions

5.1 Assessment Techniques Brainstorming
Notes by Mirko Westermeier
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To synchronize efforts across all participants, we discussed established assessment techniques
and related open research questions.

Regarding the teacher’s perspective, rapid diagnostics were mentioned to be an important
tool to determine at what level instruction should start with beginners. For a continuous
adjustments to student’s abilities and progress, however, the focus should be on formative
assessments. The question whether teachers are assessing what students actually had a
chance to learn, directly relates to the concept of Constructive Alignment. The importance
of measuring the process of student’s work instead of just expecting the right answer was also
highlighted: teachers should also look at intermediate steps and evaluate the process as such.

Most attendees agreed that a focus on the value of the assessment for the learner is of
high importance while designing assessments. This could be achieved by using assessments
and contexts which are relevant to the students’ personal or professional life. Observational
techniques, including time tracking, could be used to measure the students’ workload, the
dynamics of motivation, and – if applicable – the point of giving up.

Regarding programming assessment, there was a wide consensus that coding itself is only
one of many important skills for students to learn. The ability to explain concepts to get to
deep understanding as well as the ability to figure out simplest ways to test a program, an
algorithm, or a component for correctness should also be considered a target for assessments.

Since developing soft skills like communication with colleagues and experts of different
fields are very important for computer scientists and programmers, several attendents
highlighted the importance of assessing these skills. Collaborative work, e.g., in programming,
might be used to achieve this even in exams.
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It was agreed upon that there is a high demand for validated assessment tools across all
areas of computer science education research.

5.2 Next Steps Discussion
Notes by Mirko Westermeier
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In the closing session, several topics regarding the seminar and research implications were
discussed.

The attendees considered this first Dagstuhl seminar on computer science education
research a most valuable addition to the current conferences, workshops, and meetings.
Bringing people together and having time for focused work was appreciated as well as the
informal meeting format which was used during the seminar several times. For example,
some groups used a discussion format in which they concentrated on one researcher’s work
at a time. It was agreed upon that having mentoring workshops at all computer science
education research venues would help to stay connected.

The attendees liked that the atmosphere in all breakout groups were very open and open
to critique. To make it easier for newcomers to the computer science education research
community to dive into it and get to know researchers with similar topic, Andrew J. Ko
offered to write a document about the internal structure of the community and their body of
knowledge (after the seminar, the participants provided feedback on the first draft which
then was made available online; see https://faculty.washington.edu/ajko/cer).

The seminar was seen as a step towards formalizing research agendas in a way that they
can be communicated to a broader audience. In addition to the focus of the current seminar,
K–12 computer science education research should be considered in a similar setting.

Finally, several groups of attendees agreed about further collaborative work to continue
discussion and work on the research questions that arose during this week.

6 Poster abstracts

6.1 Programming Education for Novices
Michael E. Caspersen (Aarhus University, DK)
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I am interested in programming education for novices. Previously, my interest concentrated on
higher education, but with the increased focus on computing and programming in secondary
(and primary) education, it becomes relevant to rethink purpose, learning goals and didactics
of programming education with these specific target groups in mind. In higher computing
education, the perspective is education of to-be experts whereas in secondary (and even
more so in primary) education, the purpose is computing, computational thinking and
programming as general education and ’building’. In particular, the need for (pre- and
in-service) training of teachers for primary and secondary school requires development of an
associated computing and programming didactics.
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6.2 KETTI – Competence Development of Student Teaching
Assistants in Computer Science

Holger Danielsiek (Universität Münster, DE)
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Joint work of Hubwieser, Peter; Krugel, Johannes; Magenheim, Johannes; Ohrndorf, Laura; Ossenschmidt,
Daniel; Schaper, Niclas; Vahrenhold, Jan

The KETTI-project is a research cluster focused on developing a competence model for
undergraduate teaching assistants in computer science along with corresponding instruments.
As part of the deliverables of the project, training modules aligned with the desired compet-
encies will be made available for academic use. As discussed in the introduction the focus of
KETTI are rst-year courses in computer science. KETTI is funded by the BMBF and brings
together researchers from computer science education, computer science, and psychology.
The core of the project consists of four research groups at three large public German research
universities (Technical University of Munich, Westfälische Wilhelms-Universität Münster,
and University of Paderborn). These universities cover a wide range of student audiences.
All departments have offered formal UTA training courses in the past.

To broaden the scope even further, KETTI includes six associated partners at five
other German computer science department and two associated partners at two German
mathematics departments. The associated partners at the computer science partners have not
yet established formal UTA training courses. These partners are consulted on a regular basis
to ensure that assumptions about student and UTA populations are not biased towards the
departments with a tradition of UTA training. The partners at the mathematics departments
are consulted to enable transfer of knowledge between disciplines and to better contrast
general requirements and requirements specic to computer science.

6.3 A Method to Analyse Computer Science Students’ Teamwork in
Online Collaborative Learning Environments

Katrina Falkner (University of Adelaide, AU)
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Joint work of Vivian, Rebecca; Falkner, Nickolas; Tarmazdi, Hamid

Although teamwork has been identified as an essential skill for Computer Science (CS)
graduates, these skills are identified as lacking by industry employers, which suggests a need
for more proactive measures to teach and assess teamwork. In one CS course, students
worked in teams to create a wiki solution to problem-based questions. Through a case-
study approach, we test a developed teamwork framework, using manual content analysis
and sentiment analysis, to determine if the framework can provide insight into students’
teamwork behavior and to determine if the wiki task encouraged students to collaborate, share
knowledge, and self-adopt teamwork roles. Analysis revealed the identification of both active
and cohesive teams, disengaged students, and particular roles and behaviors that were lacking.
Furthermore, sentiment analysis revealed that teams moved through positive and negative
emotions over the course of developing their solution, toward satisfaction. The findings
demonstrate the value of the detailed analysis of online teamwork. However, we propose the
need for automated measures that provide real-time feedback to assist educators in the fair
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and efficient assessment of teamwork. We present a prototype system and recommendations,
based on our analysis, for automated teamwork analysis tools.

6.4 Plan Composition
Kathi Fisler (Worcester Polytechnic Institute, US)
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Several decades ago, researchers identified “plan composition” as a programming-related
task that students struggle to perform well. We have conducted a series of studies that
revisit planning studies, most recently attempting to contrast how students using different
programming languages (some functional, some procedural) approach similar problems. We
discuss our efforts to modernize planning studies to contexts framed by lightweight scripting
for data analysis. Our results show the role that libraries and built-ins play in guiding
how students decompose problems, and identify potential student misconceptions about the
costs associated with using built-in operations. Overall, our goal is to help reframe research
questions about planning for today’s programming contexts.

6.5 Critiquing CS Assessment from a CS for All Lens
Mark Guzdial (Georgia Institute of Technology – Atlanta, US)
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Not everyone who learns CS is going to want to be a software engineer. Then why teach
them CS? Perhaps there are reasons to learn CS that are not about software development.
As computing pervades many professions, there are reasons to learn to program that are
relevant to those professions, those communities of practice, that may not be relevant to
software engineers. For example, computational scientists and engineers may not care about
developing code to professional standards, since their programs may not be meant to be used
beyond a single time. If we have different learning outcomes for different communities of
practice, assessment has to change, too. I argue that we have to consider what the learner
wants to do and wants to be (i.e., their desired Community of Practice) when assessing
learning. Different CoP, different outcomes, different assessments.

6.6 Communicating through Sketches and Diagrams
Geoffrey L. Herman (University of Illinois – Urbana Champaign, US)
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Communicating through sketches and diagrams is a foundational skill in students’ problem
solving, yet little is known about how or why students use sketches and or how they learn
about them. We are exploring students’ representational fluency by exploring the similarities
and distinctions between experts and novices in their use and production of sketches during
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problem solving. We are conducting clinical interviews in two domains: digital logic and
trusses. While digital logic sketches are visually distinct from real-world implementations,
trusses rely on fascimiles of real-world objects. We will share preliminary findings about
students’ use of sketching in digital logic contexts.

6.7 Neo-Piagetian Theory and the Novice programmer
Raymond Lister (University of Technology – Sydney, AU)
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Piagetian-based cognitive development theories (Flavell, 1977; Morra, Gobbo, Marini, &
Sheese, 2007; Piaget, 1952) provide a framework for describing the domain-specific devel-
opment of cognition. In the case of programming, students exhibit characteristics at each
of the neo-Piagetian sensorimotor, preoperational, and concrete operational stages. At the
least mature stage of cognitive development, the sensorimotor stage, a novice programmer
has difficulty tracing (i.e. manually executing) code. These students tend to see code as
an ad hoc collection of tricks. At the next more mature stage, a preoperational novice
has a more systematic grasp of programming, and can trace code with some accuracy.
However, a preoperational programmer tends not to abstract from the code itself. Instead,
the preoperational programmer favours inductive inference, That is, the preoperational
programmer tends to infer what a piece of code does from input/output pairs, which are
found by tracing the code. It is only at the third stage, the concrete operational stage, that
the novice programmer begins to reason about abstractions of code, simply by reading the
code. A defining characteristic of the concrete operational stage is the ability to reason
about the concepts of conservation, reversibility and transitive inference. Neo-Piagetian
theory emphasises that developmentally appropriate exposure to the domain of knowledge is
paramount to the progression between developmental stages of reasoning. Unfortunately,
contemporary teaching methods for programming assume that students begin at the concrete
operational level.

6.8 Educational Data Mining
Andreas Mühling (TU München, DE)
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Educational Data Mining allows to search for pattern in large amounts of data that are not
directly observable. As such, the methods are often exploratory in nature and therefore well
suited for the context of CSEd where an accepted body of fundamental results concerning
the teaching and learning of the subject is still not avaiable. A method of aggregating
concept map data has been used to investigate the effects of CS education on the structural
configuration of knowledge in learners. The results show that artifacts of a curriculum can be
traced to the knowledge structures of learners. Also, the large scale Bebras contest data has
been used investigate the underlying psyhcometric structure of the items. Here, the results
indicate that success inthe contest is determined to a large extent by visuo-spatial thinking.
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6.9 Teaching and Learning a First Programming Language
Anthony Robins (University of Otago, NZ)
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I am interested in novices learning a first programming language, in particular why they fail
and why they succeed in a first programming course (CS1). I believe that the well explored
distinction between novice and expert programmers is less important than the distinction
between ineffective and effective novices. I argue that the early stages of learning in CS1
are crucial. Initial success or failure builds rapidly on itself to create momentum towards a
final successful or unsuccessful outcome (the“learning-edge momentum” effect described in
Robins, 2010).

It is particularly important to understand the process of novice learning as programming
and related computational thinking topics are increasingly being introduced into the school
curriculum, even elementary/primary school, in several countries around the world.

6.10 Novice Programmers’ Difficulties with Program Dynamics and
Misconceptions of the so-called Notional Machine

Juha Sorva (Aalto University, FI)
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In this poster, I present an overview of some of the main themes of my research over the past
five years. These themes include: novice programmers’ difficulties with program dynamics
and misconceptions of the so-called notional machine; interactive program visualization
for education; the research-based instructional design of interactive electronic textbooks
for computing education, and the benchmarking of students conceptual knowledge and
programming skill across institutions.

6.11 Qualitative Feedback of Program Code and Programs
Martijn Stegeman (University of Amsterdam, NL)
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Martijn Stegeman is finalising plans for a research project on the use of feedback in pro-
gramming courses. During these courses, it is common to provide qualitative feedback on
the program code as well as on the resulting programs, while students (hopefully) use this
feedback to better understand quality norms and improve on new programs they write.
Interestingly, the norms used by teachers are usually very personal and subjective, although
there appears to be a lot of commonality. This project aims to produce understanding of the
norms in use, and the way feedback is integrated into programming courses.
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6.12 Potential Factors Indicating Success in an Algorithms and Data
Structures Course

Jan Vahrenhold (Universität Münster, DE)
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Joint work of Danielsiek, Holger

We report on first steps towards identifying factors indicating students’ performance in an
Algorithms and Data Structure course. We discuss a study undertaken to investigate the
predictive and explanation power as well as the limits of weekly test items based on concept
inventory questions, homework grades, and performance in a preceding CS1 course. We relate
our findings for two subgroups to results on academic success in general and performance in
a CS1 course in particular.

6.13 (Mis)conceptions Surrounding Exponential Growth in the
Foundations of Computing Concept Inventory

Steven A. Wolfman (University of British Columbia – Vancouver, CA)
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Exponential growth commonly appears as a topic in foundations of computing textbooks
and exams. In our interviews with foundations of computing course instructors, about
half mentioned exponential growth as an important but tricky topic for students. In our
think-aloud interviews with students working problems not directly related to exponential
growth, students nonetheless often expressed confusion around or simply misused the concept.
As a result, we gathered and analyzed data on students’ definitions of “exponential growth”
from an open-ended question on a low-stakes assessment. Then, we designed two closed-ended
(multiple choice) concept inventory questions on exponential growth based on this data,
instructors’ and students’ comments in interviews, and our own experience. We performed
think-aloud interviews with students working these closed-ended questions and administered
the closed-ended questions to several cohorts of students (and several hundred students) in
our three required foundations of computing courses, adapting the questions in response
to strengths and weaknesses in the distractors exposed by both think-aloud and simple
multiple-choice responses. The data show that students have persistent and distressing
misconceptions around the concept of exponential growth, with the three most resilient
distractors showing a graph curving “up and to the right”, a function described as growing
“more and more quickly”, and the simple quadratic function n2. Further research will be
needed to connect these misconceptions to any impact on students’ ability to judge and select
appropriate approaches to computational problems.
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