
Report from Dagstuhl Seminar 16131

Language Based Verification Tools for Functional
Programs
Edited by
Marco Gaboardi1, Suresh Jagannathan2, Ranjit Jhala3, and
Stephanie Weirich4

1 SUNY – Buffalo, US, gaboardi@buffalo.edu
2 Purdue University – West Lafayette, US, suresh@cs.purdue.edu
3 University of California – San Diego, US, jhala@cs.ucsd.edu
4 University of Pennsylvania – Philadelphia, US, sweirich@cis.upenn.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16131 “Language
Based Verification Tools for Functional Programs”. This seminar is motivated by two converging
trends in computing – the increasing reliance on software has led to an increased interest in seeking
formal, reliable means of ensuring that programs possess crucial correctness properties, and the
dramatic increase in adoption of higher-order functional languages due to the web, multicore and
“big data” revolutions.

While the research community has studied the problem of language based verification for
imperative and first-order programs for decades – yielding important ideas like Floyd-Hoare
Logics, Abstract Interpretation, Model Checking, and Separation Logic and so on – it is only
relatively recently, that proposals have emerged for language based verification tools for functional
and higher-order programs. These techniques include advanced type systems, contract systems,
model checking and program analyses specially tailored to exploit the structure of functional
languages. These proposals are from groups based in diverse research communities, attacking
the problem from different angles, yielding techniques with complementary strengths.

This seminar brought diverse set of researchers together so that we could: compare the
strengths and limitations of different approaches, discuss ways to unify the complementary ad-
vantages of different techniques, both conceptually and in tools, share challenging open problems
and application areas where verification may be most effective, identify novel ways of using veri-
fication techniques for other software engineering tasks such as code search or synthesis, and
improve the pedagogy and hence adoption of such techniques.

Seminar March 28 to April 1, 2016 – http://www.dagstuhl.de/16131
1998 ACM Subject Classification D.2.4 [Software Engineering]: Software/Program Verification

F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Functional Programming, Type Systems, Contracts, Dependent Types,
Model Checking, Program Analysis

Digital Object Identifier 10.4230/DagRep.6.3.59

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Language Based Verification Tools for Functional Programs, Dagstuhl Reports, Vol. 6, Issue 3, pp. 59–77
Editors: Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16131
http://dx.doi.org/10.4230/DagRep.6.3.59
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

60 16131 – Language Based Verification Tools for Functional Programs

1 Summary

Marco Gaboardi
Suresh Jagannathan
Ranjit Jhala
Stephanie Weirich

License Creative Commons BY 3.0 Unported license
© Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich

This report summarizes the program and the outcomes of Dagstuhl Seminar 16131 “Language
Based Verification Tools for Functional Programs”, organized by:

Marco Gaboardi, School of Computing, University of Dundee, UK
Suresh Jagannathan, Purdue University, USA
Ranjit Jhala, University of California, San Diego, USA
Stephanie Weirich, University of Pennsylvania, USA.

The web, multi-core and “big-data” revolutions have been largely built on higher-order
programming constructs pioneered in the Functional Programming community. Despite the
increasing importance of such programs, there are relatively few tools that are focussed on
ensuring that functional programs possess crucial correctness properties. While language
based verification for imperative and first-order programs has been studied for decades yielding
important ideas like Floyd-Hoare Logics, Abstract Interpretation, and Model Checking. It is
only relatively recently, that researchers have proposed language based verification tools e.g.
advanced type systems, contract systems, model checking and higher-order program analyses
for functional and higher-order programs.

We organised this seminar to bring together the different schools of researchers interested
in software reliability, namely, the designers and implementers of functional programming
languages, and experts in software verification, in order create a larger community of
researchers focused on this important goal, to let us compare the strengths and limitations of
different approaches, to find ways to unite both intellectually, and via tools the complementary
advantages of different techniques, and to devise challenging open problems and application
areas where verification may be most effective. To this end, the seminar comprised a program
of 30 talks from the leading experts on the above topics, and breakout sessions on:
1. Integrating formal methods tools in the curriculum
2. Hands on Tool Tutorials
3. User Interaction
4. Types and Effects

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 61

2 Table of Contents

Summary
Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 60

Overview of Talks
Coinduction using copatterns and sized types
Andreas Martin Abel . 63

Verified Compilers for a Multi-Language World
Amal Ahmed . 63

DeepSpec, CertiCoq and Verified Functional Algorithms
Andrew Appel . 64

Type Systems as Proof Strategies
Iavor S. Diatchki . 64

Dependently Typed Programming in GHC 8
Richard A. Eisenberg . 64

Deductive Verification with Why3
Jean-Christophe Filliâtre . 65

Relational cost analysis
Deepak Garg . 65

The Interactive Software Verification System KeY
Reiner Hähnle . 65

Dependent Types and Multi-Monadic Effects in F*
Cătălin Hriţcu . 66

Relational Reasoning about Higher-Order Shape Properties
Gowtham Kaki and Suresh Jagannathan . 67

Program Verification Based on Higher-Order Model Checking
Naoki Kobayashi . 67

Certified Automated Theorem Proving for Type Inference
Ekaterina Komendantskaya . 67

Ramsey-based Methods: From Size-Change Termination to Satisfiability in Tem-
poral Logics
Martin Lange . 68

Automated verification of functional programs
Rustan Leino . 69

A Static Type Analysis for Lua
Jan Midtgaard . 69

Subtle points
Conor McBride . 69

Higher-order horn clauses and higher-order model checking
Luke Ong . 70

From analysis-directed semantics to specifications-in-types
Dominic Orchard . 70

16131

62 16131 – Language Based Verification Tools for Functional Programs

Programming Coinductive Proofs Using Observations
Brigitte Pientka . 71

Language-based Verification of Untyped Expressions
Ruzica Piskac . 71

Program Synthesis from Refinement Types
Nadia Polikarpova . 71

Demand Driven Analysis For Functional Programs
Scott Smith . 72

Equations: A toolbox for function definitions in Coq
Matthieu Sozeau . 72

Temporal Verification of Higher-Order Functional Programs
Tachio Terauchi . 73

Occurrence typing modulo theories
Sam Tobin-Hochstadt . 73

Refinement Caml: A Refinement Type Checking and Inference Tool for OCaml
Hiroshi Unno . 74

Contract Verification and Refutation
David Van Horn . 74

Refinement Types for Haskell
Niki Vazou . 75

Lazy staged binary decision diagrams
Wouter Swierstra . 75

Verification by Optimization: Two Approaches to Manifest Contracts
Michael Greenberg . 76

Breakout Sessions . 76

Participants . 77

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 63

3 Overview of Talks

3.1 Coinduction using copatterns and sized types
Andreas Martin Abel (Chalmers UT – Göteborg, SE)

License Creative Commons BY 3.0 Unported license
© Andreas Martin Abel

Joint work of Andreas Martin Abel, Brigitte Pientka, Anton Setzer, and David Thibodeau
Main reference A. Abel, B. Pientka, “Wellfounded recursion with copatterns: a unified approach to termination

and productivity”, in Proc. of the 18th ACM SIGPLAN Int’l Conf. on Functional Programming
(ICFP’13), pp. 185–196, ACM, 2013.

URL http://dx.doi.org/10.1145/2500365.2500591

I present the new coinduction mechanism of Agda based on copatterns and sized types (Abel
et al., POPL 2013, Abel/Pientka, ICFP 2013). As a running example, I use a coinductive
definition of formal languages. I show how to use infinite tries to represent languages (sets of
strings) and demonstrate that Agda allows an elegant representation of the usual language
constructions like union, intersection, concatenation, and Kleene star. I also show how to
reason about equality of languages using bisimulation and coinductive proofs.

3.2 Verified Compilers for a Multi-Language World
Amal Ahmed (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Amal Ahmed

Joint work of Amal Ahmed; James Perconti
Main reference A. Ahmed, “Verified Compilers for a Multi-Language World”, in Proc. of the 1st Summit on

Advances in Programming Languages (SNAPL 2015), LIPIcs, Vol. 32, pp. 15–31, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

URL http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15

Verified compilers are typically proved correct under severe restrictions on what the compiler’s
output may be linked with, from no linking at all to linking only with code compiled from
the same source language. Such assumptions contradict the reality of how we use these
compilers since most software systems today are comprised of components written in different
languages compiled by different compilers to a common target, as well as low-level libraries
that may be handwritten in the target language.

The key challenge in verifying compilers for today’s world of multi-language software is how
to formally state a compiler correctness theorem that is compositional along two dimensions.
First, the theorem must guarantee correct compilation of components while allowing compiled
code to be composed (linked) with target-language components of arbitrary provenance,
including those compiled from other languages (horizontal compositionality). Second, the
theorem must support verification of multi-pass compilers by composing correctness proofs
for individual passes (vertical compositionality).

In this talk, I’ll describe a new methodology for building compositional verified compilers
for today’s world of multi-language software and discuss the challenges that lie ahead. Our
project has two central themes, both of which stem from a view of compiler correctness as a
language interoperability problem. First, to specify correctness of component compilation,
we require that if a source component S compiles to target component T , then T linked with
some arbitrary target code T ′ should behave the same as S interoperating with T ′. The latter
demands a formal semantics of interoperability between the source and target languages.
Second, to enable safe interoperability between components compiled from languages as

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2500365.2500591
http://dx.doi.org/10.1145/2500365.2500591
http://dx.doi.org/10.1145/2500365.2500591
http://dx.doi.org/10.1145/2500365.2500591
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15

64 16131 – Language Based Verification Tools for Functional Programs

different as ML, Rust, C, and Coq’s Gallina, we plan to design a gradually type-safe target
language based on LLVM that supports safe interoperability between more precisely typed,
less precisely typed, and type-unsafe components.

3.3 DeepSpec, CertiCoq and Verified Functional Algorithms
Andrew Appel (Princeton University – US)

License Creative Commons BY 3.0 Unported license
© Andrew Appel

I will speak briefly on three different topics: The new NSF-funded project at Princeton/Pen-
n/Yale/MIT “The Science of Deep Specification,” the CertiCoq project (Appel/Morrisett/-
Pollack/Sozeau and students) to formalize the extraction and compilation process, and my
new interactive-in-Coq textbook in the Software Foundations series, “Verified Functional
Algorithms.”

3.4 Type Systems as Proof Strategies
Iavor Diatchki (Galois Systems – Portland, US)

License Creative Commons BY 3.0 Unported license
© Iavor S. Diatchki

I’d like to share some thoughts on the design of type systems for existing dynamically
typed languages such as Lua, JavaScript, Python, etc. The core idea is to blur the line
between formal-verification and type-checking, and try to present a type system as a library
of strategies that are able to discharge certain proof obligations. This is part of my ongoing
research, and the ideas are not yet fully realized, but – if possible – I’d like to share them to
get feedback and advice by fellow researchers.

3.5 Dependently Typed Programming in GHC 8
Richard A. Eisenberg (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Richard A. Eisenberg

This talk demonstrates some of the new features I have added in the newest release of the
Glasgow Haskell Compiler (GHC 8). GHC 8 supports the (Type : Type) axiom and visible
type application, allowing easier and more expressive dependently typed programs than were
possible previously. The main example in this talk is a program that performs type-safe
database access while inferring the desired database schema from the program text. By
inferring the schema, this program contains less boilerplate code and is more flexible than
other type-safe database access approaches would allow.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 65

3.6 Deductive Verification with Why3
Jean-Christophe Filliâtre (CNRS & University Paris Sud, FR)

License Creative Commons BY 3.0 Unported license
© Jean-Christophe Filliâtre

URL http://why3.lri.fr/

This short talk is a brief overview of Why3, a tool for deductive program verification.
Why3 provides an imperative programming language (with polymorphism, algebraic data

types, pattern matching, exceptions, references, arrays, etc.), a mathematical language that
is an extension of first-order logic, and a technology to discharge verification conditions using
several, off-the-shelf interactive and automated theorem provers (Coq, Alt-Ergo, Z3, CVC3,
etc.).

More details at http://why3.lri.fr/.

3.7 Relational cost analysis
Deepak Garg (MPI-SWS – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Deepak Garg

Many applications require analysis of the relative use of resources (time, space) by two
different programs or the same program with two different inputs. We call this the problem of
relational cost analysis. Examples include compiler optimizations, incremental computation,
static detection of side-channel leaks in security-critical programs and the stability analysis of
algorithm implementations. This talk presents the beginnings of a type theory for relational
cost analysis. It explains how a combination of lightweight dependent types, ideas from
information flow analysis and a bit of co-monadic analysis can be combined to perform such
analysis on non-trivial examples.

3.8 The Interactive Software Verification System KeY
Reiner Hähnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Hähnle

URL http://www.key-project.org

A brief overview of how KeY works, what can be done with it, the degree of automation, the
user interfaces

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://why3.lri.fr/
http://why3.lri.fr/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.key-project.org

66 16131 – Language Based Verification Tools for Functional Programs

3.9 Dependent Types and Multi-Monadic Effects in F*
Cătălin Hriţcu (INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Cătălin Hriţcu

Joint work of Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Simon Forest; Cédric Fournet; Cătălin Hriţcu;
Chantal Keller; Markulf Kohlweiss; Aseem Rastogi; Pierre-Yves Strub; Nikhil Swamy; Santiago
Zanella-Béguelin; Jean-Karim Zinzindohoue

Main reference N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C.
Fournet, P.-Y. Strub, M. Kohlweiss, J.K. Zinzindohoue, S. Zanella Béguelin, “Dependent types and
multi-monadic effects in F”, in Proc. of the 43rd Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL’16), pp. 256–270, ACM, 2016; pre-print and
supplementary material available from author’s webpage.

URL http://dx.doi.org/10.1145/2837614.2837655
URL https://www.fstar-lang.org/papers/mumon/

We present a new, completely redesigned, version of F?, a language that works both as a
proof assistant as well as a general-purpose, verification-oriented, effectful programming
language.

In support of these complementary roles, F? is a dependently typed, higher-order, call-by-
value language with primitive effects including state, exceptions, divergence and IO. Although
primitive, programmers choose the granularity at which to specify effects by equipping each
effect with a monadic, predicate transformer semantics. F? uses this to efficiently compute
weakest preconditions and discharges the resulting proof obligations using a combination of
SMT solving and manual proofs. Isolated from the effects, the core of F? is a language of
pure functions used to write specifications and proof terms – its consistency is maintained by
a semantic termination check based on a well-founded order.

We evaluate our design on more than 55,000 lines of F? we have authored in the last year,
focusing on three main case studies. Showcasing its use as a general-purpose programming
language, F? is programmed (but not verified) in F?, and bootstraps in both OCaml and
F#. Our experience confirms F?’s pay-as-you-go cost model: writing idiomatic ML-like code
with no finer specifications imposes no user burden. As a verification-oriented language, our
most significant evaluation of F? is in verifying several key modules in an implementation
of the TLS-1.2 protocol standard. For the modules we considered, we are able to prove
more properties, with fewer annotations using F? than in a prior verified implementation of
TLS-1.2. Finally, as a proof assistant, we discuss our use of F? in mechanizing the metatheory
of a range of lambda calculi, starting from the simply typed lambda calculus to System Fω

and even a sizeable fragment of F? itself – these proofs make essential use of F?’s flexible
combination of SMT automation and constructive proofs, enabling a tactic-free style of
programming and proving at a relatively large scale.

Talk slides available at:
http://materials.dagstuhl.de/files/16/16131/16131.CatalinHritcu.Slides.html

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
https://www.fstar-lang.org/papers/mumon/
http://materials.dagstuhl.de/files/16/16131/16131.CatalinHritcu.Slides.html

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 67

3.10 Relational Reasoning about Higher-Order Shape Properties
Gowtham Kaki (Purdue University – West Lafayette, US) and Suresh Jagannathan (Purdue
University – West Lafayette, US)

License Creative Commons BY 3.0 Unported license
© Gowtham Kaki and Suresh Jagannathan

Main reference G. Kaki, S. Jagannathan, “A Relational Framework for Higher-order Shape Analysis”, in Proc. of
the 19th ACM SIGPLAN Intl. Conf. on Functional Programming (ICFP’14), pp. 311–324, ACM,
2014.

URL http://dx.doi.org/10.1145/2628136.2628159

In this talk, I present CATALYST, a relational reasoning framework integrated within a
dependent type system that is capable of automatically verifying complex invariants over
the shapes of algebraic datatypes. A novel contribution of CATALYST is the concept of
parametric relations – relations parameterized over other relations that enable intuitive
specifications for higher-order polymorphic functions, while retaining the compositionality
and decidability of type checking. I describe an encoding of fully instantiated parametric
relations in a decidable subset of first-order logic, and show how it is sufficient to type
check higher-order functions against expressive specifications. I describe an implementation
of CATALYST in SML, present multiple examples, and end the talk with a brief note on
inferring rich dependent types in CATALYST.

3.11 Program Verification Based on Higher-Order Model Checking
Naoki Kobayashi (University of Tokyo – Tokyo, Japan)

License Creative Commons BY 3.0 Unported license
© Naoki Kobayashi

Higher-order model checking has recently been applied to fully automated verification of
higher-order functional programs. In the talk, I plan to provide a tutorial to explain what
is higher-order model checking and how it can be applied to program verification. I will
also summarize recent progress on the higher-order model checking approach to program
verification.

3.12 Certified Automated Theorem Proving for Type Inference
Ekaterina Komendantskaya (Heriot-Watt University – UK)

License Creative Commons BY 3.0 Unported license
© Ekaterina Komendantskaya

Joint work of Peng Fu; Ekaterina Komendantskaya; Tom Schrijvers
URL http://staff.computing.dundee.ac.uk/katya/CoALP/

Two facts are universally acknowledged: critical software must be subject to formal verification
and modern verification tools need to scale and become more user-friendly in order to make
more impact in industry.

There are two major styles of verification: (*) algorithmic: verification problems are
specified in an automated prover, e.g. (constraint) logic programming or SMT solver, and
properties of interest are verified by the prover automatically. Such provers can be fast, but
their trustworthiness is hard to establish without producing and checking proofs. This is due

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://staff.computing.dundee.ac.uk/katya/CoALP/

68 16131 – Language Based Verification Tools for Functional Programs

to complexity of modern-day solvers, e.g. SMT solvers have codebases 100K in C++. These
tools exhibit bugs and are not trustworthy enough for critical systems.

An alternative is (**) a typeful approach to verification: instead of verifying programs in
an external prover, a programmer may record all properties of interest as types of functions
in his programs. Thanks to Curry-Howard isomorphism, type inhabitants also play the role
of executable functions and proof witnesses, thus completing the certification cycle.

At their strongest, types can cover most of the properties of interest to the verification
community, e.g. recent dialects Liquid Haskell and F* allow pre- and post-condition for-
mulation at type level. But, when properties expressed at type level become rich, type
inference engines have to assume the role of automated provers, e.g. Liquid Haskell and F*
connect directly to SMT solvers. Thus, once again, we delegate trust without having proper
certification of automated proofs.

This talk was about our recent work [Fu, Komendantskaya, Schrijvers, in FLOPS 2016]
that resolves the above dichotomy “scale versus trust” by offering a new, typeful, approach
to automated proving for type inference. Recently, we designed a new method of using logic
programming in Haskell type class inference: Horn clauses can be represented as types, and
proofs by resolution – as proof terms inhabiting the types. Thus, the problem of automated
inference in Horn Clause logic is re-cast as the problem of type inhabitation in a suitable
type system. In this way, outputs of the resulting Curry-Howard Horn Clause prover are
directly compatible with type system of Haskell’s compiler. Overall, this method allows
to achieve both high standards of automated proof certification and compatibility of the
automated prover with the target compiler.

The question is: can this method apply to other existing algorithmic and typeful ap-
proaches?

3.13 Ramsey-based Methods: From Size-Change Termination to
Satisfiability in Temporal Logics

Martin Lange (Universität Kassel, DE)

License Creative Commons BY 3.0 Unported license
© Martin Lange

Joint work of Oliver Friedmann; Felix Klaedtke; Martin Lange
Main reference O. Friedmann, F. Klaedtke, M. Lange, “Ramsey-Based Inclusion Checking for Visibly Pushdown

Automata”, ACM Transactions on Computational Logic (TOCL), Vol. 16(4), Article No. 34, 2015.
URL http://dx.doi.org/10.1145/2774221

Ramsey’s Theorem about the existence of infinite monochromatic subgraphs in the finitely
coloured graph on the natural numbers was a crucial ingredient in Büchi’s original proof of
the complementation closure of the class of omega-regular languages. For most of the time
since then, this has just been seen as a mathematical tool for obtaining a proof.

In the early 2000s, Lee, Jones and Ben-Amram introduced the size-change termination
principle – a method for proving termination of abstract functional programs that can only
reduce, copy and permute their arguments. They showed that the problem could be solved
by a reduction to the inclusion problem for Büchi automata, yet the existing algorithms
based on explicit complementation were not competitive enough in practice. They devised a
method whose correctness directly relies Ramsey’s Theorem which essentially showed that
Büchi’s original complementation proof has more to offer than just mathematical truth, but
that it can also lead to elegant and practical algorithms for the analysis of omega-automata.
Since then, Ramsey-based methods have proved to be very efficient for such tasks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2774221
http://dx.doi.org/10.1145/2774221
http://dx.doi.org/10.1145/2774221

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 69

Lately, Friedmann, Klaedtke and myself have shown that Ramsey-based methods can
be used effectively and efficiently beyond the class of omega-regular languages, namely for
visibly pushdown omega-languages recognised by corresponding parity automata.

It still remains to be seen whether a similar development is possible for tree automata,
namely whether there are successful program analysis techniques which could similarly lead
to better algorithms for tree automata inclusion.

3.14 Automated verification of functional programs
Rustan Leino (Microsoft Research – USA)

License Creative Commons BY 3.0 Unported license
© Rustan Leino

Dafny started as an imperative language with specifications, where the specifications had
mathematical elements also found in functional languages. These functional features grew
beyond uses in specifications and now include datatypes, co-datatypes, recursive functions,
and predicates defined as least/greatest fixpoints. This means Dafny can be used as a
functional language. Dafny also includes an automated verifier, and the language has proof-
authoring support for when automation doesn’t hold up. In difference to some other functional
languages with verification support, the logic of Dafny is not based around dependent types
but rather Hoare logic. In this talk, I’ll demo a tour through Dafny’s features and point out
some limitations.

3.15 A Static Type Analysis for Lua
Jan Midtgaard (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Jan Midtgaard

Higher-order, dynamically-typed programming languages are flexible but come at the price
of less tool support. To address this challenge we develop a static type analysis for the
Lua programming language. Lua represents an interesting, yet minimal mix of imperative,
functional, and object-oriented language features which makes this a challenging task. We
present a prototype implementation of the developed analysis.

3.16 Subtle points
Conor McBride (University of Strathclyde – UK)

License Creative Commons BY 3.0 Unported license
© Conor McBride

I’ll sketch the approach to computation in Homotopy Type Theory that we’re currently
exploring at Strathclyde. In the business of constructing paths between isomorphic types, we
introduce a notion of segmentation: nontrivially segmented paths have intermediate points
and can thus be constructed in a piecewise continuous manner. Segmentations are naturally

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

70 16131 – Language Based Verification Tools for Functional Programs

ordered by their subtlety, as any segment can be split in two. Crucially, segmented paths
deliver the means to transport values between any two of their points.

3.17 Higher-order horn clauses and higher-order model checking
Luke Ong (University of Oxford – Oxford, UK)

License Creative Commons BY 3.0 Unported license
© Luke Ong

Joint work of Luke Ong; Steven Ramsay

Higher-order model checking (HOMC) is the model checking of trees generated by recursion
schemes. In the (standard) intersection type approach to HOMC, one would construct a
certain type environment, which constitutes a symbolic representation of the invariant. In
this ongoing work, we consider the problem of finding higher-order inductive invariants in a
purely logical setting, namely, the satisfiability problem for (constrained) higher-order horn
clauses. Formulated as higher-order constraint solving, the problem has a much broader
appeal than recursion scheme model checking, yet we argue that much of the technology
already developed by the HOMC community can be made highly effective at solving it. In
particular, we describe an adaptation of Kobayashi’s Hybrid Algorithm to the problem and
highlight its similarities to McMillan’s Lazy Annotation algorithm (for solving first-order
constrained horn clauses).

3.18 From analysis-directed semantics to specifications-in-types
Dominic Orchard (University of Cambridge, UK)

License Creative Commons BY 3.0 Unported license
© Dominic Orchard

Various recent works on effects and resource usage (coeffects) have provided semantic models
that are indexed in some way by analysis information, e.g., by effect systems, Hoare logic
triples, resource bounds. Such models typically provide inductive families of denotations,
following the shape of an inductively defined program analysis. For example, “graded monads”
are indexed by a monoidal effect system. This is a powerful new paradigm as it provides a way
to refine semantics by analysis information, and exposes analysis information in semantics. In
this talk, I give an overview of the general approach, which I call analysis-directed semantics.
I then show how such models can be used directly in programming, where the indices of these
semantic structures can be used to embed functional specifications at the type-level. I’ll give
some examples in Haskell including effects, computational complexity, communication safety
for concurrency, and well-bracketed file handlers.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 71

3.19 Programming Coinductive Proofs Using Observations
Brigitte Pientka (McGill Universitiy – Montreal, Canada)

License Creative Commons BY 3.0 Unported license
© Brigitte Pientka

Joint work of Andreas Abel; Andrew Cave; Brigitte Pientka; Anton Setzer; David Thibodeau

Coinduction is a key proof technique to establish properties about systems that continue to
run and produce results (i.e. network or communications protocols, I/O interaction, data
streams, or processes) . Yet, mechanizing coinductive proofs about formal systems and
representing, generating and manipulating such proofs remains challenging. In this talk,
we develop the idea of programming coinductive proofs dual to the idea of programming
inductive proofs. Unlike properties about finite data which can be defined by constructing a
derivation, properties about infinite data can be described by the possible observations we
can make. Dual to pattern matching, a tool for analyzing finite data, we develop the concept
of copattern matching, which allows us to describe properties about infinite data. This leads
to a symmetric proof language where pattern matching on finite and infinite data can be
mixed.

3.20 Language-based Verification of Untyped Expressions
Ruzica Piskac (Yale University, US)

License Creative Commons BY 3.0 Unported license
© Ruzica Piskac

Software failures resulting from configuration errors have become commonplace as modern
software systems grow increasingly large and more complex. The lack of language constructs
in configuration files, such as types and grammars, has directed the focus of a configuration
file verification towards building post-failure error diagnosis tools. In addition, the existing
tools are generally language specific, requiring the user to define at least a grammar for the
language models and explicit rules to check.

In this talk, we outline a framework which analyzes datasets of correct configuration
files and derives rules for building a language model from the given dataset. The resulting
language model can be used to verify new configuration files and detect errors in them. Our
proposed framework is highly modular, does not rely on the system source code, and can be
applied to any new configuration file type with minimal user input.

3.21 Program Synthesis from Refinement Types
Nadia Polikarpova (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Nadia Polikarpova

Joint work of Ivan Kuraj; Nadia Polikarpova; Armando Solar-Lezama

The key to scalable program synthesis is modular verification: the better a specification for
a program can be broken up into independent specifications for its components, the fewer
combinations of components the synthesizer has to consider, leading to a combinatorial
reduction in the size of the search space. This talk will present Synquid: a synthesizer that
takes advantage of the modularity offered by type-based verification techniques to efficiently

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

72 16131 – Language Based Verification Tools for Functional Programs

generate recursive functional programs that provably satisfy a given specification in the form
of a refinement type.

We have evaluated Synquid on a large set of synthesis problems and found that it exceeds
the state of the art in terms of both scalability and usability. Synquid was able to synthesize
more complex programs than those reported in prior work (for example, various sorting
algorithms, operations on balanced trees). It was also able to handle most of the benchmarks
tackled by existing tools, often starting from a significantly more concise and intuitive user
input. Moreover, due to automatic refinement discovery through a variant of liquid type
inference, our approach fundamentally extends the class of programs for which a provably
correct implementation can be synthesized without requiring the user to provide full inductive
invariants.

3.22 Demand Driven Analysis For Functional Programs
Scott Smith (Johns Hopkins University – Baltimore, US)

License Creative Commons BY 3.0 Unported license
© Scott Smith

Joint work of Zachary Palmer, Scott Smith
Main reference Z. Palmer, S. Smith, “Higher-Order Demand-Driven Program Analysis”, in Proc. of the 30th

Europ. Conf. on Object-Oriented Programming (ECOOP’16), LIPIcs, Vol. 56, pp. 19:1–19:25,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19

We explore a novel approach to higher-order program analysis that brings ideas of on-demand
lookup from first-order CFL-reachability program analyses to functional programs. The
analysis needs to produce only a control-flow graph; it can derive all other information
including values of variables directly from the graph. Several challenges had to be overcome,
including how to build the control-flow graph on-the-fly and how to deal with nonlocal
variables in functions. The resulting analysis is flow- and context-sensitive with a provable
polynomial-time bound.

3.23 Equations: A toolbox for function definitions in Coq
Matthiew Sozeau (Université Paris Diderot – Paris, France)

License Creative Commons BY 3.0 Unported license
© Matthieu Sozeau

We present a compiler for definitions made by pattern matching on inductive families
in the Coq system. It allows to write structured, recursive dependently-typed functions,
automatically find their realization in the core type theory and generate proofs to ease
reasoning on them. The high-level interface allows to write dependently-typed functions on
inductive families in a style close to Agda or Epigram, while their low-level implementation
is accepted by the vanilla core type theory of Coq. This setup uses the smallest trusted code
base possible and additional tools are provided to maintain a high-level view of definitions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 73

3.24 Temporal Verification of Higher-Order Functional Programs
Tachio Terauchi (JAIST – Japan)

License Creative Commons BY 3.0 Unported license
© Tachio Terauchi

We present an automated approach to verifying arbitrary omega-regular properties of higher-
order functional programs. Previous automated methods proposed for this class of programs
could only handle safety properties or termination, and our approach is the first to be able to
verify arbitrary omega-regular liveness properties. Our approach is automata-theoretic, and
extends our recent work on binary-reachability-based approach to automated termination
verification of higher-order functional programs to fair termination published in ESOP 2014.
In that work, we have shown that checking disjunctive well-foundedness of (the transitive
closure of) the “calling relation” is sound and complete for termination. The extension to fair
termination is tricky, however, because the straightforward extension that checks disjunctive
well-foundedness of the fair calling relation turns out to be unsound, as we shall show in
the paper. Roughly, our solution is to check fairness on the transition relation instead of
the calling relation, and propagate the information to determine when it is necessary and
sufficient to check for disjunctive well-foundedness on the calling relation. We prove that
our approach is sound and complete. We have implemented a prototype of our approach,
and confirmed that it is able to automatically verify liveness properties of some non-trivial
higher-order programs.

3.25 Occurrence typing modulo theories
Sam Tobin-Hochstadt (Indiana University – Bloomington, US)

License Creative Commons BY 3.0 Unported license
© Sam Tobin-Hochstadt

Occurrence typing has been successful in enabling Typed Racket to handle a wide variety of
existing Racket idioms. In this talk, I present a new extension, adding dependent refinement
types parameterized over arbitrary solvers to Typed Racket.

Dependent refinement types allow Typed Racket programmers to express rich type
relationships, ranging from data structure invariants such as red-black tree balance to pre-
conditions such as vector bounds. Refinements allow programmers to embed the propositions
that occurrence typing in Typed Racket already reasons about into their types. Further,
extending occurrence typing to refinements allows us to make the underlying formalism
simpler and more powerful.

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

74 16131 – Language Based Verification Tools for Functional Programs

3.26 Refinement Caml: A Refinement Type Checking and Inference
Tool for OCaml

Hiroshi Unno (Tsukuba University – Japan)

License Creative Commons BY 3.0 Unported license
© Hiroshi Unno

We will demonstrate Refinement Caml (RCaml), a fully-automated path-sensitive verification
tool for the OCaml functional language based on refinement type checking and inference.
RCaml supports advanced language features such as algebraic data structures and higher-
order recursive functions. RCaml can solve various program analysis problems formulated
as refinement type inference problems, including static assertion checking, termination and
non-termination analysis, precondition inference, relational verification, and symbolic game
solving. RCaml first reduces these problems into constraint solving problems, where the
constraints are expressed by Horn clauses with predicate variables that are placeholders for
preconditions, postconditions, safe inductive invariants, and well-founded recursion relations
of the original program. RCaml then solves the generated constraints by using invariant and
ranking function synthesis techniques.

3.27 Contract Verification and Refutation
David Van Horn (University of Maryland – College Park, USA)

License Creative Commons BY 3.0 Unported license
© David Van Horn

In this talk, I’ll present a new approach to automated reasoning about higher- order programs
by endowing symbolic execution with a notion of higher-order, symbolic values. Our approach
is sound and relatively complete with respect to a first-order solver for base type values.
Therefore, it can form the basis of automated verification and bug-finding tools for higher-
order programs. To validate our approach, we use it to develop and evaluate a system for
verifying and refuting behavioral software contracts of components in a functional language,
which we call soft contract verification. In doing so, we discover a mutually beneficial relation
between behavioral contracts and higher-order symbolic execution.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 75

3.28 Refinement Types for Haskell
Niki Vazou (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Niki Vazou

Joint work of Alexander Bakst; Ranjit Jhala; Eric L. Seidel; Niki Vazou
Main reference N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, S. Peyton-Jones, “Refinement Types For Haskell”,

Manuscript.
URL http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf

Main reference N. Vazou, A. Bakst, R. Jhala, “Bounded refinement types”, in Proc. of the 20th ACM SIGPLAN
Int’l Conf. on Functional Programming (ICFP’15), pp. 48–61, ACM, 2015; pre-print available from
author’s webpage.

URL http://dx.doi.org/10.1145/2784731.2784745
URL https://ranjitjhala.github.io/static/bounded_refinement_types.pdf

Haskell has many delightful features, perhaps the most beloved of which is its type system
which allows developers to specify and verify a variety of program properties at compile time.
However, many properties, typically those that depend on relationships between program
values are impossible, or at the very least, cumbersome to encode within Haskell’s type
system.

Liquid types enable the specification and verification of value-dependent properties by
extending Haskell’s type system with logical predicates drawn from efficiently decidable
logics.

In this talk, we will start with a high level description of Liquid Types. Next, we will
present an overview of LiquidHaskell, a liquid type checker for Haskell. In particular, we
will describe the kinds of properties that can be checked, ranging from generic requirements
like totality (will ‘head’ crash?) and termination (will ‘mergeSort’ loop forever?), to applica-
tion specific concerns like memory safety (will my code SEGFAULT?) and data structure
correctness invariants (is this tree BALANCED?).

3.29 Lazy staged binary decision diagrams
Wouter Swierstra (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Wouter Swierstra

Joint work of Joao Paulo Pizani Flor; Rob Spoel; Wouter Swierstra

This talk reviews the proof-by-reflection method of proof automation. By exploiting the
computational nature of type theory, we can implement a verified decision procedure for
a specific domain, rather than write manual proof terms. We would like to use this to
implement a decision procedure on boolean expressions. The usual techniques to do so,
binary decision diagrams, rely on manipulating pointers in memory – which does not work
well with most proof assistants based on type theory. Instead, we propose to investigate how
we might be able to create the desired data structures in memory using metaprogramming.

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
https://ranjitjhala.github.io/static/bounded_refinement_types.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

76 16131 – Language Based Verification Tools for Functional Programs

3.30 Verification by Optimization: Two Approaches to Manifest
Contracts

Michael Greenberg (Pomona College – Claremont, US)

License Creative Commons BY 3.0 Unported license
© Michael Greenberg

Contract systems can be used for program verification: if you can optimize away the contract
checks, you have proved the program correct!

There are two approaches in the literature: subtyping and static analysis. The subtyping
approach (typical in the manifest setting, and due to Flanagan) removes upcasts, casts from
a subtype to a super type. The static analysis approach (typical in the latent setting, and
due most immediately to Van Horn, though many others have written on similar topics
before) builds an abstract model of which values each variable can hold – if the set of values
all pass a given contract, that contract can be eliminated.

Is one “better” than the other? Can we use both in the same setting? Do they optimize
away different kinds of contracts?

In this brief talk, I lay out the differences between the two and propose a “non-disjointness”
judgment for determining when to reject a program because of a bad cast.

4 Breakout Sessions

In addition to the formal talks, we had breakout sessions on the following topics:
Integrating formal methods tools in the curriculum. In this session, we discussed a
variety of topics ranging from current best exemplars of classes and textbooks for formal
methods, what makes for a good class or text, and regular classes (e.g. operating systems
or compilers) that could be extended with Formal Methods module.
Hands on Tool Tutorials. In this session, different participants gave short demonstrations
of their tools and then encouraged others to use them to carry out various tasks or work
through tutorials. These tools included: Agda, Dafny, F ∗, Haskell, LiquidHaskell, Racket,
RCaml, Synquid and Why3.
User Interaction In this session, the participants identified several key challenges that
must be addressed to improve the user experience for formal tools, as well as new modes
of using the tools, e.g. not just for verification but to synthesize programs.
Types and Effects In this session, the participants discussed recent advances in how to
track effects, and different applications of effect systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 77

Participants

Andreas Martin Abel
Chalmers UT – Göteborg, SE

Amal Ahmed
Northeastern University –
Boston, US

Andrew W. Appel
Princeton University, US

Lennart Augustsson
Standard Chartered Bank –
London, GB

Edwin Brady
University of St. Andrews, GB

Iavor Diatchki
Galois – Portland, US

Richard A. Eisenberg
University of Pennsylvania –
Philadelphia, US

Jean-Christophe Filliâtre
CNRS & University Paris
Sud, FR

Cormac Flanagan
University of California –
Santa Cruz, US

Marco Gaboardi
SUNY – Buffalo, US

Deepak Garg
MPI-SWS – Saarbrücken, DE

Michael Greenberg
Pomona College – Claremont, US

Reiner Hähnle
TU Darmstadt, DE

Cătălin Hriţcu
INRIA – Paris, FR

Suresh Jagannathan
Purdue University – West
Lafayette, US

Ranjit Jhala
University of California –
San Diego, US

Gowtham Kaki
Purdue University – West
Lafayette, US

Gabriele Keller
UNSW – Sydney, AU

Naoki Kobayashi
University of Tokyo, JP

Ekaterina Komendantskaya
University of Dundee, GB

Martin Lange
Universität Kassel, DE

K. Rustan M. Leino
Microsoft Corporation –
Redmond, US

Conor McBride
University of Strathclyde –
Glasgow, GB

Jan Midtgaard
Technical University of Denmark
– Lyngby, DK

Chih-Hao Luke Ong
University of Oxford, GB

Dominic Orchard
University of Cambridge, GB

Brigitte Pientka
McGill Univ. – Montreal, CA

Ruzica Piskac
Yale University, US

Nadia Polikarpova
MIT – Cambridge, US

Scott Smith
Johns Hopkins University –
Baltimore, US

Matthieu Sozeau
University Paris-Diderot, FR

Wouter Swierstra
Utrecht University, NL

Tachio Terauchi
JAIST – Ishikawa, JP

Sam Tobin-Hochstadt
Indiana University –
Bloomington, US

Hiroshi Unno
University of Tsukuba, JP

David Van Horn
University of Maryland – College
Park, US

Niki Vazou
University of California – San
Diego, US

Stephanie Weirich
University of Pennsylvania –
Philadelphia, US

Nobuko Yoshida
Imperial College London, GB

16131

	Summary Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich
	Table of Contents
	Overview of Talks
	Coinduction using copatterns and sized types Andreas Martin Abel
	Verified Compilers for a Multi-Language World Amal Ahmed
	DeepSpec, CertiCoq and Verified Functional Algorithms Andrew Appel
	Type Systems as Proof Strategies Iavor S. Diatchki
	Dependently Typed Programming in GHC 8 Richard A. Eisenberg
	Deductive Verification with Why3 Jean-Christophe Filliâtre
	Relational cost analysis Deepak Garg
	The Interactive Software Verification System KeY Reiner Hähnle
	Dependent Types and Multi-Monadic Effects in F* Catalin Hritcu
	Relational Reasoning about Higher-Order Shape Properties Gowtham Kaki and Suresh Jagannathan
	Program Verification Based on Higher-Order Model Checking Naoki Kobayashi
	Certified Automated Theorem Proving for Type Inference Ekaterina Komendantskaya
	Ramsey-based Methods: From Size-Change Termination to Satisfiability in Temporal Logics Martin Lange
	Automated verification of functional programs Rustan Leino
	A Static Type Analysis for Lua Jan Midtgaard
	Subtle points Conor McBride
	Higher-order horn clauses and higher-order model checking Luke Ong
	From analysis-directed semantics to specifications-in-types Dominic Orchard
	Programming Coinductive Proofs Using Observations Brigitte Pientka
	Language-based Verification of Untyped Expressions Ruzica Piskac
	Program Synthesis from Refinement Types Nadia Polikarpova
	Demand Driven Analysis For Functional Programs Scott Smith
	Equations: A toolbox for function definitions in Coq Matthieu Sozeau
	Temporal Verification of Higher-Order Functional Programs Tachio Terauchi
	Occurrence typing modulo theories Sam Tobin-Hochstadt
	Refinement Caml: A Refinement Type Checking and Inference Tool for OCaml Hiroshi Unno
	Contract Verification and Refutation David Van Horn
	Refinement Types for Haskell Niki Vazou
	Lazy staged binary decision diagrams Wouter Swierstra
	Verification by Optimization: Two Approaches to Manifest Contracts Michael Greenberg

	Breakout Sessions
	Participants

