
Volume 6, Issue 3, March 2016

Data Structures and Advanced Models of Computation on Big Data (Dagstuhl Seminar
16101)

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel,
and Robert Sedgewick . 1

Rethinking Experimental Methods in Computing (Dagstuhl Seminar 16111)
Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 24

From Theory to Practice of Algebraic Effects and Handlers (Dagstuhl Seminar 16112)
Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 44

Language Based Verification Tools for Functional Programs (Dagstuhl Seminar 16131)
Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 59

Dagstuh l Rep or t s , Vo l . 6 , I s sue 3 ISSN 2192-5283

http://dx.doi.org/10.4230/DagRep.6.3.1
http://dx.doi.org/10.4230/DagRep.6.3.1
http://dx.doi.org/10.4230/DagRep.6.3.24
http://dx.doi.org/10.4230/DagRep.6.3.44
http://dx.doi.org/10.4230/DagRep.6.3.59

ISSN 2192-5283

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at
http://www.dagstuhl.de/dagpub/2192-5283

Publication date
September, 2016

Bibliographic information published by the Deutsche
Nationalbibliothek
The Deutsche Nationalbibliothek lists this publica-
tion in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at
http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons
Attribution 3.0 DE license (CC BY 3.0 DE).

In brief, this license authorizes each
and everybody to share (to copy,

distribute and transmit) the work under the follow-
ing conditions, without impairing or restricting the
authors’ moral rights:

Attribution: The work must be attributed to its
authors.

The copyright is retained by the corresponding au-
thors.

Digital Object Identifier: 10.4230/DagRep.6.3.i

Aims and Scope
The periodical Dagstuhl Reports documents the
program and the results of Dagstuhl Seminars and
Dagstuhl Perspectives Workshops.
In principal, for each Dagstuhl Seminar or Dagstuhl
Perspectives Workshop a report is published that
contains the following:

an executive summary of the seminar program
and the fundamental results,
an overview of the talks given during the seminar
(summarized as talk abstracts), and
summaries from working groups (if applicable).

This basic framework can be extended by suitable
contributions that are related to the program of the
seminar, e. g. summaries from panel discussions or
open problem sessions.

Editorial Board
Gilles Barthe
Bernd Becker
Stephan Diehl
Hans Hagen
Hannes Hartenstein
Oliver Kohlbacher
Stephan Merz
Bernhard Mitschang
Bernhard Nebel
Bernt Schiele
Nicole Schweikardt
Raimund Seidel (Editor-in-Chief)
Arjen P. de Vries
Klaus Wehrle
Reinhard Wilhelm

Editorial Office
Marc Herbstritt (Managing Editor)
Jutka Gasiorowski (Editorial Assistance)
Dagmar Glaser (Editorial Assistance)
Thomas Schillo (Technical Assistance)

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Dagstuhl Reports, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
reports@dagstuhl.de
http://www.dagstuhl.de/dagrep

http://www.dagstuhl.de/dagrep
http://www.dagstuhl.de/dagpub/2192-5283
http://dnb.d-nb.de
http://creativecommons.org/licenses/by/3.0/de/legalcode
http://creativecommons.org/licenses/by/3.0/de/legalcode
http://dx.doi.org/10.4230/DagRep.6.3.i
http://www.dagstuhl.de/dagrep

Report from Dagstuhl Seminar 16101

Data Structures and Advanced Models of Computation on
Big Data
Edited by
Alejandro Lopez-Ortiz1, Ulrich Carsten Meyer2, Markus E. Nebel3,
and Robert Sedgewick4

1 University of Waterloo, CA, alopez-o@uwaterloo.ca
2 Goethe-Universität – Frankfurt a.M., DE, umeyer@cs.uni-frankfurt.de
3 TU Kaiserslautern, DE, nebel@techfak.uni-bielefeld.de
4 Princeton University, US, rs@cs.princeton.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16101 “Data Struc-
tures and Advanced Models of Computation on Big Data”. In today’s computing environment
vast amounts of data are processed, exchanged and analyzed. The manner in which information
is stored profoundly influences the efficiency of these operations over the data. In spite of the
maturity of the field many data structuring problems are still open, while new ones arise due to
technological advances.

The seminar covered both recent advances in the “classical” data structuring topics as well
as new models of computation adapted to modern architectures, scientific studies that reveal the
need for such models, applications where large data sets play a central role, modern computing
platforms for very large data, and new data structures for large data in modern architectures.

The extended abstracts included in this report contain both recent state of the art advances
and lay the foundation for new directions within data structures research.

Seminar March 6–11, 2016 – http://www.dagstuhl.de/16101
1998 ACM Subject Classification E.1 Data Structures, F.1 Computation by Abstract Devices,

F.2 Analysis of Algorithms and Problem Complexity, H.3 Information Storage and Retrieval
Keywords and phrases algorithms, big data, cloud services, data structures, external memory

methods, information theory, large data sets, streaming, web-scale
Digital Object Identifier 10.4230/DagRep.6.3.1
Edited in cooperation with Sebastian Wild

1 Executive Summary

Alejandro Lopez-Ortiz (University of Waterloo, CA)
Ulrich Carsten Meyer (Goethe-Universität – Frankfurt a.M., DE)
Markus E. Nebel (TU Kaiserslautern, DE)
Robert Sedgewick (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick

About the Seminar

Data structures provide ways of storing and manipulating data and information that are
appropriate for the computational model at hand. Every such model relies on assumptions
that we have to keep questioning. The aim of this seminar was to exchange ideas for new

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Data Structures and Advanced Models of Computation on Big Data, Dagstuhl Reports, Vol. 6, Issue 3, pp. 1–23
Editors: Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16101
http://dx.doi.org/10.4230/DagRep.6.3.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 16101 – Data Structures and Advanced Models of Computation on Big Data

algorithms and data structures, and to discuss our models of computations in light of recent
technological advances. This Dagstuhl seminar was the 12th in a series of loosely related
Dagstuhl seminars on data structures.

Topics

The presentations covered both advances in classic fields, as well as new models for recent
trends in computing, in particular the appearance of big-data applications.

The talks by Brodal (§3.5), Penschuck (§3.19), Silvestri (§3.29), and Vahrenhold (§3.31)
covered methods in the external-memory model that models the situation that data does
no longer fit into internal memory. This limit can be pushed a bit further by using succinct
data structures, which use only as much memory as absolutely necessary. Such methods
were covered in the talks of Hagerup (§3.14), Raman (§3.25), and Gog (§3.12). If the task is
to generate large random instances, Even (§3.9) showed that one can delay generation of
large parts until they really become requested.

Big-data applications rely on parallel computation to speed up processing. Bingmann
(§3.4) announced the creation of a new framework to simplify developing such applications.
Brodnik (§3.6) presented a parallel string-searching algorithm. Since such methods are often
used in a distributed setting, the cost of communication can become dominating. Sanders
(§3.24) discussed several algorithms from this point of view.

Iacono (§3.15) and Mehlhorn (§3.18) reported on recent advances in the long-standing
open problem of dynamic optimality of binary search trees (BSTs). The classic problem of
finding optimal static BSTs was taken up by Munro (§3.21): it becomes significantly harder
if the objective is to minimize the number of binary comparisons instead of the classic ternary
comparisons.

Wild (§3.32) used the connection between BSTs and recursion trees of Quicksort to
analyze Quicksort on inputs with equal keys, including multi-way partitioning Quicksort.
The latter was discussed in detail by Aumüller (§3.3) who presented a novel analysis for
comparison-optimal partitioning.

Neumann (§3.22) introduced a new randomized dictionary implementation based on
jumplists. Kopelowitz (§3.17) showed a much simplified solution to the file-maintenance
problem.

In the context of large sparse graphs, Andoni (§3.2), Fagerberg (§3.10), and Sun (§3.30)
showed how to exploit special structure in the input for algorithmic applications. Pettie
(§3.28) showed how to efficiently answer connectivity queries in graphs when vertices can be
deleted.

The seminar also enjoyed contributions on new algorithms: two innovative applications of
hashing were presented by Silvestri (§3.29) and Jacob (§3.16); Meyer auf der Heide (§3.20)
applied the primal-dual approach for online algorithms to online leasing problems. Driemel
(§3.7) reported on clustering methods for time series.

The theory-focused talks were complemented by broader perspectives from practice:
Ajwani (§3.1) presented his vision for future communication tools that are supported by
context-sensitive agents, and Sedgewick (§3.27) sketched his views on the future of higher
education. Finally, Salinger (§3.26) summarized the approaches taken by SAP to include
data-specific algorithms directly in their HANA database system.

New models of computation were also discussed. Owens (§3.23) explained how the
architecture of graphic cards calls for different approaches to design data structures; Dütsch
(§3.8) discussed the cost of virtual address translation in several algorithms. Finally, Farach-
Colton (§3.11) and Graefe (§3.13) challenged the claim that data structures are independent

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 3

of the application they are used in: they showed intriguing examples where the context a
data structure was applied in entailed unforeseen additional requirements.

Final Thoughts

The organizers would like to thank the Dagstuhl team for their continuous support; the
welcoming atmosphere made the seminar both highly productive and enjoyable. They also
thank all participants for their contributions to this seminar.

16101

4 16101 – Data Structures and Advanced Models of Computation on Big Data

2 Table of Contents

Executive Summary
Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 1

Overview of Talks
Towards fully-informed communication
Deepak Ajwani . 6

Parallel Algorithms for Geometric Graph Problems
Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov 6

News on Multi-Pivot Quicksort
Martin Aumüller . 6

Thrill: Distributed Big Data Batch Processing in C++
Timo Bingmann . 7

External Memory Three-Sided Range Reporting and Top-k Queries with Sublogar-
ithmic Updates
Gerth Stølting Brodal . 7

Parallel Queries
Andrej Brodnik . 8

Clustering time series under the Frechet distance
Anne Driemel . 8

Algorithm Design Paradigms in the VAT-Model
Fabian Dütsch . 9

Sublinear Random Access Generators for Preferential Attachment Graphs
Guy Even . 9

On Routing in Geometric Spanners
Rolf Fagerberg . 10

Migrating a data structure from one system to another
Martin Farach-Colton . 10

Practical Compact Indexes for Top-k Document Retrieval
Simon Gog, Gonzalo Navarro, and Roberto Konow 10

Lock-free data structures
Goetz Graefe . 11

Succinct Choice Dictionaries
Torben Hagerup and Frank Kammer . 11

Weighted dynamic finger in binary search trees
John Iacono . 12

Fast Output-Sensitive Matrix Multiplication
Riko Jacob . 12

File Maintenance: When in Doubt, Change the Layout!
Tsvi Kopelowitz . 13

Self-Organizing Binary Search Trees: Recent Results
Kurt Mehlhorn . 13

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 5

Generating Massive Scale-Free Networks under Resource Constraints
Ulrich Carsten Meyer and Manuel Penschuck . 14

Online Resource Leasing
Friedhelm Meyer auf der Heide . 14

Optimal search trees with 2-way comparisons
Ian Munro and Mordecai Golin . 15

Randomized k-Jumplists
Elisabeth Neumann . 15

Dynamic Data Structures for the GPU
John D. Owens . 16

Communication efficient algorithms
Peter Sanders . 16

Encoding Data Structures
Rajeev Raman . 16

Towards a Web-scale Data Management Ecosystem Demonstrated by SAP HANA
Alejandro Salinger . 17

A 21st Century Model for Disseminating Knowledge
Robert Sedgewick . 17

Connectivity Oracles
Seth Pettie . 18

I/O-Efficient Similarity Join
Francesco Silvestri . 18

Fast construction of graph sparsification: graphs, ellipsoids, and balls-into-bins
He Sun . 19

Revisiting the Construction of SSPDs in the Presence of Memory Hierarchies
Jan Vahrenhold . 19

Quicksort with Equal Keys
Sebastian Wild . 19

Open problems
Open Problem 1
Deepak Ajwani . 20

Open Problem 2
Alejandro Lopez-Ortiz . 21

Open Problem 3
Sebastian Wild . 21

Participants . 23

16101

6 16101 – Data Structures and Advanced Models of Computation on Big Data

3 Overview of Talks

3.1 Towards fully-informed communication
Deepak Ajwani (Bell Labs – Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Deepak Ajwani

I described a vision of a software cognitive layer that provides users with all the information
they need at the time of communication. To realize such a vision, a communication platform
should understand a user’s communication, link it to other information available and mine
the linked information in real-time. I presented a range of open problems related to graph
algorithms and graph systems, to address these challenges.

3.2 Parallel Algorithms for Geometric Graph Problems
Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov

License Creative Commons BY 3.0 Unported license
© Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov

Main reference A. Andoni, A. Nikolov, K. Onak, G. Yaroslavtsev, “Parallel algorithms for geometric graph
problems”, in Proc. of the 46th Annual ACM Symp. on Theory of Computing (STOC’14),
pp. 574–583, ACM, 2014.

URL http://dx.doi.org/10.1145/2591796.2591805

Motivated by modern parallel computing models (think MapReduce), we give a new al-
gorithmic framework for geometric graph problems. Our framework applies to problems such
as the Minimum Spanning Tree (MST) problem over a set of points in a low-dimensional
space, which is useful for hierarchical agglomerative clustering. Our algorithm computes a
(1 + ε)-approximate MST in a constant number of rounds of communication, while using
total space and communication proportional to the size of the data only.

Our framework proves to have implications beyond the parallel models as well. For
example, we consider the Earth-Mover Distance (EMD) problem, for which we obtain a new
near-linear time algorithm as well as a first streaming algorithm (assuming we can pre-sort
the points). Technically, our framework for EMD shows how to effectively break up a “big
Linear Programming problem” into a number of “small Linear Programming problems,”
which can be later recombined using a dynamic programming approach.

3.3 News on Multi-Pivot Quicksort
Martin Aumüller (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Martin Aumüller

Joint work of Martin Aumüller; Martin Dietzfelbinger; Clemens Heuberger; Daniel Krenn; Helmut Prodinger
Main reference M. Aumüller, M. Dietzfelbinger, C. Heuberger, D. Krenn, H. Prodinger, “Counting Zeros in

Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort”, arXiv:1602.04031
[math.CO], 2016.

URL http://arxiv.org/abs/1602.04031

We discuss two results with respect to multi-pivot quicksort.
In the first part of this talk, we present an exact average case analysis of two variants of

dual-pivot quicksort, one with a non-algorithmic comparison-optimal partitioning strategy,
the other with a closely related algorithmic strategy. For both we calculate the expected

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1145/2591796.2591805
http://dx.doi.org/10.1145/2591796.2591805
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1602.04031

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 7

number of comparisons exactly as well as asymptotically, in particular, we provide exact
expressions for the linear, logarithmic, and constant terms. An essential step is the analysis
of zeros of lattice paths in a certain probability model. Furthermore, we show that the closely
related algorithmic strategy yields a comparison-optimal dual-pivot algorithm.

In the second part of this talk, I will talk about rearranging elements to produce a
partition. A substantial part of the partitioning cost is caused by rearranging elements. A
rigorous analysis of an algorithm for rearranging elements in the partitioning step is carried
out, observing mainly how often array cells are accessed during partitioning. The algorithm
behaves best if 3 or 5 pivots are used. Experiments show that this translates into good
cache behavior and is closest to predicting observed running times of multi-pivot quicksort
algorithms.

3.4 Thrill: Distributed Big Data Batch Processing in C++
Timo Bingmann (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Timo Bingmann

We present on-going work on a new distributed Big Data processing framework called Thrill.
It is a C++ framework consisting of a set of basic scalable algorithmic primitives like
mapping, reducing, sorting, merging, joining, and additional MPI-like collectives. This set
of primitives goes beyond traditional Map/Reduce and can be combined into larger more
complex algorithms, such as WordCount, PageRank, k-means clustering, and suffix sorting.
These complex algorithms can then be run on very large inputs using a distributed computing
cluster. Among the main design goals of Thrill is to lose very little performance when
composing primitives such that small data types are well supported. Thrill thus raises the
questions of a) how to design algorithms using the scalable primitives, b) whether additional
primitives should be added, and c) if one can improve the existing ones using new ideas to
reduce communication volume and latency.

3.5 External Memory Three-Sided Range Reporting and Top-k Queries
with Sublogarithmic Updates

Gerth Stølting Brodal (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Gerth Stølting Brodal

Main reference G. Stølting Brodal, “External Memory Three-Sided Range Reporting and Top-k Queries with
Sublogarithmic Updates”, in Proc. of the 33rd Annual Symp. on Theoretical Aspects of Computer
Science (STACS’16), LIPIcs, Vol. 47, pp. 23:1-23:14, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23

An external memory data structure is presented for maintaining a dynamic set of N two-
dimensional points under the insertion and deletion of points, and supporting unsorted
3-sided range reporting queries and top-k queries, where top-k queries report the k points
with highest y-value within a given x-range. For any constant 0 < ε ≤ 1

2 , a data structure
is constructed that supports updates in amortized O(1

εB1−ε logB N) IOs and queries in
amortized O(1

ε logB N +K/B) IOs, where B is the external memory block size, and K is

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23

8 16101 – Data Structures and Advanced Models of Computation on Big Data

the size of the output to the query (for top-k queries K is the minimum of k and the number
of points in the query interval). The data structure uses linear space. The update bound is
a significant factor B1−ε improvement over the previous best update bounds for these two
query problems, while staying within the same query and space bounds.

3.6 Parallel Queries
Andrej Brodnik (University of Primorska, SI)

License Creative Commons BY 3.0 Unported license
© Andrej Brodnik

Joint work of Andrej Brodnik; Tanja Štular; Matevž Jekovec
Main reference M. Jekovec, A. Brodnik, “Parallel Query in the Suffix Tree”, arXiv:1509.06167 [cs.DS], 2015.

URL http://arxiv.org/abs/1509.06167

When considering parallel queries, the researchers in past were mostly concerned with parallel
execution of several queries on the same data structure. In this contribution we ask ourselves
how p processors can be employed to jointly perform a single search under CREW PRAM
model.

The query we study is a search of pattern P in a text T , where |P | = m and |T | = n. Our
presentation starts with employing automaton based approach first and later evolve it into
an index based. For the later we show, that one can perform search in time O(m/p+ log p),
deploying O(m + m log p) work and using O(n2) space. We are also able to change the
solution to O(m/p log p) time, O(m log p) work and O(n log p) space.

The trivial lower is, of course, Ω(m/p) time, Ω(m) work and Ω(n) space. It remains
an open question whether it is achievable. Mind though, that in our solution we pay a log
factor for communication among the processors. Another interesting open question is how
the scheme can be used for an approximate searching.

3.7 Clustering time series under the Frechet distance
Anne Driemel (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Anne Driemel

Joint work of Anne Driemel; Amer Krivosija; Christian Sohler
Main reference A. Driemel, A. Krivosija, C. Sohler, “Clustering time series under the Fréchet distance”, in Proc. of

the 27th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’16), pp. 766–785, SIAM, 2016.
URL http://dx.doi.org/10.1137/1.9781611974331.ch55

The Frechet distance is a popular distance measure for curves. We study the problem of
clustering time series under the Frechet distance. In particular, we give (1+ε)-approximation
algorithms for variations of the following problem with parameters k and l. Given n univariate
time series P , each of complexity at most m, we find k time series, not necessarily from P ,
which we call cluster centers and which each have complexity at most l, such that (a) the
maximum distance of an element of P to its nearest cluster center or (b) the sum of these
distances is minimized. Our algorithms have running time near-linear in the input size. To
the best of our knowledge, our algorithms are the first clustering algorithms for the Frechet
distance which achieve an approximation factor of (1 + ε) or better.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1509.06167
http://arxiv.org/abs/1509.06167
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://dx.doi.org/10.1137/1.9781611974331.ch55

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 9

3.8 Algorithm Design Paradigms in the VAT-Model
Fabian Dütsch (Universität Münster, DE)

License Creative Commons BY 3.0 Unported license
© Fabian Dütsch

Recently, Jurkiewicz and Mehlhorn [ALENEX ’13] observed that the cost of virtual address
translation affects the practical runtime behavior of several fundamental algorithms on
modern computers. In this talk, we extend their results to two dimensions and investigate the
translation cost of some algorithm design paradigms. For this purpose, we analyze closest pair
algorithms representing the divide and conquer, plane-sweep and randomized incremental
construction paradigms in the VAT-model. Furthermore, we investigate the VAT-complexities
of hashing and comparison-based searching. Finally, we verify the theoretical analyses by
experimental results.

3.9 Sublinear Random Access Generators for Preferential Attachment
Graphs

Guy Even (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Guy Even

Joint work of Reut Elvi; Guy Even; Moti Medina; Adi Rosen
Main reference G. Even, R. Levi, M. Medina, A. Rosen, “Sublinear Random Access Generators for Preferential

Attachment Graphs”, arXiv:1602.06159 [cs.DS], 2016.
URL http://arxiv.org/abs/1602.06159

We consider the problem of generating random graphs in evolving random graph models. In
the standard approach, the whole graph is chosen randomly according to the distribution of
the model before answering queries to the adjacency lists of the graph. Instead, we propose
to answer queries by generating the graphs on-the-fly while respecting the probability space
of the random graph model.

We focus on two random graph models: the Barabási-Albert Preferential Attachment
model (BA-graphs) and the random recursive tree model. We present sublinear randomized
generating algorithms for both models. Per query, the running time, the increase in space,
and the number of random bits consumed are poly log(n) with probability 1 − 1/poly(n),
where n denotes the number of vertices.

This result shows that, although the BA random graph model is defined sequentially,
random access is possible without chronological evolution. In addition to a conceptual
contribution, on-the-fly generation of random graphs can serve as a tool for simulating
sublinear algorithms over large BA-graphs.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://arxiv.org/abs/1602.06159
http://arxiv.org/abs/1602.06159
http://arxiv.org/abs/1602.06159

10 16101 – Data Structures and Advanced Models of Computation on Big Data

3.10 On Routing in Geometric Spanners
Rolf Fagerberg (University of Southern Denmark – Odense, DK)

License Creative Commons BY 3.0 Unported license
© Rolf Fagerberg

Joint work of Rolf Fagerberg; Jit Bose; André van Renssen; Sander Verdonschot
Main reference P. Bose, R. Fagerberg, A. van Renssen, S. Verdonschot, “Optimal Local Routing on Delaunay

Triangulations Defined by Empty Equilateral Triangles”, SIAM Journal on Computing,
44(6):1626–1649, 2015.

URL http://dx.doi.org/10.1137/140988103

A geometric spanner on a point set in the Euclidean plane is a straight-line graph on the
point set in which any pair u, v of points has a path between them which is not more than
a constant factor longer than the direct distance between u and v. The constant factor is
called the spanning ratio. Such spanners have practical applications in e.g. add-hoc wireless
networks, and can be seen as static data structures for approximate route finding in geometric
graphs. Two classical constructions of geometric spanners are Yaok-graphs and θk-graphs.

Recently, bounds on the spanning ratio of these graphs have evolved substantially. We
give an overview of the current knowledge, and then focus on a result on the half-θ6-graph
which shows that while its spanning ratio is 2, actually following such a short path between
u and v using local routing is only feasible in one direction, whereas in the other direction
the factor becomes 5/

√
3 = 2.886 We do this by giving a lower bound and a routing

algorithm matching this bound.

3.11 Migrating a data structure from one system to another
Martin Farach-Colton (Rutgers University – Piscataway, US)

License Creative Commons BY 3.0 Unported license
© Martin Farach-Colton

Joint work of Michael Bender; Martin Farach-Colton; Bradley Kuszmaul; Don Porter; Rob Johnson

Data structures are typically design independent of any particular use case. Sometimes, data
structures get deployed in a system, during which they are optimized for the specific needs
of the system. In this case, I discuss the experience of migrating a data structure from one
system to another. Specifically, I discuss deploying an external-memory dictionary that has
been optimized for a data base key-value store in a file system.

3.12 Practical Compact Indexes for Top-k Document Retrieval
Simon Gog (KIT – Karlsruher Institut für Technologie, DE), Gonzalo Navarro, and Roberto
Konow

License Creative Commons BY 3.0 Unported license
© Simon Gog, Gonzalo Navarro, and Roberto Konow

Joint work of Simon Gog; Gonazlo Navarro; Roberto Konow

In this talk we present a fast and compact index for top-k document retrieval on general
string collections. For a given string pattern P , the index returns the k documents where
P occurs most often, i.e. we score by pattern frequency. We adapt a linear-space and
optimal-time theoretical solution of Navarro and Nekrich [1], whose implementation poses
various algorithm engineering challenges. While a naive implementation of the optimal

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/140988103
http://dx.doi.org/10.1137/140988103
http://dx.doi.org/10.1137/140988103
http://dx.doi.org/10.1137/140988103
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 11

solution is estimated to require around 80n bytes for a text collection of n symbols, we show
how this can be improved to 2.5n – 3.0n bytes (including the text). The resulting index can
still answer queries within microseconds and outperforms all previous work.

References
1 Gonzalo Navarro, Yakov Nekrich. Top-k document retrieval in optimal time and linear

space. SODA 2012: 1066-1077

3.13 Lock-free data structures
Goetz Graefe (HP Labs – Madison, US)

License Creative Commons BY 3.0 Unported license
© Goetz Graefe

I am trying to understand lock-free data structures, their rules and their limitations, and I
appreciate the other attendees’ help in grasping the fundamentals and the subtleties. This is
part of a larger effort to understand optimistic and pessimistic concurrency control as well
as transaction isolation levels as known in SQL databases.

3.14 Succinct Choice Dictionaries
Torben Hagerup (Universität Augsburg, DE) and Frank Kammer

License Creative Commons BY 3.0 Unported license
© Torben Hagerup and Frank Kammer

The choice dictionary is introduced as a data structure that can be initialized with a parameter
n in {1, 2, . . .} and subsequently maintains an initially empty subset S of {1, . . . , n} under
insertion, deletion, membership queries and an operation choice that returns an arbitrary
element of S. The choice dictionary appears to be fundamental in space-efficient computing.
We show that there is a choice dictionary that can be initialized with n and an additional
parameter t in {1, 2, . . .} and subsequently occupies n+O(n(t/w)t + logn) bits of memory
and executes each of the four operations insert, delete, contains (i.e., a membership query)
and choice in O(t) time on a word RAM with a word length of w = Ω(logn) bits. In
particular, with w = Θ(logn), we can support insert, delete, contains and choice in constant
time using n+O(n/(logn)t) bits for arbitrary fixed t. We extend our results to maintaining
several pairwise disjoint subsets of {1, . . . , n}.

A static representation of a subset S of {1, . . . , n} that consists of n+ s bits b1, . . . , bn+s
is called systematic if bl = 1 ⇐⇒ l is in S for l = 1, . . . , n and is said to have redund-
ancy s. We extend the former definition to dynamic data structures and prove that the
minimum redundancy of a systematic choice dictionary with parameter n that executes
every operation in O(t) time on a w-bit word RAM is Θ(n/(tw)). Allowing a redundancy of
Θ(n log(t logn)/(t logn) + nε) for arbitrary fixed ε > 0, we can support additional O(t)-time
operations p-rank and p-select that realize a bijection from S to {1, . . . , |S|} and its inverse.
The bijection may be chosen arbitrarily by the data structure, but must remain fixed as long
as S is not changed. In particular, an element of S can be drawn uniformly at random in
constant time with a redundancy of O(n log logn/ logn).

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

12 16101 – Data Structures and Advanced Models of Computation on Big Data

We study additional space-efficient data structures for subsets S of {1, . . . , n}, including
one that supports only insertion and an operation extract-choice that returns and deletes an
arbitrary element of S. All our main data structures can be initialized in constant time and
support efficient iteration over the set S, and we can allow changes to S while an iteration
over S is in progress. We use these abilities crucially in designing the most space-efficient
algorithms known for solving a number of graph and other combinatorial problems in linear
time. In particular, given an undirected graph G with n vertices and m edges, we can output
a spanning forest of G in O(n + m) time with at most (1 + ε)n bits for arbitrary fixed
ε > 0, and if G is connected, we can output a shortest-path spanning tree of G rooted at a
designated vertex in O(n+m) time with n log2 3 +O(n/(logn)t) bits for arbitrary fixed t in
{1, 2, . . .}.

3.15 Weighted dynamic finger in binary search trees
John Iacono (New York University, US)

License Creative Commons BY 3.0 Unported license
© John Iacono

Joint work of John Iacono; Stefan Langerman
Main reference J. Iacono, S. Langerman, “Weighted dynamic finger in binary search trees”, in Proc. of the 27th

Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’16), pp. 672–691, SIAM, 2016.
URL http://dx.doi.org/10.1137/1.9781611974331.ch49

It is shown that the online binary search tree data structure GreedyASS performs asymp-
totically as well on a sufficiently long sequence of searches as any static binary search tree
where each search begins from the previous search (rather than the root). This bound is
known to be equivalent to assigning each item i in the search tree a positive weight wi and
bounding the search cost of an item in the search sequence s1, . . . , sm by

O

1 + log

∑
min(si−1,si)≤x≤max(si−1,si)

wx

min(wsi , wsi−1)

amortized. This result is the strongest finger-type bound to be proven for binary search trees.
By setting the weights to be equal, one observes that our bound implies the dynamic finger
bound. Compared to the previous proof of the dynamic finger bound for Splay trees, our
result is significantly shorter, stronger, simpler, and has reasonable constants.

3.16 Fast Output-Sensitive Matrix Multiplication
Riko Jacob (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Riko Jacob

Joint work of Riko Jacob; Mortten Stöckel
Main reference R. Jacob, M. Stöckel, “Fast Output-sensitive Matrix Multiplication”, in Proc. of the 23rd Annual

European Symp. on Algorithms (ESA’15), LNCS, Vol. 9294, pp. 766–778, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-662-48350-3_64

We consider the problem of multiplying two U × U matrices A and C of elements from a
field F. We present a new randomized algorithm that can use the known fast square matrix

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/978-3-662-48350-3_64
http://dx.doi.org/10.1007/978-3-662-48350-3_64

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 13

multiplication algorithms to perform fewer arithmetic operations than the current state of
the art for output matrices that are sparse.

In particular, let ω be the best known constant such that two dense U×U matrices can be
multiplied with O (Uω) arithmetic operations. Further denote by N the number of nonzero
entries in the input matrices while Z is the number of nonzero entries of matrix product
AC. We present a new Monte Carlo algorithm that uses Õ

(
U2 (Z

U

)ω−2 +N
)
arithmetic

operations and outputs the nonzero entries of AC with high probability. For dense input, i.e.,
N = U2, if Z is asymptotically larger than U , this improves over state of the art methods,
and it is always at most O (Uω). For general input density we improve upon state of the art
when N is asymptotically larger than U4−ωZω−5/2.

The algorithm is based on dividing the input into “balanced” subproblems which are
then compressed and computed. The new subroutine that computes a matrix product with
balanced rows and columns in its output uses time Õ

(
UZ(ω−1)/2 +N

)
which is better than

the current state of the art for balanced matrices when N is asymptotically larger than
UZω/2−1, which always holds when N = U2.

In the I/O model – where M is the memory size and B is the block size – our algorithm
is the first nontrivial result that exploits cancellations and sparsity of the output. The
I/O complexity of our algorithm is Õ

(
U2(Z/U)ω−2/(Mω/2−1B) + Z/B +N/B

)
, which is

asymptotically faster than the state of the art unless M is large.

3.17 File Maintenance: When in Doubt, Change the Layout!
Tsvi Kopelowitz (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Tsvi Kopelowitz

Joint work of Michael Bender; Jeremy Fineman; Seth Gilbert; Tsvi Kopelowitz; Pablo Montas

In this talk I will describe a new deamortized solution to the sequential-file-maintenance
problem. The data structure uses several new tools, for solving this historically complicated
problem. These tools include an unbalanced ternary-tree layout embedded in the sparse
table, a level-based approach for triggering, and one-way rebalancing.

3.18 Self-Organizing Binary Search Trees: Recent Results
Kurt Mehlhorn

License Creative Commons BY 3.0 Unported license
© Kurt Mehlhorn

Joint work of Parinya Chalermsook; Mayank Goswami; Lazlo Kosma; Kurt Mehlhorn; Thatchaphol Saranurak
Main reference P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, T. Saranurak, “Pattern-Avoiding Access in

Binary Search Trees”, in Proc. of the IEEE 56th Annual Symp. on Foundations of Computer
Science (FOCS’15), pp. 410–423, IEEE CS, 2015.

URL http://dx.doi.org/10.1109/FOCS.2015.32

The dynamic optimality conjecture is perhaps the most fundamental open question about
binary search trees (BST). It postulates the existence of an asymptotically optimal online
BST, i.e. one that is constant factor competitive with any BST on any input access sequence.
The two main candidates for dynamic optimality in the literature are splay trees [Sleator and
Tarjan, 1985], and Greedy [Lucas, 1988; Munro, 2000; Demaine et al. 2009]. Despite BSTs

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/FOCS.2015.32
http://dx.doi.org/10.1109/FOCS.2015.32
http://dx.doi.org/10.1109/FOCS.2015.32
http://dx.doi.org/10.1109/FOCS.2015.32

14 16101 – Data Structures and Advanced Models of Computation on Big Data

being among the simplest data structures in computer science, and despite extensive effort
over the past three decades, the conjecture remains elusive. Dynamic optimality is trivial
for almost all sequences: the optimum access cost of most length-n sequences is Θ(n logn),
achievable by any balanced BST.

Thus, the obvious missing step towards the conjecture is an understanding of the “easy”
access sequences. Preorder sequences (the access sequence arises from a preorder traversal of
a tree) can easily be served in linear time by an off-line algorithms. No online BST is known
to serve them in linear time.

We prove (FOCS 2015) two different relaxations of the traversal conjecture for Greedy:
(i) Greedy with an arbitrary initial tree is almost linear for preorder sequences. (ii) Greedy
with a fixed initial tree is in fact linear. These statements are corollaries of our more general
results that express the complexity of access sequences in terms of a pattern avoidance.

Splay trees satisfy the so-called access lemma. Many of the nice properties of splay
trees follow from it. What makes self-adjusting binary search trees (BSTs) satisfy the access
lemma? In our ESA 2015 paper, we give sufficient conditions for the access lemma to hold
and give strong hints of their necessity.

3.19 Generating Massive Scale-Free Networks under Resource
Constraints

Ulrich Carsten Meyer (Goethe-Universität – Frankfurt a.M., DE) and Manuel Penschuck
(Goethe-Universität – Frankfurt a.M., DE)

License Creative Commons BY 3.0 Unported license
© Ulrich Carsten Meyer and Manuel Penschuck

Main reference U. Meyer, M. Penschuck, “Generating Massive Scale-Free Networks under Resource Constraints”,
in Proc. of the 18th Workshop on Algorithm Engineering and Experiments (ALENEX’16),
pp. 39–52, SIAM, 2016.

URL http://dx.doi.org/10.1137/1.9781611974317.4

Random graphs as mathematical models of massive scale-free networks have recently become
very popular. For experimental evaluation and in order to provide artificial data sets, huge
instances of such networks actually need to be generated. We consider generation methods for
random graph models based on linear preferential attachment under limited computational
resources and investigate our techniques using the well-known Barabási-Albert (BA) graph
model. We present the two I/O-efficient BA generators, MP-BA and TFP-BA, for the
external-memory (EM) model and then extend MP-BA to massive parallelism based on but
not limited to GPGPU.

3.20 Online Resource Leasing
Friedhelm Meyer auf der Heide (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Friedhelm Meyer auf der Heide

Main reference S. Abshoff , P. Kling, C. Markarian, F. Meyer auf der Heide, P. Pietrzyk, “Towards the price of
leasing online”, Journal of Combinatorial Optimisation, pp. 1–20, 2015.

URL http://dx.doi.org/10.1007/s10878-015-9915-5

We consider online leasing problems in which demands arrive over time and need to be
served by leased resources. Each resource can be leased for K different durations, each

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://dx.doi.org/10.1137/1.9781611974317.4
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10878-015-9915-5
http://dx.doi.org/10.1007/s10878-015-9915-5
http://dx.doi.org/10.1007/s10878-015-9915-5

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 15

incurring a different cost (longer leases cost less per time unit). This model is a natural
generalization of Meyerson’s Parking Permit Problem (FOCS 2005). In the talk, I review
Meyerson’s result and present it using the primal-dual approach. In addition, I present new
online leasing variants of classical problems like facility location and set cover, and present
primal-dual-based online algorithms for them together with their competitive analysis.

3.21 Optimal search trees with 2-way comparisons
Ian Munro (University of Waterloo, CA) and Mordecai Golin (HKUST – Kowloon, HK)

License Creative Commons BY 3.0 Unported license
© Ian Munro and Mordecai Golin

Joint work of Marek Chrobak; Mordecai Golin; J. Ian Munro; Neal E. Young

This talk is about finding a polynomial time algorithm that you probably thought was known
almost a half century ago, but it wasn’t. The polynomial time algorithm is still rather slow
and requires a lot of space to solve, so we also look at extremely good and fast approximate
solutions.

In 1971, Knuth gave an O(n2)-time algorithm for the now classic problem of finding an
optimal binary search tree. Knuth’s algorithm works only for search trees based on 3-way
comparisons, but most modern programming languages and computers support only 2-way
comparisons (<, = and >). Until this work, the problem of finding an optimal search tree
using 2-way comparisons remained open – polynomial time algorithms were known only for
restricted variants. We solve the general case, giving (i) an O(n4)-time algorithm and (ii) a
linear time algorithm that gives a tree with expected search cost within 2 comparisons of the
optimal.

3.22 Randomized k-Jumplists
Elisabeth Neumann (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Elisabeth Neumann

Joint work of Elisabeth Neumann; Markus Nebel; Sebastian Wild

In this talk, I presented an extension of randomized jumplists, introduced by Brönnimann,
Cazals and Durand. To improve search costs, the number of jump-pointers per node have
been increased from one to k, (k > 1), to allow faster navigation through the list. Pointer
targets are chosen at random such that the pointer structure is (strongly) nested and no two
jump-pointers point to the same node. I presented algorithms for search, construction and
insertion, extending algorithms for regular jumplists, all of which run in expected logarithmic
time. Finally, I analysed the expected costs of searching and came to the conclusion that
k-jumplists (k > 1) outperform regular jumplists if binary search is used to determine which
pointer to follow during the search.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

16 16101 – Data Structures and Advanced Models of Computation on Big Data

3.23 Dynamic Data Structures for the GPU
John D. Owens (University of California, Davis, US)

License Creative Commons BY 3.0 Unported license
© John D. Owens

Joint work of Martin Farach-Colton; John D. Owens

Today’s GPU programming environments feature few general-purpose data structures. Only
a handful of those can be constructed on the GPU, and to first order, none of them can
be updated on the GPU. We aim to develop a family of GPU data structures that permit
dynamic updates without rebuilding, and identify cross-cutting issues – e.g., modeling the
memory hierarchy, leveraging task parallelism vs. cooperative parallelism, and choosing the
right granularity of GPU parallelism for data-structure operations – that will affect their
design.

3.24 Communication efficient algorithms
Peter Sanders (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Peter Sanders

I proposed to have a closer look at algorithms that have sublinear bottleneck communication
volume. Examples were given for duplicate detection, distributed Bloom filters and various
top-k problems. The talk is based on the two papers [1, 2].

References
1 Peter Sanders and Sebastian Schlag and Ingo Müller. Communication Efficient Algorithms

for Fundamental Big Data Problems. IEEE Int. Conf. on Big Data. 2013.
2 Lorenz Hübschle-Schneider and Peter Sanders. Communication Efficient Algorithms for

Top-k Selection Problems. IPDPS 2016.

3.25 Encoding Data Structures
Rajeev Raman (University of Leicester, GB)

License Creative Commons BY 3.0 Unported license
© Rajeev Raman

Main reference R. Raman, “Encoding Data Structures,” in Proc. of the 9th Int’l Workshop on Algorithms and
Computation (WALCOM’15), LNCS, Vol. 8973, pp. 1-7, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-15612-5_1

Note: Survey talk based on several papers.

Driven by the increasing need to analyze and search for complex patterns in very large
data sets, the area of compressed and succinct data structures has grown rapidly in the last
10–15 years. Such data structures have very low memory requirements, allowing them to fit
into the main memory of a computer, which in turn avoids expensive computation on hard
disks.

This talk will focus on a topic that has become popular recently: encoding “the data
structure” itself. Some data structuring problems involve supporting queries on data, but
the queries that need to be supported do not allow the original data to be deduced from

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-15612-5_1
http://dx.doi.org/10.1007/978-3-319-15612-5_1
http://dx.doi.org/10.1007/978-3-319-15612-5_1

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 17

the queries. This presents opportunities to obtain space savings even when the data is
incompressible, by pre-processing the data, extracting only the information needed to answer
the queries, and then deleting the data. The minimum information needed to answer the
queries is called the effective entropy of the problem: precisely determining the effective
entropy can involve interesting combinatorics.

3.26 Towards a Web-scale Data Management Ecosystem
Demonstrated by SAP HANA

Alejandro Salinger (SAP SE – Walldorf, DE)

License Creative Commons BY 3.0 Unported license
© Alejandro Salinger

Joint work of Franz Faerber; Jonathan Dees; Martin Weidner; Stefan Baeuerle; Wolfgang Lehner
Main reference F. Faerber, J. Dees, M. Weidner, S. Bäuerle, W. Lehner, “Towards a web-scale data management

ecosystem demonstrated by SAP HANA”, in Proc. of the IEEE 31st Int’l Conf. on Data
Engineering (ICDE’15), pp. 1259–1267, 2015.

URL http://dx.doi.org/10.1109/ICDE.2015.7113374

The requirements for modern data management systems have changed in the last years
mainly due to the growth in application space with different usage patterns, changes in
underlying hardware, and growing data volumes. In this scenario, a solution must deal with a
multidimensional problem space with multiple domain-specific data types, data consumption
models, consistence notions, and query languages, among others. As no single engine can
handle all the different dimensions, it is natural to tackle and optimize each dimension
with specialized approaches. However, we argue for a deep integration of individual engines
into a single coherent and consistent data management ecosystem that provides a common
understanding of the overall business semantics.

We describe SAP HANA as an example of what such a holistic but also flexible data
management ecosystem could look like. We describe the system’s in-memory column store
engine as well as its specialized engines that allow for data processing beyond relational data
(e.g., time series, text search, graph), and we argue about the advantages of bringing data
processing closer to the data itself.

We then describe HANA’s Scale-Out Extension (SAP HANA Vora) with its low footprint,
highly scalable processing engines as well as the system’s integration with the Hadoop
ecosystem. We give an example of the techniques to store and process large amounts of time
series data such as compression based on the combination of several approximation methods
with varying accuracy in the representation for different data warmness levels.

3.27 A 21st Century Model for Disseminating Knowledge
Robert Sedgewick (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Robert Sedgewick

In this talk, we describe a scalable model for teaching and learning based on a combination of
studio-produced video lectures, a web repository of associated materials, and an authoritative
classic textbook. The approach has already proven effective for teaching algorithms and data
structures, the analysis of algorithms, and analytic combinatorics, and will be further tested
in the coming year with a new computer science textbook and associated materials that can

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://dx.doi.org/10.1109/ICDE.2015.7113374
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

18 16101 – Data Structures and Advanced Models of Computation on Big Data

serve as a basis for a first course in computer science that can stand alongside traditional
first courses in physics, chemistry, economics, and other disciplines.

3.28 Connectivity Oracles
Seth Pettie (University of Michigan, Ann Arbor, MI, US)

License Creative Commons BY 3.0 Unported license
© Seth Pettie

Joint work of Ran Duan; Seth Pettie
Main reference R. Duan and S. Pettie, “Connectivity oracles for failure prone graphs”, in Proc. of the 42nd ACM

Symp. on Theory of Computing (STOC’10), pp. 465–474, 2010.
URL http://dx.doi.org/10.1145/1806689.1806754

A d-failure connectivity oracle is a data structure for undirected graphs that can answer
connectivity queries after any d vertices have been deleted. The best d-failure connectivity
oracles that have fast query time either have exorbitant preprocessing or linear deletion time.
In this talk I’ll discuss a simplified variant of the Duan-Pettie (2010) d-failure connectivity
oracle that has polynomial (in n) preprocessing, polynomial (in d) time for vertex deletion,
and O(d) time to answer a connectivity query. A new type of graph decomposition is used,
which is inspired by the Fürer-Raghavachari algorithm for approximating the minimum-degree
spanning tree.

3.29 I/O-Efficient Similarity Join
Francesco Silvestri (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Francesco Silvestri

Joint work of Rasmus Pagh; Ninh Pham; Francesco Silvestri; Morten Stöckel
Main reference R. Pagh, N. Pham, F. Silvestri, M. Stöckel, “I/O-Efficient Similarity Join”, in Proc. of the 23rd

Annual European Symp. on Algorithms (ESA’15), LNCS, Vol. 9294, pp. 941–952, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-662-48350-3_78

We present an I/O-efficient algorithm for computing similarity joins based on locality-sensitive
hashing (LSH). In contrast to the filtering methods commonly suggested our method has
provable sub-quadratic dependency on the data size. Further, in contrast to straightforward
implementations of known LSH-based algorithms on external memory, our approach is able
to take significant advantage of the available internal memory: Whereas the time complexity
of classical algorithms includes a factor of Mρ , where ρ is a parameter of the LSH used, the
I/O complexity of our algorithm merely includes a factor (N/M)ρ , where N is the data
size and M is the size of internal memory. Our algorithm is randomized and outputs the
correct result with high probability. It is a simple, recursive, cache-oblivious procedure,
and we believe that it will be useful also in other computational settings such as parallel
computation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/1806689.1806754
http://dx.doi.org/10.1145/1806689.1806754
http://dx.doi.org/10.1145/1806689.1806754
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-48350-3_78
http://dx.doi.org/10.1007/978-3-662-48350-3_78
http://dx.doi.org/10.1007/978-3-662-48350-3_78

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 19

3.30 Fast construction of graph sparsification: graphs, ellipsoids, and
balls-into-bins

He Sun (University of Bristol, GB)

License Creative Commons BY 3.0 Unported license
© He Sun

Joint work of Yin Tat Lee; He Sun
Main reference Y. Tat Lee, H. Sun, “Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time”, in

Proc. of the IEEE 56th Annual Symp. on Foundations of Computer Science (FOCS’15),
pp. 250–269, IEEE CS, 2015; pre-print available as arXiv:1508.03261 [cs.DS], 2015.

URL http://dx.doi.org/10.1109/FOCS.2015.24
URL http://arxiv.org/abs/1508.03261

Spectral sparsification is the procedure of approximating a graph by a sparse graph such that
many properties between these two graphs are preserved. Over the past decade, spectral
sparsification has become a standard tool in speeding up runtimes of algorithms for various
combinatorial and learning problems.

In this talk I will present our recent work on constructing a linear-sized spectral sparsific-
ation in almost-linear time. In particular, I will discuss some interesting connections among
graphs, ellipsoids, and balls-into-bins processes.

3.31 Revisiting the Construction of SSPDs in the Presence of Memory
Hierarchies

Jan Vahrenhold (Universität Münster, DE)

License Creative Commons BY 3.0 Unported license
© Jan Vahrenhold

Joint work of Sylvie Temme; Jan Vahrenhold

We revisit the randomized internal-memory algorithm of Abam and Har-Peled [SoCG 2010]
for constructing a semi-separated pair decomposition (SSPD) for N points in Rd in the
context of the cache-oblivious model of computation. Their algorithm spends O(nε−d log2N)
time (assuming that the floor function can be evaluated in constant time, O(nε−d log2

2N)
time otherwise) in expectation and produces an SSPD of linear size in which each point
participates in only a logarithmic number of pairs with high probability.

Using a modified analysis of their algorithm and several cache-oblivious techniques for
tree construction, labeling, and traversal, we obtain a cache-oblivious algorithm that spends
an expected number of O(sort(nε−d) log2N) memory transfers.

3.32 Quicksort with Equal Keys
Sebastian Wild (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Wild

Joint work of Martin Aumüller; Martin Dietzfelbinger; Conrado Martínez; Markus Nebel; Sebastian Wild

In this talk, I present the first analysis of generalized Quicksort on inputs with equal keys,
confirming in part a conjecture of Sedgewick and Bentley.

I consider Quicksort variants which partition inputs into s segments, around s− 1 pivots
chosen as order statistics from a sample, generalizing on Quicksort variants used in practice.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1109/FOCS.2015.24
http://arxiv.org/abs/1508.03261
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

20 16101 – Data Structures and Advanced Models of Computation on Big Data

The input model is random u-ary words, i. e., n elements chosen i. i. d. uniformly from
{1, . . . , u}. Generalized Quicksort needs on average ā

Hn ln(u) +O(n) ternary comparisons
to sort a random u-ary word of length n, provided that u = ω(1) and u = O(n1/3−ε). The
corresponding number for the classic model of random permutations is ā

Hn ln(n) + O(n),
so the same relative speedup from sampling and multi-way partitioning is attained in both
input models. Here, ā

H is a (known) constant that depends only on the used partitioning
algorithm and the pivot-sampling scheme.

The analysis relies on the connection of Quicksort and search trees: I reduce the analysis
of Quicksort to determining the path length in search trees built from inserting elements
drawn i.i.d. from {1, . . . , u}.

4 Open problems

The seminar included an open problem session during which the following problems were
discussed.

4.1 Open Problem 1
Deepak Ajwani (Bell Labs – Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Deepak Ajwani

The problem that I posed was the following: Given a directed graph G, find an acyclic
subgraph D, such that TransitiveClosure(D) is as close to TransitiveClosure(G) as possible.

Since the transitive closure of D can only be a subset of transitive closure of G and it
is a 0-1 matrix, the problem can also be formulated as “Given a directed graph G, find an
acyclic subgraph D, such that TransitiveClosure(D) has as many ones as possible.”

This is an interesting theoretical problem (particularly as the related problem of minimum
feedback arc set is APX-hard). But my motivation for this problem came from a practical
consideration, namely cleaning up crowd-sourced taxonomies. These taxonomies capture
the specificity or generality of semantic concepts/categories and should logically not have
directed cycles. Unfortunately, because they are created in a crowd-sourced way, they usually
have thousands of cycles. So, the question is “can we remove the cycles while preserving the
logical structure of the taxonomy as much as possible?”

The discussion in the session revolved around the correct formulation of this problem,
particularly in going from “preserving the logical structure” to “maximising the transitive
closure.” In addition, I was asked if additional input related to number of different users
creating an edge is available and I replied in negative. Also, I clarified that I am interested
in good approximation solutions as well as heuristics that can deal with taxonomies that
have hundreds of millions of edges.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 21

4.2 Open Problem 2
Alejandro Lopez-Ortiz (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Alejandro Lopez-Ortiz

My meta-problem is as follows:
Nowadays large data sets live in distributed NoSQL databases, often in main memory. A

typical computation locks a view of the data (but not necessarily the data itself) that is at
most a handful of operations old, until the transaction completes and the lock on the view is
released.

This means that our current data structures and algorithms need to (1) be adapted to
run in a distributed fashion (2) with as low as possible amounts of communication between
nodes and (3) supporting limited, bounded persistence in the most efficient manner.

For some data structures and algorithms this can be achieved in a straightforward manner
(e.g. BSTs, embarrassingly parallelizable algorithms), some others an efficient implementation
requires new tools and last but not least, in some cases this might not be achievable. In this
case a lower bound for the data structure/algorithm would be desirable, e.g. how expensive
it is to recompute Dijkstra in a distributed, persistent setting with a small number of
communication rounds.

4.3 Open Problem 3
Sebastian Wild (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Wild

I posed the problem to compute or approximate the expected costs of the optimal alphabetic
search tree for random weights on the leaves.

More precisely, assume that we draw U1, . . . , Un−1 i. i. d. uniformly in (0, 1) and denote
by D1, . . . , Dn the spacings between the sorted numbers, i. e., Dj is the difference of the jth
smallest and the (j− 1)st smallest of the Ui, where we add U0 = 0 and Un = 1. The resulting
vector (D1, . . . , Dn) is a stochastic vector, drawn uniformly from the closed n−1 dimensional
simplex; it thus represents a uniformly chosen random probability distribution over the
numbers {1, . . . , n}. The vector (D1, . . . , Dn−1) is also said to have a Dirichlet-distribution
with parameter (1, . . . , 1). We now construct the optimal binary search tree with leaf weights
D1, . . . , Dn, and consider as cost of the tree C =

∑
iDi · depth(ith leaf), i. e., the average

leaf depth.
This problem is related to the analysis of comparison-optimal partitioning methods in

Quicksort, which have been proposed by Aumüller and Dietzfelbinger [1]: The expected costs
of the optimal alphabetic search tree are the leading-term coefficient of the expected number
of comparisons of comparison-optimal partitioning.

The problem is also a natural information-theoretic question: How much can an alphabet
with random letter access probabilities be compressed on average using an alphabetic prefix
code (i. e., one that retains the order of symbols among code words; such codes are also
known as Hu-Tucker codes). If we subtract from the average code word length C the (binary)
entropy of (D1, . . . , Dn), we obtain the redundancy of the code, R = C −H(D1, . . . , Dn) ≥ 0.

16101

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 16101 – Data Structures and Advanced Models of Computation on Big Data

The problem is thus to determine the expected redundancy E[R], where the expectation is
taken over the weights D1, . . . , Dn.

From the information-theoretic perspective, one could also ask for other coding schemes,
such as Huffman codes or Shannon codes; results for Huffman codes yield an upper bound
on Hu-Tucker codes. For Huffman codes, worst-case bounds on the redundancy are known
for given symbol weights (see, e. g., [2] and the references therein). The bound depends only
on the probability of the most probable symbol, but a precise computation of the expected
value is still challenging.

References
1 M. Aumüller and M. Dietzfelbinger. “Optimal Partitioning for Dual-Pivot Quicksort”, ACM

Transactions on Algorithms 12:2 article 18, 2016. http://dx.doi.org/10.1145/2743020
2 Chunxuan Ye and R. W. Yeung. “A simple upper bound on the redundancy of

Huffman codes”, IEEE Transactions on Information Theory 48:7, 2132–2138, 2002.
http://dx.doi.org/10.1109/TIT.2002.1013158

http://dx.doi.org/10.1145/2743020
http://dx.doi.org/10.1109/TIT.2002.1013158

Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick 23

Participants

Deepak Ajwani
Bell Labs – Dublin, IE

Helmut Alt
FU Berlin, DE

Alexandr Andoni
Columbia Univ. – New York, US

Martin Aumüller
IT Univ. of Copenhagen, DK

Timo Bingmann
KIT – Karlsruher Institut für
Technologie, DE

Gerth Stølting Brodal
Aarhus University, DK

Andrej Brodnik
University of Primorska, SI

Martin Dietzfelbinger
TU Ilmenau, DE

Anne Driemel
TU Eindhoven, NL

Fabian Dütsch
Universität Münster, DE

Guy Even
Tel Aviv University, IL

Rolf Fagerberg
University of Southern Denmark –
Odense, DK

Martin Farach-Colton
Rutgers Univ. – Piscataway, US

Simon Gog
KIT – Karlsruher Institut für
Technologie, DE

Mordecai Golin
HKUST – Kowloon, HK

Goetz Graefe
HP Labs – Madison, US

Torben Hagerup
Universität Augsburg, DE

Herman J. Haverkort
TU Eindhoven, NL

John Iacono
New York University, US

Riko Jacob
IT Univ. of Copenhagen, DK

Tsvi Kopelowitz
University of Michigan –
Ann Arbor, US

Moshe Lewenstein
Bar-Ilan University – Ramat
Gan, IL

Alejandro Lopez-Ortiz
University of Waterloo, CA

Jérémie Lumbroso
Princeton University, US

Conrado Martinez
UPC – Barcelona, ES

Kurt Mehlhorn
MPI für Informatik –
Saarbrücken, DE

Ulrich Carsten Meyer
Goethe-Universität – Frankfurt
a.M., DE

Friedhelm Meyer auf der Heide
Universität Paderborn, DE

Ian Munro
University of Waterloo, CA

Markus E. Nebel
TU Kaiserslautern, DE

Elisabeth Neumann
TU Kaiserslautern, DE

John D. Owens
Univ. of California, Davis, US

Manuel Penschuck
Goethe-Universität – Frankfurt
a.M., DE

Seth Pettie
University of Michigan –
Ann Arbor, US

Rajeev Raman
University of Leicester, GB

Alejandro Salinger
SAP SE – Walldorf, DE

Peter Sanders
KIT – Karlsruher Institut für
Technologie, DE

Robert Sedgewick
Princeton University, US

Francesco Silvestri
IT Univ. of Copenhagen, DK

He Sun
University of Bristol, GB

Jan Vahrenhold
Universität Münster, DE

Sebastian Wild
TU Kaiserslautern, DE

16101

Report from Dagstuhl Seminar 16111

Rethinking Experimental Methods in Computing
Edited by
Daniel Delling1, Camil Demetrescu2, David S. Johnson3, and
Jan Vitek4

1 Apple Inc., Cupertino, US, daniel.delling@live.com
2 Sapienza University of Rome, IT, demetres@dis.uniroma1.it
3 Columbia University, New York, NY, US
4 Northeastern University, Boston, US, j.vitek@neu.edu

Abstract
This report documents the talks and discussions at the Dagstuhl seminar 16111 “Rethinking
Experimental Methods in Computing”. The seminar brought together researchers from several
computer science communities, including algorithm engineering, programming languages, inform-
ation retrieval, high-performance computing, operations research, performance analysis, embed-
ded systems, distributed systems, and software engineering. The main goals of the seminar
were building a network of experimentalists and fostering a culture of sound quantitative experi-
ments in computing. During the seminar, groups of participants have worked on distilling useful
resources based on the collective experience gained in different communities and on planning
actions to promote sound experimental methods and reproducibility efforts.

Seminar March 13–18, 2016 – http://www.dagstuhl.de/16111
1998 ACM Subject Classification D.2 Software Engineering, D.3 Programming Languages, E.1

Data Structures, F.2 Analysis of Algorithms and Problem Complexity, H.3 Information
Storage and Retrieval, C.3 Special-Purpose and Application-based Systems, C.2 Computer-
Communication Networks, C.4 Performance of Systems, B.8 Performance and Reliability

Keywords and phrases Algorithms, Benchmarks, Data sets, Experiments, Repeatability, Repro-
ducibility, Software Artifacts, Statistics

Digital Object Identifier 10.4230/DagRep.6.3.24
Edited in cooperation with Emilio Coppa

1 Executive Summary

Emilio Coppa
Camil Demetrescu
Daniel Delling
Jan Vitek

License Creative Commons BY 3.0 Unported license
© Emilio Coppa, Camil Demetrescu, Daniel Delling, and Jan Vitek

This seminar is dedicated to the memory of our co-organiser and friend David Stifler Johnson,
who played a major role in fostering a culture of experimental evaluation in computing and
believed in the mission of this seminar. He will be deeply missed.

The pervasive application of computer programs in our modern society is raising fundamental
questions about how software should be evaluated. Many communities in computer science
and engineering rely on extensive experimental investigations to validate and gain insights
on properties of algorithms, programs, or entire software suites spanning several layers of

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Rethinking Experimental Methods in Computing, Dagstuhl Reports, Vol. 6, Issue 3, pp. 24–43
Editors: Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16111
http://dx.doi.org/10.4230/DagRep.6.3.24
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 25

complex code. However, as a discipline in its infancy, computer science still lags behind
other long-standing fields such as natural sciences, which have been relying on the scientific
method for centuries.

There are several threats and pitfalls in conducting rigorous experimental studies that
are specific to computing disciplines. For example, experiments are often hard to repeat
because code has not been released, it relies on stacks of proprietary or legacy software, or
the computer architecture on which the original experiments were conducted is outdated.
Moreover, the influence of side-effects stemming from hardware architectural features are
often much higher than anticipated by the people conducting the experiments. The rise
of multi-core architectures and large-scale computing infrastructures, and the ever growing
adoption of concurrent and parallel programming models have made reproducibility issues
even more critical. Another major problem is that many experimental works are poorly
performed, making it difficult to draw any informative conclusions, misdirecting research,
and curtailing creativity.

Figure 1 David Stifler Johnson,
1945–2016.

Surprisingly, in spite of all the common issues, there
has been little or no cooperation on experimental method-
ologies between different computer science communities,
who know very little of each others efforts. The goal of
this seminar was to build stronger links and collabora-
tions between computer science sub-communities around
the pivotal concept of experimental analysis of software.
Also, the seminar allowed exchange between communities
their different views on experiments. The main target
communities of this seminar were algorithm engineering,
programming languages, operations research, and software
engineering, but also people from other communities were
invited to share their experiences. Our overall goal was
to come up with a common foundation on how to evaluate software in general, and how to
reproduce results. Since computer science is a leap behind natural sciences when it comes to
experiments, the ultimate goal of the seminar was to make a step forward towards reducing
this gap. The format of the seminar alternated talks intended for a broad audience, discussion
panels, and working sessions in groups.

The organisers would like to thank the Dagstuhl team and all the participants for making
the seminar a success. A warm acknowledgement goes to Amer Diwan, Sebastian Fischmeister,
Catherine McGeoch, Matthias Hauswirth, Peter Sweeney, and Dorothea Wagner for their
constant support and enthusiasm.

16111

26 16111 – Rethinking Experimental Methods in Computing

2 Table of Contents

Executive Summary
Emilio Coppa, Camil Demetrescu, Daniel Delling, and Jan Vitek 24

Overview of Talks
Soundness of Experiments in Parallel Computing
Umut A. Acar . 28

How Did This Get Published? Pitfalls in Experimental Evaluation of Computing
Systems
José Nelson Amaral . 28

What is the Value of the Data?
José Nelson Amaral . 28

Experimental Methodology in Parallel and Streaming Analytics
David A. Bader . 29

The Importance of %: Why We Need to Think about Goals, Targets and Populations
Judith Bishop . 29

Reproducibility in Computing: The Role of Professional Societies
Ronald F. Boisvert . 30

Tools from Statistics, Machine Learning and Data Visualization for the Assessment
of Heuristics for Optimization
Marco Chiarandini . 30

Computing in the Cloud: Tools and Practices
Dmitry Duplyakin . 31

Network Testbeds and Repeatable Research
Eric Eide . 31

Experimentation and Replication in Embedded and Real-Time Systems
Sebastian Fischmeister . 31

The PRIMAD Model of Reproducibility: A Framework Model of Reproducibility
(Result of Dagstuhl Seminar 16041)
Norbert Fuhr . 32

Lessons Learned from Shortest Path Algorithm Evaluation
Andrew V. Goldberg . 32

The TIRA Experiment Platform
Matthias Hagen . 32

Artifact Evaluation: Approach and Experience from OOPSLA’s first AEC
Matthias Hauswirth . 33

Incentives & Rewards
Matthias Hauswirth . 33

Rigorous Benchmarking in Reasonable Time
Tomas Kalibera . 33

Data Analysis for Performance Modeling
Catherine C. McGeoch . 34

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 27

Chaos in Computer Performance
J. Eliot B. Moss . 34

Assessing the Performance of Heuristics in Multiobjective Optimization: an Over-
view
Luís Paquete . 34

Algorithm Engineering: An Attempt at a Definition
Peter Sanders . 35

The Truth, the Whole Truth and Nothing but the Truth
Peter F. Sweeney . 35

Experimenting with Humans vs. Experimenting with Machines
Walter F. Tichy . 36

I Think Nobody Wants to Do Bad Science!
Petr Tuma . 36

Some remarks on data sharing and the replication of results
Dorothea Wagner . 36

Experimenting with Innocent Humans
Roger Wattenhofer . 37

Working groups
Educating the community
Umut A. Acar, José Nelson Amaral, David A. Bader, Judith Bishop, Ronald F.
Boisvert, Marco Chiarandini, Markus Chimani, Daniel Delling, Camil Demetrescu,
Amer Diwan, Dmitry Duplyakin, Eric Eide, Erik Ernst, Sebastian Fischmeister,
Norbert Fuhr, Paolo G. Giarrusso, Andrew V. Goldberg, Matthias Hagen, Matthias
Hauswirth, Benjamin Hiller, Richard Jones, Tomas Kalibera, Marco Lübbecke, Cath-
erine C. McGeoch, Kurt Mehlhorn, J. Eliot B. Moss, Ian Munro, Petra Mutzel, Luís
Paquete, Mauricio Resende, Peter Sanders, Nodari Sitchinava, Peter F. Sweeney,
Walter F. Tichy, Petr Tuma, Dorothea Wagner, and Roger Wattenhofer 37

Evangelism
Mauricio Resende, David A. Bader, Ronald F. Boisvert, Catherine C. McGeoch, J.
Eliot B. Moss, and Dorothea Wagner . 39

Replicability
Petr Tuma, Umut A. Acar, Judith Bishop, Ronald F. Boisvert, Amer Diwan, Dmitry
Duplyakin, Eric Eide, Norbert Fuhr, Matthias Hagen, J. Eliot B. Moss, and Peter
F. Sweeney . 40

Participants . 43

16111

28 16111 – Rethinking Experimental Methods in Computing

3 Overview of Talks

3.1 Soundness of Experiments in Parallel Computing
Umut A. Acar (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Umut A. Acar

Recent advances in hardware such as the mainstream use of SMPs (multicore) computers,
and large-scale data centers have brought parallelism back to the forefront of computing.
Parallelism is now common in many different forms of hardware ranging from mobile phones to
laptops and desktop computers. Unfortunately, writing performant parallel code can require
low-level optimizations that make it extremely difficult to reproduce results and compare
different approaches via standard empirical methodologies. In this talk, I will consider two
specific problems–granularity control and locality–that can require such optimizations. As a
solution, I propose the general idea of developing programming languages and systems that
manage performance automatically for the programmer. This approach requires developing
programming-language abstractions and algorithms for managing hardware resources in
execution. As examples, I propose specific solutions to the two problems considered—
granularity control and locality–and show some evidence that this approach can work well.
(Joint work with Guy Blelloch, Arthur Chargueraud, Matthew Fluet, Stefan Muller, Ram
Raghunathan, Mike Rainey)

3.2 How Did This Get Published? Pitfalls in Experimental Evaluation
of Computing Systems

José Nelson Amaral (University of Alberta – Edmonton, CA)

License Creative Commons BY 3.0 Unported license
© José Nelson Amaral

This talk illustrates, through simple analogies, that summarizing either percentages or
normalized quantities, such as speedups, using the arithmetic mean is always wrong when
the quantities were normalized using different denominators. The talk then presents two
alternative goals for summarization – latency or throughput – and presents suitable solutions
for the summarization of several measurements in both cases.

3.3 What is the Value of the Data?
José Nelson Amaral (University of Alberta – Edmonton, CA)

License Creative Commons BY 3.0 Unported license
© José Nelson Amaral

In publications in Computing Science that report experimental results there is often lack of
rigour and precision in the description of the experimental methodology and experimental
setup, in the reporting and summarization of results and in the formulation of claims based
on the experimental results. In this talk I put forward the notion that this state of affairs
is, in a non-trivial portion, due to the low value of the experimental results. There are

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 29

several reasons for the low value placed on published results. Experimental evaluations are
difficult to reproduce because the required code and specifications are seldom available. The
results of a given evaluation are very much dependent on variations in hardware operation
and in configurations of the software stack. Benchmarks used for evaluation often do not
reflect the programs Thus often, when an organization is interested in a technique described
in the literature that organization puts very little weight on the experimental evaluation.
Thus, there is a cycle where the low value placed in the experimental results gives little
incentive for more rigorous experimental evaluation, which in turns keeps the valuation of
the experimental results low.

3.4 Experimental Methodology in Parallel and Streaming Analytics
David A. Bader (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 3.0 Unported license
© David A. Bader

Emerging real-world graph problems include: detecting community structure in large social
networks; improving the resilience of the electric power grid; and detecting and preventing
disease in human populations. Unlike traditional applications in computational science and
engineering, solving these problems at scale often raises new challenges because of the sparsity
and lack of locality in the data, the need for additional research on scalable algorithms and
development of frameworks for solving these problems on high performance computers, and
the need for improved models that also capture the noise and bias inherent in the torrential
data streams. In this talk, the speaker will discuss experimental methodologies in massive
data-intensive computing for applications in computational science and engineering.

3.5 The Importance of %: Why We Need to Think about Goals,
Targets and Populations

Judith Bishop (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Judith Bishop

Experiments frequently involve counting, and the absolute numbers are then measured over
time (a graph that increases) or compared to other software that has similar characteristics (a
bar chart). Sometimes, larger numbers are broken down into groups (a pie chart). Recently,
there has been a push towards asking an additional question: what is the denominator? In
other words, having measured a number, how does that relate to perfect? The result can be
presented as a percentage. An example might be reporting the figure of 10,000 uses a month
of a website. Immediately one can ask some more questions: geographically, is that for US
students – well, a nice number – or for US consumers – not so good. If the denominator is
known, then one can have more confidence regarding relative numbers. However, a chart
showing usage of 10,000 and 15,000 by two companies, might still be missing by a million
uses of a third company: the denominator reveals this hidden number. Nevertheless, it is
extremely difficult to find denominators, even to estimate them. Emphasizing denominators
is very important to industry where return on investment (ROI) is a factor in research. I
shall give some examples and raise discussion on the issue. I’d be interested to know how the
search for denominators fits into the other aims and expectations of the rest of the workshop.

16111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

30 16111 – Rethinking Experimental Methods in Computing

3.6 Reproducibility in Computing: The Role of Professional Societies
Ronald F. Boisvert (NIST – Gaithersburg, US)

License Creative Commons BY 3.0 Unported license
© Ronald F. Boisvert

A scientific result is not fully established until it has been independently reproduced. Un-
fortunately, much published research is not independently verified. And, in the rare cases
when a systematic effort has been made to do so, the results have not been encouraging.
This threatens to undermine public confidence in the enterprise, and has led to calls for
improvements to the process of reporting and reviewing scientific research in, for example,
the biomedical sciences. The record in computing is not much better. Changing this state of
affairs is not easy. Reproducing the work of others can be quite challenging, and does not
garner the same credit as performing the original research. Professional societies have an
important role in developing and promoting an open science ecosystem. As part of their
role of arbiters and curators of the research literature, they can play a key role in changing
the incentive structure to promote higher standards of reproducibility. In this talk I will
describe some of the grassroots efforts being undertaken to improve the scientific process
within the Association for Computing Machinery (ACM), the world’s largest professional
society in computing research. I will also describe steps within the ACM Publications Board
being taken to support this.

3.7 Tools from Statistics, Machine Learning and Data Visualization for
the Assessment of Heuristics for Optimization

Marco Chiarandini (University of Southern Denmark – Odense, DK)

License Creative Commons BY 3.0 Unported license
© Marco Chiarandini

The experimental analysis of algorithms within the engineering cycle may be conducted at
different levels and with different goals. For example, we may be interested in describing
behaviours for understanding and explaining algorithm execution or in modeling performance
for prescribing the best algorithm configurations. Several tools from statistics and machine
learning have been used to address these tasks. In the field of optimization heuristics, a
machine learning approach seems, with good reasons, to be prevailing. New opportunities to
make sense of data and improve presentation and reproducibility are offered by data-driven
documents with interactive and dynamic graphics and by virutalized environments. In
the talk, I will briefly go through these themes drawing examples from my experience as
practitioner and reviewer.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 31

3.8 Computing in the Cloud: Tools and Practices
Dmitry Duplyakin (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Dmitry Duplyakin

In this talk, I will outline the current work on supporting experiments on CloudLab, an
NSF-funded large-scale cloud testbeds. I will share our motivation for using a configuration
management system for “orchestrating” software components and discuss scenarios in which
such systems can benefit experimenters. I will also highlight some of the proposed work, both
on the infrastructure side and on techniques for characterizing the available computational
resources and better understanding of scientific applications.

3.9 Network Testbeds and Repeatable Research
Eric Eide (University of Utah – Salt Lake City, US)

License Creative Commons BY 3.0 Unported license
© Eric Eide

The Flux Research Group at the University of Utah has developed and operated public
network testbeds, such as Emulab and CloudLab, for more than fifteen years. Beyond
providing realistic and highly configurable environments for a variety of computer-based
experiments, one of the goals of these testbeds is to encourage repeatable research. In this
talk, I will review the history of testbed development at Utah with focus on features that
support repeatable research. In addition, I will discuss issues and opportunities for network
testbeds to better support repeatable research in the future.

3.10 Experimentation and Replication in Embedded and Real-Time
Systems

Sebastian Fischmeister (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Sebastian Fischmeister

Main reference A. Born de Oliveira, J.-C. Petkovich, T. Reidemeister, and S. Fischmeister, “DataMill: rigorous
performance evaluation made easy”, in Proc. of the 4th ACM/SPEC Intl. Conf. on Performance
Engineering (ICPE ’13), pp. 137–148, 2013.

URL http://dx.doi.org/10.1145/2479871.2479892

This talk will discuss the need for rigorous performance analysis and report results of a
replication experiment conducted on the DataMill infrastructure. Based on the lessons
learnt from building DataMill and running experiments, the talk then also discusses the
challenges of performance analysis with specific focus on experimentation in embedded and
heterogeneous computing systems.

16111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2479871.2479892
http://dx.doi.org/10.1145/2479871.2479892
http://dx.doi.org/10.1145/2479871.2479892
http://dx.doi.org/10.1145/2479871.2479892

32 16111 – Rethinking Experimental Methods in Computing

3.11 The PRIMAD Model of Reproducibility: A Framework Model of
Reproducibility (Result of Dagstuhl Seminar 16041)

Norbert Fuhr (Universität Duisburg-Essen, DE)

License Creative Commons BY 3.0 Unported license
© Norbert Fuhr

For describing different degrees of reproducibility, the participants of Dagstuhl Seminar 16041
started from a model referring to the components of an experiment: (R) the research goal,
(M) the method proposed for achieving this goal, (I) the implementation of this method, (P)
the platform on which the implementation is run, (D) the data (input + parameters) used in
the experiment, and finally (A) the actor performing the experiment. When a researcher tries
to reproduce an experiment, he should specify which components are changed, i.e. ’primed’:
R → R’ repurpose for a new research goal, M → M’: a new method, I → I’: alternative
implementation, P → P’: different platform, D → D’: other input/parameters. Finally, other
important aspects of reproducibility are consistency of experimental results, and transparency,
i.e. the ability to look into all necessary components to verify that the experiment does what
it claims.

3.12 Lessons Learned from Shortest Path Algorithm Evaluation
Andrew V. Goldberg (Amazon.com, Inc. – Palo Alto, US)

License Creative Commons BY 3.0 Unported license
© Andrew V. Goldberg

This is a retrospective on experimental evaluation of shortest path algorithms. We discuss
bridging the gap between theory in practice in the area that happened in 1990s. We discuss
the general problem, with negative-length arcs and possible negative cycles, and the special
cases: No negative cycles and no negative arcs.

3.13 The TIRA Experiment Platform
Matthias Hagen (Bauhaus-Universität Weimar, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Hagen

The TIRA experimentation platform supports organisers of shared tasks in computer science
to accept the submission of executable software and allows for reproducible experimental
settings. Through virtualization techniques, participants in a shared task can directly work
as they usually would on their own machines. TIRA also hosts the datasets used in a shared
task with the option of keeping test data in a secure execution environment that protects
them from leaking to the participants. Experimental results are displayed on a dedicated
web page. Later reproducing of results or comparing to the state of the art for a given task
becomes as easy as clicking a button.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 33

3.14 Artifact Evaluation: Approach and Experience from OOPSLA’s
first AEC

Matthias Hauswirth (University of Lugano, CH)

License Creative Commons BY 3.0 Unported license
© Matthias Hauswirth

The programming languages community recently introduced so-called “artifact evaluation
committees” to their conferences (PLDI, POPL, OOPSLA, ECOOP and others). Those
AECs complement the traditional program committees by evaluating the artifacts underlying
the papers. I will describe the idea behind AECs and will report on the experience of running
the first two AECs at OOPSLA.

3.15 Incentives & Rewards
Matthias Hauswirth (University of Lugano, CH)

License Creative Commons BY 3.0 Unported license
© Matthias Hauswirth

We use the term “incentivize” quite often when thinking about solving certain problems
or steering the community in certain ways. One such incentive is the AEC badge authors
can place on their papers. While I designed and used that badge at OOPSLA, I claim that
incentives don’t usually work as intended. In this talk I will provide a brief glimpse into the
evidence (in terms of arguments and experimental results) against using incentives in our
situation, and in most situations we care about.

3.16 Rigorous Benchmarking in Reasonable Time
Tomas Kalibera (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Tomas Kalibera

I speculate that the quality of experiments performed in systems/PL is often so low because
some researchers believe they would have to run excessive amounts of experiments of
benchmarks for excessive amount of time. We show how to adapt the experiment scale to a
particular problem/system to keep the experimentation time reasonable, while not giving up
on the rigor. We present the method on the example of DaCapo and SPEC CPU benchmarks.
It is not that every time a new source of performance dependency (e.g. unix environment
size, symbol naming at compile time, page allocation at process startup) is found, we have
to multiply the size of all experiments we ever run.

16111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

34 16111 – Rethinking Experimental Methods in Computing

3.17 Data Analysis for Performance Modeling
Catherine C. McGeoch (Amherst College, US)

License Creative Commons BY 3.0 Unported license
© Catherine C. McGeoch

This talk will discuss the problem of building an empirical performance model for algorithms:
that is, developing a function that describes the relationship between time performance
and the main factors that affect performance, including input, algorithm, and platform
parameters. Contrasting advice as to choice of statistical and data analysis tools for this task
may be found, between proponents of the Scientific Method (hypothesis testing, confirmatory
statistics), and what has been called The New Experimentalism (exploratory data analysis). I
will briefly survey these two schools of thought and how they apply to algorithmic performance
modeling. To illustrate these points I will talk about some empirical surprises that arise
when developing a performance model for D-Wave quantum annealing systems.

3.18 Chaos in Computer Performance
J. Eliot B. Moss (University of Massachusetts – Amherst, US)

License Creative Commons BY 3.0 Unported license
© J. Eliot B. Moss

This talk will first give a brief argument as to how any cache-like mechanism, and indeed
most state machines, are subject to chaotic behavior. Whether and how chaos shows up
depends on a program’s interaction with the mechanism, however, and I will show some
examples from cache behavior from SPEC CPU 2000 benchmarks to give a sense of this and
close with suggestions of directions for future experimental methodology.

3.19 Assessing the Performance of Heuristics in Multiobjective
Optimization: an Overview

Luís Paquete (University of Coimbra, PT)

License Creative Commons BY 3.0 Unported license
© Luís Paquete

Multiobjective optimization problems are usually hard to solve. Heuristics are often used to
find an reasonably good approximation to the set of optimal solutions. The image of such
approximation in the objective space consists of a set of points that contains a particular
structure. Since most of these heuristic approaches are of stochastic nature, the sets of
points produced may differ from run to run. This raises an interesting challenge: how to
characterize and compare heuristics based on the sets of points produced in a collection of
runs? In this talk, we give an overview of the main methods for assessing the performance of
heuristics, from a solution quality perspective, for this class of optimization problems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 35

3.20 Algorithm Engineering: An Attempt at a Definition
Peter Sanders (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Peter Sanders

This talk defines algorithm engineering as a general methodology for algorithmic research.
The main process in this methodology is a cycle consisting of algorithm design, analysis,
implementation and experimental evaluation that resembles Popper’s scientific method.
Important additional issues are realistic models, algorithm libraries, benchmarks with real-
world problem instances, and a strong coupling to applications. Algorithm theory with
its process of subsequent modeling, design, and analysis is not a competing approach to
algorithmics but an important ingredient of algorithm engineering. At the end of the talk,
we additionally discuss how algorithm engineering might help with interdisciplinary research
in particular in grand challenge big data applications.

3.21 The Truth, the Whole Truth and Nothing but the Truth
Peter F. Sweeney (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Peter F. Sweeney

The EVALUATE 2011 workshop, co-located with PLDI, brought together members of the
programming language community to discuss experimental evaluation. The outcome of this
endeavor has resulted in “The Truth, the Whole Truth, and Nothing but the Truth: A
Pragmatic Guide to Assessing Empirical Evaluations” that has been accepted for publication
at TOPLAS. Specifically, an unsound claim can misdirect a field, encouraging the pursuit of
unworthy ideas and the abandonment of promising ideas. An inadequate description of a claim
can make it difficult to reason about the claim, for example to determine whether the claim
is sound. Many practitioners will acknowledge the threat of unsound claims or inadequate
descriptions of claims to their field. We believe that this situation is exacerbated and even
encouraged by the lack of a systematic approach to exploring, exposing, and addressing
the source of unsound claims and poor exposition. This paper proposes a framework that
identifies three sins of reasoning that lead to unsound claims and two sins of exposition that
lead to poorly described claims. Sins of exposition obfuscate the objective of determining
whether or not a claim is sound, while sins of reasoning lead directly to unsound claims. Our
framework provides practitioners with a principled way of critiquing the integrity of their
own work and the work of others. We hope that this will help individuals conduct better
science and encourage a cultural shift in our research community to identify and promulgate
sound claims.

16111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36 16111 – Rethinking Experimental Methods in Computing

3.22 Experimenting with Humans vs. Experimenting with Machines
Walter F. Tichy (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Walter F. Tichy

Experiments in computing are done either with or without human participants. I will
contrast the experimental protocols. Benchmarks can often substitute for human subjects.
Analyzing recorded data does not normally qualify as a controlled experiment, as indpendent
variables cannot be varied systematically; thus sich studies can show correlation (which can
be used for prediction) but not causation. Exeriments with humans, as for instance in HCI
or software engineering, are time-consuming, expensive, and high-risk. Often reviewers do
not understand the difficulties of such experiemnts and reject them out of hand for minor
imperfections.

3.23 I Think Nobody Wants to Do Bad Science!
Petr Tuma (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Petr Tuma

This is a very short talk based on the initial seminar survey results, which aims to pose some
questions not explicitly discussed in the survey responses. The questions revolve around our
ability to cover all the technical intricacies of experiments, balancing the costs and benefits
of performing robust experiments, and more generally finding ways of accepting the limits of
experimental results.

3.24 Some remarks on data sharing and the replication of results
Dorothea Wagner (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Dorothea Wagner

During the last 5 to 10 years, national and international science and research funding
organization started a discussion on principles of good scientific practice with regard to the
replication of research results. According agreements clearly state that primary research
data should be shared openly and promptly. In many scientific disciplines, we can observe
intensive common efforts to support “open data in science”. In this talk I want to raise the
question if our community is doing enough in this respect. How can we support and intensify
the collection of data (like benchmark data), and the reproducibility and comparability of
experiments?

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 37

3.25 Experimenting with Innocent Humans
Roger Wattenhofer (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Roger Wattenhofer

A random sentence from a random paper: “We tested our software with 7 subjects”. The 7
PhD students in your lab, probably... Anyway, a few years ago we started testing some of
our software with thousands of innocent users. In short this talk will present a few lessons
we learned. We will discuss the ethical parameters of such massive user studies.

4 Working groups

4.1 Educating the community
Umut A. Acar (Carnegie Mellon University – Pittsburgh, US), José Nelson Amaral (University
of Alberta – Edmonton, CA), David A. Bader (Georgia Institute of Technology – Atlanta,
US), Judith Bishop (Microsoft Research – Redmond, US), Ronald F. Boisvert (NIST –
Gaithersburg, US), Marco Chiarandini (University of Southern Denmark – Odense, DK),
Markus Chimani (Universität Osnabrück, DE), Daniel Delling (Apple Inc. – Cupertino, US),
Camil Demetrescu (Sapienza University of Rome, IT), Amer Diwan (Google – San Francisco,
US), Dmitry Duplyakin (University of Utah – Salt Lake City, US), Eric Eide (University
of Utah – Salt Lake City, US), Erik Ernst (Google – Aarhus, DK), Sebastian Fischmeister
(University of Waterloo, CA), Norbert Fuhr (Universität Duisburg-Essen, DE), Paolo G.
Giarrusso (Universität Tübingen, DE), Andrew V. Goldberg (Amazon.com, Inc. – Palo Alto,
US), Matthias Hagen (Bauhaus-Universität Weimar, DE), Matthias Hauswirth (University
of Lugano, CH), Benjamin Hiller (Konrad-Zuse-Zentrum – Berlin, DE), Richard Jones
(University of Kent – Canterbury, GB), Tomas Kalibera (Northeastern University – Boston,
US), Marco Lübbecke (RWTH Aachen, DE), Catherine C. McGeoch (Amherst College, US),
Kurt Mehlhorn (MPI für Informatik – Saarbrücken, DE), J. Eliot B. Moss (University of
Massachusetts – Amherst, US), Ian Munro (University of Waterloo, CA), Petra Mutzel (TU
Dortmund, DE), Luís Paquete (University of Coimbra, PT), Mauricio Resende (Amazon.com,
Inc. – Seattle, US), Peter Sanders (KIT – Karlsruher Institut für Technologie, DE), Nodari
Sitchinava (University of Hawaii at Manoa – Honolulu, US), Peter F. Sweeney (IBM TJ
Watson Research Center – Yorktown Heights, US), Walter F. Tichy (KIT – Karlsruher
Institut für Technologie, DE), Petr Tuma (Charles University – Prague, CZ), Dorothea
Wagner (KIT – Karlsruher Institut für Technologie, DE), and Roger Wattenhofer (ETH
Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Umut A. Acar, José Nelson Amaral, David A. Bader, Judith Bishop, Ronald F. Boisvert, Marco
Chiarandini, Markus Chimani, Daniel Delling, Camil Demetrescu, Amer Diwan, Dmitry Duplyakin,
Eric Eide, Erik Ernst, Sebastian Fischmeister, Norbert Fuhr, Paolo G. Giarrusso, Andrew V.
Goldberg, Matthias Hagen, Matthias Hauswirth, Benjamin Hiller, Richard Jones, Tomas Kalibera,
Marco Lübbecke, Catherine C. McGeoch, Kurt Mehlhorn, J. Eliot B. Moss, Ian Munro, Petra
Mutzel, Luís Paquete, Mauricio Resende, Peter Sanders, Nodari Sitchinava, Peter F. Sweeney,
Walter F. Tichy, Petr Tuma, Dorothea Wagner, and Roger Wattenhofer

One of the key challenges discussed during the seminar was how to educate the community
to care and recognise the pitfalls and the benefits of conducting sound experiments. After
a common discussion, we formed three subgroups, which worked on: (i) guidelines for

16111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38 16111 – Rethinking Experimental Methods in Computing

authors and reviewers in writing and assessing experimental work, (ii) a Wikipedia page on
experimental methods in computing, and (iii) resources on software experimental methods
for students.

4.1.1 Great Papers: a reviewer’s guide to evaluating experimental research in
computer science

The main goal of this working group was distilling some key aspects that characterise good
quantitative experimental work in computer science. In particular, the group identified
six lines that authors and reviewers are encouraged to consider in writing and assessing
experimental work in computing:

1. Experimental context. Great papers have: clearly specified goals, scope, and research
questions matching the claims.

2. Experimental design. Great papers have: clear description of the methodology, which
matches the stated goals of the experiments and encourages reproduction; well chosen
baselines, competing approaches, and benchmarks; consistent comparison to previous
experimental work; independent and control variables identified that are most important
to the stated goals; attention paid to possible hidden variables.

3. Conduct of the experiment. Great papers have: a clearly stated procedure for collecting
data; metrics and measurement procedures that match experimental goals; sufficient
repetitions of trials in cases of non-deterministic or random outcomes.

4. Analysis. Great papers: use appropriate statistical procedures in terms of the data, its
distribution, and the experimental goals; expose unusual distribution properties (including
skew, bimodality, and outliers); acknowledge and attempt to explain anomalous or missing
data.

5. Presentation of results. Great papers have: clear and insightful presentation that
addresses the stated goals of the work; careful choice of aggregate and summary statistics;
effective use of visualisation techniques; accompanying text that describes figures and
tables.

6. Interpretation of results. Great papers have: claims that are clearly justified by the data
and analysis; consideration of alternative causes for the observations; explicit separation
between justified claims and generalisations beyond the scope of the experiment.

The group plans to extend the list with concrete examples and reach out to program chairs
of conferences and journal editors to refine and tailor the list to specific sub-communities.

References
1 Preliminary Guidelines for Empirical Research in Software Engineering.

http://evaluate.inf.usi.ch/node/30
2 How to Write a Scientific Evaluation Paper.

http://evaluate.inf.usi.ch/node/54

4.1.2 Wikipedia page on Experimental methods in computing

A second goals of this working group was to start writing a Wikipedia page on Experimental
methods in computing. An initial draft of this page can be found at
https://en.wikipedia.org/wiki/Draft:Experimental_methods_in_computing.

http://evaluate.inf.usi.ch/node/30
http://evaluate.inf.usi.ch/node/54
https://en.wikipedia.org/wiki/Draft:Experimental_methods_in_computing

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 39

4.1.3 How to produce sound quantitative research: information for students

This working group has also produced a summary document providing useful resources
for new graduate students and young researchers. An on-going version of the document is
available at http://tinyurl.com/j6cbghz.

4.2 Evangelism
Mauricio Resende (Amazon.com, Inc. – Seattle, US), David A. Bader (Georgia Institute of
Technology – Atlanta, US), Ronald F. Boisvert (NIST – Gaithersburg, US), Catherine C.
McGeoch (Amherst College, US), J. Eliot B. Moss (University of Massachusetts – Amherst,
US), and Dorothea Wagner (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Mauricio Resende, David A. Bader, Ronald F. Boisvert, Catherine C. McGeoch, J. Eliot B.
Moss, and Dorothea Wagner

The main goal of this working group was to consider how best to publicize the work of
Dagstuhl Seminar 16111 and how to facilitate uptake in the larger community. A list of the
main ideas follows:
1. Contributions to CRA Best Practices Memos, Informatics in Europe or to a stand-alone

collection. Announce presence with targeted emails. Topic ideas:
How to review an experimental paper in subfield X.
How to add artifact submission and evaluation to your conference or journal submission
process.
Advice for tenure committees on reviewing experimental work in computer science.
How to integrate experimental projects in your classroom.
How to build and maintain a living benchmark repository.
How to run a DIMACS Challenge.

2. Ensure continuity of DIMACS Challenge series and evaluate if there should be challenges
in other areas.

3. Talk to people who organize summer schools and people who might teach summer schools,
about an experimental methodology course.

4. Contact conference and journal steering committees, to propose that they consider
initiating procedures for artifact submission and evaluation.

5. Put together a short list of best papers in experimental methodology.
6. Talk to organisers about a follow-up of this meeting, at Dagstuhl or FCRC.
7. Write letters (position papers) to key players in CS research. Introduce experimental

methodology/support for artifacts; explain why it is important; highlight key points;
suggest that the recipient creates incentives and support mechanisms; say how to find
out more information. The group suggested two white papers, addressing different topics
for different (but overlapping) focus groups:
a. Position paper on research methodology.
b. Position paper on artifact evaluation and publishing.

8. Contact steering committees of appropriate meetings, to propose that they consider
experimentalists when selecting plenary speakers.

9. Propose speakers to ACM speaker series or to Sigma Xi speaker series.

16111

http://tinyurl.com/j6cbghz
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

40 16111 – Rethinking Experimental Methods in Computing

10. Start an online ask-the-experimentalist resource, e.g., in StackOverflow, ResearchGate, for
questions about experimental methodology and statistics/data analysis. Identify people
willing to monitor and answer the questions.

11. Find someone to write a regular column in a discipline-wide venue with topics in experi-
mental methodology, or start a blog.

12. Teach a MOOC on experimental methods in computer science. It could be taught
cooperatively (several professors) with standalone ‘units’ in different areas.

13. Suggest special issues on empirical methodology to appropriate journal Editors-in-Chief.

4.3 Replicability
Petr Tuma (Charles University – Prague, CZ), Umut A. Acar (Carnegie Mellon University –
Pittsburgh, US), Judith Bishop (Microsoft Research – Redmond, US), Ronald F. Boisvert
(NIST – Gaithersburg, US), Amer Diwan (Google – San Francisco, US), Dmitry Duplyakin
(University of Utah – Salt Lake City, US), Eric Eide (University of Utah – Salt Lake City,
US), Norbert Fuhr (Universität Duisburg-Essen, DE), Matthias Hagen (Bauhaus-Universität
Weimar, DE), J. Eliot B. Moss (University of Massachusetts – Amherst, US), and Peter F.
Sweeney (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Petr Tuma, Umut A. Acar, Judith Bishop, Ronald F. Boisvert, Amer Diwan, Dmitry Duplyakin,
Eric Eide, Norbert Fuhr, Matthias Hagen, J. Eliot B. Moss, and Peter F. Sweeney

4.3.1 Guidelines

As a first activity, the group identified a set of guidelines to be given to a team doing a
reproducibility study:
1. What is a reproducibility study?

A reproducibility study attempts to confirm independently some (not necessarily all)
important claim(s) made in a preceding paper; it may also attempt to provide more
insight. Such a study should be carried out by a different team, using a different apparatus,
in a different location. A different implementation of the same algorithm may be used,
additional benchmarks or inputs, additional metrics and/or additional statistical analysis.

2. Motivation: Why do a reproducibility study?
A reproducibility study serves to increase the confidence in reported scientific results
by confirming (or refuting) the claims of the original study in changed settings. A
reproducibility study may also contribute to the discipline methodologically.

3. What issues should a reproducibility study address?
Motivation: Why did you choose this work to reproduce? Argue why this is an
interesting and important paper to reproduce.
What claim or claims (implicit or explicit) in the original paper are you reproducing?
What additional or broader claims (if any) are you making in this study?
What artifacts (software, hardware, data, etc.) did you use from the original paper?
How did you audit their correctness?
What challenges did you face in doing this study and how did you surmount those
challenges?
What interaction did you have with the original researchers? (Your evaluation should
be arguably independent of the original study.)
What did you change in your experiment compared to the original evaluation?

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 41

Do your claims support or refute the claims in the original paper? If they refute the
claims, please explain the likely cause, if possible.
What additional insights did you gain? (Remember, the goal is not to find fault but
to increase insight!)
What recommendations do you make (if any) in the light of your experience?

4. Experimental methodology. A reproducibility study should:
Deal with nondeterminism: multiple runs: look at distribution, statistics to aggregate;
i.e. average stdev
Analyze uncertainty: systematic and random effects
Apply appropriate statistical methods on raw data
Investigate any failures to support the original claims. Are their hidden variables?

5. How is a reproducibility study different from an artifact evaluation?
An artifact evaluation only tries to repeat the original results using apparatus and
conditions as similar as possible to the original, within the time constraints of the review
process for a scientific publication. Specifically, an artifact evaluation checks that the
artifact is consistent with the original paper, complete, well documented and easy to reuse.
A reproducibility study has broader goals, intentionally works with different apparatus
(such as a different computer system, possibly different software, etc.), produces and
checks results, and does not have similar time constraints.

4.3.2 A suggested format of a study

As a second contribution, the group discussed possible formats that may be suggested for a
reproducibility study, which can be summarised as follows:
1. Synopsis of original idea: motivation for choosing this work.
2. Description of original evaluation.
3. Description of reproducibility evaluation:

What artifacts from original work have been used.
How experimental system has changed:
a. New benchmarks.
b. New metrics.
c. New experimental setup.
d. New analysis of raw data.

4. Results
Replicability success?
Reproducibility success on different dimensions of change.
Graphs.

5. Lessons learnt: positives and negatives; what was easy, what was hard.

4.3.3 Letter to journal editors

Following up on the activities of Section 4.2, the group drafted a letter for editors-in-chief of
journals to propose the idea of devoting an issue to selected reproducibility results:

Dear Editor,

How do we know that an idea in a paper is effective? Many papers include evaluations to
determine the effectiveness of an idea; however, evaluations are difficult to do. For example,
if an evaluation fails to consider some important variable, it may produce invalid results.
Even if an evaluation is valid it is likely severely limited in scope (e.g., applies only to a
benchmark suite or to a particular programming language) and thus of limited use.

16111

42 16111 – Rethinking Experimental Methods in Computing

The traditional method for improving the confidence in an idea or to extend the generality of
an idea is to do reproducibility studies: some group other than the original group tests the
idea in a different context from the original evaluation (e.g., using different benchmarks or
hardware). If the reproduction is successful (i.e., the results are compatible with the original
results) we gain confidence in the effectiveness of the idea and also generalize the original
results. If the reproduction is unsuccessful, we discover that the idea has limited applicability
or even that the claim in the original paper is invalid. A great reproduction study provides
deep insights into an important idea from prior work.
Unfortunately, Computer Science does not have a tradition of reproducibility studies. We
would like to change that.
Our proposal is for several journals (each in a different area of Computer Science) to reserve
and advertise one or more reserved slots for reproducibility papers once a year (we propose the
first issue of each year, but can certainly adjust this based on the responses we get from the
journals). This paper would be held to the same standards as any other paper in the journal
however (i) submissions for this slot would have a deadline; (ii) the journal editors would
prioritize the review of these submissions so that they are ready in time for the next slot;
and (iii) the reviewers would be instructed to evaluate the paper as a reproduction paper. Of
course, if there is no reproduction submission that meets the journal’s standards, the journal
would use the slot for a regular paper.
By having multiple top-tier journals publishing reproducibility papers, the journals will send a
clear message that such papers are valued contributions to top publication venues. In doing
so, the journals will promote the identification of effective ideas and thus improve upon the
scientific rigor in Computer Science.
Our team (attendees of the Dagstuhl Rethinking Experimental Methods in Computing Seminar)
will (i) help advertise these slots widely; and (ii) help identify authors of reproducibility
studies (and of course authors can simply submit in response to our advertisement). If you
need help finding reviewers for a reproduction study, we can help to identify reviewers. The
final decision to accept the paper, of course, lies in the hands of the journal editors.

Daniel Delling, Camil Demetrescu, David S. Johnson, and Jan Vitek 43

Participants

Umut A. Acar
Carnegie Mellon University –
Pittsburgh, US

José Nelson Amaral
University of Alberta –
Edmonton, CA

David A. Bader
Georgia Institute of Technology –
Atlanta, US

Judith Bishop
Microsoft Res. – Redmond, US

Ronald F. Boisvert
NIST – Gaithersburg, US

Marco Chiarandini
University of Southern Denmark –
Odense, DK

Markus Chimani
Universität Osnabrück, DE

Emilio Coppa
Sapienza University of Rome, IT

Daniel Delling
Apple Inc. – Cupertino, US

Camil Demetrescu
Sapienza University of Rome, IT

Amer Diwan
Google – San Francisco, US

Dmitry Duplyakin
University of Utah –
Salt Lake City, US

Eric Eide
University of Utah –
Salt Lake City, US

Erik Ernst
Google – Aarhus, DK

Sebastian Fischmeister
University of Waterloo, CA

Norbert Fuhr
Universität Duisburg-Essen, DE

Paolo G. Giarrusso
Universität Tübingen, DE

Andrew V. Goldberg
Amazon.com, Inc. –
Palo Alto, US

Matthias Hagen
Bauhaus-Universität Weimar, DE

Matthias Hauswirth
University of Lugano, CH

Benjamin Hiller
Konrad-Zuse-Zentrum –
Berlin, DE

Richard Jones
Univ. of Kent – Canterbury, GB

Tomas Kalibera
Northeastern University –
Boston, US

Marco Lübbecke
RWTH Aachen, DE

Catherine C. McGeoch
Amherst College, US

Kurt Mehlhorn
MPI für Informatik –
Saarbrücken, DE

J. Eliot B. Moss
University of Massachusetts –
Amherst, US

Ian Munro
University of Waterloo, CA

Petra Mutzel
TU Dortmund, DE

Luís Paquete
University of Coimbra, PT

Mauricio Resende
Amazon.com, Inc. – Seattle, US

Peter Sanders
KIT – Karlsruher Institut für
Technologie, DE

Nodari Sitchinava
University of Hawaii at Manoa –
Honolulu, US

Peter F. Sweeney
IBM TJ Watson Research Center
– Yorktown Heights, US

Walter F. Tichy
KIT – Karlsruher Institut für
Technologie, DE

Petr Tuma
Charles University – Prague, CZ

Dorothea Wagner
KIT – Karlsruher Institut für
Technologie, DE

Roger Wattenhofer
ETH Zürich, CH

16111

Report from Dagstuhl Seminar 16112

From Theory to Practice of Algebraic Effects and Handlers
Edited by
Andrej Bauer1, Martin Hofmann2, Matija Pretnar3, and
Jeremy Yallop4

1 University of Ljubljana, SI, andrej.bauer@fmf.uni-lj.si
2 LMU München, DE, hofmann@ifi.lmu.de
3 University of Ljubljana, SI, matija.pretnar@fmf.uni-lj.si
4 University of Cambridge, GB, jeremy.yallop@cl.cam.ac.uk

Abstract
Dagstuhl Seminar 16112 was devoted to research in algebraic effects and handlers, a chapter
in the principles of programming languages which addresses computational effects (such as I/O,
state, exceptions, nondeterminism, and many others). The speakers and the working groups
covered a range of topics, including comparisons between various control mechanisms (handlers
vs. delimited control), implementation of an effect system for OCaml, compilation techniques for
algebraic effects and handlers, and implementations of effects in Haskell.

Seminar March 13–18, 2016 – http://www.dagstuhl.de/16112
1998 ACM Subject Classification D.3 Programming Languages, D.3.3 Language Constructs

and Features: Control structures, Polymorphism, F.3 Logics and Meanings of Programs, F.3.1
Specifying and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming
Languages, F.3.3 Studies of Program Constructs: Control primitives, Type structure

Keywords and phrases algebraic effects, computational effects, handlers, implementation tech-
niques, programming languages

Digital Object Identifier 10.4230/DagRep.6.3.44
Edited in cooperation with Niels F.W. Voorneveld and Philipp G. Haselwarter

1 Executive Summary

Andrej Bauer
Martin Hofmann
Matija Pretnar
Jeremy Yallop

License Creative Commons BY 3.0 Unported license
© Andrej Bauer, Martin Hofmann, Matija Pretnar, Jeremy Yallop

Being no strangers to the Dagstuhl seminars we were delighted to get the opportunity to
organize Seminar 16112. Our seminar was dedicated to algebraic effects and handlers, a
research topic in programming languages which has received much attention in the past
decade. There are strong theoretical and practical aspects of algebraic effects and handlers,
so we invited people from both camps. It would have been easy to run the seminar as a
series of disconnected talks that would take up most of people’s schedules – we have all been
to such seminars – and run the risk of disconnecting the camps as well. We decided to try a
different format, and would like to share our experience in this executive summary.

On the first day we set out to identify topics of interest and organize working groups
around them. This did not work, as everybody wanted to be in every group, or was at least

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

From Theory to Practice of Algebraic Effects and Handlers, Dagstuhl Reports, Vol. 6, Issue 3, pp. 44–58
Editors: Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16112
http://dx.doi.org/10.4230/DagRep.6.3.44
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 45

worried they would miss something important by choosing the wrong group. Nevertheless,
we did identify topics and within them ideas began to form. At first they were very general
ideas on the level of major research projects, but soon enough people started asking specific
questions that could be addressed at the seminar. Around those questions small groups
began to form. Out of initial confusion came self-organization.

We had talks each day in the morning, with the schedule planned two days ahead, except
for the first day which started by a tutorial on algebraic effects and handlers. We left the
afternoons completely free for people to work in self-organized groups, which they did. The
organizers subtly made sure that everybody had a group to talk to. In the evening, just
before dinner, we had a “show & tell” session in which groups reported on their progress.
These sessions were the most interesting part of the day, with everyone participating: some
showing what they had done so far, and others offering new ideas. Some of the sessions were
accompanied by improvised short lectures.

Work continued after dinner and late at night. One of the organizers was shocked to find,
on his way to bed, that the walls of a small seminar room were completely filled with type
theoretic formulas, from the floor to the ceiling. He was greatly relieved to hear that the
type theory was not there to stay permanently as the Dagstuhl caretakers painted the walls
with a special “whiteboard” paint. They should sell the paint by the bucket as a Dagstuhl
souvenir.

We are extremely happy with the outcome of the seminar and the way we organized it.
An open format that gives everyone ample time outside the seminar room was significantly
boosted by the unique Dagstuhl environment free of worldly distractions. We encourage
future organizers to boldly try new ways of organizing meetings. There will be confusion at
first, but as long as the participants are encouraged and allowed to group themselves, they
will do so. If a lesson is to be taken from our seminar, it is perhaps this: let people do what
they want, but also make sure they report frequently on what they are doing, preferably
when they are a bit hungry.

16112

46 16112 – From Theory to Practice of Algebraic Effects and Handlers

2 Table of Contents

Executive Summary
Andrej Bauer, Martin Hofmann, Matija Pretnar, Jeremy Yallop 44

Overview of Talks
Handlers considered harmful?
Andrzej Filinski . 47

Andromeda: Type theory with Equality Reflection
Philipp G. Haselwarter . 47

No value restriction is needed for algebraic effects and handlers
Ohad Kammar, Sean Moss, and Matija Pretnar . 48

Parameterized Extensible Effects and Session Types
Oleg Kiselyov . 48

Adequacy for Infinitary Algebraic Effects
Gordon Plotkin . 48

A tutorial on algebraic effects and handlers
Matija Pretnar . 49

Compiling Eff to OCaml
Matija Pretnar, Amr Hany Shehata Saleh, and Tom Schrijvers 50

Effect Handlers in Scope
Tom Schrijvers . 50

Compositional reasoning for algebraic effects
Alex Simpson . 51

Substitution, jumps and algebraic effects
Sam Staton . 51

LiquidHaskell: Refinement Types for Haskell
Niki Vazou . 51

Working groups
Towards an effect system for OCaml
Matija Pretnar, Stephen Dolan, KC Sivaramakrishnan, and Leo White 52

Open problems
Are all functions continuous and how to prove it?
Andrej Bauer . 53

Capturing algebraic equations in an effect system
Matija Pretnar . 55

Participants . 58

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 47

3 Overview of Talks

3.1 Handlers considered harmful?
Andrzej Filinski (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Andrzej Filinski

At a seminar about handlers for algebraic effects – often presented as an operationally oriented
alternative to more explicitly monad-based approaches for specifying and implementing
computational effects – it is important not to forget about some of the considerable theoretical
and practical strengths of monads. This talk outlines some areas in which effect handlers
– as currently conceived in languages like Eff – may show comparative weaknesses, and is
meant to inspire reflection and discussion on how those can best be addressed.

3.2 Andromeda: Type theory with Equality Reflection
Philipp G. Haselwarter (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Philipp G. Haselwarter

Joint work of Andrej Bauer; Gaëtan Gilbert; Philipp G. Haselwarter; Matija Pretnar; Christopher A. Stone
Main reference http://andromedans.github.io/andromeda/

URL https://github.com/Andromedans/andromeda/releases/tag/dagstuhl-2016

We present Andromeda, a proof assistant for dependent type theory with equality reflection
in the style of [1]. The design of Andromeda follows the tradition of Edinburgh LCF, in the
sense that

there is an abstract datatype of type-theoretic judgements whose values can only be
constructed by a small, trusted nucleus
the user interacts with the nucleus by writing programs in a high-level Andromeda
meta-language (AML)

The type theory of Andromeda has dependent products and equality types. The rules for
products are standard and include function extensionality. This flavour of dependent type
theory is very expressive, as it allows one to postulate new judgemental equalities through
the equality reflection rule. However, this comes at the expense of rendering type-checking
undecidable. As there is no complete type-checking algorithm that we could implement in
the nucleus, we rely on user code written in AML to prove complex equality judgements.

We demonstrate how we use effects and handlers as a mechanism for the nucleus to
communicate with the user-code by asking questions about equalities. We then showcase
how equality reflection can be used to introduce inductive types with their judgemental
computation rules and to control opaqueness of definitions. Finally, we present how a
meta-language with effects can be used to implement a memoization tactic.

References
1 Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://andromedans.github.io/andromeda/
https://github.com/Andromedans/andromeda/releases/tag/dagstuhl-2016

48 16112 – From Theory to Practice of Algebraic Effects and Handlers

3.3 No value restriction is needed for algebraic effects and handlers
Ohad Kammar (University of Cambridge, GB), Sean Moss, and Matija Pretnar (University
of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Ohad Kammar, Sean Moss, and Matija Pretnar

We present a straightforward sound Hindley-Milner polymorphic type system for algebraic
effects and handlers which allows type variable generalisation of arbitrary computations, and
not just values. This result is surprising. On the one hand, the soundness of Hindley-Milner
polymorphism is known to fail when not restricted in the presence of computational effects
such as reference cells and continuations. On the other hand, many programming examples
can be recast to use effect handlers instead of these effects. We place this result in the
wider context in two ways. First, we discuss the expressive difference between reference
cells and programming with algebraic effects and handlers. Second, we present a parametric
set-theoretic denotational semantics that highlights the smooth interaction of algebraic effects
and polymorphism.

3.4 Parameterized Extensible Effects and Session Types
Oleg Kiselyov (Tohoku University – Sendai, JP)

License Creative Commons BY 3.0 Unported license
© Oleg Kiselyov

Parameterized monad goes beyond monads in letting us represent type-state. An effect
executed by a computation may change the set of effects it may be allowed to do afterwards.
We describe how to easily ‘add’ and ‘subtract’ such type-state effects. Parameterized monad
is often used to implement session types. We point out that extensible type-state effects are
themselves a form of session types.

3.5 Adequacy for Infinitary Algebraic Effects
Gordon Plotkin (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Gordon Plotkin

Moggi famously proposed a monadic account of computational effects which includes the
computational λ-calculus, a core call-by-value functional programming language. One
naturally then seeks a correspondingly general treatment of operational semantics. In
the algebraic theory of effects, a refinement of Moggi’s theory, the effects are obtained by
appropriate operations, and the monad is generated from an equational theory over these
operations.

In a previous paper with John Power, a general adequacy theorem was given for the
case of monads generated by finitary operations. This covers examples such as probabilistic
nondeterminism and exceptions. The idea is to evaluate terms symbolically in the absolutely
free algebra with the same signature as the equational theory. Without recursion, the
evaluated terms are finite; with recursion, they may be infinitely deep.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 49

In general, however, one needs infinitary operations, for example for interactive I/O. We
review the previous work and show it can be extended to include such operations by allowing
infinitely wide terms. We can also define a general contextual equivalence for any monad,
however an extensional characterisation is elusive. The work should be extended to cover
handlers.

In most cases the natural adequacy theorem for a given effect is directly obtained from
the symbolical one. An exception is state, as the symbolic operational semantics has no state
component. It remains an interesting question to give a general operational semantics with a
notion of state.

3.6 A tutorial on algebraic effects and handlers
Matija Pretnar (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar

Main reference M. Pretnar, “An Introduction to Algebraic Effects and Handlers. Invited tutorial paper”, Proc. of
the 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI),
Electr. Notes Theor. Comput. Sci., Vol. 319, pp. 19–35, 2015.

URL http://dx.doi.org/10.1016/j.entcs.2015.12.003

The seminar started with a tutorial, which had a two-fold purpose of establishing a common
terminology and of introducing algebraic effects and handlers to anyone not yet familiar with
them. Roughly half of the audience was familiar with algebraic effects, but everyone was
well versed in functional programming and computational effects.

In the tutorial, we first looked at the basic idea of algebraic effects: every computation
returns a value or performs an effect by calling an operation. Therefore, the effectful
behaviour can be captured in an algebraic theory comprising a set of basic operations and
equations between them. We have shown how this leads to an interpretation of computations
with trees that have called operations as branching points and returned values as leaves.
This furthermore results in an algebraic denotational semantics, where computations are
interpreted with free models of the aforementioned algebraic theory.

Next, we have looked at how one may generalize exception handlers to handlers of
other algebraic effects, and the subtleties involved in the generalisation. Using many simple
examples of input & output handlers, we explored the flexibility that handlers offer in
managing the control flow of programs. As a more involved example, we took a look at how
one may implement many variants of backtracking with a handler for the non-deterministic
choice operation. We have also revisited the algebraic semantics and seen how handlers
correspond exactly to the homomorphisms, induced by the universal property of the free
model.

Finally, we sketched how one may adapt a standard type system for a call-by-value
language into a type & effect system, which captures the set of potentially called operations
in addition to the type of returned values.

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003
http://dx.doi.org/10.1016/j.entcs.2015.12.003

50 16112 – From Theory to Practice of Algebraic Effects and Handlers

3.7 Compiling Eff to OCaml
Matija Pretnar (University of Ljubljana, SI), Amr Hany Shehata Saleh (KU Leuven, BE),
and Tom Schrijvers (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar, Amr Hany Shehata Saleh, and Tom Schrijvers

We introduce a compilation technique for Eff, a functional language with handlers of algebraic
effects. Our compiler converts an Eff program into an OCaml program that produces an
element of the free monad. In order to reduce the performance overhead of the generated
code, we introduce a number of optimizations.

The most crucial technique, when feasible, is to translate pure computations into direct
OCaml code. For example, an Eff computation 1 + 3, is first translated into

(fun x -> Return (fun y -> Return (x + y))) 1 >>= fun f ->
f 3

where Return and >>= are the unit and binding operation of the free monad, and + is native
addition in OCaml. However, monadic binds are costly, so our desire is to optimize the
generated code to just Return (1 + 3), which we do through a series of rewriting rules.

According to our benchmarks, the optimized generated code performs at about half the
speed of hand-written OCaml code. We plan to use the information provided by an effect
system to further optimize the output code.

3.8 Effect Handlers in Scope
Tom Schrijvers (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
© Tom Schrijvers

Joint work of Nicolas Wu; Tom Schrijvers; Ralf Hinze
Main reference N. Wu, T. Schrijvers, R. Hinze, “Effect handlers in scope”, in Proc. of the 2014 ACM SIGPLAN

Symp. on Haskell (Haskell’14), pp. 1–12, ACM, 2014.
URL http://dx.doi.org/10.1145/2775050.2633358

Algebraic effect handlers are a powerful means for describing effectful computations. They
provide a lightweight and orthogonal technique to define and compose the syntax and
semantics of different effects. The semantics is captured by handlers, which are functions that
transform syntax trees. Unfortunately, the approach does not support syntax for scoping
constructs, which arise in a number of scenarios. While handlers can be used to provide a
limited form of scope, we demonstrate that this approach constrains the possible interactions
of effects and rules out some desired semantics. This paper presents two different ways
to capture scoped constructs in syntax, and shows how to achieve different semantics by
reordering handlers. The first approach expresses scopes using the existing algebraic handlers
framework, but has some limitations. The problem is fully solved in the second approach
where we introduce higher-order syntax.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2775050.2633358
http://dx.doi.org/10.1145/2775050.2633358
http://dx.doi.org/10.1145/2775050.2633358

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 51

3.9 Compositional reasoning for algebraic effects
Alex Simpson (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Alex Simpson

We obtain compositional proof systems for program verification by combining a set of generic
rules, common to all language instantiations, with composition principles that must be
supplied on an effect-specific basis. The proposed framework considers effects as generated
by a signature of algebraic operations. The effect-specific composition principles then replace
the customary equations (which are derivable from them).

3.10 Substitution, jumps and algebraic effects
Sam Staton (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Sam Staton

Joint work of Marcelo Fiore; Sam Staton
Main reference M. Fiore and S. Staton, “Substitution, jumps, and algebraic effects”, in Proc. of the Joint Meeting

of the 23rd EACSL Annual Conf. on Computer Science Logic and the 29th Annual ACM/IEEE
Symp. on Logic in Computer Science (CSL-LICS’14), 2014; pre-print available from author’s
webpage.

URL http://dx.doi.org/10.1145/2603088.2603163
URL http://www.cs.ox.ac.uk/people/samuel.staton/papers/lics2014-substitution.pdf

I spoke about the relationship between jumps and the theory of substitution. To give an
algebra for the theory of substitution is to give a first-order algebraic theory. I discussed
how this explains the implementation of algebraic effects using control effects.

3.11 LiquidHaskell: Refinement Types for Haskell
Niki Vazou (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Niki Vazou

Joint work of Alexander Bakst; Eric Seidel; Ranjit Jhala; Niki Vazou
Main reference N. Vazou, A. Bakst, R. Jhala, “Bounded refinement types”, in Proc. of the 20th ACM SIGPLAN

Int’l Conf. on Functional Programming (ICFP’15), pp. 48–61, ACM, 2015; pre-print available from
author’s webpage.

URL http://dx.doi.org/10.1145/2784731.2784745
URL http://goto.ucsd.edu/~nvazou/icfp15/main.pdf

We saw LiquidHaskell, a decidable and highly automated verifier that uses refinement types
for Haskell source code. I presented some examples (including safety of division and list
sorting) that can be found in the online demo [1].

Also we saw how refinement types can be extended with bounds [2] leading to more
expressive specifications that can be used to specify and verify effectual computations.

References
1 Online demo: http://goto.ucsd.edu/~nvazou/compose16/_site/01-index.html
2 Niki Vazou, Alexander Bakst, Ranjit Jhala. Bounded refinement types. ICFP 2015. http:

//goto.ucsd.edu/~nvazou/icfp15/main.pdf

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/2603088.2603163
http://www.cs.ox.ac.uk/people/samuel.staton/papers/lics2014-substitution.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://goto.ucsd.edu/~nvazou/icfp15/main.pdf
http://goto.ucsd.edu/~nvazou/compose16/_site/01-index.html
http://goto.ucsd.edu/~nvazou/icfp15/main.pdf
http://goto.ucsd.edu/~nvazou/icfp15/main.pdf

52 16112 – From Theory to Practice of Algebraic Effects and Handlers

4 Working groups

4.1 Towards an effect system for OCaml
Matija Pretnar (University of Ljubljana, SI), Stephen Dolan (University of Cambridge, GB),
KC Sivaramakrishnan (University of Cambridge, GB), and Leo White (Jane Street – London,
GB)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar, Stephen Dolan, KC Sivaramakrishnan, and Leo White

With the introduction of algebraic effects to OCaml1, extending OCaml’s type system into a
type & effect system is a natural next step. In such a system, programs receive a type A!E ,
where A is the type of returned values, and E is the effect annotation, whose exact form is
yet to be determined. Even though there is already an existing polymorphic effect system
for handlers with an inference algorithm [3], it is not obvious how to include it in OCaml
due to backwards compatibility.

There are a number of properties that a feasible effect system should satisfy:
Soundness If a program e receives a type A!E , every potential effect E should be captured

in E .
Usefulness An effect system that annotates each program with every possible effect there is,

is obviously sound, but not very useful. Thus, an effect information should not mention
an effect that is guaranteed not to happen.

Backwards compatibility We want each program that was typable before introducing effect
annotations, to remain typable. Furthermore, the effect system should play along nicely
with OCaml’s module system, thus whole-program analysis is out of the question.

To see what the above properties imply, take a program
if X then perform E1 else perform E2

The effect information of perform E1 must mention E1 for the sake of soundness, but omit E2
for the sake of usefulness. Conversely, the effect information of perform E2 should mention
E2 but not E1. But the whole program must remain typable due to backwards compatibility,
and its type should mention both E1 and E2 due to soundness. From this, it follows that
the effect system needs to provide a way of enlarging effect information. There are two
established ways of providing this flexibility: subtyping [4] or row polymorphism [1]. Both
are difficult to apply directly to OCaml, due to already-existing language features:
Monomorphic types The ML type system makes a distinction between monomorphic and

polymorphic types, and in certain contexts only monomorphic types are permitted. Many
existing programs are typeable only because, say, int→ int is monomorphic, and would
break if it became a polymorphic type.

Signature matching Comparing a module implementation against its interface requires not
only inferring polymorphic types, but checking whether a given polymorphic type is more
polymorphic than another.

Invariant contexts While OCaml supports (explicit) subtyping, not all type parameters are
either co- or contra-variant. For instance, the type parameters to ref, the indices of
GADTs, and unannotated abstract types are neither co- nor contra-variant.

Subtyping makes type inference difficult by breaking unification, so the usual approach
is to infer constrained types of the form A|C, where C is the set of constraints between

1 https://github.com/ocamllabs/ocaml-effects

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/ocamllabs/ocaml-effects

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 53

type (and later also effect) parameters in A [2]. However, there are a number of practical
problems. First, it is hard to determine when a constrained type A|C is an instance of A′|C′,
causing problems for compatibility with the module system. Next, constraint generation
in the inference algorithm needs to be directed in order to keep track of covariance and
contravariance. This causes problems with the current inference algorithm of OCaml, which
mostly works with equations and is undirected. Finally, constraints are cumbersome to write
and difficult to read, decreasing chances of adoption in the programming community.

A possible solution for subtyping is to encode constraints in types, potentially dropping
some of them, which results in types that satisfy a weak form of principality: the inferred
type is unique and captures most of possible typings of the given program, but not all of
them.

For row polymorphism, typability of existing programs poses a problem. These programs,
which may cause any effect provided by OCaml (input/output, references, . . .), should receive
an annotation, say IO, that distinguishes them from pure programs. Furthermore, existing
monomorphic types should remain monomorphic. For example, a function old_fun that
used to have a type unit→ unit should get a type unit→ (unit!IO). However, one then
cannot type the program if X then old_fun () else perform E, as the type of the left
branch does not contain a row variable and cannot be expanded to mention E.

A possible solution for this issue is to give monomorphic types to existing monomorphic
programs, but allow a limited form of subeffecting, which weakens the effect annotation
during application. Then, for example, old_fun would have a type unit→ (unit!IO), but
its application old_fun () would get the type unit![IO|ρ].

References
1 Daan Leijen. Koka: Programming with row polymorphic effect types. In MSFP, volume

153 of EPTCS, pages 100–126, 2014.
2 François Pottier. Type inference in the presence of subtyping: from theory to practice.

Technical Report RR-3483, INRIA, 1998.
3 Matija Pretnar. Inferring algebraic effects. Logical Methods in Computer Science, 10(3),

2014.
4 Keith Wansbrough and Simon L. Peyton Jones. Once upon a polymorphic type. In POPL,

pages 15–28. ACM, 1999.

5 Open problems

5.1 Are all functions continuous and how to prove it?
Andrej Bauer (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Andrej Bauer

5.1.1 Mathematical background

Brouwer’s statement “all functions are continuous” can be formulated without reference to
topology as follows. A functional f : (N→ N)→ N is continuous at a : N→ N when there
exists m : N such that, for all b : N→ N, if ∀k < m, ak = bk then fa = fb. This says that
the value of fa depends only on the initial segment a 0, a 1, ..., a (m− 1).

The statement “all functionals are continuous everywhere” is valid in various models
of intuitionistic mathematics, such as Kleene’s number realizability and Kleene’s function

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54 16112 – From Theory to Practice of Algebraic Effects and Handlers

realizability. We can ask whether the statement is realized in any given functional pro-
gramming language. Such a realizer is called a modulus of continuity and is a functional
µ : ((N→ N)→ N)→ (N→ N)→ N such that, for all f : (N→ N)→ N and a, b : N→ N, if
∀k < µfa . a k = b k then fa = fb. Essentially, µfa computes how much of a is needed to
compute fa.

5.1.2 Implementing the modulus of continuity

It is impossible to implement µ in PCF and Haskell. Briefly, every hereditarily total functional
definable in PCF is extensional (one can use Ulrich Berger’s theory of totality [2] to establish
this), while a result by Troelstra [3, §9.6.10–9.6.11] shows that an extensional modulus of
continuity violates choice principles that are realized by PCF.

Therefore, we necessarily need additional computational features that let µ inspect the
workings of f . Here are a few attempts, where we pretend that the type of integers is the
type of natural numbers (we ignore negative values).

ML with references

Consider ML with references (and no other features). Then a possible µ is

let mu_ref f a =
let k = ref 0 in
let a’ n = (k := max !k n; a n) in

f a’ ; !k

However:
1. Can f use its own local references? If it can use them in an unrestricted way then it can

break mu_ref. How do we reasonably restrict the use of local references by f?
2. More generally, how do we formulate the exact preconditions on f and a?
3. What is the theorem that needs to be proved, and how is it proved?

ML with exceptions

With exceptions (and no other features) we can do it as follows:

exception Abort

let mu_exc f a =
let rec search k =

try
let a’ n = (if n < k then a n else raise Abort) in

f a’ ; k
with Abort -> search (k+1)

in
search 0

However:
1. What if f catches Abort? May it do so? What is the exact precondition on f?
2. Would local exceptions help? If so, can f use its own local exceptions?

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 55

Other setups

1. In Haskell we could do everything inside a fixed monad. This is still not entirely easy,
even if we figure out what it means for f to be “pure”.

2. Moving to a total language is probably helpful. However, keep in mind that µ does not
exist in pure λ-calculus, so straight Agda or some such system is out of the question.

3. Other effects can be used to implement a candidate µ, but it seems like they should be
local (local references, local exceptions, delimited control) or else f has access to them.

5.1.3 Open problem

At first sight it seems that the above implementations of µ work, but as soon as we try to
formulate exactly what it is that we want to prove, it becomes clear that not everything is
clear, so the first problem is:

Explain what it means to realize “all functions are continuous” in a realizability model
based on a programming language with computational effects.

One has to find a good notion of a realizer that uses effects in a “benign way”. For instance,
asking for purity in the sense of [1] seems too restrictive. Once it is clear what problem we
are trying to solve, we may attempt to prove that the modulus is really there:

Identify computational effects which allow realization of the modulus of continuity,
and prove rigorously that the realizer works.

Attacking the problem ought to improve our ability to argue about higher-type computation
in the presence of computational effects.

References
1 Andrej Bauer, Martin Hofmann and Aleksandr Karbyshev. On Monadic Parametricity of

Second-Order Functionals. Foundations of Software Science and Computation Structures –
16th International Conference, FOSSACS 2013, 225–240, 2013.

2 Ulrich Berger. Computability and Totality in Domains. Mathematical Structures in Com-
puter Science 12(3), 281–294, 2002.

3 Anne Troelstra and Dirk van Dalen. Constructivism in mathematics, volume 2. Elsevier,
1988.

5.2 Capturing algebraic equations in an effect system
Matija Pretnar (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar

Equational theories

The main premise of algebraic effects is that effects can be described with an equational
theory consisting of a set of operations and equations between them [7]. For example,
non-determinism can be described by an operation choose and three equations stating its
idempotency, commutativity and associativity. Computations returning values from X are
then interpreted as elements of the free model of such a theory.

16112

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 16112 – From Theory to Practice of Algebraic Effects and Handlers

Issues with interpreting handlers

Handlers of algebraic effects, which assign a handling term for each operation, can be
interpreted as homomorphisms from the free model to some other (not necessary free) model
of the same theory [8]. However, there are computationally interesting handlers that do
not respect all of the expected equations. One is a handler that collects all possible results
of a non-deterministic computation in a list. This respects the associativity, but not the
idempotency or commutativity of choose. Similarly, a state handler that logs all memory
updates handles a computation that sequentially writes two values differently than one
that writes only the second one, even though these two computations are often considered
equivalent [6].

Since handlers that do not respect the equations cannot receive an algebraic interpreta-
tion [8], some recent work [1, 4] assumes no non-trivial equations to hold, giving up most of
the existing results on combining algebraic theories [3] and optimizations [5].

Extending types with equations

A possible way of resolving this issue is to capture the subset of valid equations in types.
An algebraic approach already has a natural effect system, in which computations receive a
type A!O, where A is the type of returned values, and O is the set of operations that may
get called [1, 4]. For example, a non-deterministic computation returning integers would be
given the type int!{choose}, while a pure computation would have the type int!∅.

This description can be extended to one of the form A!O&E , where E is a now the
subset of equations we assume to hold between operations O. This type may be interpreted
as the free model of the theory with the same operations, but with equations only from
E . For example, if choose () then 1 else 2 and if choose () then 2 else 1 can
be considered as equivalent computations of type int!{choose}&{comm}, but not of type
int!{choose}&{assoc}. This generalizes both the traditional approach to algebraic effects,
if one considers E to be the set of all equations in the theory, or the approach with no
equations, if E = ∅.

Similar interpretation applies to handlers of type A1!O1&E1 ⇒ A2!O2&E2, where E1 is
now the set of equations the handler must respect. For example, the handler

let choose_left = handler
| choose () k -> k true

which makes choose constantly yield true in the handled computation, can be given the
type A!{choose}&{assoc, idem} ⇒ A!∅&∅. Next, the handler

let choose_all = handler
| choose () k -> (k true) @ (k false)
| val x -> [x]

which returns the list of all possible results of the handled computation, can be given the
type A!{choose}&{assoc} ⇒ A list!∅. Finally, the handler

let choose_sum = handler
| choose () k -> (k true) + (k false)

which returns the sum of all possible results of the handled computation, can be given the
type int!{choose}&{assoc, comm, idem} ⇒ int!∅.

The equations expected for the domain of the handler can also depend on the ones holding
for the codomain. For example, one expects the handler

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 57

let choose_opposite = handler
| choose () k -> if choose () then (k false) else (k true)

to have the type A!{choose}&E ⇒ A!{choose}&E
for any set of equations E ⊆ {assoc, comm, idem}.

Open questions

Exact typing rules. When a computation may receive an enriched type remains to be
determined. One may expect rules such as

Γ ` c : A!O&E E ⊆ E ′

Γ ` c : A!O&E ′

as we may always consider additional equivalences between programs to hold. The most
involved rule seems to be one for assigning a type A1!O1&E1 ⇒ A2!O2&E2 to a handler. Here,
we must check that the given handler respects all the equations E1, probably in a similar
way as checking whether a handler is correct [8]. Since the equations describe the properties
of effects on the level of algebraic theories, we can expect the resulting type system to be
simpler than one involving dependent types or refinement types, however one must bear in
mind that determining whether a handler respects a given set of equations is undecidable [8].

Applications

Handlers provide a very powerful control mechanism, which can dynamically change the
context in which programs are run. One potential application of the described approach
is to at least partially convey information about this behaviour through equations. The
equations could also be used for enforcing behaviour. Even though determining their validity
is undecidable, one could take a tool such as QuickCheck [2], which verifies properties of
pure values by generating random tests, and extend it to testing impure computations.

Another prospective application is modular reasoning about handlers. For example,
one can show that the usual monadic state handler satisfies certain properties [1], but the
exact proof works only for the particular handler and needs to be redone for a different
implementation. With equations in types, one could split the reasoning into two parts: (1)
showing that a handler respects certain equations and has a given type, and (2) showing
that any handler with that type satisfies a given property.

References
1 Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers.

Logical Methods in Computer Science, 10(4), 2014.
2 Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of

Haskell programs. In ICFP, pages 268–279. ACM, 2000.
3 Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor.

Theor. Comput. Sci., 357(1-3):70–99, 2006.
4 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In ICFP, pages

145–158. ACM, 2013.
5 Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for effect-dependent optim-

isations. In POPL, pages 349–360. ACM, 2012.
6 Gordon D. Plotkin and John Power. Notions of computation determine monads. In

FoSSaCS, volume 2303 of LNCS, pages 342–356. Springer, 2002.
7 Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied

Categorical Structures, 11(1):69–94, 2003.
8 Gordon D. Plotkin and Matija Pretnar. Handling algebraic effects. Logical Methods in

Computer Science, 9(4), 2013.

16112

58 16112 – From Theory to Practice of Algebraic Effects and Handlers

Participants

Sandra Alves
University of Porto, PT

Kenichi Asai
Ochanomizu Univ. – Tokyo, JP

Robert Atkey
University of Strathclyde –
Glasgow, GB

Clément Aubert
Appalachian State University –
Boone, US

Andrej Bauer
University of Ljubljana, SI

Edwin Brady
University of St. Andrews, GB

Xavier Clerc
Apimka – Paris, FR

Stephen Dolan
University of Cambridge, GB

Andrzej Filinski
University of Copenhagen, DK

Philipp Haselwarter
University of Ljubljana, SI

Martin Hofmann
LMU München, DE

Patricia Johann
Appalachian State University –
Boone, US

Yukiyoshi Kameyama
University of Tsukuba, JP

Ohad Kammar
University of Cambridge, GB

Oleg Kiselyov
Tohoku University – Sendai, JP

Daan Leijen
Microsoft Res. – Redmond, US

Sam Lindley
University of Edinburgh, GB

Conor McBride
University of Strathclyde –
Glasgow, GB

Gordon Plotkin
University of Edinburgh, GB

Matija Pretnar
University of Ljubljana, SI

Amr Hany Shehata Saleh
KU Leuven, BE

Gabriel Scherer
Northeastern University –
Boston, US

Tom Schrijvers
KU Leuven, BE

Alex Simpson
University of Ljubljana, SI

KC Sivaramakrishnan
University of Cambridge, GB

Sam Staton
University of Oxford, GB

Niki Vazou
University of California – San
Diego, US

Niels Voorneveld
University of Ljubljana, SI

Leo White
Jane Street – London, GB

Jeremy Yallop
University of Cambridge, GB

Report from Dagstuhl Seminar 16131

Language Based Verification Tools for Functional
Programs
Edited by
Marco Gaboardi1, Suresh Jagannathan2, Ranjit Jhala3, and
Stephanie Weirich4

1 SUNY – Buffalo, US, gaboardi@buffalo.edu
2 Purdue University – West Lafayette, US, suresh@cs.purdue.edu
3 University of California – San Diego, US, jhala@cs.ucsd.edu
4 University of Pennsylvania – Philadelphia, US, sweirich@cis.upenn.edu

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16131 “Language
Based Verification Tools for Functional Programs”. This seminar is motivated by two converging
trends in computing – the increasing reliance on software has led to an increased interest in seeking
formal, reliable means of ensuring that programs possess crucial correctness properties, and the
dramatic increase in adoption of higher-order functional languages due to the web, multicore and
“big data” revolutions.

While the research community has studied the problem of language based verification for
imperative and first-order programs for decades – yielding important ideas like Floyd-Hoare
Logics, Abstract Interpretation, Model Checking, and Separation Logic and so on – it is only
relatively recently, that proposals have emerged for language based verification tools for functional
and higher-order programs. These techniques include advanced type systems, contract systems,
model checking and program analyses specially tailored to exploit the structure of functional
languages. These proposals are from groups based in diverse research communities, attacking
the problem from different angles, yielding techniques with complementary strengths.

This seminar brought diverse set of researchers together so that we could: compare the
strengths and limitations of different approaches, discuss ways to unify the complementary ad-
vantages of different techniques, both conceptually and in tools, share challenging open problems
and application areas where verification may be most effective, identify novel ways of using veri-
fication techniques for other software engineering tasks such as code search or synthesis, and
improve the pedagogy and hence adoption of such techniques.

Seminar March 28 to April 1, 2016 – http://www.dagstuhl.de/16131
1998 ACM Subject Classification D.2.4 [Software Engineering]: Software/Program Verification

F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases Functional Programming, Type Systems, Contracts, Dependent Types,
Model Checking, Program Analysis

Digital Object Identifier 10.4230/DagRep.6.3.59

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Language Based Verification Tools for Functional Programs, Dagstuhl Reports, Vol. 6, Issue 3, pp. 59–77
Editors: Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16131
http://dx.doi.org/10.4230/DagRep.6.3.59
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

60 16131 – Language Based Verification Tools for Functional Programs

1 Summary

Marco Gaboardi
Suresh Jagannathan
Ranjit Jhala
Stephanie Weirich

License Creative Commons BY 3.0 Unported license
© Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich

This report summarizes the program and the outcomes of Dagstuhl Seminar 16131 “Language
Based Verification Tools for Functional Programs”, organized by:

Marco Gaboardi, School of Computing, University of Dundee, UK
Suresh Jagannathan, Purdue University, USA
Ranjit Jhala, University of California, San Diego, USA
Stephanie Weirich, University of Pennsylvania, USA.

The web, multi-core and “big-data” revolutions have been largely built on higher-order
programming constructs pioneered in the Functional Programming community. Despite the
increasing importance of such programs, there are relatively few tools that are focussed on
ensuring that functional programs possess crucial correctness properties. While language
based verification for imperative and first-order programs has been studied for decades yielding
important ideas like Floyd-Hoare Logics, Abstract Interpretation, and Model Checking. It is
only relatively recently, that researchers have proposed language based verification tools e.g.
advanced type systems, contract systems, model checking and higher-order program analyses
for functional and higher-order programs.

We organised this seminar to bring together the different schools of researchers interested
in software reliability, namely, the designers and implementers of functional programming
languages, and experts in software verification, in order create a larger community of
researchers focused on this important goal, to let us compare the strengths and limitations of
different approaches, to find ways to unite both intellectually, and via tools the complementary
advantages of different techniques, and to devise challenging open problems and application
areas where verification may be most effective. To this end, the seminar comprised a program
of 30 talks from the leading experts on the above topics, and breakout sessions on:
1. Integrating formal methods tools in the curriculum
2. Hands on Tool Tutorials
3. User Interaction
4. Types and Effects

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 61

2 Table of Contents

Summary
Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 60

Overview of Talks
Coinduction using copatterns and sized types
Andreas Martin Abel . 63

Verified Compilers for a Multi-Language World
Amal Ahmed . 63

DeepSpec, CertiCoq and Verified Functional Algorithms
Andrew Appel . 64

Type Systems as Proof Strategies
Iavor S. Diatchki . 64

Dependently Typed Programming in GHC 8
Richard A. Eisenberg . 64

Deductive Verification with Why3
Jean-Christophe Filliâtre . 65

Relational cost analysis
Deepak Garg . 65

The Interactive Software Verification System KeY
Reiner Hähnle . 65

Dependent Types and Multi-Monadic Effects in F*
Cătălin Hriţcu . 66

Relational Reasoning about Higher-Order Shape Properties
Gowtham Kaki and Suresh Jagannathan . 67

Program Verification Based on Higher-Order Model Checking
Naoki Kobayashi . 67

Certified Automated Theorem Proving for Type Inference
Ekaterina Komendantskaya . 67

Ramsey-based Methods: From Size-Change Termination to Satisfiability in Tem-
poral Logics
Martin Lange . 68

Automated verification of functional programs
Rustan Leino . 69

A Static Type Analysis for Lua
Jan Midtgaard . 69

Subtle points
Conor McBride . 69

Higher-order horn clauses and higher-order model checking
Luke Ong . 70

From analysis-directed semantics to specifications-in-types
Dominic Orchard . 70

16131

62 16131 – Language Based Verification Tools for Functional Programs

Programming Coinductive Proofs Using Observations
Brigitte Pientka . 71

Language-based Verification of Untyped Expressions
Ruzica Piskac . 71

Program Synthesis from Refinement Types
Nadia Polikarpova . 71

Demand Driven Analysis For Functional Programs
Scott Smith . 72

Equations: A toolbox for function definitions in Coq
Matthieu Sozeau . 72

Temporal Verification of Higher-Order Functional Programs
Tachio Terauchi . 73

Occurrence typing modulo theories
Sam Tobin-Hochstadt . 73

Refinement Caml: A Refinement Type Checking and Inference Tool for OCaml
Hiroshi Unno . 74

Contract Verification and Refutation
David Van Horn . 74

Refinement Types for Haskell
Niki Vazou . 75

Lazy staged binary decision diagrams
Wouter Swierstra . 75

Verification by Optimization: Two Approaches to Manifest Contracts
Michael Greenberg . 76

Breakout Sessions . 76

Participants . 77

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 63

3 Overview of Talks

3.1 Coinduction using copatterns and sized types
Andreas Martin Abel (Chalmers UT – Göteborg, SE)

License Creative Commons BY 3.0 Unported license
© Andreas Martin Abel

Joint work of Andreas Martin Abel, Brigitte Pientka, Anton Setzer, and David Thibodeau
Main reference A. Abel, B. Pientka, “Wellfounded recursion with copatterns: a unified approach to termination

and productivity”, in Proc. of the 18th ACM SIGPLAN Int’l Conf. on Functional Programming
(ICFP’13), pp. 185–196, ACM, 2013.

URL http://dx.doi.org/10.1145/2500365.2500591

I present the new coinduction mechanism of Agda based on copatterns and sized types (Abel
et al., POPL 2013, Abel/Pientka, ICFP 2013). As a running example, I use a coinductive
definition of formal languages. I show how to use infinite tries to represent languages (sets of
strings) and demonstrate that Agda allows an elegant representation of the usual language
constructions like union, intersection, concatenation, and Kleene star. I also show how to
reason about equality of languages using bisimulation and coinductive proofs.

3.2 Verified Compilers for a Multi-Language World
Amal Ahmed (Northeastern University – Boston, US)

License Creative Commons BY 3.0 Unported license
© Amal Ahmed

Joint work of Amal Ahmed; James Perconti
Main reference A. Ahmed, “Verified Compilers for a Multi-Language World”, in Proc. of the 1st Summit on

Advances in Programming Languages (SNAPL 2015), LIPIcs, Vol. 32, pp. 15–31, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

URL http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15

Verified compilers are typically proved correct under severe restrictions on what the compiler’s
output may be linked with, from no linking at all to linking only with code compiled from
the same source language. Such assumptions contradict the reality of how we use these
compilers since most software systems today are comprised of components written in different
languages compiled by different compilers to a common target, as well as low-level libraries
that may be handwritten in the target language.

The key challenge in verifying compilers for today’s world of multi-language software is how
to formally state a compiler correctness theorem that is compositional along two dimensions.
First, the theorem must guarantee correct compilation of components while allowing compiled
code to be composed (linked) with target-language components of arbitrary provenance,
including those compiled from other languages (horizontal compositionality). Second, the
theorem must support verification of multi-pass compilers by composing correctness proofs
for individual passes (vertical compositionality).

In this talk, I’ll describe a new methodology for building compositional verified compilers
for today’s world of multi-language software and discuss the challenges that lie ahead. Our
project has two central themes, both of which stem from a view of compiler correctness as a
language interoperability problem. First, to specify correctness of component compilation,
we require that if a source component S compiles to target component T , then T linked with
some arbitrary target code T ′ should behave the same as S interoperating with T ′. The latter
demands a formal semantics of interoperability between the source and target languages.
Second, to enable safe interoperability between components compiled from languages as

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2500365.2500591
http://dx.doi.org/10.1145/2500365.2500591
http://dx.doi.org/10.1145/2500365.2500591
http://dx.doi.org/10.1145/2500365.2500591
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.15

64 16131 – Language Based Verification Tools for Functional Programs

different as ML, Rust, C, and Coq’s Gallina, we plan to design a gradually type-safe target
language based on LLVM that supports safe interoperability between more precisely typed,
less precisely typed, and type-unsafe components.

3.3 DeepSpec, CertiCoq and Verified Functional Algorithms
Andrew Appel (Princeton University – US)

License Creative Commons BY 3.0 Unported license
© Andrew Appel

I will speak briefly on three different topics: The new NSF-funded project at Princeton/Pen-
n/Yale/MIT “The Science of Deep Specification,” the CertiCoq project (Appel/Morrisett/-
Pollack/Sozeau and students) to formalize the extraction and compilation process, and my
new interactive-in-Coq textbook in the Software Foundations series, “Verified Functional
Algorithms.”

3.4 Type Systems as Proof Strategies
Iavor Diatchki (Galois Systems – Portland, US)

License Creative Commons BY 3.0 Unported license
© Iavor S. Diatchki

I’d like to share some thoughts on the design of type systems for existing dynamically
typed languages such as Lua, JavaScript, Python, etc. The core idea is to blur the line
between formal-verification and type-checking, and try to present a type system as a library
of strategies that are able to discharge certain proof obligations. This is part of my ongoing
research, and the ideas are not yet fully realized, but – if possible – I’d like to share them to
get feedback and advice by fellow researchers.

3.5 Dependently Typed Programming in GHC 8
Richard A. Eisenberg (University of Pennsylvania – Philadelphia, US)

License Creative Commons BY 3.0 Unported license
© Richard A. Eisenberg

This talk demonstrates some of the new features I have added in the newest release of the
Glasgow Haskell Compiler (GHC 8). GHC 8 supports the (Type : Type) axiom and visible
type application, allowing easier and more expressive dependently typed programs than were
possible previously. The main example in this talk is a program that performs type-safe
database access while inferring the desired database schema from the program text. By
inferring the schema, this program contains less boilerplate code and is more flexible than
other type-safe database access approaches would allow.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 65

3.6 Deductive Verification with Why3
Jean-Christophe Filliâtre (CNRS & University Paris Sud, FR)

License Creative Commons BY 3.0 Unported license
© Jean-Christophe Filliâtre

URL http://why3.lri.fr/

This short talk is a brief overview of Why3, a tool for deductive program verification.
Why3 provides an imperative programming language (with polymorphism, algebraic data

types, pattern matching, exceptions, references, arrays, etc.), a mathematical language that
is an extension of first-order logic, and a technology to discharge verification conditions using
several, off-the-shelf interactive and automated theorem provers (Coq, Alt-Ergo, Z3, CVC3,
etc.).

More details at http://why3.lri.fr/.

3.7 Relational cost analysis
Deepak Garg (MPI-SWS – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Deepak Garg

Many applications require analysis of the relative use of resources (time, space) by two
different programs or the same program with two different inputs. We call this the problem of
relational cost analysis. Examples include compiler optimizations, incremental computation,
static detection of side-channel leaks in security-critical programs and the stability analysis of
algorithm implementations. This talk presents the beginnings of a type theory for relational
cost analysis. It explains how a combination of lightweight dependent types, ideas from
information flow analysis and a bit of co-monadic analysis can be combined to perform such
analysis on non-trivial examples.

3.8 The Interactive Software Verification System KeY
Reiner Hähnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Hähnle

URL http://www.key-project.org

A brief overview of how KeY works, what can be done with it, the degree of automation, the
user interfaces

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://why3.lri.fr/
http://why3.lri.fr/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.key-project.org

66 16131 – Language Based Verification Tools for Functional Programs

3.9 Dependent Types and Multi-Monadic Effects in F*
Cătălin Hriţcu (INRIA – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Cătălin Hriţcu

Joint work of Karthikeyan Bhargavan; Antoine Delignat-Lavaud; Simon Forest; Cédric Fournet; Cătălin Hriţcu;
Chantal Keller; Markulf Kohlweiss; Aseem Rastogi; Pierre-Yves Strub; Nikhil Swamy; Santiago
Zanella-Béguelin; Jean-Karim Zinzindohoue

Main reference N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest, K. Bhargavan, C.
Fournet, P.-Y. Strub, M. Kohlweiss, J.K. Zinzindohoue, S. Zanella Béguelin, “Dependent types and
multi-monadic effects in F”, in Proc. of the 43rd Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL’16), pp. 256–270, ACM, 2016; pre-print and
supplementary material available from author’s webpage.

URL http://dx.doi.org/10.1145/2837614.2837655
URL https://www.fstar-lang.org/papers/mumon/

We present a new, completely redesigned, version of F?, a language that works both as a
proof assistant as well as a general-purpose, verification-oriented, effectful programming
language.

In support of these complementary roles, F? is a dependently typed, higher-order, call-by-
value language with primitive effects including state, exceptions, divergence and IO. Although
primitive, programmers choose the granularity at which to specify effects by equipping each
effect with a monadic, predicate transformer semantics. F? uses this to efficiently compute
weakest preconditions and discharges the resulting proof obligations using a combination of
SMT solving and manual proofs. Isolated from the effects, the core of F? is a language of
pure functions used to write specifications and proof terms – its consistency is maintained by
a semantic termination check based on a well-founded order.

We evaluate our design on more than 55,000 lines of F? we have authored in the last year,
focusing on three main case studies. Showcasing its use as a general-purpose programming
language, F? is programmed (but not verified) in F?, and bootstraps in both OCaml and
F#. Our experience confirms F?’s pay-as-you-go cost model: writing idiomatic ML-like code
with no finer specifications imposes no user burden. As a verification-oriented language, our
most significant evaluation of F? is in verifying several key modules in an implementation
of the TLS-1.2 protocol standard. For the modules we considered, we are able to prove
more properties, with fewer annotations using F? than in a prior verified implementation of
TLS-1.2. Finally, as a proof assistant, we discuss our use of F? in mechanizing the metatheory
of a range of lambda calculi, starting from the simply typed lambda calculus to System Fω

and even a sizeable fragment of F? itself – these proofs make essential use of F?’s flexible
combination of SMT automation and constructive proofs, enabling a tactic-free style of
programming and proving at a relatively large scale.

Talk slides available at:
http://materials.dagstuhl.de/files/16/16131/16131.CatalinHritcu.Slides.html

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
https://www.fstar-lang.org/papers/mumon/
http://materials.dagstuhl.de/files/16/16131/16131.CatalinHritcu.Slides.html

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 67

3.10 Relational Reasoning about Higher-Order Shape Properties
Gowtham Kaki (Purdue University – West Lafayette, US) and Suresh Jagannathan (Purdue
University – West Lafayette, US)

License Creative Commons BY 3.0 Unported license
© Gowtham Kaki and Suresh Jagannathan

Main reference G. Kaki, S. Jagannathan, “A Relational Framework for Higher-order Shape Analysis”, in Proc. of
the 19th ACM SIGPLAN Intl. Conf. on Functional Programming (ICFP’14), pp. 311–324, ACM,
2014.

URL http://dx.doi.org/10.1145/2628136.2628159

In this talk, I present CATALYST, a relational reasoning framework integrated within a
dependent type system that is capable of automatically verifying complex invariants over
the shapes of algebraic datatypes. A novel contribution of CATALYST is the concept of
parametric relations – relations parameterized over other relations that enable intuitive
specifications for higher-order polymorphic functions, while retaining the compositionality
and decidability of type checking. I describe an encoding of fully instantiated parametric
relations in a decidable subset of first-order logic, and show how it is sufficient to type
check higher-order functions against expressive specifications. I describe an implementation
of CATALYST in SML, present multiple examples, and end the talk with a brief note on
inferring rich dependent types in CATALYST.

3.11 Program Verification Based on Higher-Order Model Checking
Naoki Kobayashi (University of Tokyo – Tokyo, Japan)

License Creative Commons BY 3.0 Unported license
© Naoki Kobayashi

Higher-order model checking has recently been applied to fully automated verification of
higher-order functional programs. In the talk, I plan to provide a tutorial to explain what
is higher-order model checking and how it can be applied to program verification. I will
also summarize recent progress on the higher-order model checking approach to program
verification.

3.12 Certified Automated Theorem Proving for Type Inference
Ekaterina Komendantskaya (Heriot-Watt University – UK)

License Creative Commons BY 3.0 Unported license
© Ekaterina Komendantskaya

Joint work of Peng Fu; Ekaterina Komendantskaya; Tom Schrijvers
URL http://staff.computing.dundee.ac.uk/katya/CoALP/

Two facts are universally acknowledged: critical software must be subject to formal verification
and modern verification tools need to scale and become more user-friendly in order to make
more impact in industry.

There are two major styles of verification: (*) algorithmic: verification problems are
specified in an automated prover, e.g. (constraint) logic programming or SMT solver, and
properties of interest are verified by the prover automatically. Such provers can be fast, but
their trustworthiness is hard to establish without producing and checking proofs. This is due

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://dx.doi.org/10.1145/2628136.2628159
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://staff.computing.dundee.ac.uk/katya/CoALP/

68 16131 – Language Based Verification Tools for Functional Programs

to complexity of modern-day solvers, e.g. SMT solvers have codebases 100K in C++. These
tools exhibit bugs and are not trustworthy enough for critical systems.

An alternative is (**) a typeful approach to verification: instead of verifying programs in
an external prover, a programmer may record all properties of interest as types of functions
in his programs. Thanks to Curry-Howard isomorphism, type inhabitants also play the role
of executable functions and proof witnesses, thus completing the certification cycle.

At their strongest, types can cover most of the properties of interest to the verification
community, e.g. recent dialects Liquid Haskell and F* allow pre- and post-condition for-
mulation at type level. But, when properties expressed at type level become rich, type
inference engines have to assume the role of automated provers, e.g. Liquid Haskell and F*
connect directly to SMT solvers. Thus, once again, we delegate trust without having proper
certification of automated proofs.

This talk was about our recent work [Fu, Komendantskaya, Schrijvers, in FLOPS 2016]
that resolves the above dichotomy “scale versus trust” by offering a new, typeful, approach
to automated proving for type inference. Recently, we designed a new method of using logic
programming in Haskell type class inference: Horn clauses can be represented as types, and
proofs by resolution – as proof terms inhabiting the types. Thus, the problem of automated
inference in Horn Clause logic is re-cast as the problem of type inhabitation in a suitable
type system. In this way, outputs of the resulting Curry-Howard Horn Clause prover are
directly compatible with type system of Haskell’s compiler. Overall, this method allows
to achieve both high standards of automated proof certification and compatibility of the
automated prover with the target compiler.

The question is: can this method apply to other existing algorithmic and typeful ap-
proaches?

3.13 Ramsey-based Methods: From Size-Change Termination to
Satisfiability in Temporal Logics

Martin Lange (Universität Kassel, DE)

License Creative Commons BY 3.0 Unported license
© Martin Lange

Joint work of Oliver Friedmann; Felix Klaedtke; Martin Lange
Main reference O. Friedmann, F. Klaedtke, M. Lange, “Ramsey-Based Inclusion Checking for Visibly Pushdown

Automata”, ACM Transactions on Computational Logic (TOCL), Vol. 16(4), Article No. 34, 2015.
URL http://dx.doi.org/10.1145/2774221

Ramsey’s Theorem about the existence of infinite monochromatic subgraphs in the finitely
coloured graph on the natural numbers was a crucial ingredient in Büchi’s original proof of
the complementation closure of the class of omega-regular languages. For most of the time
since then, this has just been seen as a mathematical tool for obtaining a proof.

In the early 2000s, Lee, Jones and Ben-Amram introduced the size-change termination
principle – a method for proving termination of abstract functional programs that can only
reduce, copy and permute their arguments. They showed that the problem could be solved
by a reduction to the inclusion problem for Büchi automata, yet the existing algorithms
based on explicit complementation were not competitive enough in practice. They devised a
method whose correctness directly relies Ramsey’s Theorem which essentially showed that
Büchi’s original complementation proof has more to offer than just mathematical truth, but
that it can also lead to elegant and practical algorithms for the analysis of omega-automata.
Since then, Ramsey-based methods have proved to be very efficient for such tasks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2774221
http://dx.doi.org/10.1145/2774221
http://dx.doi.org/10.1145/2774221

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 69

Lately, Friedmann, Klaedtke and myself have shown that Ramsey-based methods can
be used effectively and efficiently beyond the class of omega-regular languages, namely for
visibly pushdown omega-languages recognised by corresponding parity automata.

It still remains to be seen whether a similar development is possible for tree automata,
namely whether there are successful program analysis techniques which could similarly lead
to better algorithms for tree automata inclusion.

3.14 Automated verification of functional programs
Rustan Leino (Microsoft Research – USA)

License Creative Commons BY 3.0 Unported license
© Rustan Leino

Dafny started as an imperative language with specifications, where the specifications had
mathematical elements also found in functional languages. These functional features grew
beyond uses in specifications and now include datatypes, co-datatypes, recursive functions,
and predicates defined as least/greatest fixpoints. This means Dafny can be used as a
functional language. Dafny also includes an automated verifier, and the language has proof-
authoring support for when automation doesn’t hold up. In difference to some other functional
languages with verification support, the logic of Dafny is not based around dependent types
but rather Hoare logic. In this talk, I’ll demo a tour through Dafny’s features and point out
some limitations.

3.15 A Static Type Analysis for Lua
Jan Midtgaard (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Jan Midtgaard

Higher-order, dynamically-typed programming languages are flexible but come at the price
of less tool support. To address this challenge we develop a static type analysis for the
Lua programming language. Lua represents an interesting, yet minimal mix of imperative,
functional, and object-oriented language features which makes this a challenging task. We
present a prototype implementation of the developed analysis.

3.16 Subtle points
Conor McBride (University of Strathclyde – UK)

License Creative Commons BY 3.0 Unported license
© Conor McBride

I’ll sketch the approach to computation in Homotopy Type Theory that we’re currently
exploring at Strathclyde. In the business of constructing paths between isomorphic types, we
introduce a notion of segmentation: nontrivially segmented paths have intermediate points
and can thus be constructed in a piecewise continuous manner. Segmentations are naturally

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

70 16131 – Language Based Verification Tools for Functional Programs

ordered by their subtlety, as any segment can be split in two. Crucially, segmented paths
deliver the means to transport values between any two of their points.

3.17 Higher-order horn clauses and higher-order model checking
Luke Ong (University of Oxford – Oxford, UK)

License Creative Commons BY 3.0 Unported license
© Luke Ong

Joint work of Luke Ong; Steven Ramsay

Higher-order model checking (HOMC) is the model checking of trees generated by recursion
schemes. In the (standard) intersection type approach to HOMC, one would construct a
certain type environment, which constitutes a symbolic representation of the invariant. In
this ongoing work, we consider the problem of finding higher-order inductive invariants in a
purely logical setting, namely, the satisfiability problem for (constrained) higher-order horn
clauses. Formulated as higher-order constraint solving, the problem has a much broader
appeal than recursion scheme model checking, yet we argue that much of the technology
already developed by the HOMC community can be made highly effective at solving it. In
particular, we describe an adaptation of Kobayashi’s Hybrid Algorithm to the problem and
highlight its similarities to McMillan’s Lazy Annotation algorithm (for solving first-order
constrained horn clauses).

3.18 From analysis-directed semantics to specifications-in-types
Dominic Orchard (University of Oxford – Oxford, UK)

License Creative Commons BY 3.0 Unported license
© Dominic Orchard

Various recent works on effects and resource usage (coeffects) have provided semantic models
that are indexed in some way by analysis information, e.g., by effect systems, Hoare logic
triples, resource bounds. Such models typically provide inductive families of denotations,
following the shape of an inductively defined program analysis. For example, “graded monads”
are indexed by a monoidal effect system. This is a powerful new paradigm as it provides a way
to refine semantics by analysis information, and exposes analysis information in semantics. In
this talk, I give an overview of the general approach, which I call analysis-directed semantics.
I then show how such models can be used directly in programming, where the indices of these
semantic structures can be used to embed functional specifications at the type-level. I’ll give
some examples in Haskell including effects, computational complexity, communication safety
for concurrency, and well-bracketed file handlers.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 71

3.19 Programming Coinductive Proofs Using Observations
Brigitte Pientka (McGill Universitiy – Montreal, Canada)

License Creative Commons BY 3.0 Unported license
© Brigitte Pientka

Joint work of Andreas Abel; Andrew Cave; Brigitte Pientka; Anton Setzer; David Thibodeau

Coinduction is a key proof technique to establish properties about systems that continue to
run and produce results (i.e. network or communications protocols, I/O interaction, data
streams, or processes) . Yet, mechanizing coinductive proofs about formal systems and
representing, generating and manipulating such proofs remains challenging. In this talk,
we develop the idea of programming coinductive proofs dual to the idea of programming
inductive proofs. Unlike properties about finite data which can be defined by constructing a
derivation, properties about infinite data can be described by the possible observations we
can make. Dual to pattern matching, a tool for analyzing finite data, we develop the concept
of copattern matching, which allows us to describe properties about infinite data. This leads
to a symmetric proof language where pattern matching on finite and infinite data can be
mixed.

3.20 Language-based Verification of Untyped Expressions
Ruzica Piskac (Yale University, US)

License Creative Commons BY 3.0 Unported license
© Ruzica Piskac

Software failures resulting from configuration errors have become commonplace as modern
software systems grow increasingly large and more complex. The lack of language constructs
in configuration files, such as types and grammars, has directed the focus of a configuration
file verification towards building post-failure error diagnosis tools. In addition, the existing
tools are generally language specific, requiring the user to define at least a grammar for the
language models and explicit rules to check.

In this talk, we outline a framework which analyzes datasets of correct configuration
files and derives rules for building a language model from the given dataset. The resulting
language model can be used to verify new configuration files and detect errors in them. Our
proposed framework is highly modular, does not rely on the system source code, and can be
applied to any new configuration file type with minimal user input.

3.21 Program Synthesis from Refinement Types
Nadia Polikarpova (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Nadia Polikarpova

Joint work of Ivan Kuraj; Nadia Polikarpova; Armando Solar-Lezama

The key to scalable program synthesis is modular verification: the better a specification for
a program can be broken up into independent specifications for its components, the fewer
combinations of components the synthesizer has to consider, leading to a combinatorial
reduction in the size of the search space. This talk will present Synquid: a synthesizer that
takes advantage of the modularity offered by type-based verification techniques to efficiently

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

72 16131 – Language Based Verification Tools for Functional Programs

generate recursive functional programs that provably satisfy a given specification in the form
of a refinement type.

We have evaluated Synquid on a large set of synthesis problems and found that it exceeds
the state of the art in terms of both scalability and usability. Synquid was able to synthesize
more complex programs than those reported in prior work (for example, various sorting
algorithms, operations on balanced trees). It was also able to handle most of the benchmarks
tackled by existing tools, often starting from a significantly more concise and intuitive user
input. Moreover, due to automatic refinement discovery through a variant of liquid type
inference, our approach fundamentally extends the class of programs for which a provably
correct implementation can be synthesized without requiring the user to provide full inductive
invariants.

3.22 Demand Driven Analysis For Functional Programs
Scott Smith (Johns Hopkins University – Baltimore, US)

License Creative Commons BY 3.0 Unported license
© Scott Smith

Joint work of Zachary Palmer, Scott Smith
Main reference Z. Palmer, S. Smith, “Higher-Order Demand-Driven Program Analysis”, in Proc. of the 30th

Europ. Conf. on Object-Oriented Programming (ECOOP’16), LIPIcs, Vol. 56, pp. 19:1–19:25,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19

We explore a novel approach to higher-order program analysis that brings ideas of on-demand
lookup from first-order CFL-reachability program analyses to functional programs. The
analysis needs to produce only a control-flow graph; it can derive all other information
including values of variables directly from the graph. Several challenges had to be overcome,
including how to build the control-flow graph on-the-fly and how to deal with nonlocal
variables in functions. The resulting analysis is flow- and context-sensitive with a provable
polynomial-time bound.

3.23 Equations: A toolbox for function definitions in Coq
Matthiew Sozeau (Université Paris Diderot – Paris, France)

License Creative Commons BY 3.0 Unported license
© Matthieu Sozeau

We present a compiler for definitions made by pattern matching on inductive families
in the Coq system. It allows to write structured, recursive dependently-typed functions,
automatically find their realization in the core type theory and generate proofs to ease
reasoning on them. The high-level interface allows to write dependently-typed functions on
inductive families in a style close to Agda or Epigram, while their low-level implementation
is accepted by the vanilla core type theory of Coq. This setup uses the smallest trusted code
base possible and additional tools are provided to maintain a high-level view of definitions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.19
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 73

3.24 Temporal Verification of Higher-Order Functional Programs
Tachio Terauchi (JAIST – Japan)

License Creative Commons BY 3.0 Unported license
© Tachio Terauchi

We present an automated approach to verifying arbitrary omega-regular properties of higher-
order functional programs. Previous automated methods proposed for this class of programs
could only handle safety properties or termination, and our approach is the first to be able to
verify arbitrary omega-regular liveness properties. Our approach is automata-theoretic, and
extends our recent work on binary-reachability-based approach to automated termination
verification of higher-order functional programs to fair termination published in ESOP 2014.
In that work, we have shown that checking disjunctive well-foundedness of (the transitive
closure of) the “calling relation” is sound and complete for termination. The extension to fair
termination is tricky, however, because the straightforward extension that checks disjunctive
well-foundedness of the fair calling relation turns out to be unsound, as we shall show in
the paper. Roughly, our solution is to check fairness on the transition relation instead of
the calling relation, and propagate the information to determine when it is necessary and
sufficient to check for disjunctive well-foundedness on the calling relation. We prove that
our approach is sound and complete. We have implemented a prototype of our approach,
and confirmed that it is able to automatically verify liveness properties of some non-trivial
higher-order programs.

3.25 Occurrence typing modulo theories
Sam Tobin-Hochstadt (Indiana University – Bloomington, US)

License Creative Commons BY 3.0 Unported license
© Sam Tobin-Hochstadt

Occurrence typing has been successful in enabling Typed Racket to handle a wide variety of
existing Racket idioms. In this talk, I present a new extension, adding dependent refinement
types parameterized over arbitrary solvers to Typed Racket.

Dependent refinement types allow Typed Racket programmers to express rich type
relationships, ranging from data structure invariants such as red-black tree balance to pre-
conditions such as vector bounds. Refinements allow programmers to embed the propositions
that occurrence typing in Typed Racket already reasons about into their types. Further,
extending occurrence typing to refinements allows us to make the underlying formalism
simpler and more powerful.

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

74 16131 – Language Based Verification Tools for Functional Programs

3.26 Refinement Caml: A Refinement Type Checking and Inference
Tool for OCaml

Hiroshi Unno (Tsukuba University – Japan)

License Creative Commons BY 3.0 Unported license
© Hiroshi Unno

We will demonstrate Refinement Caml (RCaml), a fully-automated path-sensitive verification
tool for the OCaml functional language based on refinement type checking and inference.
RCaml supports advanced language features such as algebraic data structures and higher-
order recursive functions. RCaml can solve various program analysis problems formulated
as refinement type inference problems, including static assertion checking, termination and
non-termination analysis, precondition inference, relational verification, and symbolic game
solving. RCaml first reduces these problems into constraint solving problems, where the
constraints are expressed by Horn clauses with predicate variables that are placeholders for
preconditions, postconditions, safe inductive invariants, and well-founded recursion relations
of the original program. RCaml then solves the generated constraints by using invariant and
ranking function synthesis techniques.

3.27 Contract Verification and Refutation
David Van Horn (University of Maryland – College Park, USA)

License Creative Commons BY 3.0 Unported license
© David Van Horn

In this talk, I’ll present a new approach to automated reasoning about higher- order programs
by endowing symbolic execution with a notion of higher-order, symbolic values. Our approach
is sound and relatively complete with respect to a first-order solver for base type values.
Therefore, it can form the basis of automated verification and bug-finding tools for higher-
order programs. To validate our approach, we use it to develop and evaluate a system for
verifying and refuting behavioral software contracts of components in a functional language,
which we call soft contract verification. In doing so, we discover a mutually beneficial relation
between behavioral contracts and higher-order symbolic execution.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 75

3.28 Refinement Types for Haskell
Niki Vazou (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Niki Vazou

Joint work of Alexander Bakst; Ranjit Jhala; Eric L. Seidel; Niki Vazou
Main reference N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, S. Peyton-Jones, “Refinement Types For Haskell”,

Manuscript.
URL http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf

Main reference N. Vazou, A. Bakst, R. Jhala, “Bounded refinement types”, in Proc. of the 20th ACM SIGPLAN
Int’l Conf. on Functional Programming (ICFP’15), pp. 48–61, ACM, 2015; pre-print available from
author’s webpage.

URL http://dx.doi.org/10.1145/2784731.2784745
URL https://ranjitjhala.github.io/static/bounded_refinement_types.pdf

Haskell has many delightful features, perhaps the most beloved of which is its type system
which allows developers to specify and verify a variety of program properties at compile time.
However, many properties, typically those that depend on relationships between program
values are impossible, or at the very least, cumbersome to encode within Haskell’s type
system.

Liquid types enable the specification and verification of value-dependent properties by
extending Haskell’s type system with logical predicates drawn from efficiently decidable
logics.

In this talk, we will start with a high level description of Liquid Types. Next, we will
present an overview of LiquidHaskell, a liquid type checker for Haskell. In particular, we
will describe the kinds of properties that can be checked, ranging from generic requirements
like totality (will ‘head’ crash?) and termination (will ‘mergeSort’ loop forever?), to applica-
tion specific concerns like memory safety (will my code SEGFAULT?) and data structure
correctness invariants (is this tree BALANCED?).

3.29 Lazy staged binary decision diagrams
Wouter Swierstra (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Wouter Swierstra

Joint work of Joao Paulo Pizani Flor; Rob Spoel; Wouter Swierstra

This talk reviews the proof-by-reflection method of proof automation. By exploiting the
computational nature of type theory, we can implement a verified decision procedure for
a specific domain, rather than write manual proof terms. We would like to use this to
implement a decision procedure on boolean expressions. The usual techniques to do so,
binary decision diagrams, rely on manipulating pointers in memory – which does not work
well with most proof assistants based on type theory. Instead, we propose to investigate how
we might be able to create the desired data structures in memory using metaprogramming.

16131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://goto.ucsd.edu/~nvazou/refinement_types_for_haskell.pdf
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
http://dx.doi.org/10.1145/2784731.2784745
https://ranjitjhala.github.io/static/bounded_refinement_types.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

76 16131 – Language Based Verification Tools for Functional Programs

3.30 Verification by Optimization: Two Approaches to Manifest
Contracts

Michael Greenberg (Pomona College – Claremont, US)

License Creative Commons BY 3.0 Unported license
© Michael Greenberg

Contract systems can be used for program verification: if you can optimize away the contract
checks, you have proved the program correct!

There are two approaches in the literature: subtyping and static analysis. The subtyping
approach (typical in the manifest setting, and due to Flanagan) removes upcasts, casts from
a subtype to a super type. The static analysis approach (typical in the latent setting, and
due most immediately to Van Horn, though many others have written on similar topics
before) builds an abstract model of which values each variable can hold – if the set of values
all pass a given contract, that contract can be eliminated.

Is one “better” than the other? Can we use both in the same setting? Do they optimize
away different kinds of contracts?

In this brief talk, I lay out the differences between the two and propose a “non-disjointness”
judgment for determining when to reject a program because of a bad cast.

4 Breakout Sessions

In addition to the formal talks, we had breakout sessions on the following topics:
Integrating formal methods tools in the curriculum. In this session, we discussed a
variety of topics ranging from current best exemplars of classes and textbooks for formal
methods, what makes for a good class or text, and regular classes (e.g. operating systems
or compilers) that could be extended with Formal Methods module.
Hands on Tool Tutorials. In this session, different participants gave short demonstrations
of their tools and then encouraged others to use them to carry out various tasks or work
through tutorials. These tools included: Agda, Dafny, F ∗, Haskell, LiquidHaskell, Racket,
RCaml, Synquid and Why3.
User Interaction In this session, the participants identified several key challenges that
must be addressed to improve the user experience for formal tools, as well as new modes
of using the tools, e.g. not just for verification but to synthesize programs.
Types and Effects In this session, the participants discussed recent advances in how to
track effects, and different applications of effect systems.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich 77

Participants

Andreas Martin Abel
Chalmers UT – Göteborg, SE

Amal Ahmed
Northeastern University –
Boston, US

Andrew W. Appel
Princeton University, US

Lennart Augustsson
Standard Chartered Bank –
London, GB

Edwin Brady
University of St. Andrews, GB

Iavor Diatchki
Galois – Portland, US

Richard A. Eisenberg
University of Pennsylvania –
Philadelphia, US

Jean-Christophe Filliâtre
CNRS & University Paris
Sud, FR

Cormac Flanagan
University of California –
Santa Cruz, US

Marco Gaboardi
SUNY – Buffalo, US

Deepak Garg
MPI-SWS – Saarbrücken, DE

Michael Greenberg
Pomona College – Claremont, US

Reiner Hähnle
TU Darmstadt, DE

Cătălin Hriţcu
INRIA – Paris, FR

Suresh Jagannathan
Purdue University – West
Lafayette, US

Ranjit Jhala
University of California –
San Diego, US

Gowtham Kaki
Purdue University – West
Lafayette, US

Gabriele Keller
UNSW – Sydney, AU

Naoki Kobayashi
University of Tokyo, JP

Ekaterina Komendantskaya
University of Dundee, GB

Martin Lange
Universität Kassel, DE

K. Rustan M. Leino
Microsoft Corporation –
Redmond, US

Conor McBride
University of Strathclyde –
Glasgow, GB

Jan Midtgaard
Technical University of Denmark
– Lyngby, DK

Chih-Hao Luke Ong
University of Oxford, GB

Dominic Orchard
University of Cambridge, GB

Brigitte Pientka
McGill Univ. – Montreal, CA

Ruzica Piskac
Yale University, US

Nadia Polikarpova
MIT – Cambridge, US

Scott Smith
Johns Hopkins University –
Baltimore, US

Matthieu Sozeau
University Paris-Diderot, FR

Wouter Swierstra
Utrecht University, NL

Tachio Terauchi
JAIST – Ishikawa, JP

Sam Tobin-Hochstadt
Indiana University –
Bloomington, US

Hiroshi Unno
University of Tsukuba, JP

David Van Horn
University of Maryland – College
Park, US

Niki Vazou
University of California – San
Diego, US

Stephanie Weirich
University of Pennsylvania –
Philadelphia, US

Nobuko Yoshida
Imperial College London, GB

16131

	dagrep-v006-i003_pi_frontmatter
	dagrep_v006_i003_p001_s16101
	Executive Summary Alejandro Lopez-Ortiz, Ulrich Carsten Meyer, Markus E. Nebel, and Robert Sedgewick
	Table of Contents
	Overview of Talks
	Towards fully-informed communication Deepak Ajwani
	Parallel Algorithms for Geometric Graph Problems Alex Andoni, Grisha Yaroslavtsev, Krzysiek Onak, and Sasho Nikolov
	News on Multi-Pivot Quicksort Martin Aumüller
	Thrill: Distributed Big Data Batch Processing in C++ Timo Bingmann
	External Memory Three-Sided Range Reporting and Top-k Queries with Sublogarithmic Updates Gerth Stølting Brodal
	Parallel Queries Andrej Brodnik
	Clustering time series under the Frechet distance Anne Driemel
	Algorithm Design Paradigms in the VAT-Model Fabian Dütsch
	Sublinear Random Access Generators for Preferential Attachment Graphs Guy Even
	On Routing in Geometric Spanners Rolf Fagerberg
	Migrating a data structure from one system to another Martin Farach-Colton
	Practical Compact Indexes for Top-k Document Retrieval Simon Gog, Gonzalo Navarro, and Roberto Konow
	Lock-free data structures Goetz Graefe
	Succinct Choice Dictionaries Torben Hagerup and Frank Kammer
	Weighted dynamic finger in binary search trees John Iacono
	Fast Output-Sensitive Matrix Multiplication Riko Jacob
	File Maintenance: When in Doubt, Change the Layout! Tsvi Kopelowitz
	Self-Organizing Binary Search Trees: Recent Results Kurt Mehlhorn
	Generating Massive Scale-Free Networks under Resource Constraints Ulrich Carsten Meyer and Manuel Penschuck
	Online Resource Leasing Friedhelm Meyer auf der Heide
	Optimal search trees with 2-way comparisons Ian Munro and Mordecai Golin
	Randomized k-Jumplists Elisabeth Neumann
	Dynamic Data Structures for the GPU John D. Owens
	Communication efficient algorithms Peter Sanders
	Encoding Data Structures Rajeev Raman
	Towards a Web-scale Data Management Ecosystem Demonstrated by SAP HANA Alejandro Salinger
	A 21st Century Model for Disseminating Knowledge Robert Sedgewick
	Connectivity Oracles Seth Pettie
	I/O-Efficient Similarity Join Francesco Silvestri
	Fast construction of graph sparsification: graphs, ellipsoids, and balls-into-bins He Sun
	Revisiting the Construction of SSPDs in the Presence of Memory Hierarchies Jan Vahrenhold
	Quicksort with Equal Keys Sebastian Wild

	Open problems
	Open Problem 1 Deepak Ajwani
	Open Problem 2 Alejandro Lopez-Ortiz
	Open Problem 3 Sebastian Wild

	Participants

	dagrep_v006_i003_p024_s16111
	Executive Summary Emilio Coppa, Camil Demetrescu, Daniel Delling, and Jan Vitek
	Table of Contents
	Overview of Talks
	Soundness of Experiments in Parallel Computing Umut A. Acar
	How Did This Get Published? Pitfalls in Experimental Evaluation of Computing Systems José Nelson Amaral
	What is the Value of the Data? José Nelson Amaral
	Experimental Methodology in Parallel and Streaming Analytics David A. Bader
	The Importance of %: Why We Need to Think about Goals, Targets and Populations Judith Bishop
	Reproducibility in Computing: The Role of Professional Societies Ronald F. Boisvert
	Tools from Statistics, Machine Learning and Data Visualization for the Assessment of Heuristics for Optimization Marco Chiarandini
	Computing in the Cloud: Tools and Practices Dmitry Duplyakin
	Network Testbeds and Repeatable Research Eric Eide
	Experimentation and Replication in Embedded and Real-Time Systems Sebastian Fischmeister
	The PRIMAD Model of Reproducibility: A Framework Model of Reproducibility (Result of Dagstuhl Seminar 16041) Norbert Fuhr
	Lessons Learned from Shortest Path Algorithm Evaluation Andrew V. Goldberg
	The TIRA Experiment Platform Matthias Hagen
	Artifact Evaluation: Approach and Experience from OOPSLA's first AEC Matthias Hauswirth
	Incentives & Rewards Matthias Hauswirth
	Rigorous Benchmarking in Reasonable Time Tomas Kalibera
	Data Analysis for Performance Modeling Catherine C. McGeoch
	Chaos in Computer Performance J. Eliot B. Moss
	Assessing the Performance of Heuristics in Multiobjective Optimization: an Overview Luís Paquete
	Algorithm Engineering: An Attempt at a Definition Peter Sanders
	The Truth, the Whole Truth and Nothing but the Truth Peter F. Sweeney
	Experimenting with Humans vs. Experimenting with Machines Walter F. Tichy
	I Think Nobody Wants to Do Bad Science! Petr Tuma
	Some remarks on data sharing and the replication of results Dorothea Wagner
	Experimenting with Innocent Humans Roger Wattenhofer

	Working groups
	Educating the community Umut A. Acar, José Nelson Amaral, David A. Bader, Judith Bishop, Ronald F. Boisvert, Marco Chiarandini, Markus Chimani, Daniel Delling, Camil Demetrescu, Amer Diwan, Dmitry Duplyakin, Eric Eide, Erik Ernst, Sebastian Fischmeister, Norbert Fuhr, Paolo G. Giarrusso, Andrew V. Goldberg, Matthias Hagen, Matthias Hauswirth, Benjamin Hiller, Richard Jones, Tomas Kalibera, Marco Lübbecke, Catherine C. McGeoch, Kurt Mehlhorn, J. Eliot B. Moss, Ian Munro, Petra Mutzel, Luís Paquete, Mauricio Resende, Peter Sanders, Nodari Sitchinava, Peter F. Sweeney, Walter F. Tichy, Petr Tuma, Dorothea Wagner, and Roger Wattenhofer
	Evangelism Mauricio Resende, David A. Bader, Ronald F. Boisvert, Catherine C. McGeoch, J. Eliot B. Moss, and Dorothea Wagner
	Replicability Petr Tuma, Umut A. Acar, Judith Bishop, Ronald F. Boisvert, Amer Diwan, Dmitry Duplyakin, Eric Eide, Norbert Fuhr, Matthias Hagen, J. Eliot B. Moss, and Peter F. Sweeney

	Participants

	dagrep_v006_i003_p044_s16112
	Executive Summary Andrej Bauer, Martin Hofmann, Matija Pretnar, Jeremy Yallop
	Table of Contents
	Overview of Talks
	Handlers considered harmful? Andrzej Filinski
	Andromeda: Type theory with Equality Reflection Philipp G. Haselwarter
	No value restriction is needed for algebraic effects and handlers Ohad Kammar, Sean Moss, and Matija Pretnar
	Parameterized Extensible Effects and Session Types Oleg Kiselyov
	Adequacy for Infinitary Algebraic Effects Gordon Plotkin
	A tutorial on algebraic effects and handlers Matija Pretnar
	Compiling Eff to OCaml Matija Pretnar, Amr Hany Shehata Saleh, and Tom Schrijvers
	Effect Handlers in Scope Tom Schrijvers
	Compositional reasoning for algebraic effects Alex Simpson
	Substitution, jumps and algebraic effects Sam Staton
	LiquidHaskell: Refinement Types for Haskell Niki Vazou

	Working groups
	Towards an effect system for OCaml Matija Pretnar, Stephen Dolan, KC Sivaramakrishnan, and Leo White

	Open problems
	Are all functions continuous and how to prove it? Andrej Bauer
	Capturing algebraic equations in an effect system Matija Pretnar

	Participants

	dagrep_v006_i003_p059_s16131
	Summary Marco Gaboardi, Suresh Jagannathan, Ranjit Jhala, and Stephanie Weirich
	Table of Contents
	Overview of Talks
	Coinduction using copatterns and sized types Andreas Martin Abel
	Verified Compilers for a Multi-Language World Amal Ahmed
	DeepSpec, CertiCoq and Verified Functional Algorithms Andrew Appel
	Type Systems as Proof Strategies Iavor S. Diatchki
	Dependently Typed Programming in GHC 8 Richard A. Eisenberg
	Deductive Verification with Why3 Jean-Christophe Filliâtre
	Relational cost analysis Deepak Garg
	The Interactive Software Verification System KeY Reiner Hähnle
	Dependent Types and Multi-Monadic Effects in F* Catalin Hritcu
	Relational Reasoning about Higher-Order Shape Properties Gowtham Kaki and Suresh Jagannathan
	Program Verification Based on Higher-Order Model Checking Naoki Kobayashi
	Certified Automated Theorem Proving for Type Inference Ekaterina Komendantskaya
	Ramsey-based Methods: From Size-Change Termination to Satisfiability in Temporal Logics Martin Lange
	Automated verification of functional programs Rustan Leino
	A Static Type Analysis for Lua Jan Midtgaard
	Subtle points Conor McBride
	Higher-order horn clauses and higher-order model checking Luke Ong
	From analysis-directed semantics to specifications-in-types Dominic Orchard
	Programming Coinductive Proofs Using Observations Brigitte Pientka
	Language-based Verification of Untyped Expressions Ruzica Piskac
	Program Synthesis from Refinement Types Nadia Polikarpova
	Demand Driven Analysis For Functional Programs Scott Smith
	Equations: A toolbox for function definitions in Coq Matthieu Sozeau
	Temporal Verification of Higher-Order Functional Programs Tachio Terauchi
	Occurrence typing modulo theories Sam Tobin-Hochstadt
	Refinement Caml: A Refinement Type Checking and Inference Tool for OCaml Hiroshi Unno
	Contract Verification and Refutation David Van Horn
	Refinement Types for Haskell Niki Vazou
	Lazy staged binary decision diagrams Wouter Swierstra
	Verification by Optimization: Two Approaches to Manifest Contracts Michael Greenberg

	Breakout Sessions
	Participants

