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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16201 “Synergies
among Testing, Verification, and Repair for Concurrent Programs”. This seminar builds upon,
and is inspired by, several past seminars on program testing, verification, repair and combina-
tions thereof. These include Dagstuhl Seminar 13021 “Symbolic Methods in Testing”; Dagstuhl
Seminar 13061 “Fault Prediction, Localization and Repair”; Dagstuhl Seminar 14171 “Evalu-
ating Software Verification Systems: Benchmarks and Competitions”; Dagstuhl Seminar 14352
“Next Generation Static Software Analysis Tools”; Dagstuhl Seminar 14442 “Symbolic Execution
and Constraint Solving”; and Dagstuhl Seminar 15191 “Compositional Verification Methods for
Next-Generation Concurrency”. These were held in January 2013; February 2013; April 2014;
August 2014; October 2014; and May 2015, respectively. Two notable contributions of Dagstuhl
Seminar 16201, which distinguish it from these past seminars, are (i) the focus on concurrent
programming, which introduces significant challenges to testing, verification and repair tools, as
well as (ii) the goal of identifying and exploiting synergies between the testing, verification and
repair research communities in light of common needs and goals.
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1 Executive Summary

Omer Tripp
Julian Dolby
Orna Grumberg
Peter Müller
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© Omer Tripp, Julian Dolby, Orna Grumberg, and Peter Müller

Context and Motivations
Major trends in computing infrastructure, such as multicore processors and data centers,
increase the demand for concurrent software that utilizes the available resources. However,
concurrent programs are notoriously difficult to develop. They are susceptible to a number of
specific errors that do not occur in sequential code, such as data races, deadlock, atomicity
violations, starvation, and violations of consistency models. These errors typically manifest
themselves only in certain executions (for instance, under certain thread schedules), which
makes them extremely difficult to detect, reproduce, localize, and repair. Established
techniques for testing, verifying and repairing sequential programs are insufficient to handle
concurrent software. In particular, they do not address the following challenges:

State space explosion: The execution of a concurrent program depends not only on the
inputs but also on the thread schedule and optimizations, such as memory reordering.
This results in an state space that is orders of magnitude larger than for sequential
programs. Bug-finding techniques, such as testing and bounded model checking, require
effective ways of pruning the state space. Static verification techniques, such as deductive
verification and abstract interpretation, require suitable abstractions that allow one to
reason about all possible program behaviors. Finally, program repair requires techniques
to predict the impact of a program change on the set of possible executions.
Modularity: Modular techniques, such as unit testing or compositional verification, scale
to large applications. However, for many properties of concurrent programs there are no
modular techniques, or they require a large annotation overhead, for instance to denote
the locations protected by a lock or to specify a locking order (or discipline) that ensures
deadlock freedom. It is crucial to develop techniques that allow programs to be checked
and repaired modularly, for instance to fix an atomicity violation by adding more thread
synchronization, but without introducing a deadlock globally.
Specifications: Testing, verification and repair may rely on specifications that express the
intended program behavior, for instance in the form of test oracles or program invariants.
In addition to functional properties, specifications for concurrent programs also have to
express how threads cooperate, for instance via a global locking strategy. While various
specification approaches exist for concurrent programs, there is no uniform formalism
that handles the full range of concurrency idioms and that supports testing, verification
and repair.
Error reporting: Testing, verification and repair techniques need to disambiguate true
problems from spurious defects, which is often difficult in concurrent programs. For
instance, a data race is not necessarily a bug. If a race occurs within a lock-free data
structure, then it may be admissible as part of some higher-level transactional behavior
enforced by the data-structure operation. Moreover, it is important to present bugs in an
understandable manner, for instance by providing reports with only a small number of
threads and by determining whether a bug is inherently concurrent or may also arise in a
sequential context.
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Liveness: Whereas for most sequential programs, termination is the only relevant liveness
property, liveness (such as fairness or the absence of livelocks) is often more prevalent
in concurrent programs. It is, therefore, important to develop techniques to check and
enforce progress.

Program testing, verification, and repair each offer partial solutions to these challenges. This
seminar was conceived with the goal of bringing together these three communities in order
to develop a common understanding of the issues as well as to enable collaboration at the
level of techniques and tools.

Main Themes
The first step toward exposing, and enabling, synergies between the three main threads of
research on correctness and reliability of concurrent programs – verification, testing and
repair – is to analyze the challenges and contributions pertaining to each of these areas in
isolation. We survey work that has been done in each of these communities, based on the
available literature and presentations given in the seminar, to summarize the current state of
the three communities.

Verification

A main challenge in verification of concurrency properties is the prohibitive state space
unfolded by thread interleavings. A hybrid solution to this problem is to specialize the static
abstraction according to necessary proof conditions, arising during dynamic runs, such that
the verification algorithm can scale with fine-grained abstractions (Naik, Yang). Another
approach is to retain correlations among local thread states as well as the shared program
state (Sagiv, Segalov). In this way, useful invariants can be proved and exploited by the
verifier even if an unbounded number of threads is assumed. Refinement techniques are
useful when little information is required about the environment to prove a property (Gupta).
A useful idea in error reporting is to pinpoint concurrency-specific bugs (differentiating them
from sequential bugs) by also running a sequential verifier and performing delta analysis
(Joshi). Much like other techniques, verification greatly benefits from user specifications. For
example, a parallelizing compiler is more likely to prove disjointness between loop iterations
if relevant data structures (or operations) are specified as linearizable (Rinard, Diniz). This
also provides a measure of modularity, enabling the separation between library linearizability
checking and client verification. Modern program logics (O’Hearn, Parkinson, Gardner)
provide a way of constructing correctness proofs for concurrent programs, though in general
modular verification of concurrent software remains a hard problem.

Testing

Similarly to verification, testing techniques are also challenged by the state-space problem.
Several ideas have been proposed in response to this problem. Open-world testing, whereby
data structures or libraries referenced by an application are tested in isolation for concurrency
bugs (e.g., atomicity violations), reduces the scope of testing considerably (Shacham).
Interestingly, even open-world issues that cannot be recreated within the client application
are often fixed by developers, which encourages further research into modular consistency
properties (e.g., linearizability) (Shacham). Predictive analysis is a recent form of testing
that holds the promise of high coverage at an affordable cost (Smaragdakis). Starting from a
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concrete trace, predictive analysis applies feasibility-preserving transformations (reordering
trace events, typically through constraint solving) to detect concurrency bugs, such that
soundness is guaranteed (Dolby, Huang). Another source of state-space reduction is to exploit
high-level semantic guarantees, like atomicity, to abstract away intermediate trace transitions
(Shacham, Tripp). This also relates to error reporting, where certain read/write conflicts give
rise to spurious conflicts that can be eliminated with a higher-level view of conflict as lack of
commutativity between atomic operations (Koskinen, Kulkarni). Contrary to memory-level
conflict detection, commutativity-based testing requires a specification (Shacham, Tripp).
Another form of specification refers to consistency relaxations, e.g. permitting certain types
of read/write conflict (Thies) or specifying a computation as nondeterministic (Burnim,
Tripp).

Repair

In program repair, error reporting (or localization) plays a key role, deciding the effective
scope and nature of the fix. Pinpointing the exact conditions that give rise to a concurrency
bug is thus critical, emphasizing the need for better testing and verification tools. Importantly,
incorrect fixing may introduce concurrency bugs (e.g., a deadlock resulting from additional
synchronization to fix an atomicity violation), which again highlights the need for better
synergy between repair and testing/verification (Liu). Incorrect fixing also turns liveness
into a concrete concern: Assuming the program previously terminated, does it also terminate
after the fix? Existing solutions that ensure termination rely on iterative transformation
methods as well as specialized models like Petri nets (Liu, Zhang). A common assumption
in the repair community, to hold back the state-space challenge, is that concurrency bugs
involve a small number of threads (typically 2) (Liblit, Liu). The hope is that better synergy
with testing and verification can work toward relaxing this assumption. Semantic lifting
of the concrete code, exploiting e.g. linearizability, has recently been demonstrated as a
useful means to apply bottom-up/top-down fixing: First, the code is lifted into an abstract
workflow, and then the workflow is concretized into a correct reimplementation (Liu, Tripp).
This motivates further exploration of useful specification media for repair of concurrency
defects.

Goals of the Seminar
The goal of the seminar was to promote cross fertilization among the verification, testing and
repair communities, as they seem to be running into the same challenges, thereby solving
increasingly similar problems. At the extreme, verification is about all possible program
behaviors, testing is about running the program to see what it does, and repair is about
generating new code. However, many techniques in all communities now blur the distinction.
Use of dynamic information to guide abstractions in verification is one example; another is
how predictive testing looks for bugs in possible executions close to a dynamic one, leading
to a form of verification; finally, program repair increasingly uses solvers to synthesize new
programs and test them, which overlaps with techniques from the other areas. We intended
for the seminar to bring out further areas in which these fields are closely related, and
inspire further techniques that fuse these areas, which was fulfilled by some of the discussions
throughout the seminar.

Below are concrete examples of connections that we meant to expose, some of which were
discussed throughout the seminar:
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Benchmarks

Each area has a variety of benchmarks and competitions, and many of them ultimately
focus on concurrency-specific challenges like interleavings. It seems likely that the different
communities could benefit from sharing. For instance, predictive testing and verification
could surely share many benchmarks, and a more standard set of benchmarks could make
evaluations easier. At the same time, potential users could help ensure that any benchmarks
actually measure what they care about.

Infrastructure

Much progress in both testing and verification has been made possible by progress in solver
technology, and a variety of solvers are now common in both areas. There is room to share
the infrastructure itself and the common remaining challenges.

Hybrid tools

The path-specific focus of testing and the global focus of verification can aid each other, e.g.
current work such as CLAP using a control flow from a specific execution to make model
checking more scalable.

Though the seminar touched on techniques and approaches that generalize beyond analysis
and repair of concurrent software, we feel that the overall focus on challenges posed by
concurrency was justified. With this focus, we were able to stir concrete discussion and
tightly connected talks.
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3 Organization of the Seminar

The seminar lasted four days. We launched it with an introduction session featuring 2-
minute lightning talks by each of the participants. These brief talks provided background
on the person and relevant research experience and expertise. This enabled interaction and
discussion from the very onset. The remainder of the seminar consisted of three types of
talks: tutorials, demos and presentations.

Throughout the seminar, there were four tutorials. The first two were given on the first
day of the seminar. The remaining two were given the next day. The goal of the tutorials
was to expose the different communities to one another in a thorough and explicit manner
(modulo time limitations). For this reason, the tutorials were given during the first part of
the seminar. The tutorials were on the following topics:

Model checking techniques for concurrent software
Deductive verification of concurrent programs
Repair of concurrency bugs
Testing of, and test generation for, concurrent software

The tutorials provided general background, specific techniques as well as discussion of
challenges and future research directions.

On the last day of the seminar, there was a session dedicated to demos, where three live
demos were given. These showed use of both research and commercial tools. The topics were
as follows:

Directed model checking of JavaScript code (with asynchronous event handlers)
Test generation for concurrent libraries
Modular and interactive verification of concurrent programs

Finally, there were six technical sessions. Within each session, we intentionally combined
talks on testing, verification and repair to expose synergies and encourage discussion. Topics
that were covered include the following:

Stateless model checking of event-driven applications
Interpolation in model checking
Predicate abstraction for bounded and unbounded concurrency
Automated bug repair
Making use of partial verification results
Interactive verification of concurrent software using Dafny
Reasoning about non-linearizable concurrent objects
Algorithmic logic-based verification
The Rely/Guarantee framework for verifying concurrent programs
Proving termination via abstract interpretation
Pervasive verification of multi-core systems
The Java memory model
Repairing linearizability violations in map-based operations
Modular verification of message-passing programs
Verification of event-driven JavaScript programs
Concurrent specification of POSIX
Using symbolic execution for space-time analysis of code

As the different types of talks and many topics that were covered illustrate, the challenges
that were addressed in this seminar are complex and demand discussion and collaboration
across the testing, verification and repair communities. There are natural links that, to date,
have not been exploited sufficiently. Immediate examples include verification of programs
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after a concurrency bug has been automatically patched, guiding testing by the results
of partial verification (which is what commercial tools typically support), and integrating
verification with bounded model checking. These and various other points of synergy were
explored and discussed throughout the seminar both during sessions and in ad-hoc meetings
and forums (which is a great advantage of meeting at Dagstuhl).

As the reader can learn from the rest of this report, the seminar has achieved the goals
of promoting discussion across the different communities, exposing common challenges and
approaches to address these challenges, as well as shaping “hybrid” research directions that
take their inspiration from the problems faced by both the testing and the verification and
the repair communities. Participants provided highly positive feedback following the seminar,
and expressed interest in follow-up events. The organizers are also very supportive of more
seminars in the spirit of this seminar, which aim to explore and exploit links and synergies
between the communities. There is room for more focused discussion on specific topics that
were touched upon during the seminar. There should hopefully also be an opportunity in
the future to reflect on, and shape, research directions that were borne out of this seminar or
match its spirit.

4 Overview of Talks

4.1 Predicate abstraction for bounded and unbounded concurrency
Alastair Donaldson, Alexander Kaiser, Daniel Kroening, Michael Tautschnig, and Thomas
Wahl

License Creative Commons BY 3.0 Unported license
© Alastair Donaldson, Alexander Kaiser, Daniel Kroening, Michael Tautschnig, and Thomas Wahl

Main reference A. Kaiser, D. Kroening, T. Wahl, “Lost in Abstraction: Monotonicity in Multi-threaded
Programs”, Information and Computation, 2016; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1016/j.ic.2016.03.003
URL http://www.ccs.neu.edu/home/wahl/Publications/kkw16.pdf

Predicate abstraction, a technique for overapproximating system-level software by programs
over Boolean-valued variables, has proved to be a success story in sequential program
verification, especially for control-intensive programs. In recent years there has been some
effort to extend this technique to multi-threaded programs. In this talk I discuss the
requirements for shared-variable concurrent predicate abstraction, both for the case of a
known number of threads, as well as for the unbounded case, where the number of threads is
initially unknown or may dynamically change at runtime.

The result is that, while concurrent predicate abstraction reduces data complexity
substantially (as in the sequential case), we have to pay for that by an increase in concurrency
control complexity, even in the bounded-thread case.

This work as published primarily in the following two papers (journal versions of preceding
conference papers):

Alexander Kaiser and Daniel Kroening and Thomas Wahl. Lost in Abstraction: Mono-
tonicity in Multi-threaded Programs. Information and Computation, 2016.
Alastair Donaldson and Alexander Kaiser and Daniel Kroening and Michael Tautschnig
and Thomas Wahl. Counterexample-guided abstraction refinement for symmetric concur-
rent programs. Formal Methods in System Design, 2012.
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4.2 Starling: simpler concurrency proofs
Mike Dodds (University of York, GB), Matthew J. Parkinson, and Matthew Windsor

License Creative Commons BY 3.0 Unported license
© Mike Dodds, Matthew J. Parkinson, and Matthew Windsor

Modern program logics have made it feasible to reason about the most complex kinds of
concurrent algorithm. However, many modern logics are enormously complex and difficult to
understand, and most logics lack any kind of automated tool support.

We propose an antidote in Starling, a prototype tool for automated verification of
concurrent algorithms. Starling takes a proof outline written in an intuitive predicate-based
style, and converts it into proof obligations that can be discharged by Z3 or a Horn clause
solver. Starling’s underlying approach is based on the Views framework, which means it
can be applied to many kinds of reasoning system. Starling can automatically verify several
challenging examples including the Linux ticketed lock.

Starling is in active development on github: http://github.com/septract/starling-tool.

4.3 Automated Program Bug Repair
Orna Grumberg (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Orna Grumberg

Joint work of Bat-chen Rothenberg, Orna Grumberg

This is a work in progress.
The work presents a novel approach for automatically repairing a program with respect

to a given set of assertions. Programs are repaired using a predefined set of mutations. We
impose no assumptions on the number of erroneous locations in the program. We refer to a
bounded notion of correctness.

The repaired programs are returned one by one, in increasing number of mutations. Only
minimal sets of mutations are applied. That is, if a program can be repaired by applying
a set of mutations Mut, then no superset of Mut is later considered. This is based on the
understanding that the programmer would like to get a repaired program which is as close
to the original program as possible.

Our approach is based on formal methods. In particular, we exploit both SMT and
SAT solvers, both incrementally. The SMT solver verifies whether a mutated program is
indeed correct. The SAT solver restricts the search space of mutated programs to only
those obtained by a minimal mutation set. Thus, an efficient search of all minimal repaired
program is achieved.

We implemented a prototype of our algorithm and got very encouraging results.

http://creativecommons.org/licenses/by/3.0/
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4.4 Tutorial: Automated Repair of Concurrency Bugs
Ben Liblit (University of Wisconsin – Madison, US)

License Creative Commons BY 3.0 Unported license
© Ben Liblit

Joint work of Guoliang Jin, Shan Lu, Ben Liblit
Main reference G. Jin, W. Zhang, D. Deng, B. Liblit, S. Lu, “Automated Concurrency-Bug Fixing”, in Proc. of

the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI’12),
pp. 221–236, USENIX Association, 2012.

URL https://www.usenix.org/conference/osdi12/technical-sessions/presentation/jin

Concurrency bugs are widespread in multithreaded programs. Fixing them is time-consuming
and error-prone. We present CFix, a system that automates the repair of concurrency bugs.
CFix works with a wide variety of concurrency-bug detectors. For each failure-inducing
interleaving reported by a bug detector, CFix first determines a combination of mutual-
exclusion and order relationships that, once enforced, can prevent the buggy interleaving.
CFix then uses static analysis and testing to determine where to insert what synchronization
operations to force the desired mutual-exclusion and order relationships, with a best effort
to avoid deadlocks and excessive performance losses. CFix also simplifies its own patches by
merging fixes for related bugs.

Evaluation using four different types of bug detectors and thirteen real-world concurrency-
bug cases shows that CFix can successfully patch these cases without causing deadlocks or
excessive performance degradation. Patches automatically generated by CFix are of similar
quality to those manually written by developers.

References
1 Dongdong Deng, Guoliang Jin, Marc de Kruijf, Ang Li, Ben Liblit, Shan Lu, Shanxiang Qi,

Jinglei Ren, Karthikeyan Sankaralingam, Linhai Song, Yongwei Wu, Mingxing Zhang, Wei
Zhang, and Weimin Zheng, “Fixing, Preventing, and Recovering From Concurrency Bugs.”
In Science China Information Sciences, volume 58, number 5, May 2015. Invited paper.

2 Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu, “Automated
Concurrency-Bug Fixing.” In Tenth USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2012), October 2012.

3 Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit, “Automated Atomicity-
Violation Fixing.” In Proceedings of the ACM SIGPLAN 2011 Conference on Programming
Language Design and Implementation (PLDI 2011), June 2011.

4.5 Making the Java Memory Model Safe
Andreas Lochbihler (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Andreas Lochbihler

Main reference A. Lochbihler, “Making the Java Memory Model Safe”, ACM Trans. Program. Lang. Syst., 35(4),
Paper 12, 2014.

URL http://dx.doi.org/10.1145/2518191

Type safety and the Java security architecture distinguish the Java programming language
from other mainstream programming languages like C and C++. Another important feature
of Java is its built-in support for multithreading and the Java memory model. In this
talk, I discuss how the current Java memory model affects type safety and Java’s security
guarantees.
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The findings are based on a formal model of Java and the Java memory model. It includes
dynamic memory allocation, thread spawns and joins, infinite executions, the wait-notify
mechanism, and thread interruption, all of which interact in subtle ways with the memory
model. The language is type safe and provides the data race freedom guarantee. The model
and proofs have been checked mechanically in the proof assistant Isabelle/HOL.

References
1 Andreas Lochbihler. Making the Java Memory Model Safe. ACM Trans. Program. Lang.

Syst. 35(4):12, 2014

4.6 Stateless Model Checking of Event-Driven Applications
Anders Møller (Aarhus University, DK)

License Creative Commons BY 3.0 Unported license
© Anders Møller

Main reference C. S. Jensen, A. Møller, V. Raychev, D. Dimitrov, M. Vechev, “Stateless model checking of
event-driven applications”, in Proc. of the 2015 ACM SIGPLAN Int’l Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015), pp. 57-73, ACM, 2015.

URL http://dx.doi.org/10.1145/2814270.2814282

Modern event-driven applications, such as, web pages and mobile apps, rely on asynchrony
to ensure smooth end-user experience. Unfortunately, even though these applications are
executed by a single event-loop thread, they can still exhibit nondeterministic behaviors
depending on the execution order of interfering asynchronous events. As in classic shared-
memory concurrency, this nondeterminism makes it challenging to discover errors that
manifest only in specific schedules of events. In this work we propose the first stateless model
checker for event-driven applications, called R4. Our algorithm systematically explores the
nondeterminism in the application and concisely exposes its overall effect, which is useful for
bug discovery. The algorithm builds on a combination of three key insights: (i) a dynamic
partial order reduction (DPOR) technique for reducing the search space, tailored to the
domain of event-driven applications, (ii) conflict-reversal bounding based on a hypothesis
that most errors occur with a small number of event reorderings, and (iii) approximate replay
of event sequences, which is critical for separating harmless from harmful nondeterminism.
We instantiate R4 for the domain of client-side web applications and use it to analyze event
interference in a number of real-world programs. The experimental results indicate that
the precision and overall exploration capabilities of our system significantly exceed that of
existing techniques.

4.7 Partial Verification Results
Peter Müller (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
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Most techniques to detect program errors, such static program analysis, do not fully verify
all possible executions of a program. They leave executions unverified when they do not
check certain properties, fail to verify properties, or check properties under certain unsound
assumptions such as the absence of arithmetic overflow.
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In this talk, we present a technique to complement partial verification results by automatic
test case generation. We annotate programs to reflect which executions have been verified,
and under which assumptions. These annotations are then used to guide dynamic symbolic
execution toward unverified program executions. We have implemented our technique for
the .NET static analyzer Clousot and the dynamic symbolic execution tool Pex. It produces
smaller test suites (by up to 19.2%), covers more unverified executions (by up to 7.1%), and
reduces testing time (by up to 52.4%) compared to combining Clousot and Pex without our
technique.

4.8 ISSTAC: Integrated Symbolic Execution for Space-Time Analysis
of Code (Side-Channel Analysis)

Corina Pasareanu (NASA – Moffett Field, US)
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Attacks relying on the inherent space-time complexity of algorithms implemented by software
systems are gaining prominence. Software systems are vulnerable to such attacks if an
adversary can inexpensively generate inputs that cause the system to consume an impractically
large amount of time or space to process those inputs, thus denying service to benign users
or otherwise disabling the system. The adversary can also use the same inputs to mount
side-channel attacks that aim to infer some secret from the observed space-time system
behavior.

Our project, ISSTAC: Integrated Symbolic Execution for Space-Time Analysis of Code,
aims to develop automated analysis techniques and implement them in an industrial-strength
tool that allows the efficient analysis of software (in the form of Java bytecode) with respect
to space-time complexity vulnerabilities. The analysis is based on symbolic execution, a
well-known analysis technique that systematically explores program execution paths and also
generates inputs that trigger those paths. We are building a cloud-based symbolic execution
engine for Java that includes new and improved algorithms for the symbolic space-time
complexity and side-channel analysis of programs and a novel model counting constraint
solver needed for quantifying the analysis results.

This is a 4-year collaborative project between Vanderbilt University, CMU, UC Santa
Barbara and Queen Mary University, London. The project will build upon existing and
mature symbolic execution tools (Symbolic PathFinder). I will give an overview of the
project and highlight recent advancements on side-channel analysis. The ISSTAC website is:
https://www.cmu.edu/silicon-valley/research/isstac/index.html.
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4.9 Reasoning about non-linearizable concurrent objects
Ilya Sergey (University College London, GB), Aleksandar Nanevski, Anindya Banerjee, and
German Andres Delbianco
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Main reference I. Sergey, A. Nanevski, A. Banerjee, G. Andrés Delbianco, “Hoare-style Specifications as
Correctness Conditions for Non-linearizable Concurrent Objects”, arXiv:1509.06220v3 [cs.LO],
2015.

URL http://arxiv.org/abs/1509.06220v3

Designing scalable concurrent objects, which can be efficiently used on multicore processors,
often requires one to abandon standard specification techniques, such as linearizability,
in favor of more relaxed consistency requirements. However, the variety of alternative
correctness conditions makes it difficult to choose which one to employ in a particular case,
and to compose them when using objects whose behaviors are specified via different criteria.
The lack of syntactic verification methods for most of these criteria poses challenges in their
systematic adoption and application.

In this line of work, we argue for using Hoare-style program logics as an alternative and
uniform approach for specification and compositional formal verification of safety properties for
concurrent objects and their client programs. Through a series of case studies, we demonstrate
how an existing program logic for concurrency can be employed off-the-shelf to capture
important state and history invariants, allowing one to explicitly quantify over interference
of environment threads and provide intuitive and expressive Hoare-style specifications for
several non-linearizable concurrent objects that were previously specified only via dedicated
correctness criteria. We illustrate the adequacy of our specifications by verifying a number
of concurrent client scenarios, that make use of the previously specified concurrent objects,
capturing the essence of such correctness conditions as concurrency-aware linearizability,
quiescent, and quantitative quiescent consistency.

4.10 Actor Services: Modular Verification of Message Passing
Programs

Alexander J. Summers (ETH Zürich, CH)
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Main reference A. J. Summers, P. Müller, “Actor Services: Modular Verification of Message Passing Programs”, in

Proc. of the 25th European Symposium on Programming (ESOP’16), LNCS, Vol. 9632,
pp. 699–726, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-662-49498-1_27

We present actor services [1]: a novel program logic for defining and verifying response and
functional properties of programs which communicate via asynchronous messaging. Actor
services can specify how parts of a program respond to messages, both in terms of guaranteed
future messages, and relations between the program states in which messages are received
and responses sent. These specifications can be composed, so that end-to-end behaviours of
parts of a system can be summarised and reasoned about modularly. We provide inference
rules for guaranteeing these properties about future execution states without introducing
explicit traces or temporal logics.
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Actor services are ultimately derived from local actor services, which express behaviours
of single message handlers. We provide a proof system for verifying local services against
an implementation, using a novel notion of obligations to encode the appropriate liveness
requirements. Our proof technique ensures that, under weak assumptions about the un-
derlying system (messages may be reordered, but are never lost), as well as termination of
individual message handlers, actor services will guarantee suitable liveness properties about
a program, which can be augmented by rich functional properties. Our approach supports
reasoning about both state kept local to an actor (as in a pure actor model), and shared
state passed between actors, using a flexible combination of permissions, immutability and
two-state invariants.

References
1 Alexander J. Summers and Peter Müller. Actor Services: Modular Verification of Message

Passing Programs. European Symposium on Programming (ESOP) 2016, Springer-Verlag,
LNCS.

4.11 Tutorial: Deductive Verification Tools
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Permission-Based Reasoning”, in Proc. of the 17th Int’l Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’16), LNCS, Vol. 9583, pp. 41–62, Springer, 2016.
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This tutorial summarises the state of the art in automated deductive verification tools – those
which take a program along with specifications/annotations and attempt to prove that the
program satisfied its specification, reporting potential violations. An overview of a number of
these tools is given, including a summary of the different applications and features of these
tools, and the Chalice verifier for race-free concurrent programs (http://chalice.codeplex.com)
is shown for a concrete demonstration.

The main two technical approaches for building such verification tools are symbolic
execution (defining a custom verification engine) and verification condition generation
(embedding verification problems in a lower-level verification language). Both techniques are
briefly explained, and the idea of intermediate verification languages is motivated. The Viper
Project (http://viper.ethz.ch) [1] is presented, which is a new such intermediate language and
suite of generic verification tools, designed to easily support encodings of modern program
logics and other reasoning methodologies. The tutorial concludes by giving demonstrations
of how both traditional permission-based reasoning and recent techniques such as those
addresses weak memory reasoning can be simply implemented via encodings into Viper,
exploiting the reusable verifiers provided.

References
1 Peter Müller and Malte Schwerhoff and Alexander J. Summers. Viper: A Verification

Infrastructure for Permission-Based Reasoning. Verification, Model Checking, and Abstract
Interpretation (VMCAI) 2016, Springer-Verlag, LNCS,
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4.12 Fixing Linearizability Violations in Map-based Concurrent
Operations Automatically

Omer Tripp (IBM TJ Watson Research Center – Yorktown Heights, US)
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Writing concurrent software while achieving both correctness and efficiency is a grand
challenge. To facilitate this task, concurrent data structures have been introduced into
the standard library of popular languages like Java and C#. Unfortunately, while the
operations exposed by concurrent data structures are atomic (or linearizable), compositions
of these operations are not necessarily atomic. Recent studies have found many erroneous
implementations of composed concurrent operations.

In this talk, I address the problem of fixing nonlinearizable composed operations such
that they behave atomically. Specifically, I will present an automated fixing algorithm for
composed Map operations and its implementation as the Flint tool. Flint accepts as input a
composed operation suffering from atomicity violations. Its output, if fixing succeeds, is a
composed operation that behaves equivalently to the original operation in sequential runs
and is guaranteed to be atomic.

Flint takes a first step towards fixing incorrect concurrent compositions fully automatically,
encouraging more research effort in this direction. Evaluation of Flint on 48 incorrect
compositions from 27 popular applications, including Tomcat and MyFaces, has yielded
highly encouraging: Flint is able to correct 96% of the methods, and the fixed version is
often the same as the fix by an expert programmer and as efficient as the original code.

4.13 Bringing Abstract Interpretation to Termination and Beyond
Caterina Urban (ETH Zürich, CH)
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Program termination is the most prominent liveness property. We design new program
approximations, in order to automatically infer sufficient preconditions for program termina-
tion and synthesize piecewise-defined ranking functions, which provide upper bounds on the
waiting time before termination. We also contributes an abstract interpretation framework
for proving liveness properties, which comes as a generalization of the framework proposed
for termination. In particular, the framework is dedicated to liveness properties expressed
in temporal logic, which are used to ensure that some desirable event happens once or
infinitely many times during program execution. The results presented in this talk have been
implemented into a prototype analyzer. Experimental results show that it performs well on
a wide variety of benchmarks and it is competitive with the state of the art.
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