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There is a long tradition of research in algorithms for optimization problems in graphs,
including work on many classical problems, both polynomial-time solvable problems and
NP-hard problems, e.g. shortest paths, maximum flow and minimum cut, matching, T-joins,
disjoint paths, traveling salesman, Steiner tree, graph bisection, vehicle routing, facility
location, k-center, and maximum cut. One theme of such research addresses the complexity
of these problems when the input graph is required to be a planar graph or a graph embedded
on a low-genus surface.

There are three reasons for this theme. First, optimization problems in planar graphs
arise in diverse application areas. Second, researchers have discovered that, by exploiting
the planarity of the input, much more effective algorithms can be developed – algorithms
that are faster or more accurate than those that do not exploit graph structure. Third,
the study of algorithms for surface-embedded graphs drives the development of interesting
algorithmic techniques. One source of applications for planar-graph algorithms is geographic
problems. Road maps are nearly planar, for example, so distances in planar graphs can
model, e.g., travel times in road maps. Network design in planar graphs can be used to
model scenarios in which cables must be run under roads. Planar graphs can also be used
to model metrics on the earth’s surface that reflect physical features such as terrain; this
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aspect of planar graphs has been used in studying wildlife corridors. Another source of
applications is image processing. Some algorithms for problems such as image segmentation
and stereo involve finding minimum cuts in a grid in which each vertex represents a pixel.
Sometimes an aggregation technique (superpixels) coalesces regions into vertices, turning
the grid into an arbitrary planar graph. A third example application is VLSI. Algorithmic
exploitation of a planar embedding goes back at least to the introduction of maximum
flow by Ford and Fulkerson in 1956. Current research can be divided in three parts. For
polynomial-time-solvable problems, such as maximum flow, shortest paths, matching, and
min-cost circulation, researchers seek planarity-exploiting algorithms whose running times
beat those of general-graph algorithms, ideally algorithms whose running times are linear or
nearly linear. For NP-hard problems, there are two strategies: fixed-parameter algorithms
and approximation algorithms. In all three research subareas, there has recently been
significant progress. However, many researchers are expert in only one or two subareas. This
Dagstuhl Seminar brought together researchers from the different subareas, to introduce
them to techniques from subareas that might be unfamiliar, and to foster collaboration across
the subareas. The seminar will thus help to spur further advances in this active and growing
area. The scientific program of the seminar consisted of twenty-two talks. Four of these talks
were longer (60–90 minute) tutorials overviewing the three main areas of the seminar:

Polynomial-time algorithms: “Tutorial on embedded graph algorithms” (Jeff Erickson)
and “Monge property, dense distance graphs and speeding-up max-flow computations in
planar graphs” (Piotr Sankowski)
Approximation schemes: “Some techniques for approximation schemes on planar graphs”
(Philip Klein)
Fixed-parameter tractability: “The square-root phenomenon in planar graphs” (Dániel
Marx )

One of the main goals of the seminar was to encourage collaboration between the three
communities, and these well-received tutorials helped by introducing the basics of each of
these topics.

The rest of the talks were 25-minute presentations on recent research of the participants.
The time between lunch and the afternoon coffee break was left open for individual discussions
and collaborations in small groups. An open-problem session was organized on Monday
morning. Notes on the presented problems can be found in this report.
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3 Overview of Talks

3.1 A PTAS for Planar Group Steiner Tree via Spanner Bootstrapping
and Prize Collecting

Mohammad Hossein Bateni (Google – New York, US)

License Creative Commons BY 3.0 Unported license
© Mohammad Hossein Bateni

Joint work of Mohammad Hossein Bateni, Erik D. Demaine, MohammadTaghi Hajiaghayi, Dániel Marx
Main reference M.H. Bateni, E.D. Demaine, M. Hajiaghayi, D. Marx, “A PTAS for Planar Group Steiner Tree via

Spanner Bootstrapping and Prize Collecting,” in Proc. of the 48th Annual ACM SIGACT Symp.
on Theory of Computing, pp. 570–583, ACM, 2016; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1145/2897518.2897549
URL www.cs.bme.hu/~dmarx/papers/bateni-stoc2016-groupsteiner.pdf

We present the first polynomial-time approximation scheme (PTAS), i.e., (1+ε)-approximation
algorithm for any constant ε > 0, for the planar group Steiner tree problem (in which
each group lies on a boundary of a face). This result improves on the best previous
approximation factor of O(logn(log logn)O(1)). We achieve this result via a novel and
powerful technique called spanner bootstrapping, which allows one to bootstrap from a
superconstant approximation factor (even superpolynomial in the input size) all the way
down to a PTAS. This is in contrast with the popular existing approach for planar PTASs of
constructing light-weight spanners in one iteration, which notably requires a constant-factor
approximate solution to start from. Spanner bootstrapping removes one of the main barriers
for designing PTASs for problems which have no known constant-factor approximation (even
on planar graphs), and thus can be used to obtain PTASs for several difficult-to-approximate
problems.

Our second major contribution required for the planar group Steiner tree PTAS is a
spanner construction, which reduces the graph to have total weight within a factor of the
optimal solution while approximately preserving the optimal solution. This is particularly
challenging because group Steiner tree requires deciding which terminal in each group to
connect by the tree, making it much harder than recent previous approaches to construct
spanners for planar TSP by Klein (FOCS’05 & SICOMP’08), subset TSP by Klein (STOC’06),
Steiner tree by Borradaile, Klein, and Mathieu (SODA’07 & TALG’09), and Steiner forest by
Bateni, Hajiaghayi, and Marx (STOC’10 & JACM’11) (and its improvement to an efficient
PTAS by Eisenstat, Klein, and Mathieu (SODA’12)). The main conceptual contribution here
is realizing that selecting which terminals may be relevant is essentially a complicated prize-
collecting process: we have to carefully weigh the cost and benefits of reaching or avoiding
certain terminals in the spanner. Via a sequence of involved prize-collecting procedures, we
can construct a spanner that reaches a set of terminals that is sufficient for an almost-optimal
solution.

Our PTAS for planar group Steiner tree implies the first PTAS for geometric Euclidean
group Steiner tree with obstacles, as well as a (2 + ε)-approximation algorithm for group TSP
with obstacles, improving over the best previous constant-factor approximation algorithms.
By contrast, we show that planar group Steiner forest, a slight general- ization of planar
group Steiner tree, is APX-hard on planar graphs of treewidth 3, even if the groups are
pairwise disjoint and every group is a vertex or an edge.
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3.2 Subgraph isomorphism on planar graphs, and related problems
Hans L. Bodlaender (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Hans L. Bodlaender, Jesper Nederlof, Tom van der Zanden

In this talk, we show that the problem, given two planar graphs G and H, to decide if G
is isomorphic with a subgraph of H can be solved in 2O(n/ logn) time. We also show that
this is optimal, assuming the exponential time hypothesis. A similar result holds for other
embedding problems, including induced subgraph, minor and induced minor (and weighted
variants), and for other graph classes, including graphs avoiding some fixed minor. This is
joint work by Hans Bodlaender, Jesper Nederlof and Tom van der Zanden.

3.3 Approximating connectivity domination in weighted bounded-genus
graphs

Vincent Cohen-Addad (CNRS / ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Vincent Cohen-Addad

Joint work of Vincent Cohen-Addad, Éric Colin de Verdière, Philipp N. Klein, Claire Mathieu, David
Meierfrankenfeld

We present a framework for addressing several problems on weighted planar graphs and graphs
of bounded genus. With that framework, we derive polynomial-time approximation schemes
for the following problems in planar graphs or graphs of bounded genus: edge-weighted
tree cover and tour cover; vertex-weighted connected dominating set, maximum-weight-
leaf spanning tree, and connected vertex cover. In addition, we obtain a polynomial-time
approximation scheme for feedback vertex set in planar graphs. These are the first polynomial-
time approximation schemes for all those problems in weighted embedded graphs. (For
unweighted versions of some of these problems, polynomial-time approximation schemes were
previously given using bidimensionality.)

3.4 Independent sets in planar graphs
Zdenek Dvorak (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Zdenek Dvorak

Joint work of Zdenek Dvorak, Matthias Mnich

It is a long-standing open problem in the algorithmic theory of planar graphs whether there
exists a polynomial-time algorithm deciding if an n-vertex planar graph has an independent
set of size greater than n/4. (An independent set of size at least n/4 is guaranteed by the
Four Color Theorem.)

In joint work with Matthias Mnich, we investigate related (easier) questions of similar
nature. For example we show that

The problem can be solved under a variety of additional restrictions, e.g., when the
considered graphs have maximum degree at most 4 or when they avoid 4- or 5-cycles;
and,
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It is possible to decide whether an n-vertex planar triangle-free graph has an independent
set of size at least n/3 +k in time 2O(

√
k)nO(1), which is analogously related to Grotzsch’s

theorem.

3.5 Tutorial on embedded graph algorithms
Jeff Erickson (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

We consider several fundamental algorithmic tools for exact polynomial-time algorithms
for graphs embedded on surfaces. Specific topics include combinatorial embeddings and
duality, Euler’s formula, the greedy tree-cotree decomposition, systems of loops and cycles,
shortest noncontractible and nonseparating cycles, multiple-source shortest paths, homology
and homology annotation, enforcing uniqueness of shortest paths, and covering spaces. As
applications of these building blocks, we sketch recent algorithms to compute minimum (s, t)-
cuts [Chambers, Erickson, Nayyeri 2009], Gomory-Hu trees [Borradaile, Eppstein, Nayyeri,
and Wulff-Nilson 2016], and shortest cycle bases [Borradaile, Chambers, Fox, and Nayyeri
2016] in surface-embedded graphs.

3.6 On Temporal Graph Exploration
Thomas Erlebach (University of Leicester, GB)

License Creative Commons BY 3.0 Unported license
© Thomas Erlebach

Joint work of Thomas Erlebach, Michael Hoffmann, Frank Kammer

A temporal graph is a graph in which the edge set can change from step to step. The temporal
graph exploration problem TEMPEX is the problem of computing a foremost exploration
schedule for a temporal graph, i.e., a temporal walk that starts at a given start node, visits
all nodes of the graph, and has the smallest arrival time. We consider only temporal graphs
that are connected at each step. For such temporal graphs with n nodes, we show that
it is NP-hard to approximate TEMPEX with ratio O(n1−ε), and that there are temporal
graphs whose exploration requires O(n2) steps. The underlying graph (i.e. the graph that
contains all edges that are present in the temporal graph in at least one step) used in these
constructions is dense, which leads to the interesting question of studying TEMPEX for
temporal graphs whose underlying graph is planar. We show that even such temporal graphs
may require Ω(n logn) steps, and that they can always be explored in O(n1.8 logn) steps.
For the special case of 2× n grids, we show that O(n log3 n) steps always suffice.
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3.7 A Polynomial-time Bicriteria Approximation Scheme for Planar
Bisection

Kyle Jordan Fox (Duke University – Durham, US)

License Creative Commons BY 3.0 Unported license
© Kyle Jordan Fox

Joint work of Kyle Jordan Fox, Philip N. Klein, Shay Mozes

Given an undirected graph with edge costs and node weights, the minimum bisection problem
asks for a partition of the nodes into two parts of equal weight such that the sum of edge
costs between the parts is minimized. We give a polynomial time bicriteria approximation
scheme for bisection on planar graphs.

Specifically, let W be the total weight of all nodes in a planar graph G. For any constant
ε > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most
W (1/2 + ε) and the total cost of edges crossing the partition is at most (1 + ε) times the total
cost of the optimal bisection. The previously best known approximation for planar minimum
bisection, even with unit node weights, was O(logn). Our algorithm actually solves a more
general problem where the input may include a target weight for the smaller side of the
bipartition.

3.8 Turing Kernelization for Finding Long Paths and Cycles in
Restricted Graph Classes

Bart Jansen (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Bart Jansen

The k-Path problem asks whether a given undirected graph has a (simple) path of length k.
We prove that k-Path has polynomial-size Turing kernels when restricted to planar graphs,
graphs of bounded degree, claw-free graphs, or to K3,t-minor-free graphs. This means that
there is an algorithm that, given a k-Path instance (G, k) belonging to one of these graph
classes, computes its answer in polynomial time when given access to an oracle that solves
k-Path instances of size polynomial in k in a single step. Our techniques also apply to
k-Cycle, which asks for a cycle of length at least k.

3.9 Paradigms for obtaining approximation schemes for planar graphs
Philip N. Klein (Brown University – Providence, US)

License Creative Commons BY 3.0 Unported license
© Philip N. Klein

In addressing an NP-hard problem in combinatorial optimization, one way to cope is to
use an approximation scheme, an algorithm that, for any given ε > 0, produces a solution
whose value is within a 1 + ε factor of optimal. For many problems on graphs, obtaining such
accurate approximations is NP-hard if the input is allowed to be any graph but is tractable
if the input graph is required to be planar.

Research on polynomial-time approximation schemes for optimization problems in planar
graphs goes back to the pioneering work of Lipton and Tarjan (1977) and Baker (1983). Since
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then, however, the scope of problems amenable to approximation has broadened considerably.
In this talk I will outline some of the approaches used, especially those that have led to
recent results.

3.10 The Square Root Phenomenon in Planar Graphs – Survey and
New Results

Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Marx

Most of the classical NP-hard problems remain NP-hard when restricted to planar graphs,
and only exponential-time algorithms are known for the exact solution of these planar
problems. However, in many cases, the exponential-time algorithms on planar graphs are
significantly faster than the algorithms for general graphs: for example, 3-Coloring can be
solved in time 2O(

√
n) in an n-vertex planar graph, whereas only 2O(n)-time algorithms are

known for general graphs. For various planar problems, we often see a square root appearing
in the running time of the best algorithms, e.g., the running time is often of the form 2O(

√
n),

nO(
√
k), or 2O(

√
k) ·n. By now, we have a good understanding of why this square root appears.

On the algorithmic side, most of these algorithms rely on the notion of treewidth and its
relation to grid minors in planar graphs (but sometimes this connection is not obvious and
takes some work to exploit). On the lower bound side, under a complexity assumption called
Exponential Time Hypothesis (ETH), we can show that these algorithms are essentially best
possible, and therefore the square root has to appear in the running time.

In the talk, I will present a survey of the basic algorithmic and complexity results, and
discuss some of the very recent developments in the area.

3.11 Local search yields an approximation scheme for uniform facility
location in edge-weighted planar graphs

Claire Mathieu (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Claire Mathieu

Joint work of Vincent Cohen-Addad, Philip N. Klein, Claire Mathieu

We present a polynomial-time approximation scheme (PTAS) for uniform facility location
in edge-weighted planar graphs. This is the easiest of several results showing the good
performance of local search in Euclidean and minor-free metrics.
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3.12 Computing the minimum cut of a weighted directed planar graph
Shay Mozes (Interdisciplinary Center Herzliya, IL)

License Creative Commons BY 3.0 Unported license
© Shay Mozes

Joint work of Shay Mozes, Cyril Nikolaev, Yahav Nussbaum, Oren Weimann

We give an O(n log logn) time algorithm for computing the minimum cut (or equivalently,
the shortest cycle) of a weighted directed planar graph. This improves the previous fastest
O(n log2 n) solution [SODA’04]. Interestingly, while in undirected planar graphs both min-cut
and min st-cut have O(n log logn)-time solutions [ESA’11, STOC’11], in directed planar
graphs our result makes min-cut faster than min st-cut, which currently requires O(n logn)
[J. ACM’09].

3.13 Subexponential parameterized algorithms for planar and
apex-minor-free graphs via low treewidth pattern covering

Marcin Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Marcin Pilipczuk

Joint work of Fedor Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh
Main reference F.V. Fomin, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, “Subexponential

parameterized algorithms for planar and apex-minor-free graphs via low treewidth pattern
covering,” arXiv:1604.05999v1 [cs.DS], 2016.

URL http://arxiv.org/abs/1604.05999v1

We prove the following theorem. Given a planar graph G and an integer k, it is possible in
polynomial time to randomly sample a subset A of vertices of G with the following properties:
(i) A induces a subgraph of G of treewidth

√
k log k, and (ii) for every connected subgraph H

of G on at most k vertices, the probability that A covers the whole vertex set of H is at least
(2O(

√
k log2 k) · nO(1))−1, where n is the number of vertices of G.

Together with standard dynamic programming techniques for graphs of bounded treewidth,
this result gives a versatile technique for obtaining (randomized) subexponential parameterized
algorithms for problems on planar graphs, usually with running time bound 2O(

√
k log2 k)nO(1).

The technique can be applied to problems expressible as searching for a small, connected
pattern with a prescribed property in a large host graph, examples of such problems include
Directed k-Path, Weighted k-Path, Vertex Cover Local Search, and Subgraph Isomorphism,
among others. Up to this point, it was open whether these problems can be solved in
subexponential parameterized time on planar graphs, because they are not amenable to the
classic technique of bidimensionality. Furthermore, all our results hold in fact on any class of
graphs that exclude a fixed apex graph as a minor, in particular on graphs embeddable in
any fixed surface.

Preprint available at http://arxiv.org/abs/1604.05999.
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3.14 Optimal parameterized algorithms for planar facility location
problems using Voronoi diagrams

Michal Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Michal Pilipczuk

Joint work of Dániel Marx, Michal Pilipczuk

We study a general family of facility location problems defined on planar graphs and on the
2-dimensional plane. In these problems, a subset of k objects has to be selected, satisfying
certain packing (disjointness) and covering constraints. We show that, for each of these
problems, the nO(k) time brute force algorithm of selecting k objects can be improved
to nO(

√
k) time. The algorithm is based on an approach that was introduced recently in

the design of geometric QPTASs, but we show that it can be applied also for exact and
parameterized algorithms and for planar graphs. Namely, the idea is to focus on the Voronoi
diagram of a hypothetical solution of k objects, guess a balanced separator cycle of this
Voronoi diagram to obtain a set that separates the solution in a balanced way, and then
recurse on the resulting subproblems. Finally, we also give evidence that the obtained
algorithms are essentially optimal, under the Exponential Time Hypothesis.

The extended abstract of the paper appeared in the proceedings of ESA 2015.

3.15 Monge property, dense distance graphs and speeding up max-flow
computations in planar graphs

Piotr Sankowski (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Piotr Sankowski

In my talk, I will introduce the core technique that was used in a series of papers to speed-up
max-flow computations in planar graphs. Min-cuts in planar graphs are related to shortest
paths via duality. This allows to use simpler shortest path computations for finding minimum-
cuts. Especially, it is possible to use a faster implementation of Dijkstra algorithm created by
Fakcharoenphol and Rao in 2001. This implementation uses the fact that one do not need to
search through shortest paths starting in the same source that would cross. In the algorithm
one creates so called dense distance graphs, and needs to search only through square root of
edges in such graphs. I will introduce the ideas behind the following three applications of
this technique:

computing all pairs min-cuts in undirected planar graphs in almost linear time by
Borradaile, S. and Wulff-Nilsen ’10,
computing s-t max-flows in undirected planar graphs in O(n log logn) time by Italiano,
Nussbaum, S. and Wulff-Nilsen ’11,
computing single source-all sinks max flows in directed planar graphs by Łącki, Nussbaum,
S. and Wulff-Nilsen ’12.
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3.16 Subexponential algorithms for rectilinear Steiner tree and
arborescence problems

Saket Saurabh (The Institute of Mathematical Sciences, IN)

License Creative Commons BY 3.0 Unported license
© Saket Saurabh

Joint work of Fedor Fomin, Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh

A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using
horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of
n points in the Euclidean plane and the goal is to find an rectilinear Steiner tree for T of
smallest possible total length. A rectilinear Steiner arborescence for a set T of points and
root r in T is a rectilinear Steiner tree S for T such that the path in S from r to any point t
in T is a shortest path. In the Rectilinear Steiner Arborecence problem the input is a set T
of n points in the Euclidean plane, and a root r in T , the task is to find an rectilinear Steiner
arborescence for T , rooted at r of smallest possible total length. In this talk, we give the
first subexponential time algorithms for both problems. Our algorithms are deterministic
and run in 2O(

√
n logn) time.

3.17 Embedding Planar Graphs into Low-Treewidth Graphs with
Applications to Efficient Approximation Schemes for Metric
Problems

Aaron Schild (Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Aaron Schild

We give a stretch-(1 + ε) embedding of edge-weighted planar graphs of bounded aspect ratio
into bounded-treewidth graphs. We use this construction to obtain the first efficient bicriteria
approximation schemes for weighted planar graphs addressing a metric generalization of
dominating set, r-domination, and a metric generalization of independent set, r-independent
set. The approximation schemes employ a metric generalization of Baker’s framework based
on our embedding result.

3.18 Match-And-Merge: A New Greedy Framework for Maximum
Planar Subgraphs

Andreas Schmid (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Schmid

In the maximum planar subgraph (MPS) problem, we are given a graph G, and our goal
is to find a planar subgraph H with the maximum number of edges. Besides being a
basic problem in graph theory, MPS has many applications including, for instance, circuit
design, factory layout, and graph drawing, so it has received a lot of attention from both
theoretical and empirical literature. Since the problem is NP-hard, past research has focused
on approximation algorithms. The current best known approximation ratio is 4/9 obtained
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two decades ago based on, roughly speaking, computing as many edge-disjoint triangles in an
input graph as possible. The factor 4/9 is also the limit of this "disjoint triangles” approach.
We propose two new angles on MPS and provide some evidences that they might lead to
improvements over this two-decade-old barrier.

Our first contribution is to initiate a systematic study of a class of greedy algorithms
for MPS. Our class of algorithms is rich: All known greedy algorithms for MPS fit into
our framework. We argue that these algorithms are unable to perform better than a 7/18-
approximation and then show that a slight modification gives a 13/33-approximations,
therefore being the first greedy algorithm that beats 7/18.

To facilitate an analytical task in our framework, we formulate a new optimization
problem, that we call the Maximum Planar Triangles (MPT) problem. In MPT we are
given an input graph and are interested in computing a subgraph that admits a planar
embedding with as many triangular faces as possible. We show that MPT is NP-hard and
quantify the connection between the two problems. This approach allows potentially up to a
1/2-approximation for MPS, provided the existence of a 1/4-approximation for MPT.

3.19 Face-rooted plane topological minors
Dimitrios M. Thilikos (University of Athens, GR)

License Creative Commons BY 3.0 Unported license
© Dimitrios M. Thilikos

Joint work of Petr Golovach, Spyridon Maniatis, Dimitrios M. Thilikos

Let G and H be a (not necessarily connected) plane graphs and let φ be a function mapping
the faces of G to (some of) the faces of H. We consider the problem asking whether H a
plane topological minor of G such that, for each face f of H, the pre-images, via φ, of f are
all subsets of the realization of f in the plane embedding of H in G.

We prove that this problem is fixed parameter tractable when parameterized by the size
of H. For this proof we introduce the notion of primal-dual graph and we extend the planar
linkage theorem for this type of graphs. Subsequently, we reduce the initial problem to
a question on primal-dual linkages that can be answered using suitable extensions of the
irrelevant vertex technique for primal-dual graphs.

In our presentation, we stress the the particularities of this problem, mostly emerging
from the fact that the graphs in the input of the problem are embedded (i.e., plain) and not
planar.

On-going work with Petr Golovach and Spyridon Maniatis.

3.20 Independent set of convex polygons: from nε to 1 + ε via
shrinking

Andreas Wiese (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Wiese

Suppose we are given a set of weighted convex polygons in the plane and we want to compute a
maximum weight subset of non-overlapping polygons. This is a very natural and well-studied
problem with applications in many different areas. Unfortunately, there is a very large gap
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between the known upper and lower bounds for this problem. The best polynomial time
algorithm we know has an approximation ratio of nε and the best known lower bound shows
only strong NP-hardness.

In this paper we close this gap, assuming that we are allowed to shrink the polygons a
little bit, by a factor 1-delta for an arbitrarily small constant delta>0, while the compared
optimal solution cannot do this (resource augmentation). In this setting, we improve the
approximation ratio from nε to 1 + ε which matches the above lower bound that still holds if
we can shrink the polygons.

3.21 Approximate Distance Oracles for Planar Graphs with Improved
Query Time-Space Tradeoff

Christian Wulff-Nilsen (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Christian Wulff-Nilsen

We consider approximate distance oracles for edge-weighted n-vertex undirected planar
graphs. Given fixed epsilon > 0, we present a (1+epsilon)-approximate distance oracle
with O(n(log logn)2) space and O((log logn)3) query time. This improves the previous best
product of query time and space of the oracles of Thorup (FOCS 2001, J.ACM 2004) and
Klein (SODA 2002) from O(n logn) to O(n(log logn)5).

3.22 Correlation Clustering and Two-edge-connected Augmentation for
Planar Graphs

Hang Zhou (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Hang Zhou

Joint work of Philip N. Klein, Claire Mathieu, Hang Zhou

We study two problems. In correlation clustering, the input is a weighted graph, where
every edge is labelled either 〈+〉 or 〈−〉 according to whether its endpoints are in the same
category or in different categories. The goal is to produce a partition of the vertices into
categories that tries to respect the labels of the edges. In two-edge-connected augmentation,
the input is a weighted graph and a subset R of edges of the graph. The goal is to produce a
minimum weight subset S of edges of the graph, such that for every edge in R, its endpoints
are two-edge-connected in R ∪ S.

For planar graphs, we prove that correlation clustering reduces to two-edge-connected
augmentation, and that both problems, although they are NP-hard, have a polynomial-time
approximation scheme. We build on the brick decomposition technique developed recently
for optimization problems in planar graphs.
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4 Open problems

The following problems were posed at the open-problem session on May 30, 2016. The
organizers would like to thank Eli Fox-Epstein for collecting these descriptions from the
problem proposers.

4.1 Vertex-disjoint paths
Jeff Erickson (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Jeff Erickson

Counting Vertex-Disjoint Paths
Instance: An undirected graph G embedded on a surface of genus g, a cardinality-k

set S of source vertices, and a cardinality-l set T of target vertices.
Question: What is the maximum number of internally vertex-disjoint paths in G with

one endpoint in S and one endpoint in T?

Open Problem: Is there a O(npolylogn)-time algorithm for this problem?

Background: There is an O(n) algorithm when k = l = 1 and g = 0 [17]; this is the
only case where a near-linear-time algorithm is known. More generally, maximum flows in
vertex-capacitated planar graphs with one source and one sink can be computed in O(n logn)
time [15], but this algorithm breaks down in graphs with more terminals and/or positive
genus.

4.2 PTASes for 2-edge-connectivity problems
Philip N. Klein (Brown University – Providence, US)

License Creative Commons BY 3.0 Unported license
© Philip N. Klein

2-Edge-Connected Spanning Subgraph
Instance: undirected planar graph G with edge weights
Question: What is the minimum-cost 2-edge-connected spanning subgraph of G?

Steiner 2-Edge-Connected Subgraph
Instance: undirected planar graph G with edge weights, subset T ⊆ V (G)
Question: What is the minimum cost 2-edge-connected subgraph spanning the ter-

minals T?

2-Edge-Connected Augmentation
Instance: undirected planar graph G with edge weights, edge subset A ⊆ E(G)
Question: What is the minimum cost subgraph where the endpoints of each edge of
A are 2-edge-connected?

Open Problems: Are there efficient PTASes for the spanning and augmentation problems?
Is there a PTAS for the Steiner version?

Background: There are inefficient PTASes for 2-Edge-Connected Spanning Subgraph
and 2-Edge-Connected Augmentation [2, 16].
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4.3 Weighted Max Cut
Kyle Jordan Fox (Duke University – Durham, US)

License Creative Commons BY 3.0 Unported license
© Kyle Jordan Fox

Weighted Max Cut
Instance: edge-weighted graph G of genus g
Question: What is the maximum weight cut of G?

Open Problem: How quickly can this be solved? Can it be solved in polynomial time? The
case g = O(1) with integer weights is especially interesting. Is it FPT in the genus?

Background: The problem can be solved in polynomial time when g = 0 [13] and in
2O(g) poly(|G|) time when g = O(1) and all edge weights are equal[10]. The problem is
NP-hard for H-minor-free graphs even for unit weights[1]. On H-minor-free graphs where H
has a single crossing has a polynomial time algorithm, even with weights [14]. However, if
you need to remove two vertices to make H planar, the unweighted case may be NP-hard.
For some related dichotomy theorems, see [14].

4.4 FPT Steiner Tree
Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Marx

Steiner Tree
Instance: edge-weighted planar graph G, vertex subset T ⊆ V (G)
Question: What is the minimum-cost tree that includes each vertex of T?

Open Problem: Is there a 1.99O(k) poly(n) or even 2O(
√
k polylog(k)) poly(n) time FPT al-

gorithm, parametrized by k = |T |, to answer this question?

Background: Originally 3k poly(n) in the general case [7], later improved to 2k poly(n) [3].
Standard lower bounds show that, assuming ETH, no 2o(

√
k) poly(n) time algorithm is

possible.

4.5 Immersion
Hans L. Bodlaender (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Hans L. Bodlaender

A graph H = (VH , EH) is an immersion of a graph G = (VG, EG) if we can map vertices in
VH to disjoint vertices in VG such that edges are mapped to edge-disjoint paths between the
images of their endpoints. Consider the following problem:

Immersion
Instance: graphs G and H
Question: Is G an immersion of H?
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What is the running time of this problem when restricted to planar graphs or H-minor
free graphs? Similar as for Subgraph Isomorphism, the problem has a lower bound of
2Ω(n/ logn) (with both G and H having Θ(n) vertices) for planar graphs of pathwidth two [12];
the algorithmic technique from [12] seems not applicable to immersion testing however.

4.6 Treewidth
Hans L. Bodlaender (Utrecht University, NL)

License Creative Commons BY 3.0 Unported license
© Hans L. Bodlaender

Treewidth
Instance: graph G
Question: What is G’s treewidth?

Open Problem: Can we answer this question for planar graphs in polynomial time?

4.7 Independent Sets
Marcin Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Marcin Pilipczuk

Independent Set
Instance: planar graph G
Question: What is the biggest subset of pairwise non-adjacent vertices?

Every planar graph has an independent set of size n/4 by the Four Color Theorem. Every
triangle-free planar graph has an independent set of size at least (n + 1)/3; there is a
2O(
√
k)n)-time algorithm to decide if such a graph has an independent set of size (n+k)/3 [8].

Open Problem: is there an FPT algorithm, parameterized by k, to find an independent set
of size n/4 + k in a planar graph? Is there a polytime algorithm to find an independent set
of size n/4 + 1?

This question arose in Dagstuhl Seminars 12241 and 13421 [4, 9].

4.8 Subgraph Isomorphism
Marcin Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Marcin Pilipczuk

Subgraph Isomorphism
Instance: planar graphs G and H
Question: Is H a subgraph of G?
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Open Problem: Is this question FPT when parameterized by |E(G)| − |E(H)| or |V (G)| −
|V (H)|?

Background: Graph isomorphism is in P for planar graphs. It is #W [1]-hard to count all
matchings of a planar graph G where exactly k vertices are unmatched [5, 6].

This question arose in Dagstuhl Seminar 13421 [4].

4.9 Exact Distance Labeling
Oren Weimann (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Oren Weimann

A labeling is an assignment of a (short) value to each vertex in a graph such that the distance
between two vertices can be determined from the labels alone.

Exact Distance Labeling
Instance: an undirected, unweighted planar graph G
Question: How many distinct labels are necessary in a labeling of G?

Open Problem: Can we tighten the bounds on the number of labels necessary?

Background: O(
√
n) and Ω(n1/3) labels are sufficient and necessary, respectively [11]. With

edge lengths, the lower bound and upper bound are tight at Θ(
√
n) labels [11].

4.10 Steiner Minimum Cost Perfect Matching
Sergio Cabello (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Sergio Cabello

Steiner Minimum Cost Perfect Matching
Instance: planar graph G and vertex subset S ⊆ V (G) of even cardinality
Question: What is the minimum sum of the costs in a perfect matching between

vertices of S, where costs are determined by distances in G?

Open Problem: Is there a near-linear-time algorithm for the question? The bottleneck or
min-max version is also interesting: minimize the maximum cost over the edges of a perfect
matching.
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