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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16241 “Graph Poly-
nomials: Towards a Comparative Theory”.

The area of graph polynomials has become in recent years incredibly active, with new applic-
ations and new graph polynomials being discovered each year. However, the resulting plethora
of techniques and results now urgently requires synthesis. Beyond catalogues and classifications
we need a comparative theory. The intent of this 5-day Seminar was to further a general theory
of graph polynomials.
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The intent of this 5-day Seminar was to develop a general theory of graph polynomials.
Graph polynomials have played a key role in combinatorics and its applications, having
effected breakthroughs in conceptual understanding and brought together different strands of
scientific thought. The characteristic and matching polynomials advanced graph-theoretical
techniques in chemistry; the Tutte polynomial married combinatorics and statistical physics,
and helped resolve long-standing problems in knot theory. The area of graph polynomials
is incredibly active, with new applications and new graph polynomials being discovered
each year. However, the resulting plethora of techniques and results now urgently requires
synthesis. Beyond catalogues and classifications we need a comparative theory.

There is a long history in this area of results in one field leading to breakthroughs in
another when techniques are transferred, and this Seminar leveraged that paradigm. More
critically, experts in the field have recently begun noticing strong resonances in both results
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Figure 1 Above left: J. Ellis-Monaghan, I. Moffatt, J. A. Makowsky. Above middle: A. Goodall,
I. Moffatt. Above right: E. Gioan, B. Courcelle, B. Bollobás, J. Oxley, L. Kauffman, S. Backman.
Below left: A. De Mier, N. Jonoska, L. McMahon. Below middle: J. Nešetřil, , K. Morgan, A. Goodall,
I. Moffatt. Below right: The audience at large. Pictures courtesy J.A. Makowsky.

and proof techniques among the various polynomials. The species and genera of graph
polynomials are diverse, but there are strong interconnections: the Seminar initiated work
on creating a general theory that will bring them together under one family. The process
of developing such a theory of graph polynomials should expose deeper connections, giving
great impetus to both theory and applications. This has immense and exciting potential
for all those fields of science where combinatorial information needs to be extracted and
interpreted.

The Seminar provided conditions ripe for cross-fertilization of ideas among researchers in
graph theory and topological graph theory, in logic and finite model theory, and in current
biocomputing and statistical mechanics applications. During the Seminar the participants
were offered a conspectus of the broad area of graph polynomials. The view was confirmed
that a synthetic approach is needed in order to see the wood for the trees. The discussions and
collaborations initiated at the workshop promise well for the development of a unified theory
of graph polynomials. This Seminar represented a convincing beginning, and, hopefully,
similar meetings in future will further the envisaged project.

In the light of our stated goals, the Seminar provided ample time for discussion groups
and tutorials. The participants (44) of the Seminar included some of the leading experts
in combinatorics, knot theory, matroid theory and graph polynomials from Europe, the
Americas, Asia and Australia. The composition of participants was both age and gender
balanced with a quarter of the participants being women. The younger researchers (more than
a quarter of the participants) profited from intense contacts and discussions with their more
experienced colleagues. An inspiring problem session brought about particular directions for
further research.
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3 Overview of Talks

3.1 Fourientations and the Tutte Polynomial
Spencer Backman (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Spencer Backman

A fourientation of a graph G is a choice for each edge of the graph whether to orient that
edge in either direction, leave it unoriented, or biorient it. I will describe a 12 variable
expansion of the Tutte polynomial in terms of fourientation activities due to myself, Sam
Hopkins, and Lorenzo Traldi, which specializes to known subgraph and orientation expansions.
Time permitting, I will explain applications of this expression to the theory of zonotopes,
hyperplane arrangements, chip-firing, and the reliability polynomial.

3.2 Which Graph Polynomials Have the Difficult Point Property?
Markus Bläser (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Markus Bläser

A class of graph polynomial has the difficult point property if for all graph polynomials G
from this class, the following holds: If G is #P-hard to evaluate at one single point, then it
is #P-hard to evaluate at (Zariski) almost all points. We present some rather general classes
with the difficult point property and review some techniques how to prove that a class has
the difficult point property.

3.3 Bill Tutte and His Polynomial
Béla Bollobás (University of Cambridge, GB & University of Memphis, US)

License Creative Commons BY 3.0 Unported license
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The influence of W.T. Tutte on our lives and on modern mathematics is hard to overestimate.
In my brief talk I shall say a few words about Tutte’s work during WWII, and his contribution
to mathematics, with emphasis on his polynomial. In addition, I shall point out some of the
many important extensions of this polynomial.

3.4 Introduction to Multimatroids and Their Polynomials
Robert Brijder (Hasselt University – Diepenbeek, BE)

License Creative Commons BY 3.0 Unported license
© Robert Brijder

Multimatroids have been introduced by Bouchet in a series of papers in the 1990s. Mul-
timatroids generalize delta-matroids (which includes all matroids) and isotropic systems, and
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various interesting properties of these latter combinatorial structures carry over naturally to
multimatroids. Unfortunately, the promising multimatroid theory has only scarcely been
picked up by the community.

We give an introduction to multimatroids and give a general (multivariate) multimatroid
polynomial that generalizes various well-known polynomials, such as the interlace polynomial,
the Penrose polynomial, and the Tutte polynomial on the diagonal. We also show that
various evaluations and recursive relations carry over to this general domain.

The multimatroid polynomial also generalizes the Martin polynomial of 4-regular graphs.
We finally focus on the open problem of formulating a multimatroid version of the Martin
polynomial of Eulerian graphs in general.

3.5 Tutorial: Aspects of the Characteristic Polynomial
Ada Sze Sze Chan (York University – Toronto, CA), Krystal Guo (University of Waterloo,
CA), and Gordon Royle (The University of Western Australia – Crawley, AU)

License Creative Commons BY 3.0 Unported license
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In this session, we will discuss a number of our favourite techniques, results and open problems
related to the characteristic polynomial.

Topics will include

(a) elementary spectral results relating the spectrum to graph properties (not covered in
Monday’s talk) and interlacing

(b) highly structured graphs such as strongly regular and distance regular graphs
(c) relationships between the characteristic polynomial and the walk-generating function of

a graph
and others as determined by the intersection of the presenters’ expertise and audience wishes.

3.6 An Introduction to the Theory of Matroids
Carolyn Chun (Brunel University London, GB) and James Oxley (Louisiana State University
– Baton Rouge, US)

License Creative Commons BY 3.0 Unported license
© Carolyn Chun and James Oxley

Matroids were introduced by Hassler Whitney in 1935 to provide a common framework for
viewing dependence in linear algebra and graph theory. They arise naturally in optimisation
as structures for which a greedy strategy always produces an optimal set. This talk will
introduce matroids. It will discuss some well-known examples of these structures and some
of their basic operations, and will conclude by addressing questions relating to matroids that
are raised by the audience. No prior knowledge of matroid theory will be assumed.
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3.7 Computations of Monadic Second-Order Definable Polynomials by
Fly-Automata

Bruno Courcelle (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
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Most graph polynomials can be defined by monadic second-order (MSO) formulas. This
is the case of the Tutte polynomial and the interlace polynomial. We take “defined” in a
wide sense. In particular, if an integer value f(G) attached to a graph is defined as the
number of assignments (X,Y, Z) that satisfy an MSO formula phi(X,Y,Z) in graph G, it is
“MSO-defined”.

The MSO model-checking problem is FPT for tree-width, and even for clique-width in
some cases, and so is the computation of f(G) as above. Proofs can be given by constructions
of finite automata that process algebraic terms describing the input graphs. However, these
automata are inevitably huge and cannot be implemented by means of transitions tables.
Fly-automata do not use such tables : their states are described (by finite words, according to
some syntax) and their transitions are defined by “small” efficient programs. They overcome
in many cases the “huge size problem”. They can compute values, not only check membership.
They can compute MSO definable graph polynomials.

The talk will show how these automata can be constructed from MSO formulas and
report computer experiments.

References
1 B. Courcelle: A Multivariate Interlace Polynomial and its Computation for Graphs of

Bounded Clique-Width. Electr. J. Comb. 15(1) (2008)
2 B. Courcelle, I. Durand: Automata for the verification of monadic second-order graph

properties. J. Applied Logic 10(4): 368–409 (2012)
3 B. Courcelle, I. Durand: Computations by fly-automata beyond monadic second-order logic.

Theor. Comput. Sci. 619: 32–67 (2016)

3.8 Transition Polynomials: Definitions, Properties, and Interrelations
Jo Ellis-Monaghan (Saint Michael’s College – Colchester, US)
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As deletion-contraction reductions are to edges, so are transition systems to vertices. The
Tutte polynomial is the universal object for deletion-contraction invariants, while the gener-
alised transition polynomial is universal for the wide variety of polynomials that are defined
via recursions that involve transition systems at a vertex. This tutorial will give an overview
of the defining properties and supporting algebraic structures for transition polynomials.
We will review several examples such as the Martin polynomial, Kauffman bracket, Penrose
polynomial, and topological transition polynomial, showing them to be specialisations of
a universal generalised transition polynomial. We will conclude with connections among
transition polynomials, deletion/contraction invariants, and even the interlace polynomial.
We wish we knew how the Characteristic polynomial fit in among these interrelations.
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3.9 Graph Polynomials: Some Questions on the Edge
Graham Farr (Monash University – Clayton, AU)

License Creative Commons BY 3.0 Unported license
© Graham Farr

Any general theory of graph polynomials will include some functions on graphs and leave
others out. We consider some questions about graph polynomials that may lie somewhere
near the “edge” of what can be covered by a general theory.

3.10 Polynomials from Grassmannians
Alex Fink (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Alex Fink

Algebraic varieties provide a fertile source of “polynomial” invariants of matroids (and thus
graphs), for instance by constructing their cohomology ring, or cohomology class in a larger
object. We sketch a substantial part of a construction yielding the Tutte polynomial, while
pointing out a few of the myriad variations on the approach.

3.11 Tutorial: Matroid Polytopes, Valuations, and Their Appearance in
Algebraic Geometry

Alex Fink (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Alex Fink

Among the numberless axiom systems for matroids is one that presents them as certain
0-1 polytopes. I introduce these polytopes and their anatomy: several more familiar axiom
systems are manifest in the polyhedral data. They make some generalisations of matroids
natural, e.g. to polymatroids or delta-matroids. They also make it natural to consider a
particular linear relation, “valuativity”, which is quite obscured from more familiar points of
view, but holds of the Tutte polynomial and at least a couple other polynomials from the
literature. The universal invariant for valuativity is an understood object, and valuativity is
also the property of these polytopes useful in my and Speyer’s algebro-geometric construction
of Tutte. As time permits I’ll explain at least one of that construction and a more elementary
one due to myself and Amanda Cameron based on lattice point enumeration.
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3.12 On Six Tutte Polynomial Expressions for a Graph on a Linearly
Ordered Set of Edges

Emeric Gioan (University of Montpellier & CNRS, FR)

License Creative Commons BY 3.0 Unported license
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I will present six interrelated general expressions for the Tutte polynomial of a graph, that
are available as soon as the set of edges is linearly ordered, and that witness combinatorial
properties of such a graph: the classical enumeration of spanning tree activities; its refinement
into a four variable expression in terms of subset activities (that corresponds to the classical
partition of the set of edge subsets into boolean intervals); the enumeration of orientation-
activities for directed graphs; its refinement into a four variable expression in terms of subset
orientation-activities (that corresponds to the partition of the set of orientations into active
partition reversal classes); the convolution formula for the Tutte polynomial (that does not
need the graph to be ordered); and an expression of the Tutte polynomial using only beta
invariants of minors (that refines the above expressions). I will mention that these expressions
are all interrelated by the underlying canonical active bijection between spanning trees and
orientations, subject of a long-term joint work with Michel Las Vergnas.

3.13 Polynomial Graph and Matroid Invariants From Graph
Homomorphisms

Andrew Goodall (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
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The number of homomorphisms from a graph F to the complete graph Kn is the evaluation of
the chromatic polynomial of F at n. Suitably scaled, this is the Tutte polynomial evaluation
T (F ; 1−n, 0) and an invariant of the cycle matroid of F . Dual to colourings are flows. Tutte
constructed his dichromate as a bivariate generalization of the chromatic polynomial and
flow polynomial. The Tutte polynomial extends from graphs to matroids more generally.

Motivated by these observations I shall talk about the following questions, answering
them in part and highlighting what remains open:
1. Which other graph polynomials arise from counting homomorphisms to the nth term of

a sequence of graphs, like the chromatic polynomal from the sequence (Kn)?
2. Which of these yield a cycle matroid invariant? And which of these can be extended to a

larger class of matroids closed under duality?

References
1 A.J. Goodall, J. Nešetřil and P. Ossona de Mendez, Strongly polynomial sequences as

interpretations of trivial structures, J. Appl. Logic, to appear. Preprint: arXiv:1405.2449
[math.CO]

2 A.J. Goodall, G. Regts and L. Vena Cros, Matroid invariants and counting graph ho-
momorphisms. Linear Algebra Appl. 494 (2016), 263 –273. Preprint: arXiv:1512.01507
[math.CO]

3 D. Garijo, A.J. Goodall and J. Nešetřil, Polynomial graph invariants from homomorph-
ism numbers, Discrete Math., 339 (2016), no. 4, 1315–1328. Preprint: arXiv: 1308.3999
[math.CO]
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3.14 Non-Matroid Generalizations of the Tutte Polynomial
Gary P. Gordon (Lafayette College – Easton, US) and Liz McMahon (Lafayette College –
Easton, US)
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It is possible to imitate the corank-nullity definition of the Tutte polynomial to get a
meaningful invariant for combinatorial structures that are not matroids. We explore these,
concentrating on trees, rooted trees, and finite subsets of Euclidean space.

3.15 Algorithms for Computing the Tutte Polynomial
Thore Husfeldt (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
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I gave a brief survey of algorithms for computing the Tutte polynomial. The presentation
was from the algorithmic perspective, so I focused the attention on computational complexity
issues such as worst-case computation times. I sketched the constructions underlying total
enumeration, deletion-contraction, and inclusion-exclusion algorithms and gave a brief analysis
of their use for computational investigations. A brief connection was made to the current
trend in computational complexity that attempts to establish a more fine-grained view of
the hardness of NP-hard problems.

3.16 Graph Polynomials from DNA Rearrangements
Natasa Jonoska (University of South Florida – Tampa, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Masahico Saito, Natasa Jonoska

Nucleotide rearrangements can be modelled by 4-regular rigid vertex graphs, called assembly
graphs. They are closely related to double occurrence words, chord diagrams, and circle
graphs. Edges of these graphs represent double-stranded DNA molecules, while vertices
correspond to DNA recombination sites. Polynomial invariants related to the recombination
processes of these assembly graphs are also invariants for circle graphs and chord diagrams.
In addition we propose other variations of these invariants. These polynomial invariants are
related to the possible products of the rearrangements modelled by the assembly graphs.
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3.17 Introduction to Combinatorial Knot Polynomials
Louis H. Kauffman (University of Illinois – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Louis H. Kauffman

This talk is self-contained and will begin with an introduction to the bracket polynomial
state sum model for the Jones polynomial. We will discuss how this combinatorial knot
polynomial is related to the Tutte and to the dichromatic polynomial, the Temperley-Lieb
algebra and the Potts model in statistical mechanics. We will discuss how the bracket state
sum can be used to prove a number of results in knot theory such as the non-triviality of
reduced alternating and adequate knots and links, and the existence of examples of non-trivial
links with trivial Jones polynomial. We will then show how the bracket polynomial can
be constructed as a state summation using solutions to the Yang-Baxter equation. This
provides an entry into the general subject of quantum link invariants, knot polynomials
constructed via solutions to the Yang-Baxter equation and via Hopf algebras.We will give
a very quick introduction to Khovanov homology, based on the bracket polynomial. The
talk will mention an important ancestor of these models – the Penrose state summation for
counting colourings of planar graphs, and the speaker’s solution to the problem of extending
the Penrose structure to non-planar graphs. This will be sufficient material for a first talk.
This will be a blackboard talk. It is intended as an introduction to these topics and to open
problems related to them. Time permitting, we will discuss skein theory and the other skein
polynomials and state sums related to them.

3.18 Tutorial: Khovanov Homology, Dichromatic Polynomial and the
Potts Model

Louis H. Kauffman (University of Illinois – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Louis H. Kauffman

Khovavnov homology is a way of extracting topological information from the states of the
bracket polynomial for a given knot or link via a chain complex associated with these states.
If one regards the bracket polynomial as a relative of the Potts model (aka dichromatic
polynomial with a physical parameter) (they live in the same parameter space of a generalized
bracket that corresponds to a signed Tutte polynomial for the associated Tait graph for the
link), then the loops in the states are boundaries of regions of constant spin in the Potts model.
This suggests that geometric transitions between states obtained by site re-smoothing should
be related to properties of the Potts partition function and that the Khovanov homology
should have information relevant to the Potts models. This tutorial explores these questions.
We show a direct correspondence with a quantum model and and indirect correspondence
with the a Potts model at certain imaginary temperatures. The question is: How can we do
better in understanding both the Potts model and the physical nature of Khovanov homology
and its relationship with combinatorics.
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3.19 Counting Walks and the Resulting Polynomial
Marsha Kleinbauer (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Marsha Kleinbauer

Counting the closed walks of length k in a graph G with n vertices is equivalent to finding
the sum:

wk

n∑
i=1

λk
i

where λ1, λ2, · · · , λn are the eigenvalues of G. It follows that w0 = n, w1 = 0, w2 is two
times the number of edges in G, and w3 is six times the number of triangles in G. Extensions
of these equations are presented. We present a method that uses generating functions to
count certain types of closed walks in a graph.

3.20 4-Dimensional Discrete Ihara-Selberg Function and Binary Linear
Codes

Martin Loebl (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Martin Loebl

I will show how to write weight enumerator of a binary linear code as 4-dimension discrete
Ihara-Selberg function.

3.21 Dichotomy Theorems for Generalized Chromatic Polynomials
Johann A. Makowsky (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Johann A. Makowsky

Evaluation of the chromatic polynomial is easy on finitely many points, and #P hard
everywhere else. We call this the difficult point property DPP. Let F be a graph property
and k be a positive integer. A function f : V (G)→ [k] is an F -coloring if for every i ∈ [k]
the set f−1(i) induces a graph in F . The author and Boris Zilber have shown in 2006 that
counting F -colorings with k colors is a polynomial PF (G; k) in k. We show infinitely many
examples of properties F , where DPP holds for PF (G; k), and formulate several conjectures,
including also multivariate graph polynomials.

References
1 J.A. Makowsky and T. Kotek and E.V. Ravve, A Computational Framework for the Study

of Partition Functions and Graph Polynomials, Proceedings of the 12th Asian Logic Con-
ference ’11, World Scientific (2013), pages 210–230.
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3.22 Some Pictures
Johann A. Makowsky (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Johann A. Makowsky

The pictures in the report abstract were made by J.A. Makowsky

3.23 Where Do Topological Tutte Polynomials Come From?
Iain Moffatt (Royal Holloway University of London, GB)

License Creative Commons BY 3.0 Unported license
© Iain Moffatt

I’ll give a brief introduction, focussing on how they arise, to the three versions of the Tutte
polynomial for graphs in surfaces due to M. Las Vergnas (1978), B. Bollobás and O. Riordan
(2001), and V. Krushkal (2012). In particular, I will show how each of these polynomials
arises naturally and canonically from attempts to extend the recursive deletion-contraction
definition of the Tutte polynomial to graphs in surfaces.

3.24 New Types of Chromatic Factorization
Kerri Morgan (Monash University – Clayton, AU)

License Creative Commons BY 3.0 Unported license
© Kerri Morgan

The chromatic polynomial P (G;λ) gives the number of ways a graph G can be coloured
in at most λ colours. A graph G has a chromatic factorisation with chromatic factors,
H1 and H2, if P (G;λ) = P (H1;λ)× P (H2;λ)/P (Kr;λ) where the chromatic factors have
chromatic number at least r and Kr is the complete graph of order r. A graph is said to be
clique-separable if it contains a clique whose removal disconnects that graph. It is well-known
that any clique-separable graph has a chromatic factorisation. Morgan and Farr (2009) found
graphs that are not clique-separable, nor chromatically equivalent to any clique-separable
graphs, but factorised in the same way as clique-separable graphs. In all of these cases, the
graphs have a factorisation that “behaves” like the factorisation of a clique-separable graph.

In this talk, we present new results on cases where the chromatic polynomial “factorises”
but does not “behave” like the factorisation of clique-separable graphs. We give an infinite
family of graphs that that have a chromatic factorisation that is “similar” to a clique-separable
graph but one of the chromatic factors does not have chromatic number at least r. We also give
examples of graphs that have chromatic polynomials P (G;λ) = P (H1;λ)×P (H2;λ)/P (D;λ)
where D is not a complete graph.
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3.25 Delta-Matroids
Steven Noble (Brunel University London, GB)

License Creative Commons BY 3.0 Unported license
© Steven Noble

We describe ∆-matroids and their fundamental operations: minors, partial duality and loop
complementation. We illustrate these concepts on ribbon graphs and binary ∆-matroids.

In particular for vf-safe ∆-matroids, we explain the 3 minor operations, twisted duality
and their implications for ∆-matroid polynomials.

Finally we briefly mention a few new results such as chain and splitter theorems for 2
connected, even or vf-safe ∆-matroids, the 2-sum operation, characterising vf-safe ∆-matroids
and counting labelled ∆-matroids.

3.26 Methods in the Study of Real Chromatic Roots
Thomas Perrett (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Thomas Perrett

Joint work of Carsten Thomassen, Thomas Perrett]

The chromatic polynomial is perhaps the best studied univariate graph polynomial, but
many intriguing open problems remain unsolved. In particular the roots of the chromatic
polynomial have attracted much attention, and the focus of many results in this subfield is to
answer questions of the following type: For a class of graphs G and a set D ⊆ C, let RD(G)
denote the set of chromatic roots in D of graphs in G. Can we characterise RD(G)? Such
results are often attractive and surprising. Consider, for example, those of Sokal, Jackson,
and Thomassen, which state that, if G denotes the family of all graphs, then RC(G) = C and
RR(G) = [32/27,∞). On the other hand, RR(P) is still unknown if P denotes the planar
graphs.

In this talk we promote a construction of Thomassen which, given a graph with certain
properties, constructs a sequence of graphs with chromatic roots approaching a given real
number. We show that this method is particularly easy to use if one is interested in minor-
closed classes of graphs. Indeed, as an example, we show that RR(P) contains the interval
(3, 4), except for a tiny interval around τ + 2, where τ ≈ 1.618 is the golden ratio. This
constitutes a partial converse to a famous theorem of Tutte. Finally, we also discuss the
limits of the construction and open problems for which it seems that a new technique is
required.

3.27 Algebraic vs Graph Theoretic Properties of Graph Polynomials
Elena V. Ravve (ORT Braude College – Karmiel, IL)

License Creative Commons BY 3.0 Unported license
© Elena V. Ravve

Joint work of Johann A. Makowsky, Elena V. Ravve

Two graph polynomials are d.p.-equivalent (distinctive power equivalent) if they distinguish
the same graphs. Graph theoretic properties are properties which are invariant under
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d.p.-equivalence. Algebraic properties are properties of the particular presentation of the
graph polynomial and are not invariant under d.p.-equivalence. We exemplify this notion on
the example of the location of the roots of a graph polynomial. Other properties are the
unimodality of the coefficients, orthogonality of the polynomials for specific sequences of
graphs, etc.

3.28 Deterministic Approximation Algorithms for the Tutte Polynomial,
the Independence Polynomial and Partition Functions

Guus Regts (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Guus Regts

Joint work of Alexander Barvinok, Viresh Patel, Guus Regts

In this talk I will discuss a general method that yields deterministic polynomial time
approximation algorithms for evaluations of the Tutte and independence polynomial on
bounded degree graphs as well as for partition functions of vertex- and edge-coloring models
on bounded degree graphs. Ingredients of the method include: zero-free regions on bounded
degree graphs, low order Taylor approximations of the logarithm of a polynomial and
computations of coefficients of graph polynomials.

3.29 The Characteristic Polynomial of a Graph
Gordon Royle (The University of Western Australia – Crawley, AU)

License Creative Commons BY 3.0 Unported license
© Gordon Royle

The characteristic polynomial of a graph G is the characteristic polynomial of its adjacency
matrix. While there are many different graph polynomials (chromatic, Tutte, matching etc),
the characteristic polynomial is perhaps the most heavily studied of all, primaril y because
the roots of the characteristic polynomial (i.e. the eigenvalues of its adjacency matrix)
carry so much information about s tructure of the graph and its subgraphs. Indeed, a large
proportion of the entire field of algebraic graph theory can be viewed as exp loring exactly
which properties of graphs are, or are not, reflected in its spectrum.

In this talk, I will outline some of the main properties of the characteristic polynomial
of a graph, but also introduce some of the i nteresting open questions that remain. As an
example, it is not currently known whether or not almost all graphs are determined up to
isomorphism by their characteristic polynomials.
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3.30 Introduction to the Bipartition Polynomial and Its Relatives
Peter Tittmann (Hochschule Mittweida, DE)

License Creative Commons BY 3.0 Unported license
© Peter Tittmann

Let G = (V,E) be a finite simple undirected graph. The open neighborhood NG(v) of a
vertex v ∈ V is the set of all vertices that are adjacent to v in G. The closed neighborhood of
v is NG(v) ∪ {v}. Analogously, we define

NG(W ) =
⋃

v∈W

NG(v) \W

and NG[W ] = NG(W ) ∪W for any vertex subset W ⊆ V . For a given vertex subset W ⊆ V ,
let ∂W be the set of all edges of G with exactly one of their end vertices in W , i.e.

∂W = {{u, v} ∈ E | u ∈W, v ∈ V \W}.

The bipartition polynomial of G, introduced in [2], is

B(G;x, y, z) =
∑

W⊆V

x|W |
∑

F⊆∂W

y|N(V,F )(W )|z|F |.

We give different representations of this polynomial and show its relations to other graph
polynomials, including the domination, Ising, cut, independence, Eulerian subgraph, and
matching polynomial.

We will discuss the role of linear orderings of the edge set, a modified version of external
activity and provide some open problems.

References
1 Markus Dod et al., Bipartition Polynomials, the Ising Model, and Domination in Graphs.

Discussiones Mathematicae Graph Theory 35 (2015)2, pp. 335–353.

3.31 Recurrence Relations for Independence Polynomials in
Hypergraphs

Martin Trinks (Nankai University – Tianjin, CN)

License Creative Commons BY 3.0 Unported license
© Martin Trinks

The independence polynomial of a hypergraph is the generating function for its independent
(vertex) sets with respect to their cardinality. This talk aims to discuss several recurrence
relations for the independence polynomial using some vertex and edge operations. Further,
an extension of the well-known recurrence relation for simple graphs to hypergraphs is proven
and other novel recurrence relations are given.
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4 Open problems

4.1 The Open Problem Session
Andrew Goodall (Charles University – Prague, CZ) and Iain Moffatt (Royal Holloway
University of London, GB)

License Creative Commons BY 3.0 Unported license
© Andrew Goodall and Iain Moffatt

Problems from the problem session of Graph polynomials: towards a comparative theory,
Dagstuhl, Monday 13 June to Friday 17 June, 2016. Also from talks given by speakers during
the week and submitted by other workshop participants.

4.2 Number of acyclic orientations and its relation to the size of the
automorphism group

Spencer Backman (Universität Bonn, DE(

License Creative Commons BY 3.0 Unported license
© Spencer Backman

The following is conjectured:
Let G be a vertex-transitive simple graph. Then the number of acyclic orientations of G

is at least equal to the size of the automorphism group of G, i.e.,

T (G; 2, 0) ≥ |Aut(G)|.

Furthermore, equality holds if and only if G ∼= Kn.

4.3 Smallest ideal of graph mapping polynomial
Joanna Ellis-Monaghan (Saint Michael’s College – Colchester, US)

License Creative Commons BY 3.0 Unported license
© Joanna Ellis-Monaghan

Given a polynomial P mapping graphs to a commutative ring with unity R, what is the
smallest ideal I of R such that graphs → R→ R/I is tractable to compute?

4.4 4-Colourability of matroid dual graphs (Hassler Whitney, 1993)
Graham Farr (Monash University– Clayton, AU)

License Creative Commons BY 3.0 Unported license
© Graham Farr

A problem of Hassler Whitney from 1932.
Let G be a graph such that there exists a graph H with the property that T (G∗;x, y) =
T (H;x, y), where G∗ is the matroid dual of G (a cographic matroid).

Are such graphs G 4-colourable?
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Figure 2 Whitney’s example of a graph having a Tutte dual.

1. If G is planar then G∗ is also a planar graph and we may take H = G∗.
2. A graph G is Tutte self-dual (TSD) if T (G∗;x, y) = T (G;x, y), in which case we may

take H = G.

4.5 Construction of a nice Q̂(∆)
Alex Fink (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Alex Fink

Let G be a connected bipartite graph and Ve q Vv its vertex set. A hypertree for G is the
degree sequence in Z |Ve| of some spanning tree of G (these form a hypergraphic polymatroid).
Define the bivariate polynomial Q(G; t, u) so that, when t and u are naturals,

Q(G; t, u) = #{p ∈ Z |Ve| : p = a+ b+ c,

a is a hypertree of G,

bi ∈ Z≤0,
∑

i

bi = −t,

ci ∈ Z≥0,
∑

i

ci = u}.

Ehrhart theory guarantees the existence of this polynomial. When all vertices in Ve are
bipartite, then G is the barycentric subdivision of a graph H; in this case, hypertrees for G
are in bijection with spanning trees for H, and Q(G; t, u) contains the same information as
T (H;x, y). To wit, with Amanda Cameron we’ve shown that

∑
t,u≥0

Q(G; t, u)αtβu =
T

(
H; 1− αβ

1− β ,
1− αβ
1− α

)
(1− α)|V (H)−1|(1− β)|E(H)−V (H)+1|(1− αβ)

.

Now let ∆ be a three-coloured triangulation of the sphere. Then there are six ways to
delete one colour class from ∆, leaving a bipartite graph G, and label the other two
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colour classes Ve and Vv. If Ve is colour i, Vv is colour j, and the deleted colour is k, let
Qijk(∆; t, u) = Q(G; t, u). These are interrelated. Firstly,

Qijk(∆; t, u) = Qikj(∆;u, t).

In the case where all vertices of colour i have degree 4, this is plane graph duality (in general,
it’s a polymatroid duality). Secondly, Kálmán and Postnikov have shown that

Qijk(∆; t, 0) = Qjik(∆; t, 0).

This is all compatible with the existence of a trivariate polynomial Q̂(∆;xi, xj , xk) such that

Q̂(∆; 0, xj , xk) = Qijk(∆;xk, xj)

and such that permuting the colour classes of ∆ permutes the variables of Q̂(∆) in the
corresponding way.
Problem: Construct a nice such Q̂(∆).

4.6 hom(G, Cayley(Ak, Bk))
Andrew Goodall (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Andrew Goodall

Let Ak be an additive Abelian group and Bk = −Bk ⊆ Ak an inverse-closed subset for each
k ∈ N. The graph Cayley(Ak, Bk) has vertices Ak and edges joining u and v precisely when
u− v ∈ Bk.

When Ak = Zk and Bk = Zk \ {0}, Cayley(Ak, Bk) = Kk and hom(G,Kk) = P (G; k) is
the chromatic polynomial of G evaluated at k.
When Ak = Zsk and Bk = {kr, kr + 1, . . . , k(s− r)} then hom(G,Cayley(Ak, Bk)) is [1]
a polynomial in k. (The minimum ratio s/r such that there exists a homomorphism from
G to Cayley(Zs, {r, r + 1, . . . , s− r} is the circular chromatic number of G.)
De la Harpe and Jaeger (1995) showed that when Ak = Zk and Bk = B/kZ for some
fixed B = −B ⊆ Z then hom(Zk, Bk) settles eventually to a fixed polynomial in k if
and only if B is finite or cofinite. For example hom(G,Ck) (B = {−1,+1}) is a fixed
polynomial in k only for k > g(G).

Question: When is hom(G,Cayley(Ak, Bk)) a polynomial in |Ak| and |Bk|? (The poly-
nomial here depends on G, but must not depend on k.)

A motivation for this problem is that for each such graph polynomial counting Bk-tensions
in Ak (equivalently, vertex Ak-colourings such that adjacent colours differ by an element
in Bk) there is a dual graph polynomial counting Bk-flows, which together may be unified
in a bivariate polynomial akin to the Tutte polynomial. Interest may then lie in what
other combinatorial information is encapsulated in this bivariate polynomial. Also, is there
a reduction formula analogous to the deletion-contraction recurrence for the chromatic
polynomial?

References
1 A. J. Goodall, J. Nešetřil and P. Ossona de Mendez, Strongly polynomial sequences as

interpretations of trivial structures, J. Appl. Logic, to appear. Preprint: arXiv:1405.2449
[math.CO]
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4.7 Tutte polynomials for matroids and their relationship to other
graph polynomials

Joseph Kung (University of North Texas – Denton, US)

License Creative Commons BY 3.0 Unported license
© Joseph Kung

By an (n, r)-matroid we mean a rank r matroid with groundset of size n. The Tutte
polynomial of an (n, r)-matroid has degree r as a polynomial in x and degree n − r as a
polynomial in y. The Tutte polynomials of such matroids span a subspace if C[x, y] and an
upper bound for

dim〈 T (M ;x, y) : M an (n, r)-matroid 〉
is (r + 1)(n− r + 1).

The dimension is in fact equal to r(n− r) + 1.
Problem: Answer the same question for other graph polynomials.
The dimension of the subspace spanned by the graph polynomial for graphs of given order

and size serves as a measure of information contained in a graph polynomial: how useful is
this way of measuring the combinatorial information contained in a given polynomial graph
invariant?

4.8 The Frustration Conjecture
Martin Loebl (Charles University – Prague, CZ)

License Creative Commons BY 3.0 Unported license
© Martin Loebl

The Frustration Conjecture. Let G = (V,E) be a graph, w : E → {0, 1,−1}, and let there
be given g disjoint pairs of edges p1, . . . , pg. A perfect matching M ⊆ E is a parity matching
if |M ∩ pi| is even for all i.

Is it true that there is no algorithm for finding a maximum weight maximum parity
matching that has complexity better than 2g?

Reference: M. Loebl, Parity matching, preprint, 2016. Available at: http://kam.mff.cuni.
cz/~loebl/clanky/parityMatching0416.pdf

4.9 A polynomial related to the SAT-problem
Johann A. Makowsky (Technion – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Johann A. Makowsky

Let C be a set of clauses and (V,C,R) a directed graph in which arcs (R) join variables
(V ) to clauses (C) with direction according to whether the variable is negated or not in the
clause. (See figure, right.)
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For A ⊆ V , define SAT(A) = {c ∈ C : A satisfies c} and the SAT-polynomial in indeterminate
X by∑

A⊆V

∏
c∈SAT(A)

X =
∑

A⊆V

X |SAT(A)|.

Question: Is this polynomial useful to study the satisfiability problem SAT?

4.10 Independence polynomial of G (Alan Sokal, 2001)
Guus Regts (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Guus Regts

A problem of Alan Sokal from 2001. Let ∆ ∈ N and let ZG(λ) denote the independence
polynomial of G.

For ε > 0 is there δ > 0 such that the following holds? For each graph G of maximum
degree at most ∆ it holds that ZG(λ) 6= 0 for λ satisfying

Im(λ) < δ,

0 ≤ Re(λ) ≤ (1− ε) (∆− 1)∆−1

(∆− 2)∆ .

Note. It is known that ZG(λ) 6= 0 if |λ| ≤ (∆−1)∆−1

∆∆ .

4.11 Tutte polynomials of medial graphs
William Whistler (Durham University, GB)

License Creative Commons BY 3.0 Unported license
© William Whistler

Are the Tutte polynomials of the medial graphs of different plane embeddings of a given
planar graph identical?
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