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Abstract
High performance computing is a key technology to solve large-scale real-world simulation prob-
lems on parallel computers. Simulations for a fixed, deterministic set of parameters are current
state of the art. However, there is a growing demand in methods to appropriately cope with
uncertainties in those input parameters. This is addressed in the developing research field of un-
certainty quantification. Here, Monte-Carlo methods are easy to parallelize and thus fit well for
parallel computing. However, their weak approximation capabilities lead to inaccurate results.
The Dagstuhl Seminar 16372 “Uncertainty Quantification and High Performance Computing”
brought together experts in the fields of uncertainty quantification and high performance com-
puting. Discussions on the latest numerical techniques beyond pure Monte-Carlo and with strong
approximation capabilities were fostered. This has been put in context of real-world problems
on parallel computers.

Seminar September 11–16, 2016 – http://www.dagstuhl.de/16372
1998 ACM Subject Classification D.1.3 Concurrent Programming, G.1.2 Approximation, G.3

Probability and Statistics
Keywords and phrases high performance computing, parallelization, stochastic modeling, uncer-

tainty quantification
Digital Object Identifier 10.4230/DagRep.6.9.59

1 Executive Summary

Vincent Heuveline
Michael Schick
Clayton Webster
Peter Zaspel

License Creative Commons BY 3.0 Unported license
© Vincent Heuveline, Michael Schick, Clayton Webster, and Peter Zaspel

Topics
Uncertainty quantification (UQ) aims at approximating measures for the impact of
uncertainties in e.g. simulation parameters or simulation domains. By this way, it is of
great importance for both academic research and industrial development. In uncertainty
quantification, one distinguishes between classical forward uncertainty propagation and more
involved inference, optimization or control problems under uncertainties. Forward uncertainty
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propagation is concerned with deterministic numerical models for e.g. engineering problems,
in which parts of the input data (domain, parameters, . . . ) might be affected by uncertainties,
i.e. they have a random nature. Randomness is usually characterized by random fields that
replace the originally deterministic inputs. In Bayesian inference, parameters of a system
shall be derived for given measurements. Since the measurements are assumed to be affected
by some (stochastic) error, this inference approach tries to derive probabilities under which
a given parameter leads to the observed measurements. In some sense, Bayesian inference
complements classical inverse problems in a stochastic sense. Other fields of interest for a
similar uncertainty analysis are optimization and control.

High performance computing (HPC) is an interdisciplinary research field in com-
puter science, mathematics and engineering. Its aim is to develop hardware, algorithmic
approaches and software to solve (usually) mathematically formulated problems on large
clusters of interconnected computers. The dominant part of the involved research is done
in parallel computing. From a hardware perspective, HPC or parallel computing requires
to develop computing technologies that can e.g. solve several problems at the same time at
high performance and low power. Moreover, hardware developments in HPC often aim at
improving network communication technologies, which are necessary to let a (potentially)
large set of computers solve a single problem in a distributed way. From an algorithmic
perspective, methods known from numerical mathematics and data processing are adapted
such that they can run in a distributed way on different computers. Here, a key notion is
(parallel) scalability which describes the ability to improve the performance or throughput of
a given method by increasing the number of used computers. Most algorithmic developments
shall improve this scalability for numerical methods. Research in software aims at defining
appropriate programming models for parallel algorithms, providing efficient management
layers for the underlying hardware and implementing the proposed parallel algorithms in
real software.

Challenges
In UQ, (partial) differential equations with random data are approximately solved by
either intrusive or non-intrusive methods. An intrusive technique simultaneously discretizes
stochastic and physical space with the classical example of stochastic Galerkin approaches.
This method delivers favorable properties such as small errors with fewer number of equations
and potentially small overall run-time. To achieve that, it requires to re-discretize and re-
implement existing deterministic PDE solvers. On the other hand, non-intrusive techniques
(e.g. (quasi-)Monte Carlo, multi-level Monte Carlo, stochastic collocation, . . . ) reuse existing
solvers / simulation tools and generate a series of deterministic solutions which are used to
approximate stochastic moments. It is thereby possible to perform uncertainty quantification
analysis even for very complex large-scale applications for which a re-implementation of
existing solvers is no option. The non-intrusive approach is connected to a rather extreme
computational effort, with at least hundreds, thousands or even more deterministic problems
that have to be solved. While a single real-world forward uncertainty propagation problem
is already extremely computational intensive, even on a larger parallel computer, inference,
optimization and control under uncertainties often go beyond the limits of currently available
parallel computers.

In HPC, we have to distinguish methods that are intrinsically (often also called em-
barrassingly) parallel and those that have to exchange data to compute a result. That
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is, embarrassingly parallel algorithms are able to independently compute on completely
decoupled parts of a given problem. A prominent example in UQ are Monte-Carlo-type
methods. The other extreme are approaches that require to exchange a lot of data in order
to solve a given problem. Here, prominent examples are adaptive and multi-level methods
in general and stochastic Galerkin methods. Both method types tend to have excellent
approximation properties, but require a considerable effort in parallel algorithms to be
scalable on parallel computers. Scalability considerations might become even more important
on the next generation of the largest parallel computers, which are expected to be available
at the beginning of the next decade. These parallel Exascale computers will be able to
process on the exaFLOP level, thus they will be able to issue 10 18 floating-point instructions
within a second. Technological limitations in chip production will force computing centers to
install systems with a parallel processor count which is by orders of magnitude higher than
in current systems. Current parallel algorithms might not be prepared for this next step.

The Dagstuhl Seminar on “Uncertainty Quantification and High Performance Computing”,
brought together experts from UQ and HPC to discuss some of the following challenging
questions:

How can real-world forward uncertainty problems or even inference, control and optimiz-
ation under uncertainties be made tractable by high performance computing?
What types of numerical uncertainty quantification approaches are able to scale on current
or future parallel computers, without sticking to pure Monte Carlo methods?
Might adaptivity, model reduction or similar techniques improve existing uncertainty
quantification approaches, without breaking their parallel performance?
Can we efficiently use Exascale computing for large-scale uncertainty quantification
problems without being affected by performance, scalability and resilience problems?
Does current research in uncertainty quantification fit the needs of industrial users?
Would industrial users be willing and able to use HPC systems to solve uncertainty
quantification problems?

Seminar outcome
Several presentations covered Bayesion inference / inversion (Ghattas, Marzouk, Najm,
Peters), where seismology is an extremely computationally expensive problem that can
only be solved by the largest parallel computers (Ghattas). While the parallelization is
crucial, the numerical methods have to be adapted as well, such that fast convergence is
achieved (Ghattas, Marzouk, Peters). The very computationally intensive optimization
under uncertainties (Benner) becomes tractable by the use of tensor approximation methods
(Benner, Osedelets). Tensor approximation methods as well as hierarchical matrices (Börm,
Zaspel) are optimal complexity numerical methods for a series of applications in UQ. However
their large-scale parallelization is still subject to research.

A series of talks considered mesh-free approximation methods (Rieger, Teckentrup, Zaspel)
with examples in Gaussian process regression (Teckentrup) and kernel-based methods. It
was possible to see that these methods have provable error bounds (Rieger, Teckentrup)
and can be scaled on parallel computers (Rieger, Zaspel). Moreover these methods even
fit well for inference (Teckentrup). Sparse grid techniques were considered as example
for classical approximation methods for higher-dimensional problems (Stoyanov, Peters,
Harbrecht, Pflüger). Here, recent developments in adaptivity and optimal convergence were
discussed. Sparse grid techniques are usually considered in a non-intrusive setting such
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that parallel scalability is often guaranteed. Compressed sensing promises to reduce the
amount of simulations in a non-intrusive framework (Dexter). Quasi-Monte Carlo methods
are under investigation for optimal convergence (Nuyens). The latter methods are of high
interest for excellent parallel scalability on parallel computers due to the full decoupling of
all deterministic PDE solves while keeping convergence orders beyond classical Monte Carlo
methods.

Adaptivity leads to strongly improved approximations using the same amount of de-
terministic PDE solutions (Pflüger, Stoyanov, Webster, . . . ). However, a clear statement
on how to parallelize adaptive schemes in an efficient way is still subject to research. The
general class of multi-level schemes was also under investigation (Dodwell, Zhang), including
but not being limited to multi-level Monte-Carlo and multi-level reduced basis approaches.
These methods show excellent convergence properties. However their efficient and scalable
parallelization is part of intensive studies, as well.

Performance considerations in the field of HPC (including future parallel computers) have
been discussed (Heuveline, Legrand). Performance predictability is necessary to understand
scaling behavior of parallel codes on future machines (Legrand). Parallel scalability of
(elliptic) stochastic PDEs by domain decomposition has been discussed by LeMaître. His
approach allows to increase parallel scalability and might show hints towards resilience.

Industrial applications were considered for the company Bosch (Schick), where intrusive
and non-intrusive approaches are under investigation. High performance computing is still
subject to discussion in this industrial context. One of the key applications, which is expected
to become an industrial-like application, is UQ in medical engineering (Heuveline). Once
introduced into the daily work cycle at hospitals, it will soon become a driving technology
for our health.

Perspectives
Based on the survey and personal feedback from the invitees, the general consensus is that
there is a high interest in deepening the discussions at the border of UQ and HPC. While
some answers to the above questions could be given, there is still a lot more to learn, to
discuss and to develop. A general wish is therefore to have similar meetings in the future.

Acknowledgements. The organizers would like to express their gratitude to all participants
of the Seminar. Special thanks go to the Schloss Dagstuhl team for its extremely friendly
support during the preparation phase and for the warm welcome at Schloss Dagstuhl.
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3 Overview of Talks

3.1 Optimization of Random Navier-Stokes Equations
Peter Benner (MPI – Magdeburg, DE)

License Creative Commons BY 3.0 Unported license
© Peter Benner

We discuss the optimization and optimal control of flow problems described by the unsteady,
incompressible Navier-Stokes equations. Randomness is introduced by modeling the uncer-
tainty in the dynamic viscosity as a random variable. Using a stochastic discretization of the
optimality system leads to a large-scale nonlinear system of equations in saddle point form.
Nonlinearity is treated with a Picard-type iteration in which linear saddle point systems
have to be solved in each iteration step. Using data compression based on separation of
variables and the tensor train (TT) format, we show how these large-scale indefinite and
nonsymmetric systems that typically have 108–1011 unknowns can be solved without the
use of HPC technology. The key observation is that the unknown and the data can be
well approximated in a new block TT format that reduces complexity by several orders of
magnitude. We illustrate our findings by numerical examples.

3.2 Hierarchical tensor approximation
Steffen Börm (Universität Kiel, DE)

License Creative Commons BY 3.0 Unported license
© Steffen Börm

Joint work of Steffen Börm, Dirk Boysen, Isabelle Greff

We consider the computation of two-point correlations of the stochastic partial differential
equation

−∆u(x, ω) = f(x, ω),

where x is a point in a domain D and ω is an element of a probability space. Following a
result by Schwab and Todor, the two-point correlations Cu satisfy the equation

∆x∆yCu(x, y) = Cf (x, y),

where Cf denotes the two-point correlations of the right-hand side. Since this is an equation
in D × D, the computational cost of standard discretization schemes is fairly high even if D

is only a two-dimensional domain.
We propose an alternative approach: an analysis by Pentenrieder and Schwab indicates

that Cu is smooth in large parts of the domain D × D, so it is possible to approximate the
solution by an hp finite element method. In order to avoid having to construct a locally
refined mesh for the four- or even six-dimensional domain D × D, we employ a hierarchical
partition of unity in combination with suitable tensor-product functions. We introduce a
recursive algorithm for constructing the sparsity pattern of the resulting system matrix. This
algorithm also suggests a technique for obtaining the matrix coefficients based only on the
system matrix of the original partial differential equation by using suitable inter-grid transfer
operators.
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3.3 Towards UQ + HPC for Bayesian Inversion, with Application to
Global Seismology

Omar Ghattas (University of Texas at Austin, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Tan Bui, Carsten Burstedde, Pearl Flath, Omar Ghattas, James Martin, Georg Stadler, Hari
Sundar, Lucas Wilcox

Inverse problems governed by acoustic, elastic, or electromagnetic wave propagation – in
which we seek to reconstruct the unknown shape of a scatterer, or the unknown properties of
a medium, from observations of waves that are scattered by the shape or medium – play
an important role in a number of engineered or natural systems. Our goal is to address the
quantification of uncertainty in the solution of the inverse problem by casting the inverse
problem as one in Bayesian inference. This provides a systematic and coherent treatment of
uncertainties in all components of the inverse problem, from observations to prior knowledge
to the wave propagation model, yielding the uncertainty in the inferred medium/shape in
a systematic and consistent manner. Unfortunately, state-of-the-art MCMC methods for
characterizing the solution of Bayesian inverse problems are prohibitive when the forward
problem is expensive (as in our 100–1000 wavelength target problems) and a high-dimensional
parametrization is employed to describe the unknown medium (as in our target problems
involving infinite-dimensional medium/shape fields, which result in millions of parameters
when discretized).

The Hessian operator of the negative log posterior plays an important role in the efficient
solution of Bayesian inverse problems. When the parameter-to-observable map is linearized
at the MAP point (and the prior and noise are Gaussian), the posterior is a Gaussian with
the inverse Hessian as its covariance operator. More generally, this geometry-aware Gaussian
approximation can be used within a proposal to accelerate MCMC methods for sampling
non-Gaussian posteriors, such as in the so-called stochastic Newton, Riemannian manifold,
or DILI MCMC methods.

The Hessian is often the sum of a compact operator (the data misfit) and an elliptic
differential operator (the inverse prior), and this invites a low-rank approximation of the
(prior-preconditioned) data misfit term, leading to an effective reduction in dimensionality
(often several orders of magnitude).

Here we show that the following combination of conditions leads to a class of methods
whose cost (measured in forward/adjoint PDE solves) scales independent of the parameter
and data dimensions and number of processor cores:

the prior-preconditioned data misfit Hessian is compact with mesh and data independent
dominant spectrum (typical of ill-posed inverse problems)
dominant spectrum is captured in O(r) matvecs with Hessian (we use randomized SVD
for the low rank approximation)
Hessian-vector products are computed matrix-free using second-order adjoint-based
methods (amounts to 2 linearized PDE solves per matvec)
fast O(n) elliptic solvers used for prior operator applications (we use hybrid geometric/al-
gebraic multigrid to handle heterogeneous/anisotropic priors)
the forward and adjoint PDE solves scale well with number of cores

The cost to construct the Laplace approximation of the posterior (or the local Gaussian
at every MCMC iteration when the posterior is sufficiently non-Gaussian) is overwhelmingly
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dominated by O(r) linearized forward/adjoint PDE solves (to construct the low-rank approx-
imation). Everything else is negligible linear algebra. So when the PDE forward/adjoint
solver scales well, one achieves a scalable UQ method. For mildly non-Gaussian posteriors,
we evaluate the Hessian and its inverse at the maximum a posteriori point and reuse it during
the MCMC iterations.

For strongly non-Gaussian posteriors, the inverse Hessian formally has to be computed
repeatedly, which is intractable for large-scale, high-dimensional problems, even if the number
of (linearized) forward solves is independent of the parameter and data dimensions. The
challenge is to find better representations of the Hessian beyond low rank (e.g. H-matrix-based)
or else to derive effective preconditioners (e.g. based on its symbol).

We present applications to a Bayesian inverse problem in global seismology with up to one
million earth model parameters and 630 million state variables, on up to 100,000 processor
cores.

3.4 Solution of free boundary problems in the presence of geometric
uncertainties

Helmut Harbrecht (Universität Basel, CH), Marc Dambrine, Michael Peters, and Benedicte
Puig

License Creative Commons BY 3.0 Unported license
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The solution of Bernoulli’s exterior free boundary problem is considered in case of an interior
boundary which is random. Two ways are introduced to define the expectation and the
deviation of the resulting annular domain. To compare both approaches, some analytical
examples for a circular interior boundary are studied. Moreover, numerical experiments are
performed for more general geometrical configurations. In order to numerically approximate
the expectation and the deviation, a sampling method is proposed like the (quasi-) Monte
Carlo quadrature. The free boundary is determined for each sample by the trial method
which is a fixed-point like iteration.

References
1 H. Harbrecht and M. Peters. Solution of free boundary problems in the presence of geometric

uncertainties. Preprint 2015-02, Mathematisches Institut, Universität Basel, Switzerland,
2015 (to appear in Radon Series on Computational and Applied Mathematics, de Gruyter).

2 M. Dambrine, H. Harbrecht, M. Peters, and B. Puig. On Bernoulli’s free boundary problem
with a random boundary. Manuscript, 2016.

3.5 Uncertainty Quantification and High Performance Computing:
Quid?

Vincent Heuveline (HITS & Universität Heidelberg)
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The increasing demand on reliable results in scientific computing makes the quantification of
uncertainties in mathematical models a crucial task. Including Uncertainty Quantification
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to scientific computing leads for many applications to a shift of paradigm from purely
deterministic problems to the stochastic models. In addition, the development of new
technologies in high performance computing enables to consider new numerical methods
in order to solve the challenging problems arising in Uncertainty Quantification. The talk
adresses the interface between Uncertainty Quantification and High Performance Computing
with a main emphasize in:

intrusive methods in Uncertainty Quantification for systems of partial differential equations
(PDEs);
efficient accelerator and preconditioning technologies to be used on large-scale super-
computing clusters;
open-source software-development for making the implementations accessible for the
worldwide research community.

Applications in medical engineering are presented. A blood pump scenario where the inflow
boundary condition, viscosity and the rotation speed are modeled as uncertain parameter
is depicted. It shows up both the potential of high performance computing for uncertainty
quantification but also still existing numerical challenges for real world applications.

3.6 Performance Prediction of HPC Applications: The SimGrid Project
Arnaud Legrand (INRIA – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
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Simulation of HPC applications. Parallel platforms have progressively become more and
more heterogeneous and complicated. After a quick presentation of typical recent super-
computers, I have presented how task-based programming and dynamic runtimes allow to
efficiently exploit such architecture. Yet, evaluating performance of such complex systems is
particularly challenging. I have thus presented our recent work on StarPU/SimGrid, a custom
simulator that can be used to predict the performance of task-based applications running
on top of StarPU to exploit hybrid (CPU+GPU) architectures. We have demonstrated the
faithfulness of StarPU/SimGrid for both modern dense and sparse linear algebra solvers.

References
1 Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau, Jean-François Méhaut.

Faithful Performance Prediction of a Dynamic Task-Based Runtime System for Heterogen-
eous Multi-Core Architectures. Concurrency and Computation: Practice and Experience,
Wiley, 2015, pp. 16.

2 Luka Stanisic, Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Arnaud Legrand,
et al.. Fast and Accurate Simulation of Multithreaded Sparse Linear Algebra Solvers. The
21st IEEE International Conference on Parallel and Distributed Systems, Dec. 2015, Mel-
bourne, Australia.

3 Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, Frédéric Suter. Versat-
ile, Scalable, and Accurate Simulation of Distributed Applications and Platforms. Journal
of Parallel and Distributed Computing, Elsevier, 2014, 74 (10), pp. 2899–2917.
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3.7 Quasi-Monte Carlo methods for elliptic PDEs with random
coefficients

Dirk Nuyens (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
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Joint work of I. Graham, Frances Y. Kuo, Dirk Nuyens, Rob Scheichl, Ian H. Sloan

I first discuss the current theory of getting dimension independent convergence in approxim-
ating high-dimensional and infinite-dimensional integrals. This is done by using weighted
reproducing kernel Hilbert spaces. For several quasi-Monte Carlo methods we know function
spaces and weights for which we have optimal convergence independent of the number of
dimensions. Then I apply this theory to a parametrised PDE where we balance the dimension
truncation error, FEM error and quadrature/cubature error. For log-normal random fields
we obtain dimension-independent convergence of N−1 using randomly shifted lattice rules.

3.8 Bayesian Inversion for Electrical Impedance Tomography
Michael Peters (Universität Basel, CH)

License Creative Commons BY 3.0 Unported license
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Joint work of Robert Gantner, Helmut Harbrecht, Michael Peters, Markus Siebenmorgen

In this talk, we consider a Bayesian approach towards Electrical Impedance Tomography,
where we are interested in computing moments, in particular the expectation, of the contour
of an unknown inclusion, given noisy current measurements at the surface. By casting
the forward problem into the framework of elliptic diffusion problems on random domains,
we solve a suitably parametrized version by means of the domain mapping method. This
straightforwardly yields parametric regularity results for the system response, which we
exploit to conduct a rigorous analysis of the posterior measure, facilitating the application
of sophisticated quadrature methods for the approximation of moments of quantities of
interest. As an example of such a quadrature method, we consider an anisotropic sparse grid
quadrature. To solve the forward problem numerically, we employ a fast boundary integral
solver. Numerical examples are provided to illustrate the presented approach and validate
the theoretical findings.

References
1 R. N. Gantner, M. D. Peters. Higher Order Quasi-Monte Carlo for Baysian Shape Inversion.

Preprint 2016-18, Mathematisches Institut, Universität Basel, Switzerland, 2016.
2 A.-L. Haji-Ali, H. Harbrecht, M. Peters, and M. Siebenmorgen. Novel results for the aniso-

tropic sparse quadrature and their impact on random diffusion problems. Preprint 2015-27,
Mathematisches Institut, Universität Basel, Switzerland, 2015.

3 H. Harbrecht, M. Peters, and M. Siebenmorgen. Analysis of the domain mapping method
for elliptic diffusion problems on random domains. Numer. Math., 134(4):823–856, 2016.
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3.9 From Data to Uncertainty: Efficient Data-Driven Adaptive Sparse
Grids for UQ

Dirk Pflüger (Universität Stuttgart, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Franzelin, Fabian; Jakeman, John; Pfander, David
Main reference F. Franzelin, D. Pflüger, “From Data to Uncertainty: An Efficient Integrated Data-Driven Sparse

Grid Approach to Propagate Uncertainty”, in Sparse Grids and Applications – Stuttgart 2014,
LNCSE, Vol. 109, pp. 29–49, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-28262-6_2

We consider non-intrusive stochastic collocation for uncertainty quantification, as our ap-
plications require us to treat the underlying simulation code as a black box. We propose
spatially adaptive sparse grids for both the estimation of the stochastic densities and the
stochastic collocation.

With sparse grids, the numerical discretization is still possible in higher-dimensional
settings, and the integrated sparse grid approach leads to fast and efficient algorithms and
implementations. This allows us to start with data that is provided by measurements and to
combine the estimated densities with the model function’s surrogate without introducing
additional sampling or approximation errors. Bayesian inference and Bayesian updating
allow us to incorporate observations and to adaptively refine the surrogate based on the
posterior.

Efficient and scalable algorithms for the evaluation of the surrogate function are available,
which can achieve close-to-peak performance even on hybrid hardware.

3.10 Kernel methods for large scale data analysis problems arising in
UQ

Christian Rieger (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
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Many problems in uncertainty quantification (UQ) are modeled via parametric partial
differential equations (PDEs). Here, the parameters often stem from a given high–dimensional
space. A typical reconstruction process consists of three steps. In the first step, one has to
solve the parametric PDE for a given set of parameter values. The second step is to compute
some derived quantity of interest (QoI) such as a mean of the solution of the PDE for a fixed
parameter. Hence, one obtains point-evaluations from a function directly mapping from the
parameter space to the real numbers describing the QoI as function of the parameter. Both
steps involve some numerical procedure and hence introduce a numerical error to the data.
As a third step, one is often only interested in approximatively reconstructing the QoI as
function from the parameter space, in order to evaluate this function for new parameter
values.

In this talk, we focus on the third step. We make use of the fact that the function mapping
the parameter space to the QoI is typically a smooth function of the parameter, see [1]. We
present different regularization techniques which aim at saving numerical costs and solving
the approximation problem up to the numerical evaluation error level stemming from the
first tow steps above. To this end, we propose an error balancing strategy where we compare
the numerical evaluation error of the quantity interest and the approximation error which
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stems from the fact that we use only finitely many data values. Such a balancing requires an
a priori error analysis in order to determine accuracy for the numerical evaluation which is
needed in the first two steps. We present an error analysis based on sampling inequalities,
see [2]. For the approximation we use reproducing kernels of certain problem-adapted Hilbert
space, see [2]. For recent numerical examples using kernel based-methods, see also [3].

This talk is based on joint works with M. Griebel (Bonn), T. Hangelbroek (Hawaii),
F. Narcowich (Texas A&M), J. Ward (Texas A&M), and P. Zaspel (Heidelberg).
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3.11 A Dynamically Adaptive Sparse Grids Method for Quasi-Optimal
Interpolation of Multidimensional Functions

Miroslav Stoyanov (Oak Ridge National Laboratory, US) and Clayton Webster (Oak Ridge
National Laboratory, US)
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In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal
interpolation of multidimensional analytic functions defined over a product of one dimensional
bounded domains. The goal of such approach is to construct an interpolant in space that
corresponds to the “best M -terms” based on sharp a priori estimate of polynomial coefficients.
In the past, SG methods have been successful in achieving this, with a traditional construction
that relies on the solution to a Knapsack problem: only the most profitable hierarchical
surpluses are added to the SG. However, this approach requires additional sharp estimates
related to the size of the analytic region and the norm of the interpolation operator, i.e.,
the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively
refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our
approach does not require any a priori knowledge of the analyticity or operator norm, is easily
generalized to both affine and non-affine analytic functions, and can be applied to sparse
grids built from one dimensional rules with arbitrary growth of the number of nodes. In
several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities
of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare
the performance of our quasi-optimal interpolant to several alternative SG schemes.
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3.12 Gaussian process regression in Bayesian inverse problems
Aretha Teckentrup (University of Warwick – Coventry, GB) and Andrew Stuart

License Creative Commons BY 3.0 Unported license
© Aretha Teckentrup and Andrew Stuart

Main reference A.M. Stuart, A. L. Teckentrup, “Posterior Consistency for Gaussian Process Approximations of
Bayesian Posterior Distributions”, arXiv:1603.02004v2 [math.NA], 2016.

URL https://arxiv.org/abs/1603.02004v2

A major challenge in the application of sampling methods to large scale inverse problems,
is the high computational cost associated with solving the forward model for a given set
of input parameters. To overcome this difficulty, we consider using a surrogate model that
approximates the solution of the forward model at a much lower computational cost. We
focus in particular on Gaussian process emulators, and analyse the error in the posterior
distribution resulting from this approximation.

3.13 Scalable hierarchical methods on many-core hardware – Fast
matrix approximations in kernel-based collocation

Peter Zaspel (HITS & Universität Heidelberg)
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It is well-known that future parallel hardware architectures will have a constantly growing
number of parallel processing units. Nowadays, many-core processors (GPUs, Xeon Phi) give
a first insight into the degree of parallelism that we expect to see in the future. However,
it is usually said that the extreme parallelism can only be effectively used, if we apply it
to “simple” algorithms. On the other hand, current optimal methods for approximation in
the field of uncertainty quantification (multi-level / multi-index Monte Carlo, hierarchical
matrices, . . . ) use complex hierarchical / tree constructions to achieve optimal complexities
and approximation results. Seemingly, we have two contradicting development directions:
(1) simple, very parallel algorithms; (2) complex, optimal algorithms.

This presentation shall shed light on problems and opportunities we face and have on
current many-core processors if we use them to execute hierarchical algorithms. We base our
discussion on our recent work in the field of radial basis function (RBF) kernel-based stochastic
collocation. This non-intrusive approximation method combines high-order algebraic or even
exponential convergence rates of spectral (sparse) tensor-product methods with optimal
pre-asymptotic convergence of kriging and the profound stochastic framework of Gaussian
process regression. Our recent applications for this approach were (elliptic) model problems
and incompressible two-phase flows.

One important part of the kernel-based stochastic collocation is the solution of large to
huge dense linear systems with Vandermonde-type matrices. This presentation will discuss
the efficient parallel and optimal-complexity solution of these kind of linear systems by
iterative solvers and fast matrix-approximations by H-matrices on many-core hardware.

Current limitations and opportunities will be highlighted.
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3.14 A multilevel reduced-basis method for parameterized partial
differential equations

Guannan Zhang (Oak Ridge National Laboratory, US)
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Joint work of Miroslav Stoyanov and Clayton Webster

An important approximation scheme for alleviating the overall computational complexity of
solving parameterized PDEs is known as multilevel methods, which have been successfully
used in the Monte Carlo and collocation setting. In this effort, we propose to improve
the multilevel methods with the use of reduced-basis (RB) techniques for constructing the
spatial-temporal model hierarchy of PDEs. Instead of approximating the solution manifold
of the PDE, the key ingredient is to build approximate manifolds of first-order differences of
PDE solutions on consecutive levels. To this end, we utilize a hierarchical finite element (FE)
framework to formulate an easy-to-solve variational FE system for the first-order differences.
Moreover, by deriving a posteriori error estimates for the RB solutions, we also intend to
develop a greedy-type adaptive strategy in order to construct a good set of snapshots. The
main advantage of our approach lies in the fact that the manifold of the first-order differences
becomes progressively linear as the physical level increases. Thus, much fewer expensive
snapshots are required to achieve a prescribed accuracy, resulting in significant reduction of
the offline computational cost of greedy algorithms. Furthermore, our approach combines
the advantages of both multilevel Monte Carlo and multilevel collocation methods, in the
sense that it can generate snapshots anywhere in the parameter domain but also features
fast convergence.
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