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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 16382 “Foundations of
Unsupervised Learning”. Unsupervised learning techniques are frequently used in practice of data
analysis. However, there is currently little formal guidance as to how, when and to what effect to
use which unsupervised learning method. The goal of the seminar was to initiate a broader and
more systematic research on the foundations of unsupervised learning with the ultimate aim to
provide more support to practitioners. The seminar brought together academic researchers from
the fields of theoretical computer science and statistics as well as some researchers from industry.
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1 Executive summary

Ruth Urner
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The success of Machine Learning methods for prediction crucially depends on data prepro-
cessing such as building a suitable feature representation. With the recent explosion of data
availability, there is a growing tendency to “let the data speak itself”. Thus, unsupervised
learning is often employed as a a first step in data analysis to build a good feature rep-
resentation, but also, more generally, to detect patterns and regularities independently of
any specific prediction task. There is a wide rage of tasks frequently performed for these
purposes such as representation learning, feature extraction, outlier detection, dimensionality
reduction, manifold learning, clustering and latent variable models.

The outcome of such an unsupervised learning step has far reaching effects. The quality
of a feature representation will affect the quality of a predictor learned based on this
representation, a learned model of the data generating process may lead to conclusions about
causal relations, a data mining method applied to a database of people may identify certain
groups of individuals as “suspects” (for example of being prone to developing a specific
disease or of being likely to commit certain crimes).
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However, in contrast to the well-developed theory of supervised learning, currently
systematic analysis of unsupervised learning tasks is scarce and our understanding of the
subject is rather meager. It is therefore more than timely to put effort into developing solid
foundations for unsupervised learning methods. It is important to understand and be able to
analyze the validity of conclusions being drawn from them. The goal of this Dagstuhl Seminar
was to foster the development of a solid and useful theoretical foundation for unsupervised
machine learning tasks.

The seminar hosted academic researchers from the fields of theoretical computer science
and statistics as well as some researchers from industry. Bringing together experts from a
variety of backgrounds, highlighted the many facets of unsupervised learning. The seminar
included a number of technical presentations and discussions about the state of the art of
research on statistical and computational analysis of unsupervised learning tasks.

We have held lively discussions concerning the development of objective criteria for
the evaluation of unsupervised learning tasks, such as clustering. These converged to a
consensus that such universal criteria cannot exist and that there is need to incorporate
specific domain expertise to develop different objectives for different intended uses of the
clusterings. Consequently, there was a debate concerning ways in which theoretical research
could build useful tools for practitioners to assist them in choosing suitable methods for
their tasks. One promising direction for progress towards better alignment of algorithmic
objectives with application needs is the development of paradigms for interactive algorithms
for such unsupervised learning tasks, that is, learning algorithms that incorporate adaptive
“queries” to a domain expert. The seminar included presentations and discussions of various
frameworks for the development of such active algorithms as well as tools for analysis of
their benefits.

We believe, the seminar was a significant step towards further collaborations between
different research groups with related but different views on the topic. A very active
interchange of ideas took place and participants expressed their satisfactions of having gained
new insights into directions of research relevant to their own. As a group, we developed a
higher level perspective of the important challenges that research of unsupervised learning is
currently facing.
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3 Overview of Talks

3.1 Linear Algebraic Structure of Word Meanings
Sanjeev Arora (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Sanjeev Arora

Joint work of Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, Andrej Risteski, Kiran Vodrahalli

What does a word – or more generally, a piece of text – mean? While a precise answer
is difficult, many approaches involve a distributional view of semantics. I will give a 30-
min survey of this area focusing on use of word embeddings. Our papers give theoretical
explanations of why word embeddings exhibit linear algebraic structure even though they are
derived from nonlinear methods. A more recent discovery of ours shows that different senses
of a polysemous words reside in linear superposition inside the word embedding, which has
implications for use of word embeddings in linguistics tasks as well as fMRI studies of the
brain, as I’ll sketch.

Based upon joint works with Yuanzhi Li, Yingyu Liang, Tengyu Ma, Andrej Risteski,
Kiran Vodrahalli.

3.2 Interactive Clustering
Pranjal Awasthi (Rutgers University – New Brunswick, US)

License Creative Commons BY 3.0 Unported license
© Pranjal Awasthi

Joint work of Pranjal Awasthi, Maria-Florina Balcan, Konstantin Voevodski
Main reference P. Awasthi, M.-F. Balcan, K. Voevodski, “Local algorithms for interactive clustering”,

arXiv:1312.6724 [cs.DS], 2014.
URL https://128.84.21.199/abs/1312.6724v2

Clustering is typically studied in the unsupervised learning setting. But in many applications,
such as personalized recommendations, one cannot reach the optimal clustering without
interacting with the end user. In this talk, I will describe a recent framework for interactive
clustering with human in the loop. The algorithm can interact with the human in stages
and receive limited, potentially noisy feedback to improve the clustering. I will present our
preliminary results in this model and mention open questions.

3.3 Two recent clustering paradigms
Shai Ben-David (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Shai Ben-David

Joint work of Hassan Ashtiani, Shrinu Kushagra, Shai Ben-David

We consider two paradigms for semi supervised clustering. In the first, [1] the learner is
allowed to interact with a domain expert, asking whether two given instances belong to the
same cluster or not. We study the query and computational complexity of clustering in this
framework. We consider a setting where the expert conforms to a center-based clustering
with a notion of margin. We show that there is a trade off between computational complexity
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and query complexity; We prove that for the case of k-means clustering (i.e., when the expert
conforms to a solution of k-means), having access to relatively few such queries allows efficient
solutions to otherwise NP-hard problems. In the second framework, [2], we ask the domain
expert to cluster a small subset of the input data and use it to learn a metric over which
k-means clustering conforms with that sample clustering. We analyze the sample complexity
of that paradigm.

References
1 Hassan Ashtiani, Shrinu Kushagra and Shai Ben-David. Clustering with Same-Cluster

Queries. Proceedings of the 30th Annual Conference on Neural Information Processing
Systems (NIPS’16) 2016.

2 Hassan Ashtiani and Shai Ben-David. Representation Learning for Clustering: A Statist-
ical Framework. Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence (UAI) 2015.

3.4 Questions in Representation Learning
Olivier Bousquet (Google Switzerland – Zürich, CH)

License Creative Commons BY 3.0 Unported license
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Recent successes of Deep Learning seem to rely on the ability to automatically extract and
exploit structure in the data. But this process is not well understood and often ignored in
theoretical analyses where the input data is treated as points in a space with some given
similarity measure (which may not fully capture the internal structure of these points).
However, by taking a generative point of view one can try and uncover some of the input data
structure. This has led to many surprising results in image and text processing. This talk
attempts to frame several recent algorithms as conditional generative density estimation and
present some theoretical questions that can lead to a better understanding of representation
learning.

3.5 Active Learning Beyond Label Feedback
Kamalika Chaudhuri (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Kamalika Chaudhuri

Joint work of Chicheng Zhang
Main reference C. Zhang, K. Chaudhuri, “Active Learning from Weak and Strong Labelers”, arXiv:1510.02847v2

[cs.LG], 2015.
URL https://arxiv.org/abs/1510.02847v2

An active learner is given a hypothesis class, a large set of unlabeled examples and the ability
to interactively query labels of a subset of them; the learner’s goal is to learn a hypothesis
in the class that fits the data well by making as few label queries as possible. While active
learning can yield considerable label savings in the realizable case – when there is a perfect
hypothesis in the class that fits the data – the savings are not always as substantial when
labels provided by the annotator may be noisy or biased. Thus an open question is whether
more complex feedback can help active learning in the presence of noise.
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In this talk, I will present a feedback mechanism – when the active learner has access to
a weak and a strong labeler – and talk about when it can help reduce the label complexity
of active learning. If time permits, I will also discuss active learning when the annotator can
say “I don’t know” instead of providing an incorrect label.

3.6 A cost function for similarity-based hierarchical clustering
Sanjoy Dasgupta (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Sanjoy Dasgupta

Main reference S. Dasgupta, “A cost function for similarity-based hierarchical clustering”, in Proc. of the 48th
Annual ACM Symp. on Theory of Computing (STOC 2016), pp. 118–127, ACM, 2016.

URL https://doi.org/10.1145/2897518.2897527

The development of algorithms for hierarchical clustering has been hampered by a shortage
of precise objective functions. To help address this situation, we introduce a simple cost
function on hierarchies over a set of points, given pairwise similarities between those points.
We show that this criterion behaves sensibly in canonical instances and that it admits a
top-down construction procedure with a provably good approximation ratio.

We show, moreover, that this procedure lends itself naturally to an interactive setting
in which the user is repeatedly shown snapshots of the hierarchy and makes corrections to
these.

3.7 Two sample tests for large random graphs
Debarghya Ghoshdastidar (Universität Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Debarghya Ghoshdastidar

Joint work of Debarghya Ghoshdastidar, Ulrike von Luxburg

Standard two-sample tests can achieve a high test power in the presence of large number
of samples, but little is known about their performance in the small sample regime. On
the other hand, it is well known that a large random graph usually concentrates about its
expected (population) version. One can exploit this fact to devise two sample tests for large
(inhomogeneous Erdos-Renyi) random graphs, for which a high test power can be achieved
with a small population of graphs. In this talk, we will look into different variations of the
problem, and present some simple tests based on matrix concentration inequalities.

3.8 Globally Optimal Training of Generalized Polynomial Neural
Networks with Nonlinear Spectral Methods

Matthias Hein (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
© Matthias Hein

Joint work of Antoine Gautier, Matthias Hein, Quynh Nguyen Ngoc

We show that a particular class of non-standard feedforward neural networks can be trained
globally optimal under relatively mild conditions on the data. The nonlinear spectral method
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has a linear convergence rate and the conditions for global optimality can be easily checked
before running the algorithm. While the algorithm can in principle be applied to neural
networks of arbitrary depth, we present in the talk for simplicity the results for a one hidden
layer network. The proof is based on a novel kind of Perron-Frobenius-type theorem for
nonlinear eigenproblems. First experimental results show that the resulting classifiers are
competitive with standard methods.

References
1 A. Gautier, Q. Nguyen Ngoc, M. Hein. Globally Optimal Training of Generalized Polyno-

mial Neural Networks with Nonlinear Spectral Methods. Proceedings of the 30th Annual
Conference on Neural Information Processing Systems (NIPS’16) 2016.

3.9 Multicriterion cluster validation
Christian Hennig (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Christian Hennig

Main reference C. Hennig, “Clustering strategy and method selection”, in Handbook of Cluster Analysis,
pp. 703–730, Chapman & Hall/CRC, 2015.

Cluster validity measurement is the evaluation of the quality of a clustering, which is often
used for comparing different clusterings on a dataset, stemming from different methods or
with different parameters such as the number of clusters.

There are various measurements for cluster validity. Often these are used in such a way
that the validity of the whole clustering is measured by a single number such as the Average
Silhouette Width. But the quality of a clustering has various aspects such as within-cluster
homogeneity, between-cluster separation, representation of cluster members by a centroid
object, stability or within-cluster normal distribution shape, and what is most important
depends on the aim of clustering. Furthermore, in many clusterings, various aspects of cluster
validity differ between clusters.

In this presentation I will discuss a number of measurements of different aspects of cluster
validity, partly to be evaluated for every single cluster, including some plots to summarize the
measurements. A key aspect is calibration, i.e., making different measurements comparable,
so that they can be used, for example, to compare different numbers of clusters. The
proposed approach is to explore the variation of the index over several clusterings of the
same dataset that can be generated by random clustering methods called “stupid k-means”
(i.e., assigning points to a random set of centroids) or “stupid nearest neighbor” (i.e., adding
nearest neighbors starting from random points).

3.10 What are the true clusters?
Christian Hennig (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Christian Hennig

In much of the literature on cluster analysis there is the implicit assumption that in any
situation in which cluster analysis is applied, there are some “true” clusters at which the
analysis aims; and usually the “true” clustering is assumed to be unique. Benchmarking of
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clustering algorithms usually is based on datasets with some assumed truth, so that it can
be seen how well this truth is recovered by the algorithms.

I will argue that there are several legitimate clusterings on the same data and that defining
“true” clusters is highly problematic.

I will discuss a number of related issues: philosophical background, constructive and
realist aims of clustering, and various ways to define “true clusters”, namely based on the
data alone, on an underlying true class variable, or on probability models. Implications for
cluster benchmarking and variable selection in clustering are also mentioned.

3.11 Meta-unsupervised-learning: a supervised approach to
unsupervised learning

Adam Tauman Kalai (Microsoft New England R&D Center – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Adam Tauman Kalai

Joint work of Adam Tauman Kalai, Vikas Garg

Unsupervised Learning (UL) and exploratory data analysis remain one of the murkiest areas
within machine learning. Theorists debate the objective of UL, and for many practical UL
problems, humans dramatically outperform ML systems using prior experience in UL and
prior domain knowledge or common sense acquired from prior ML tasks.

We introduce the problem of meta-unsupervised-learning from a distribution of related or
unrelated learning problems. We present simple agnostic models and algorithms illustrating
how the meta approach circumvents impossibility results for novel “meta” problems such
as meta-clustering, meta-outlier-removal, meta-feature-selection, and meta-embedding. We
also present empirical results showing how the meta approach improves over standard UL
techniques for these problems of outlier removal, choosing the number of clusters and a UL
neural network that learns from prior supervised classification problems drawn from the
openml collection of learning problems.

3.12 Planted Gaussian Problem: Beating the Spectral Bound
Ravindran Kannan (Microsoft Research India – Bangalore, IN)

License Creative Commons BY 3.0 Unported license
© Ravindran Kannan

Joint work of Ravi Kannan, Santosh Vempala
Main reference R. Kannan, S. Vempala, “Chi-squared Amplification: Identifying Hidden Hubs”,

arXiv:1608.03643v2 [cs.LG], 2016.
URL https://arxiv.org/abs/1608.03643v2

Spectral methods can find a planted clique of size c
√
n in a random graph. In spite of some

effort, this is the best we know so far. Here, for a different natural problem (of a similar
flavor), we show that we can do better than spectral methods.

Given an n times n matrix with i.i.d. N(0, 1) entries everywhere except a planted k by k
submatrix which has N(0, σ2) entries, we show that if σ2 > 2, then we can find a planted
clique of size o(

√
n). We also show that if σ2 ≤ 2, no poly time Statistical algorithm can find

the planted part if it is o(
√
n) sized. The algorithm as well as the lower bound are based on

the chi-squared distance between the planted and ground densities. Some extensions will be
discussed.
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3.13 Recent work on clustering and mode estimation with kNN graphs
Samory Kpotufe (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Samory Kpotufe

Joint work of Heinrich Jiang, Samory Kpotufe
Main reference H. Jiang, S. Kpotufe, “Modal-set estimation with an application to clustering”, arXiv:1606.04166v1

[stat.ML], 2016.
URL https://arxiv.org/abs/1606.04166v1

We present a first procedure that can estimate – with statistical consistency guarantees
– any local-maxima of a density, under benign distributional conditions. The procedure
estimates all such local maxima, or modal-sets, of any bounded shape or dimension, including
usual point-modes. In practice, modal-sets can arise as dense low-dimensional structures in
noisy data, and more generally serve to better model the rich variety of locally-high-density
structures in data. The procedure is then shown to be competitive on clustering applications,
and moreover is quite stable to a wide range of settings of its tuning parameter.

3.14 Proving clusterability
Marina Meila (University of Washington, US)

License Creative Commons BY 3.0 Unported license
© Marina Meila

Joint work of Marina Meila, Yali Wan
Main reference M. Meila, Y. Wan, “Graph Clustering: Block-models and model free results”, in Proc. of the 30th

Annual Conf. on Neural Information Processing Systems (NIPS’16), 2016.
URL http://papers.nips.cc/paper/6140-graph-clustering-block-models-and-model-free-results

Main reference M. Meila, “The stability of a good clustering”, Technical Report, 2011.
URL http://www.stat.washington.edu/research/reports/2014/tr624.pdf

Clustering graphs under the Stochastic Block Model (SBM) and extensions are well studied.
Guarantees of correctness exist under the assumption that the data is sampled from a model.
In this paper, we propose a framework, in which we obtain “correctness” guarantees without
assuming the data comes from a model. The guarantees we obtain depend instead on the
statistics of the data that can be checked. We also show that this framework ties in with the
existing model-based framework, and that we can exploit results in model-based recovery, as
well as strengthen the results existing in that area of research.

3.15 On Resilience in Graph Coloring and Boolean Satisfiability
Lev Reyzin (University of Illinois at Chicago, US)

License Creative Commons BY 3.0 Unported license
© Lev Reyzin

Joint work of Jeremy Kun, Lev Reyzin
Main reference J. Kun, L. Reyzin, “On Coloring Resilient Graphs”, arXiv:1402.4376v2 [cs.CC], 2016.

URL https://arxiv.org/abs/1402.4376v2

Inspired by notions of stability arising in the clustering literature, I will introduce a new
definition of resilience for constraint satisfaction problems, with the goal of more precisely
determining the boundary between NP-hardness and the existence of efficient algorithms for
resilient instances. In particular, I will examine r-resiliently k-colorable graphs, which are
those k-colorable graphs that remain k-colorable even after the addition of any r new edges.
I will also discuss the corresponding notion of resilience for k-SAT. This notion of resilience
suggests an array of open questions for graph coloring and other combinatorial problems.
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3.16 Active Nearest-Neighbor Learning in Metric Spaces
Sivan Sabato (Ben Gurion University – Beer Sheva, IL)

License Creative Commons BY 3.0 Unported license
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Joint work of Aryeh Kontorovich, Sivan Sabato, Ruth Urner
Main reference A. Kontorovich, S. Sabato, R. Urner, “Active Nearest-Neighbor Learning in Metric Spaces”, in

Proc. of the 30th Annual Conf. on Neural Information Processing Systems (NIPS’16); pre-print
available at arXiv:1605.06792v2 [cs.LG], 2016.

URL https://papers.nips.cc/paper/6100-active-nearest-neighbor-learning-in-metric-spaces
URL https://arxiv.org/abs/1605.06792v2

We propose a pool-based non-parametric active learning algorithm for general metric spaces,
which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend
on the noisy-margin properties of the input sample, and are competitive with those obtained
by previously proposed passive learners. We prove that the label complexity of the new
algorithm is significantly lower than that of any passive learner with similar error guarantees.
Our algorithm is based on a generalized sample compression scheme and a new label-efficient
active model-selection procedure.

Sivan Sabato is supported by the Lynne and William Frankel Center for Computer
Science.

3.17 Aversion k-clustering: How constraints make clustering harder
Melanie Schmidt (Universität Bonn, DE)
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Main reference A. Gupta, G. Guruganesh, M. Schmidt, “Approximation Algorithms for Aversion k-Clustering via
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Programming (ICALP 2016), LIPIcs, Vol. 55, pp. 66:1–66:13, Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2016.
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There is a huge body of work on approximating clustering problems like k-median or k-means
in their standard form. Less is known about the approximability of these problems once we
constraint the possible solutions by, e.g., adding lower or upper bounds on the capacities
of the facilities. This talk is about a side constraint that we name locality. It assumes
that facilities have radii and demands that a client can only connect to a facility if it is
within the facility’s radius. We see how a clustering problem from game theory inspires a
k-median problem with this type of constraint. This local k-median problem turns out to be
surprisingly hard to approximate.

3.18 Gradient descent for sequential analysis operator learning
Karin Schnass (Universität Innsbruck, AT)

License Creative Commons BY 3.0 Unported license
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We will shortly present ongoing work on analysis operator learning. We will describe the
concept of co-sparsity in an analysis operator as dual concept to sparsity in a dictionary.
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Based on this duality we will then propose optimization principles and associated algorithms
for learning such an operator. We will show some recent results and discuss the difficulties
that arise with a theoretical treatment and practical applications.

3.19 Towards an Axiomatic Approach to Hierarchical Clustering of
Measures

Ingo Steinwart (Universität Stuttgart, DE)
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Main reference P. Thomann, I. Steinwart, N. Schmid, “Towards an axiomatic approach to hierarchical clustering of

measures”, J. of Machine Learning Research, Vol. 16, pp. 1949–2002, 2015.
URL http://www.jmlr.org/papers/volume16/thomann15a/thomann15a.pdf

We propose some axioms for hierarchical clustering of probability measures and investigate
their ramifications. The basic idea is to let the user stipulate the clusters for some elementary
measures. This is done without the need of any notion of metric, similarity or dissimilarity.
Our main results then show that for each suitable choice of user-defined clustering on
elementary measures we obtain a unique notion of clustering on a large set of distributions
satisfying a set of additivity and continuity axioms.

3.20 On some properties of MMD and its relation to other distances
Ilya Tolstikhin (MPI für Intelligente Systeme – Tübingen, DE)
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Maximum Mean Discrepancy (MMD) is a metric defined on the class of probability measures
and induced by a positive-definite reproducing kernel. In the recent years MMD was getting
more and more attention in the ML community. In this short talk I will discuss several results
on MMD, including its relation to other stronger distances like Hellinger and Total-Variation,
and try to outline some of important questions for the future research.

3.21 Lifelong Learning with Weighted Majority Votes
Ruth Urner (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Anastasia Pentina, Ruth Urner
Main reference A. Pentina, R. Urner, “Lifelong Learning with Weighted Majority Votes”, in Proc. of the 30th

Annual Conf. on Neural Information Processing Systems (NIPS’16), 2016.
URL https://papers.nips.cc/paper/6095-lifelong-learning-with-weighted-majority-votes

Better understanding of the potential benefits of information transfer and representation
learning is an important step towards the goal of building intelligent systems that are able
to persist in the world and learn over time. In this talk, we discuss possible directions
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for evaluating representation learning within the framework of statistical learning theory.
We then focus on learning a representation from a sequence of tasks in a lifelong learning
framework. We consider a setting where the learner encounters a stream of tasks but is able
to retain only limited information from each encountered task, such as a learned predictor. In
contrast to most previous works analyzing this scenario, we do not make any distributional
assumptions on the task generating process. Instead, we formulate a complexity measure
that captures the diversity of the observed tasks. We provide a lifelong learning algorithm
with error guarantees for every observed task (rather than on average). We show sample
complexity reductions in comparison to solving every task in isolation in terms of our task
complexity measure. Further, our algorithmic framework can naturally be viewed as learning
a representation from encountered tasks with a neural network.

3.22 A Modular Theory of Feature Learning
Robert C. Williamson (Australian National University)

License Creative Commons BY 3.0 Unported license
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Joint work of Daniel McNamara, Cheng Soon Ong, Robert C. Williamson
Main reference D. McNamara, C. S. Ong, R.C. Williamson, “A Modular Theory of Feature Learning”,

arXiv:1611.03125v1 [cs.LG], 2016.
URL https://arxiv.org/abs/1611.03125v1

Learning representations of data, and in particular learning features for a subsequent pre-
diction task, has been a fruitful area of research delivering impressive empirical results in
recent years. However, relatively little is understood about what makes a representation
‘good’. We propose the idea of a risk gap induced by representation learning for a given
prediction context, which measures the difference in the risk of some learner using the learned
features as compared to the original inputs. We describe a set of sufficient conditions for
unsupervised representation learning to provide a benefit, as measured by this risk gap.
These conditions decompose the problem of when representation learning works into its
constituent parts, which can be separately evaluated using an unlabeled sample, suitable
domain-specific assumptions about the joint distribution, and analysis of the feature learner
and subsequent supervised learner. We provide two examples of such conditions in the
context of specific properties of the unlabeled distribution, namely when the data lies close
to a low-dimensional manifold and when it forms clusters. We compare our approach to a
recently proposed analysis of semi-supervised learning.

4 Open problems

4.1 Valid cost functions for nonlinear dimensionality reduction
Barbara Hammer (Universität Bielefeld, DE)

License Creative Commons BY 3.0 Unported license
© Barbara Hammer

Nonlinear dimensionality reduction techniques have made great strides in recent years [1],
and ready-to-use techniques such as the popular t-distributed stochastic neighbor embedding
and efficient approximations enable a fast inspection of structure which is inherent in big
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data sets [2]. These methods are not only used for interactive data inspection in striking
applications e.g. from bioinformatics [3], but they have also proved valuable as a preprocessing
step for high dimensional data clustering [4]. In the presentation, we will demonstrate its
use for the automated contamination detection in single-cell-sequencing, an important first
step in the automated analysis of data as occur in this extremely promising biotechnoloy
[5]. Despite their popularity, however, means of their formal quantitative evaluation are yetr
lacking. One of the probably most popular quantitative evaluation methods of nonlinear
dimensionality reduction is offered by the quality framework, which quantifies the degree
of neighborhood preservation of a nonlinear dimensionality reduction method in terms of
a single number [6]. We will formally introduce this measure, and we will argue why it is
not suited as a loss function for the evaluation of nonlinear dimensionality reduction in a
learning-theoretical sense. Hence, up to our knowledge, it is open how to define a cost term
for nonlinear nonparametric dimensionality reduction based on a finite set of data in such a
way that it extends to a natural generalization if the number of data points is not fixed.

References
1 Andrej Gisbrecht, Barbara Hammer: Data visualization by nonlinear dimensionality reduc-

tion. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 5(2):51–73 (2015)
2 Laurens van der Maaten: Barnes-Hut-SNE. CoRR abs/1301.3342 (2013)
3 Laczny CC, Pinel N, Vlassis N, Wilmes P. Alignment-free visualization of metagenomic

data by nonlinear dimension reduction. Sci Rep. 2014; 4:4516.
4 Automated Contamination Detection in Single-Cell Sequencing, Markus Lux, Barbara Ham-

mer, Alexander Sczyrba bioRxiv 020859; http://dx.doi.org/10.1101/020859
5 Single-cell genome sequencing: current state of the science, Charles Gawad, Winston Koch,
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4.2 Scaling up Spectral Clustering: The Case of Sparse Data Graphs
Claire Monteleoni (George Washington University – Washington, D.C., US)
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While spectral methods for the unsupervised learning tasks of clustering and embedding
have found wide success in a variety of practical applications, scaling them up to large data
sets poses significant computational challenges. In particular, the storage and computation
needed to handle the affinity matrix (a matrix of pairwise similarities between data points)
can be prohibitive. An approach that has found promise is to instead approximate this
matrix in some sense. In past work, we analyzed a variant of spectral clustering that uses the
Nystrom approximation method, in which the columns are sampled uniformly. Exploiting
a strong assumption of latent structure, namely that the (original) affinity matrix can be
represented as block-diagonal with k blocks (or a perturbation of such), we provided bounds
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on how well the clustering result approximates the result using the full-dimensional affinity
matrix, with respect to the normalized-cut spectral clustering objective with k clusters.

We first pose an open question as to whether it is possible to design a sampling technique
that performs better than uniform sampling, in terms of managing the tradeoff between its
space and time complexity vs. the quality of the approximation. We recently provided a
rejection sampling technique that addresses this goal by storing fewer and more “informative”
columns. In experiments on a variety of real and synthetic data sets, our technique was
able to speed up the computation and reduce the memory requirements of spectral methods,
while simultaneously providing better approximations. Our observation that sparser data
matrices led to decreased performance, not only for our rejection sampling technique but
also for the standard uniform sampling, leads to a second open question: how to improve
uniform sampling in the sparse case.

[Update: while interesting points were raised in the Dagstuhl Seminar discussion, for
example, that if the matrix is sparse enough, one can avoid such sampling techniques
altogether, there is still a continuum of sparsity levels which future work can address. On
another note, it is worth further exploring which types of approximation guarantee on the
affinity matrix imply good approximation of various spectral clustering objectives.]



Maria-Florina Balcan, Shai Ben-David, Ruth Urner, and Ulrike von Luxburg 109

Participants

Sanjeev Arora
Princeton University, US

Pranjal Awasthi
Rutgers University –
New Brunswick, US

Shai Ben-David
University of Waterloo, CA

Olivier Bousquet
Google Switzerland – Zürich, CH

Kamalika Chaudhuri
University of California –
San Diego, US

Sanjoy Dasgupta
University of California –
San Diego, US

Debarghya Ghoshdastidar
Universität Tübingen, DE

Barbara Hammer
Universität Bielefeld, DE

Matthias Hein
Universität des Saarlandes, DE

Christian Hennig
University College London, GB

Adam Tauman Kalai
Microsoft New England R&D
Center – Cambridge, US

Ravindran Kannan
Microsoft Research India –
Bangalore, IN

Samory Kpotufe
Princeton University, US

Marina Meila
University of Washington –
Seattle, US

Claire Monteleoni
George Washington University –
Washington, D.C., US

Lev Reyzin
University of Illinois –
Chicago, US

Heiko Röglin
Universität Bonn, DE

Sivan Sabato
Ben Gurion University –
Beer Sheva, IL

Melanie Schmidt
Universität Bonn, DE

Karin Schnass
Universität Innsbruck, AT

Hans Ulrich Simon
Ruhr-Universität Bochum, DE

Christian Sohler
TU Dortmund, DE

Ingo Steinwart
Universität Stuttgart, DE

Ilya Tolstikhin
MPI für Intelligente Systeme –
Tübingen, DE

Ruth Urner
MPI für Intelligente Systeme –
Tübingen, DE

Ulrike von Luxburg
Universität Tübingen, DE

Robert C. Williamson
Australian National
University, AU

16382


	Executive summary Ruth Urner and Shai Ben-David
	Table of Contents
	Overview of Talks
	Linear Algebraic Structure of Word Meanings Sanjeev Arora
	Interactive Clustering Pranjal Awasthi
	Two recent clustering paradigms Shai Ben-David
	Questions in Representation Learning Olivier Bousquet
	Active Learning Beyond Label Feedback Kamalika Chaudhuri
	A cost function for similarity-based hierarchical clustering Sanjoy Dasgupta
	Two sample tests for large random graphs Debarghya Ghoshdastidar
	Globally Optimal Training of Generalized Polynomial Neural Networks with Nonlinear Spectral Methods Matthias Hein
	Multicriterion cluster validation Christian Hennig
	What are the true clusters? Christian Hennig
	Meta-unsupervised-learning: a supervised approach to unsupervised learning Adam Tauman Kalai
	Planted Gaussian Problem: Beating the Spectral Bound Ravindran Kannan
	Recent work on clustering and mode estimation with kNN graphs Samory Kpotufe
	Proving clusterability Marina Meila
	On Resilience in Graph Coloring and Boolean Satisfiability Lev Reyzin
	Active Nearest-Neighbor Learning in Metric Spaces Sivan Sabato
	Aversion k-clustering: How constraints make clustering harder Melanie Schmidt
	Gradient descent for sequential analysis operator learning Karin Schnass
	Towards an Axiomatic Approach to Hierarchical Clustering of Measures Ingo Steinwart
	On some properties of MMD and its relation to other distances Ilya Tolstikhin
	Lifelong Learning with Weighted Majority Votes Ruth Urner
	A Modular Theory of Feature Learning Robert C. Williamson

	Open problems
	Valid cost functions for nonlinear dimensionality reduction Barbara Hammer
	Scaling up Spectral Clustering: The Case of Sparse Data Graphs Claire Monteleoni

	Participants

