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Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 16412 “Automated
Algorithm Selection and Configuration”, which was held October 9–14, 2016 and attended by
34 experts from 10 countries. Research on automated algorithm selection and configuration has
lead to some of the most impressive successes within the broader area of empirical algorithmics,
and has proven to be highly relevant to industrial applications. Specifically, high-performance
algorithms for NP-hard problems, such as propositional satisfiability (SAT) and mixed integer
programming (MIP), are known to have a huge impact on sectors such as manufacturing, logistics,
healthcare, finance, agriculture and energy systems, and algorithm selection and configuration
techniques have been demonstrated to achieve substantial improvements in the performance of
solvers for these problems. Apart from creating synergy through close interaction between the
world’s leading groups in the area, the seminar pursued two major goals: to promote and develop
deeper understanding of the behaviour of algorithm selection and configuration techniques and
to lay the groundwork for further improving their efficacy. Towards these ends, the organisation
team brought together a group of carefully chosen researchers with strong expertise in computer
science, statistics, mathematics, economics and engineering; a particular emphasis was placed on
bringing together theorists, empiricists and experts from various application areas, with the goal
of closing the gap between theory and practice.
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The importance of high-performance algorithms, in particular for solving NP-hard optim-
isation and decision problems, cannot be underestimated. Achievements in this area have
substantial impact in sectors such as manufacturing, logistics, healthcare, finance, agriculture
and energy systems – all of strategic importance to modern societies.
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The development of effective automated algorithm selection and configuration techniques
has been one of the major success stories in the area of empirical algorithmics in recent
years. Building on a wide range of algorithmic approaches for problems such as propositional
satisfiability (SAT) and mixed integer programming (MIP), these methods permit the selection
of appropriate algorithms based on efficiently computable characteristic of a problem instance
to be solved (algorithm selection) and the automatic determination of performance optimising
parameter settings (algorithm configuration). In both cases, statistical models that enable
performance predictions for previously unseen problem instances or parameter settings play
a key enabling role; additionally, these models have other important uses, e.g., in load
scheduling and distribution on large computer clusters.

The reach of those methods is illustrated by the fact that they have defined the state
of the art in solving SAT, arguably the most prominent NP-complete decision problem,
for a decade (as witnessed by the results from the international SAT solver competitions
(http://www.satcompetition.org), and more recently have been demonstrated to have the
potential to achieve significant improvements over the long-standing state of the art in
solving the TSP, one of the most widely studied NP-hard optimisation problems [1]. Further
very encouraging results have been achieved in recent years for continuous optimisation, AI
planning and mixed integer programming problems.

The goal of the seminar was to foster research on algorithm selection and configuration, as
well as on the underlying performance prediction methods, by bringing together researchers
from the areas of artificial intelligence, theoretical computer science and machine learning
in order to extend current studies to a much broader class of problems and build up the
theoretical foundations of this important research area. On the foundational side, the seminar
aimed at bridging the gap between experiments and theory in feature-based algorithm
(runtime) analysis. In particular, we began investigating how mathematical and theoretical
analyses can contribute to the experimentally driven research area of algorithm selection and
configuration. We expect that studies following this initial exploration will bring together
two of the currently most successful approaches for analysing heuristic search algorithms and
ultimately achieve substantial impact in academic and industrial applications of algorithm
configuration and selection techniques. Furthermore, we placed an emphasis on investigating
automated algorithm selection and configuration approaches for multiobjective optimisation
problems – an important, but largely unexplored area of investigation.

Background and Challenges: Algorithm Selection and Configuration for
Combinatorial Problems

The design of algorithms for combinatorial optimisation and decision problems plays a key
role in theoretical computer science as well as in applied algorithmics. These problems
are frequently tackled using heuristic methods that perform extremely well on different
classes of benchmark instances but usually do not have rigorous performance guarantees.
Algorithm selection and configuration techniques have been applied to some of the most
prominent NP-hard combinatorial optimisation and decision problems, such as propositional
satisfiability (SAT) and the travelling salesman problem (TSP).

Algorithm selection for SAT has first been explored in the seminal work on SATzilla
[2, 3, 4], which was initially based on linear and ridge regression methods for performance
prediction, but later moved to more sophisticated models based on cost-sensitive random
forest classification [5]. Other successful methods use clustering techniques to identify the
algorithm to be run on a given instance [6, 7]. As clearly evident from the results of SAT
competitions, which are regularly held to assess and document the state of the art in SAT
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solving, automated algorithm selection procedures effectively leverage the complementary
strengths of different high-performance solvers and thus achieve substantial improvements
over the best individual solvers [5].

As heuristic search algorithms often have numerous parameters that influence their
performance, one of the classical questions is how to set parameters to optimise performance
on a given class of instances. This per-set algorithm configuration problems can be solved
using stochastic local search and model-based optimisation techniques [8, 9, 10], as well as
racing techniques [11, 12], and these configuration methods have been demonstrated to yield
substantial performance improvements to state-of-the-art algorithms for SAT, TSP, MIP,
AI planning and several other problems (see, e.g., [13, 14, 15, 16]). Algorithm configuration
techniques are now routinely used for optimising the empirical performance of solvers for a
wide range of problems in artificial intelligence, operations research and many application
areas (see, e.g., [17, 18]).

Initial work on combining algorithm selection and configuration techniques has shown
significant promise [19, 20]; such combinations allow configuring algorithms on a per-instance
basis [6, 7] and configuring algorithm selection methods (which themselves make use of many
heuristic design choices) [21]. However, we see much room for further work along these lines.
Other challenges concern the automated selection and configuration of mechanisms that
adapt parameter settings while an algorithm is running and the configuration of algorithms
for optimised scaling behaviour. Finally, a better theoretical foundation of algorithm selection
and configuration approaches is desired and necessary. Initial steps into this direction were
an important goal of this Dagstuhl seminar. In the following, we motivate and outline some
of the challenges addressed in the course of the seminar.

Background and Challenges: Algorithm Selection for Continuous Black-Box
Optimisation

Black-box function optimisation is a basic, yet intensely studied model for general optimisation
tasks, where all optimisation parameters are real-valued. Work in this area has important
practical applications in parameter and design optimisation and has also inspired some of the
most successful general-purpose algorithm configuration techniques currently available [9].

Despite many years of research in metaheuristics, especially evolutionary algorithms,
aimed at optimising black-box functions effectively, it is currently hardly possible to automat-
ically determine a good optimisation algorithm for a given black-box function, even if some of
its features are known. In single-objective (SO) black-box optimisation, it is therefore of con-
siderable interest to derive rules for determining how problem properties influence algorithm
performance as well as for grouping test problems into classes for which similar performance
of the optimisation algorithms can be observed. Recent benchmarking experiments [22, 23]
provide at best high-level guidelines for choosing a suitable algorithm type based on basic
features that are known a priori, such as the number of dimensions of the given problem.
However, the preference rules for algorithm selection thus obtained are very imprecise, and
even for slight algorithm or problem variations, the resulting performance-induced ordering
of different algorithms can change dramatically.

Exploratory Landscape Analysis (ELA, [24]) aims at improving this situation by deriving
cheaply computable problem features based on which models relating features to algorithm
performance can be constructed using benchmark experiments. The final goal is an accurate
prediction of the best suited algorithm for an arbitrary optimisation problem based on the
computed features. The concept is not entirely knew; however, earlier approaches, such as
fitness distance correlation (FDC) [25], have not been completely convincing.
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A first idea to employ high-level (human expert designed) features, such as separability
and modality, to characterize optimisation problems in an ELA context [26] was therefore
refined by also integrating low-level features – e.g., based on convexity or the behaviour of
local search procedures[27]. These effectively computable low-level features can be chosen
from a wide range of easy to measure statistical properties. Suitably determined combinations
of such features are expected to provide sufficient information to enable successful algorithm
selection. Following recent results [27], this process is not necessarily costly in terms of
function evaluations required for feature computation.

Additional, conceptually similar features were introduced in [28, 29, 30, 31]. In [32], a
representative portfolio of four optimisation algorithms was constructed from the complete
list of BBOB 2009/2010 candidates. Based on the low-level features a sufficiently accurate
prediction of the best suited algorithm within the portfolio for each function was achieved.
Recently, the feature set was extended based on the cell mapping concept in [33] by which a
finite subdivision of the domain in terms of hypercubes is constructed. Most recently, the
ELA approach, extended by several specific features, was successfully used to experimentally
detect funnel structured landscapes in unknown black-box optimisation problems [34]. As it
can be assumed that this information can be efficiently exploited to speed up the optimisation
process, we expect ELA to contribute importantly to automated algorithm selection in
single-objective black-box optimisation. (See [35] for a survey of related work.)

One major challenge in this area is the construction of a suitable algorithm portfolio
together with an algorithm selection mechanism for unknown instances that generalises well
to practical applications. For this purpose, suitable benchmark sets have to be derived
and the costs of feature computations have to be kept as small as possible. Furthermore,
theoretical foundation of the approaches is desired and necessary. The seminar aimed to
make first steps in this direction.

Special focus: Algorithm selection for multiobjective optimisation

Some of the most challenging real-world problems involve the systematic and simultaneous
optimisation of multiple conflicting objective functions – for example, maximising product
quality and manufacturing efficiency, while minimising production time and material waste.
To solve such problems, a large number of multiobjective optimisation (MOO) algorithms
has been reported. Like single-objective (SO) algorithms, new MOO algorithms are claimed
to outperform others by comparing the results over a limited set of test problems. Knowles
et al. [36] started working on systematically deriving performance measures for EMOA
and evaluating EMOA performance. Mersmann et al. [37] recently derived a systematic
benchmarking framework according to similar work of [38] on benchmarking classification
algorithms.

However, it is unlikely that any algorithm would outperform all others on a broader set
of problems, and it is possible that the algorithm fails miserably on some of them. These
results go usually unreported, leaving the algorithm’s limitations unknown. This knowledge
is crucial to avoid deployment disasters, gain theoretical insights to improve algorithm
design, and ensure that algorithm performance is robustly described. Therefore, we see
much value in the development of an algorithm selection and configuration framework for
multiobjective optimisation. Successfully selecting the proper optimization algorithm for a
multi-objective problem depends on detecting different problem characteristics, one of which
is the multimodality of the induced landscape. In recent work [39], formal definitions were
introduced for multimodality in multi-objective optimization problems in order to generalize
the ELA framework to multi-objective optimization.
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Significant progress has been made on single-objective (SO) problems of combinatorial
and continuous nature as discussed above. However, these ideas are yet to be applied to the
important class of MOO problems. We see five major avenues of exploration: (1) analysis on
what makes MOO problems difficult; (2) design of features to numerically characterize MOO
problems; (3) identification and visualization of strengths and weaknesses of state-of-the-art
MOO algorithms; (4) methodology to assist the algorithm selection and configuration on
(possibly expensive) real-world problems; (5) methodology to assist the design of tailored
algorithms for real-world problems. An important aim of the seminar was to facilitate
discussion of these directions.

Seminar structure and outcomes

The seminar was structured to balance short invited presentations with group breakout
sessions and a generous amount of time set aside for informal discussions and spontaneously
organised working groups at a ratio of about 2:1:1. Based on feedback obtained during and
after the event, this structure worked well in fostering a vibrant atmosphere of intense and
fruitful exchange and discussion. Presenters very successfully introduced important ideas,
outlined recent results and open challenges, and facilitated lively discussion that provided
much additional value. The afternoon group breakout sessions were particularly effective
in addressing the challenges previously outlined as well as additional topics of interest that
emerged during the seminar – thanks to the preparation and moderation by the session
organisers as well as the lively participation of the attendees.

While it would be unreasonable to expect to exhaustively or conclusively address the
substantial research challenges that inspired us to organise this Dagstuhl seminar, we believe
that very significant progress has been achieved. As importantly, we feel that through this
week-long event, an invaluable sharing of perspective and ideas has taken place, whose
beneficial effects on the algorithm selection and configuration community and its work we
hope to be felt for years to come. The following presentation abstracts and session summaries
provided by the participants reflect the richness and depth of the scientific exchange facilitated
by the seminar.

As organisers, we very much enjoyed working with presenters and session organisers, who
greatly contributed to the success of the seminar, as did everyone who participated. Our
thanks also go to the local team at Schloss Dagstuhl, who provided outstanding organisational
support and a uniquely inspiring environment.

References
1 L. Kotthoff, P. Kerschke, H. Hoos, and H. Trautmann. Improving the state of the art in

inexact TSP solving using per-instance algorithm selection. In C. Dhaenens, L. Jourdan,
and M.-E. Marmion, editors, Learning and Intelligent Optimization, 9th International Con-
ference, pages 202–217, Cham, 2015. Springer International Publishing. Publication status:
Published.

2 E. Nudelman, K. Leyton-Brown, H. H Hoos, A. Devkar, and Y. Shoham. Understanding
random SAT: Beyond the clauses-to-variables ratio. In Principles and Practice of Constraint
Programming–CP 2004, pages 438–452. Springer Berlin Heidelberg, 2004.

3 E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. Hoos. Satzilla: An al-
gorithm portfolio for SAT. Solver description, SAT competition, 2004, 2004.

4 L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

16412



38 16412 – Automated Algorithm Selection and Configuration

5 L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Evaluating component solver contri-
butions to portfolio-based algorithm selectors. In Theory and Applications of Satisfiability
Testing–SAT 2012, pages 228–241. Springer Berlin Heidelberg, 2012.

6 S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. Isac-instance-specific algorithm
configuration. ECAI, 215:751–756, 2010.

7 Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Algorithm portfolios based
on cost-sensitive hierarchical clustering. In Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, pages 608–614. AAAI Press, 2013.

8 F. Hutter, H.H. Hoos, K. Leyton-Brown, and K.P. Murphy. An experimental investigation
of model-based parameter optimisation: Spo and beyond. In GECCO’09: Proceedings of
the 11th Annual conference on Genetic and evolutionary computation, pages 271–278, New
York, NY, USA, 2009. ACM.

9 F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization, pages 507–523.
Springer Berlin Heidelberg, 2011.

10 C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the
automatic configuration of algorithms. Principles and Practice of Constraint Programming-
CP 2009, pages 142–157, 2009.

11 M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configur-
ing metaheuristics. In GECCO ’02: Proc. of the Genetic and Evolutionary Computation
Conference, pages 11–18, 2002.

12 M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated F-race: An
overview. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors,
Empirical Methods for the Analysis of Optimization Algorithms. Springer, 2010.

13 F. Hutter, M.T. Lindauer, A. Balint, S. Bayless, H.H. Hoos, and K. Leyton-Brown. The
configurable SAT solver challenge (CSSC). Artificial Intelligence, Accepted for publication.,
2015.

14 J. Styles and H. Hoos. Ordered racing protocols for automatically configuring algorithms
for scaling performance. In Proceedings of the 15th Conference on Genetic and Evolutionary
Computation (GECCO-13), pages 551–558. ACM, 2013.

15 F. Hutter, H.H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer
programming solvers. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pages 186–202. Springer Berlin Heidelberg, 2010.

16 M. Vallati, C. Fawcett, A.E. Gerevini, H.H. Hoos, and A. Saetti. Automatic generation of
efficient domain-optimized planners from generic parametrized planners. In Sixth Annual
Symposium on Combinatorial Search (SoCS-13), pages 184–192, 2013.

17 P. Lengauer and H. Mössenböck. The taming of the shrew: Increasing performance by auto-
matic parameter tuning for java garbage collectors. In Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering, ICPE ’14, pages 111–122, New York,
NY, USA, 2014. ACM.

18 J.P. Dickerson, A.D. Procaccia, and T. Sandholm. Dynamic matching via weighted myopia
with application to kidney exchange. In Proceedings of the 28th National Conference on
Artificial Intelligence (AAAI-14), pages 1340–1346, 2012.

19 L. Xu, H.H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms
for portfolio-based selection. Proceedings of the 24th Conference on Artificial Intelligence
(AAAI-10), 10:210–216, 2010.

20 L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. RCRA workshop on experi-
mental evaluation of algorithms for solving problems with combinatorial explosion at the
international joint conference on artificial intelligence (IJCAI), pages 16–30, 2011.



Holger H. Hoos, Frank Neumann, and Heike Trautmann 39

21 M. Lindauer, H. Hoos, F. Hutter and T. Schaub: AutoFolio: An Automatically Configured
Algorithm Selector. J. Artif. Intell. Res. (JAIR) 53:745-778, 2015.

22 N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization bench-
marking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.

23 N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization bench-
marking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.

24 O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph. Explor-
atory landscape analysis. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, GECCO ’11, pages 829–836, New York, NY, USA, 2011. ACM.

25 T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 184–192. Morgan Kaufmann, 1995.

26 M. Preuss and Th. Bartz-Beielstein. Experimental analysis of optimization algorithms:
Tuning and beyond. In Y. Borenstein and A. Moraglio, editors, Theory and Principled
Methods for Designing Metaheuristics. Springer, 2011.

27 O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs. Analyzing the BBOB
results by means of benchmarking concepts. Evolutionary Computation Journal, 23(1):161–
185, 2015.

28 M. A. Muñoz, M. Kirley, and S. K. Halgamuge. A meta-learning prediction model of
algorithm performance for continuous optimization problems. In C. A. Coello Coello et al.,
editors, Parallel Problem Solving from Nature – PPSN XII, volume 7491 of Lecture Notes
in Computer Science, pages 226–235. Springer, 2012.

29 T. Abell, Y. Malitsky, and K. Tierney. Features for exploiting black-box optimization prob-
lem structure. In Giuseppe Nicosia and Panos Pardalos, editors, Learning and Intelligent
Optimization, Lecture Notes in Computer Science, pages 30–36. Springer, 2013.

30 R. Morgan and M. Gallagher. Using landscape topology to compare continuous metaheurist-
ics: A framework and case study on EDAs and ridge structure. Evolutionary Computation,
20(2):277–299, 2012.

31 M.A. Munoz, M. Kirley, and S.K. Halgamuge. Exploratory landscape analysis of continuous
space optimization problems using information content. Evolutionary Computation, IEEE
Transactions on, 19(1):74–87, Feb 2015.

32 B. Bischl, O. Mersmann, H. Trautmann, and M. Preuss. Algorithm selection based on ex-
ploratory landscape analysis and cost-sensitive learning. In Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’12, pages 313–320. ACM,
2012.

33 P. Kerschke, M. Preuss, C. Hernández, O. Schütze, J. Sun, C. Grimme, G. Rudolph, B. Bis-
chl, and H. Trautmann. Cell mapping techniques for exploratory landscape analysis. In
A Tantar et al., editors, EVOLVE — A Bridge between Probability, Set Oriented Numer-
ics, and Evolutionary Computation V, volume 288 of Advances in Intelligent Systems and
Computing, pages 115–131. Springer, 2014.

34 P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. Detecting funnel structures by
means of exploratory landscape analysis. In Proceedings of the, pages 265–272, New York,
NY, USA, 2015. ACM. Publication status: Published.

35 M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge. Algorithm selection for black-
box continuous optimization problems: A survey on methods and challenges. Information
Sciences, 317:224 – 245, 2015.

36 J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment of
Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Net-
works Laboratory, ETH Zurich, 2006.

16412



40 16412 – Automated Algorithm Selection and Configuration

37 O. Mersmann, H. Trautmann, B. Naujoks, and C. Weihs. Benchmarking evolutionary
multiobjective optimization algorithms. In IEEE Congress on Evolutionary Computation,
pages 1–8. IEEE, 2010.

38 K. Hornik and D. Meyer. Deriving consensus rankings from benchmarking experiments.
In R. Decker and H.-J. Lenz, editors, Advances in Data Analysis (Proc. of the 30th Ann.
Conf. of the Gesellschaft für Klassifikation, pages 163–170. Springer, Berlin, 2007.

39 P. Kerschke, H. Wang, M. Preuss, C. Grimme, A. Deutz, H. Trautmann and M. Emmerich.
Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of the 14th

International Conference on Parallel Problem Solving from Nature (PPSN XIV), pages 962–
972. Lecture Notes in Computer Science, Springer, 2016.



Holger H. Hoos, Frank Neumann, and Heike Trautmann 41

2 Table of Contents

Executive Summary
Holger H. Hoos, Frank Neumann, and Heike Trautmann . . . . . . . . . . . . . . . 33

Presentations
Continuous Black-Box Optimization: How Large Are The GAPs?
Anne Auger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Tuning using Multiple Criteria – Forwarding more Information to the Configurator
Aymeric Blot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Some Ideas on Industrial Applications of Automated Optimizer Design
Thomas Bäck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Learning the Right Mutation Strength on-the-Fly
Benjamin Doerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Self-Adjusting Choice of Population Size and Mutation Strengths in Discrete Op-
timization
Carola Doerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Spotlight on Rumor Sreading
Carola Doerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Algorithm Subset Selection as a Portfolio Investment Problem
Michael Emmerich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Optimisation Algorithm Design: A Control Engineering Perspective
Carlos M. Fonseca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Models of Large Real-world Networks
Tobias Friedrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Needed: Hard and Killer problems
Marcus Gallagher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Fixed-Parameter Single Objective Search Heuristics for Minimum Vertex Cover
Wanru Gao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

AutoML – with a focus on deep learning
Frank Hutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Applications in Hospital
Laetitia Jourdan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Extending Exploratory Landscape Analysis Toward multiobjective and Multimodal
Problems
Pascal Kerschke and Mike Preuss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Deep Parameter Configuration (joint work with UCL)
Lars Kotthoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Algorithm Portfolios: Four Key Questions
Kevin Leyton-Brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Multiobjective Optimization from the Perspective of Game Theory
Kevin Leyton-Brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

16412



42 16412 – Automated Algorithm Selection and Configuration

Combining Algorithm Selection and Configuration: Per-Instance Algorithm Config-
uration
Marius Lindauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Network on Selection and Configuration: COSEAL
Marius Lindauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Challenges in Automated Algorithm Design: Representativeness, one-shot expensive
scenarios, parameter importance and sensitivity, and human-in-the-loop
Manuel López-Ibánez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Building and exploiting a non-parametric problem space
Andres Munoz Acosta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Automated Selection of Tree Decompositions
Nysret Musliu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Feature-Based Diversity Optimization for Problem Instance Classification
Samadhi Nethmini Nallaperuma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Algorithm Selection in Music Data Analysis
Günter Rudolph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Cognitive Assistant for Data Scientist
Horst Samulowitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

From off-line to on-line feature-based parameter tuning
Marc Schoenauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Cognitive Computing
Meinolf Sellmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Automated generation of high-performance heuristics from flexible algorithm frame-
works: Challenges and Perspectives
Thomas Stützle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bringing the human back in the loop
Joaquin Vanschoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Generic Bet-and-run Strategy for Speeding Up Traveling Salesperson and Min-
imum Vertex Cover
Markus Wagner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Reducing the size of large instance repositories
Markus Wagner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Accelerating Algorithm Development
Simon Wessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Breakout Sessions and Working Groups
All you ever wanted to know/ask a theoretician and All you ever wanted to know/ask
a practitioner
Anne Auger and Carola Doerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Controlled Problem Instance Generation
Marcus Gallagher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Describing / Characterizing Landscapes of multiobjective Optimization Problems
Pascal Kerschke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Holger H. Hoos, Frank Neumann, and Heike Trautmann 43

Portfolio-based Methods for Algorithm Selection
Kevin Leyton-Brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

What can we learn from algorithm selection data?
Marius Lindauer and Lars Kotthoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

(ELA features for) multimodal optimization
Mike Preuß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Online and Adaptive Methods
Marc Schoenauer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Real-world Applications of Meta-Algorithmics
Meinolf Sellmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Pitfalls and Best Practices for Algorithm Configuration
Marius Lindauer and Frank Hutter . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Multiobjective Optimisation Algorithm Selection and Configuration
Carlos M. Fonseca and Manuel López-Ibánez . . . . . . . . . . . . . . . . . . . . . . 72

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

16412



44 16412 – Automated Algorithm Selection and Configuration

3 Presentations

3.1 Continuous Black-Box Optimization: How Large Are The GAPs?
Anne Auger (INRIA Saclay – Orsay, FR)

License Creative Commons BY 3.0 Unported license
© Anne Auger

This talk was motivated by the breakout session on Theory versus Practice or “All you ever
wanted to know/ask a theoretician and All you ever wanted to know/ask a practitioner”
where the observation was made that gaps between theory and practice is larger or smaller
depending on the domain and community.

We have discussed for the domain of continuous black-box optimization or adaptive
stochastic search algorithms where theory stands with respect to practice. In particular we
have sketched how theoretical results on linear convergence relate to practice and how they
are motivated by practice. We have also highlighted a few lessons from theory to practice.
Last we have discussed this gap between communities tackling the same problem namely
the Derivative Free Optimization community and the Evolutionary Computation community
and how there are signs that this gap in becoming narrower and narrower.

3.2 Tuning using Multiple Criteria – Forwarding more Information to
the Configurator

Aymeric Blot (INRIA Lille, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Aymeric Blot, Holger Hoos, Marie-Éléonore Kessaci-Marmion, Laetitia Jourdan, Heike Trautmann

In automatic algorithm configuration, a single performance indicator of the target algorithm
is usually forwarded to the configurator. We discuss problems and possible solutions in
cases where more that a single indicator might be needed. The highlighted solution is MO-
ParamILS, a configurator specifically designed for the purpose of performing the configuration
process using Pareto dominance on multiple performance indicators.

3.3 Some Ideas on Industrial Applications of Automated Optimizer
Design

Thomas Bäck (Leiden University, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Sander van Rijn, Hao Wang, Matthijs van Leeuwen, Thomas Bäck
Main reference S. van Rijn, H. Wang, M. van Leeuwen, T. Bäck, “Evolving the Structure of Evolution Strategies”,

arXiv:1610.05231v1 [cs.NE], 2016.
URL https://arxiv.org/abs/1610.05231v1

Many industrial applications are represented by simulation models which require enormous
computational effort for computing a single objective function value. Motivated by such
applications, e.g., in the automotive industry, an important requirement for optimization
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algorithms can be to deliver large improvements with the smallest number of function
evaluations possible.

From an automated optimizer design perspective, I discuss some preliminary experiments
on the automatic configuration of algorithmic variants of modern evolutionary strategies. As
these results illustrate, it is possible to significantly improve performance by configuring the
components of evolutionary strategies optimally.

The talk then presents my vision on how to extend this approach towards automated
optimizer design for simulation-based function classes. This might involve response surface
modeling, exploratory feature analysis, machine learning, and aspects of genetic programming
and grammatical evolution – plus likely a number of additional techniques for this challenging
problem.

3.4 Learning the Right Mutation Strength on-the-Fly
Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Benjamin Doerr, Carola Doerr, Jing Yang

When using the classic standard bit mutation operator, parent and offspring differ in a
random number of bits, distributed according to a binomial law. This has the advantage
that all Hamming distances occur with some positive probability, hence this operator can be
used, in principle, for all fitness landscapes. The downside of this “one-size-fits-all” approach,
naturally, is a performance loss caused by the fact that often not the ideal number of bits
is flipped. Still, the fear of getting stuck in local optima has made standard bit mutation
become the preferred mutation operator.

In this work we show that a self-adjusting choice of the number of bits to be flipped can
both avoid the performance loss of standard bit mutation and avoid the risk of getting stuck
in local optima. We propose a simple mechanism to adaptively learn the currently optimal
mutation strength from previous iterations. This aims both at exploiting that generally
different problems may need different mutation strengths and that for a fixed problem
different strengths may become optimal in different stages of the optimization process.

We experimentally show that our simple hill climber with this adaptive mutation strength
outperforms both the randomized local search heuristic and the (1+1) evolutionary algorithm
on the LeadingOnes function and on the minimum spanning tree problem. We show via
mathematical means that our algorithm is able to detect precisely (apart from lower order
terms) the complicated optimal fitness-dependent mutation strength recently discovered for
the OneMax function. With its self-adjusting mutation strength it thus attains the same
runtime (apart from o(n) lower-order terms) and the same (asymptotic) 13% fitness-distance
improvement over RLS that was recently obtained by manually computing the optimal
fitness-dependent mutation strength.

This talk is based on joint work with Carola Doerr (Paris 6) and Jing Yang (École
Polytechnique)

References
1 Benjamin Doerr, Carola Doerr, Jing Yang. k-Bit Mutation with Self-Adjusting k Outper-

forms Standard Bit Mutation. In Parallel Problem Solving from Nature – PPSN XIV, pages
824–834, 2016.
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3.5 Self-Adjusting Choice of Population Size and Mutation Strengths
in Discrete Optimization

Carola Doerr (CNRS and University Pierre & Marie Curie – Paris, FR)

License Creative Commons BY 3.0 Unported license
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In most evolutionary algorithms there are a number of parameters to be chosen, e.g.,
the population size, the mutation strength, the crossover rate, etc. While it seems quite
intuitive that different parameter choices can be optimal in the different stages of the
optimization process, little theoretical evidence exist to support this claim for discrete
optimization problems. In two recent works [Doerr/Doerr, Optimal Parameter Choices
Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings, GECCO 2015] and
[Doerr/Doerr/Kötzing: Provably Optimal Self-adjusting Step Sizes for Multi-valued Decision
Variables, PPSN 2016] we propose a simple success-based update rule for the population size
and the mutation strength, respectively. In both these works we show that the self-adjusting
parameter choice yields a better performance than any (!) static parameter choice. The
update rule is inspired by the classical one-fifth rule from continuous optimization. Based on
joint work with Benjamin Doerr (Ecole Polytechnique, France) and Timo Koetzing (HPI
Potsdam, Germany)

3.6 Spotlight on Rumor Sreading
Carola Doerr (CNRS and University Pierre & Marie Curie – Paris, FR)
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In this short talk we briefly discuss the rumor spreading problem and the main objectives
that we are after when designing algorithms for it.

Rumor spreading aims at distributing information in networks via so-called PUSH
operations. Informed nodes are allowed to call others to inform them. We aim at protocols
that are fast, need few calls, are robust with respect to node and edge crashes, and hopefully
simple. Existing works analyze rumor spreading algorithms on different types of graphs, e.g.,
social networks and dynamically changing graphs.

3.7 Algorithm Subset Selection as a Portfolio Investment Problem
Michael Emmerich (Leiden University, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Michael Emmerich, Iryna Yevseyeva

The problem of optimization algorithm selection (and configuration) can be formulated in
a similar way than a financial portfolio investment problem with risk and expected return.
Depending on the practical setting in which the optimization algortihms are applied, different
scenarios and problem formulations can be of interest.

Here, as a pars pro toto for a larger class of problem formulations, one particular scenario
is discussed. The chosen example formulation is motivated by problems that occur in logistics
planning, and in real-world environments of computer-aided product design, and it reads as
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follows: Prior to performing an time-expensive optimization taks, a single algorithm or a
subset of algorithms has to be selected from a library or algorithm portfolio. The algorithm
(or the subset of algorithms) are then submitted to a parallel computation cluster where they
have to solve an a priori unknown problem instance. After a pre-assigned time the results
achieved by all selected algorithms are collected and the best result is chosen.

This scenario leads to a theoretical problem formulation where each algorithm is viewed
as an investment (asset) and its result, which has to be maximized, is viewed as the financial
return of this investment. Due to the uncertainty about the particular problem instance
that will have to be solved, the return will be considered as a random variable. Given a
single algorithm the expected value of the return has to be maximized and the risk, which is
related to the variance of the return, is to be minimized. For a subset of algorithms, the
expected maximum of the return has to be maximized, and the risk related to this value
needs to be minimized. The computation of the risk term requires covariances of the returns
of the algorithms, noting that diversification will usually be beneficial for reducing the risk.

There is a rich theory on the solution of such multiobjective portfolio selection problems,
which can be transferred to the algorithm selection domain. However, there are also challenges
to be overcome, such as the elicitation or estimation of probability distributions and the
approximation or computation of the efficient set when it comes to large algorithm libraries
or instance spaces, as they would need to be considerd in algorithm tuning or configuration.

3.8 Optimisation Algorithm Design: A Control Engineering Perspective
Carlos M. Fonseca (University of Coimbra, PT)
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Joint work of Cláudia R. Correa, Elizabeth F. Wanner, Carlos M. Fonseca, Rodrigo T.N. Cardoso, Ricardo H.C.
Takahashi

Main reference C. R. Correa, E. F. Wanner, and C. M. Fonseca, “Lyapunov design of a simple step-size adaptation
strategy based on success”, in Proc. of the 14th Int’l Conf. on Parallel Problem Solving from
Nature – PPSN XIV, LNCS, Vol. 9921, pp. 101–110, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-45823-6_10

Currently, most practically-relevant metaheuristic algorithms, and Evolutionary Algorithms
(EAs) in particular, are not amenable to analysis with the available theoretical tools. On
the other hand, EA theory has focused largely on asymptotic and time-complexity results in
ideal or much simplified scenarios, which are not immediately useful to practitioners.

An alternative route for theoretical development is to approach the design of such op-
timisation algorithms from a control engineering perspective, where determining algorithm
parameters is the purpose of the analysis, and algorithms must be designed with analysis
in mind. The fact that optimisation algorithms are inherently dynamical systems further
substantiates this point of view. Moreover, theory should support the use of numerical meth-
ods to extend the analysis to larger and/or more complex scenarios before experimentation
becomes the only practical alternative.

This perspective will be illustrated with the design of a simple step-size adaptation
strategy based on success and failure events [1]. A Lyapunov synthesis procedure is used to
obtain both a performance guarantee and tuned adaptation parameter values. The method
relies on the numerical optimisation of an analytically-derived performance index.

Acknowledgement. This work was partially supported by national funds through the
Portuguese Foundation for Science and Technology (FCT) and by the European Regional
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Development Fund (FEDER) through COMPETE 2020 – Operational Program for Compet-
itiveness and Internationalisation (POCI).

References
1 C.R. Correa, E. F. Wanner, C.M. Fonseca, “Lyapunov design of a simple step-size adapta-

tion strategy based on success,” in Proc. of the 14th Int’l Conf. on Parallel Problem Solving
from Nature – PPSN XIV, LNCS, Vol. 9921, pp. 101–110, Springer, 2016.

3.9 Models of Large Real-world Networks
Tobias Friedrich (Hasso-Plattner-Institut – Potsdam, DE)
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The node degrees of large real-world networks often follow a power-law distribution. Such
scale-free networks can be social networks, internet topologies, the web graph, power grids,
or many other networks from literally hundreds of domains. The talk introduced several
mathematical models of scale-free networks (e.g. preferential attachment graphs, Chung-Lu
graphs, hyperbolic random graphs), showed some of their properties (e.g. diameter, average
distance, clustering), and discussed how these properties influence algorithm selection and
configuration.

3.10 Needed: Hard and Killer problems
Marcus Gallagher (The University of Queensland – Brisbane, AU)
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In this short talk, I would like to raise issues around the nature of optimization problems. What
sorts of benchmark problems are needed to extract maximum value from our experiments?
Do we need hard problems (but with rich structure) to solve and where are they (especially
in the continuous case)? Finally, what are the so-called “killer apps” for the field?

3.11 Fixed-Parameter Single Objective Search Heuristics for Minimum
Vertex Cover

Wanru Gao (University of Adelaide, AU)
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Joint work of Wanru Gao, Tobias Friedrich, Frank Neumann
Main reference W. Gao, T. Friedrich, F. Neumann, “Fixed-Parameter Single Objective Search Heuristics for

Minimum Vertex Cover”, in Proc. of the 14th Int’l Conf. on Parallel Problem Solving from Nature
– PPSN XIV, LNCS, Vol. 9921, pp. 740–750, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-319-45823-6_69

We consider how well-known branching approaches for the classical minimum vertex cover
problem can be turned into randomized initialization strategies with provable performance
guarantees and investigate them by experimental investigations. Furthermore, we show
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how these techniques can be built into local search components and analyze a basic local
search variant that is similar to a state-of-the-art approach called NuMVC. Our experimental
results for the two local search approaches show that making use of more complex branching
strategies in the local search component can lead to better results on various benchmark
graphs.

3.12 AutoML – with a focus on deep learning
Frank Hutter (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
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The rapid growth of machine learning (ML) applications has created a demand for off-the-
shelf ML methods that can be used easily and without expert knowledge. I first briefly
review the successful approach of casting this problem as an optimization problem on top of
a highly-parameterized ML framework. Then, I focus on possible extensions of this approach
that could scale it up to achieve fully automated deep learning: reasoning across datasets,
subsets of data, and initial time steps; online hyperparameter control; and automatically
deriving insights. Many of these extensions have a direct correspondence in optimizing hard
combinatorial problem solvers.

3.13 Applications in Hospital
Laetitia Jourdan (INRIA Lille, FR)
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data”, in Proc. of the 15th Annual Conf. on Genetic and Evolutionary Computation (GECCO
2013), pp. 543–550, ACM, 2013.
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Hospital offers a lot of real world problems for the optimization and machine learning
community. A lot of classical operation research problems can be found but often with a lot
of additional constraints, presence of uncertainty and even dynamism of data. Concerning
machine learning problems, there are very specific like classification on imbalanced data,
bi-clustering and often solvers are not available in classical framework or they cannot cope
the dimension of the data. All these problems can be modelled as optimisation problems
often multiobjective problems. As final output should be software for non-domain specialists,
automated configuration is required BUT how to realized it when there is only one dataset
available, dataset that is often available only inside the hospital. Additionally, the robustness
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of the proposed solutions is very important, as it can be critical for the hospital, how
practitioners can assess the sensitivity of the found algorithms ?

3.14 Extending Exploratory Landscape Analysis Toward multiobjective
and Multimodal Problems

Pascal Kerschke (Universität Münster, DE) and Mike Preuß (Universität Münster, DE)
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Selecting the best suited algorithm for an optimization problem is usually a complex and
difficult task, especially for expensive Black-Box problems. The Exploratory Landscape
Analysis (ELA) approach extracts – not necessarily intuitively understandable – landscape
features based on a (usually rather small) initial sample of observations from the underlying
optimization problem. In case of population based algorithms, a well distributed initial
population may be used as sample data for computing these features, which may then be
used to enhance the algorithm selection model. So far, ELA is mostly used in the context of
continuous, single-objective, global optimization problems – but it shall be transferred also
to other domains. Next to a minimal introduction and report on the current state of ELA,
we highlight the possibilities to extend it onto multiobjective and multimodal optimization.

3.15 Deep Parameter Configuration (joint work with UCL)
Lars Kotthoff (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
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Algorithm configuration has been limited to parameters that the programmer intentionally
exposes. Automatic algorithm configuration makes it feasible to efficiently explore ever larger
parameter spaces, but the mindset of programmers is still that parameters should be exposed
sparingly as they put additional burden on the user. We leverage techniques from software
engineering to expose additional parameters from the source of an algorithm, thus increasing
the potential gains for algorithm configuration.
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3.16 Algorithm Portfolios: Four Key Questions
Kevin Leyton-Brown (University of British Columbia – Vancouver, CA)
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This talk considered four key questions:

1. How useful is my solver? I argued this is well answered using the Shapley value.
2. How useful is my algorithm selector? I argued that one needs to be careful to avoid using

a biased estimate of VBS performance.
3. How useful are my selector’s features? I argued that just size-based features are often

enought.
4. How useful is my benchmark? I argued that heterogeneity may produce artificially easy

test data.

3.17 Multiobjective Optimization from the Perspective of Game
Theory

Kevin Leyton-Brown (University of British Columbia – Vancouver, CA)
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© Kevin Leyton-Brown

I described what multiobjective optimization means to a game theorist. I discussed von
Neumann-Morgenstern utility theory, multiattribute utility, noncooperative game theory. I
discussed the solution concepts Pareto optimality, stability concepts like Nash equilibrium,
robustness concepts like maxmin, and minimax regret.

3.18 Combining Algorithm Selection and Configuration: Per-Instance
Algorithm Configuration

Marius Lindauer (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
© Marius Lindauer

Algorithm configuration and algorithm selection perform well in different use cases, namely
homogeneous instance sets with large parameter configuration spaces vs heterogeneous
instances with a small finite portfolio of algorithms. One way to combine algorithm selection
and configuration is for example to apply configuration on top of selection [1]. However,
to deal with heterogeneous instances (e.g., hard combinatorial problems, machine learning
data sets or environmental variables) and an algorithm with a large parameter configuration
space, we need a direct combination of configuration and selection:

Per-Instance algorithm configuration (PIAC) approaches (such as ISAC [2] and Hydra [3])
were proposed already some years ago. In the meantime, relevant techniques for PIAC made
substantial progress, e.g., prediction of performance [4], quantification of homogeneity [5]
and feature-parameters mappings [6]. Using recent advances in these areas, I believe that we
can do much better than previous approaches in generating robust algorithms that adapt
their parameter settings on a per-instance base.
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3.19 Network on Selection and Configuration: COSEAL
Marius Lindauer (Universität Freiburg, DE)
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Since algorithm selection and algorithm configuration is widely applicable in many domains
(including e.g., machine learning, hard combinatorial problems and continuous optimization),
there are sub-communities in all these domains that use automatic selection and configur-
ation of algorithms to improve the performance of their algorithms. Unfortunately, these
communities were not well connected, even though they worked on similar problems. To
change this, the COSEAL group (COnfiguration and SEection of ALgorithms)1 was founded
three years ago to create a research network on automatic selection and configuration of any
kind of algorithm.

To encourage exchange of progress and expert knowledge between the different com-
munities, the COSEAL group has an active mailing list and an annual workshop meeting.
The mailing list is an open platform where everyone can join. Its intended use includes the
announcement of new important results, tools, and to request help for newcomers. Similar
to our Dagstuhl seminar, the goal of the workshops is less to promote newly published
papers but to discuss on-going projects and open questions. To this end, the workshop
includes sessions for presentations, posters and discussions. One of the successful projects
of the COSEAL group was also launched at the first COSEAL workshop: the creation of
a benchmark library for algorithm selection, called ASlib [1]. Furthermore, the COSEAL
website offers overviews and literature links for algorithm selection and configuration for new
researchers.
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3.20 Challenges in Automated Algorithm Design: Representativeness,
one-shot expensive scenarios, parameter importance and
sensitivity, and human-in-the-loop

Manuel López-Ibánez (Univ. of Manchester, GB)
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When facing realistic scenarios of automatic algorithm configuration and design, there are
some questions for which our current answers appear lacking to practitioners. One practical
question is how to create a set of instances representative of a problem or, alternatively, if only
a small set of such instances is available, how to split the set between training and validation
making sure that the training set remains representative of the target problem. Moreover, in
some scenarios, we may be interested in solving a single very expensive problem instance
once with the best algorithm possible. What are the strategies that automated algorithm
configuration can offer in such scenarios? Another frequent question from practitioners is
how to evaluate our confidence in the best configurations found, how important are the
settings chosen and how sensitive are these particular settings. Some work has been done
in this regard, but there are still many open questions. Finally, a more recent question is
how to best integrate human interaction in the automated configuration procedure, when
the target algorithm relies on a human to guide them to the optimal solution, such as in
multi-criteria optimization methods that elicit preferences from decision-makers.

3.21 Building and exploiting a non-parametric problem space
Andres Munoz Acosta (Monash University – Clayton, AU)

License Creative Commons BY 3.0 Unported license
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While automated algorithm selection methods have been very successful in practice, in some
cases they depend on features that can be qualified as heuristics. Therefore, there are no
guarantees that the representation of the problem space is efficient; or that the insights
gained from the features can be turned into useful algorithms. In other words, how to exploit
the features to construct useful algorithms? Perhaps the first step is to produce an efficient
map of the problem space, such that the map is one-to-one. Then, we may be able to
identify a transformation that would convert a new problem into a previously observed one
for which we know a good –or the best– algorithm. While similar ideas exist in the literature,
e.g., merging branches and nodes to make a coarse grained version of the problem, such
transformations are somewhat generic. On a side note, can we find such transformations in a
principled and efficient way, perhaps on-line?

References
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3.22 Automated Selection of Tree Decompositions
Nysret Musliu (TU Wien, AT)
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Joint work of Michael Abseher, Frederico Dusberger, Nysret Musliu, Stefan Woltran
Main reference M. Abseher, F. Dusberger, N. Musliu, S. Woltran, “Improving the Efficiency of Dynamic

Programming on Tree Decompositions via Machine Learning”, in Proc. of the 24th Int’l Joint Conf.
on Artificial Intelligence (IJCAI 2015), pp. 275–282, AAAI Press/IJCAI, 2015.

URL http://ijcai.org/Abstract/15/045

Dynamic Programming (DP) over tree decompositions is a well-established method to solve
problems that are in general NP-hard – efficiently for instances of small treewidth. Experience
shows that DP algorithms exhibit a high variance in runtime when using different tree
decompositions (TD). In fact, given an instance of the problem at hand, even decompositions
of the same width might yield extremely diverging runtimes.

We propose a general method that is based on selection of the best decomposition from
an available pool of heuristically generated ones. Novel features for tree decomposition
are proposed and machine learning techniques are applied to select the most promising
decomposition. Extensive experiments in different problem domains show a significant
speedup when choosing the tree decomposition according to this concept over simply using
an arbitrary one of the same width.

3.23 Feature-Based Diversity Optimization for Problem Instance
Classification

Samadhi Nethmini Nallaperuma (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
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Joint work of Wanru Gao, Samadhi Nethmini Nallaperuma, Frank Neumann

Understanding the behaviour of heuristic search methods is a challenge. This even holds for
simple local search methods such as 2OPT for the Traveling Salesperson problem. In this
paper, we present a general framework that is able to construct a diverse set of instances
that are hard or easy for a given search heuristic. Such a diverse set is obtained by using an
evolutionary algorithm for constructing hard or easy instances that are diverse with respect
to different features of the underlying problem. Examining the constructed instance sets, we
show that many combinations of two or three features give a good classification of the TSP
instances in terms of whether they are hard to be solved by 2OPT.

This research has been supported by the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 618091 (SAGE) and by the Australian Research
Council under grant agreement DP140103400.
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3.24 Algorithm Selection in Music Data Analysis
Günter Rudolph (TU Dortmund, DE)
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Joint work of Günter Rudolph, Igor Vatolkin

The analysis of signal data arising from music recordings offers many ways to apply machine
learning methods. In case of classification tasks many different algorithms may be deployed
which must be configured appropriately. The manual selection and parameterization of
algorithmic alternatives is often necessary in most systems that realize the classification chain
of musical data. The automation of this task offers the perspective of huge improvements in
performance. The next years will show how much can be gained by deep neural networks
that are currently built into existing systems.

3.25 Cognitive Assistant for Data Scientist
Horst Samulowitz (IBM TJ Watson Research Center – Yorktown Heights, US)

Joint work of Gregory Bramble, Maria Butrico, Andre Cunha, Elias Khalil, Udayan Khurana, Peter Kirchner,
Tim Klinger, Fatemeh Nargesian, Srinivasan Parthasarathy, Chandra Reddy, Anton Riabov, Horst
Samulowitz, Gerry Tesauro, Deepak Turaga
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A Data Scientist typically performs a number of tedious and time-consuming steps to derive
insight from a raw data set. The process usually starts with data ingestion, cleaning,
transformation (e.g. outlier removal, missing value imputation), then model building, and
finally a presentation of predictions that align with the end-users objectives and preferences.
It is a long, complex, and sometimes artful process requiring substantial time and effort
especially because of the combinatorial explosion in choices of algorithms (and platforms),
their parameters, and their compositions. Tools that can help automate steps in this process
have the potential to accelerate the time-to-delivery of useful results, expand the reach of
data science to non-experts, and offer a more systematic exploration of the available options.

This system aims at showing how automatic composition and configuration of data
analytics (spanning multiple analytic platforms and packages such as R, Weka, SPSS, Apache
SPARK, System ML) can offer increased insight into the data and how model selection
algorithms can suggest models that are well suited to the predictive task, while respecting
user preferences. Given a data set and analysis task (e.g., classification or regression) the
system aims to quickly determine an appropriate combination of preprocessing steps (e.g.,
feature reduction or mapping) and models and platforms to achieve the users goals.

During this process the user is presented with intermediate results and insights into the
data and the reasoning process itself. For example, which features are important? How well
do entire classes of analytic tools perform on the data set? Are there potentially significant
outliers? The user can directly interact with the process providing resource constraints (e.g.,
time available for training/testing) or their preference (e.g. for interpretable models). In
addition, the system aims to provide basic suggestions of potentially related work that may
enable the data scientist to improve results even further.

The system is constructed on top of an automated analytics composer and analytic
repository which supports massively parallel execution and cross-platform execution of a wide
range of high-performance analytic tools. To automatically select, compose and configure
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these analytics we develop meta-learning algorithms that attempt to rapidly estimate upside
performance using only subset of the available data. Furthermore, it tries to exploit structured
as well as unstructured data to provide further suggestions.

3.26 From off-line to on-line feature-based parameter tuning
Marc Schoenauer (INRIA Saclay – Orsay, FR)
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Main reference N. Belkhir, J. Dréo, P. Savéant, M. Schoenauer, “Feature Based Algorithm Configuration: A Case
Study with Differential Evolution”, in Proc. of the 14th Int’l Conf. on Parallel Problem Solving
from Nature – PPSN XIV, LNCS, Vol. 9921, pp. 156–165, Springer, 2016.
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Off-line parameter tuning based on feature computation can be achieved via the learning of an
Empirical Performance Model trained on a large dataset of features x parameters, performance
instances (involving huge computational cost, but this is not the point here). Given an
unknown instance with computed features, optimal parameters according to the EPM can
be derived. The features are of course problem-dependent, but quite often involve the
computation of the objective values on a (as small as possible) set of sample points uniformly
drawn from the design space – and hence can be thought of as global features. However,
during the search itself, more points of the design space are sampled, and if the features are
re-computed using this biased sample (or adding it to the original sample), some more “local”
values of the features are obtained, that might lead to new optimal parameters according to
the EPM. Very preliminary results have been obtained for continuous optimizaiton using DE
(see PPSN 2016 paper by Belkir et al.).

3.27 Cognitive Computing
Meinolf Sellmann (IBM TJ Watson Research Center – Yorktown Heights, US)
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The role of IT is fundamentally shifting as our ability to collect and harness ever growing
amounts of data improves. Historically an enabler of business, IT is now moving closer and
closer to the heart of modern economies by informing and influencing key strategic business
decisions. Human data science labor cannot keep up with the ever growing demand for
decision support analytic models. The programmable era is thus coming to an end as the
cognitive era of machines that practice self-orientation begins. In this presentation I invite
the participants to discuss the role of meta-algorithmics in the cognitive era.
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3.28 Automated generation of high-performance heuristics from
flexible algorithm frameworks: Challenges and Perspectives

Thomas Stützle (Free University of Brussels, BE)

License Creative Commons BY 3.0 Unported license
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The design of algorithms for computationally hard problems is time-consuming and difficult
for a number of reasons such as the complexity of such problems, the large number of degrees
of freedom in algorithm design and the setting of numerical parameters, and the difficulties
of algorithm analysis due to heuristic biases and stochasticity. In recent years, automatic
algorithm configuration methods have been developed to effectively search large and diverse
parameter spaces; these methods have been shown to be able to identify superior algorithm
designs and to find performance improving parameter settings.

In this talk, I will shortly summarize the main recent results that we have obtained in
the automatic design of hybrid stochastic local search algorithms as well as multiobjective
optimizers. We show that even for problems that have received very high attention in the
literature new state-of-the-art algorithms can be obtained automatically, that is, without
manual algorithm tuning. I will use these recent advances to discuss informally possible
directions for the future work in this direction and discuss possible challenges.

3.29 Bringing the human back in the loop
Joaquin Vanschoren (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
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There has been great progress on fully-automated approaches for machine learning. Some-
times, however, human experience, intuition, or domain knowledge can prove valuable to
constrain the space of solutions to explore. This is especially true when we consider the larger
pipeline of data science, which also includes data wrangling, data cleaning, data integration,
and model post-processing, among others. In this short talk, I would like to discuss and
elicit ways to couple human expertise and machine learning to create a human-machine
symbiosis. The human scientist would focus on the science (follow hunches, include more
data,...) while letting the machine take care of drudge work (finding similar datasets, selecting
algorithms/hyperparameters,...), thus enabling her to make informed, data-driven decisions.
Meanwhile, the machine would learn from all the experiments run during these collaborations
(with many people), and leverage what it learned from previous problems to help humans
better in the future.
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3.30 A Generic Bet-and-run Strategy for Speeding Up Traveling
Salesperson and Minimum Vertex Cover

Markus Wagner (University of Adelaide, AU)

License Creative Commons BY 3.0 Unported license
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Joint work of Tobias Friedrich, Timo Kötzing, Markus Wagner
Main reference T. Friedrich, T. Kötzing, M. Wagner, “A Generic Bet-and-run Strategy for Speeding Up Traveling

Salesperson and Minimum Vertex Cover”, arXiv:1609.03993v1 [cs.AI], 2016.
URL https://arxiv.org/abs/1609.03993v1

A common strategy for improving optimization algorithms is to restart the algorithm when
it is believed to be trapped in an inferior part of the search space. However, while specific
restart strategies have been developed for specific problems (and specific algorithms), restarts
are typically not regarded as a general tool to speed up an optimization algorithm. In fact,
many optimization algorithms do not employ restarts at all.

Recently, bet-and-run was introduced in the context of mixed-integer programming, where
first a number of short runs with randomized initial conditions is made, and then the most
promising run of these is continued. In this article, we consider two classical NP-complete
combinatorial optimization problems, traveling salesperson and minimum vertex cover, and
study the effectiveness of different bet-and-run strategies. In particular, our restart strategies
do not take any problem knowledge into account, nor are tailored to the optimization
algorithm. Therefore, they can be used off-the-shelf. We observe that state-of-the-art solvers
for these problems can benefit significantly from restarts on standard benchmark instances.

3.31 Reducing the size of large instance repositories
Markus Wagner (University of Adelaide, AU)

License Creative Commons BY 3.0 Unported license
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Over the years, some repositories of test instances have grown significantly. Obviously, there
are many more-or-less-biased ways to reduce a given set: based on algorithm performance
(e.g. pick the ones where I beat my competition), based on instance features (e.g. largest
10%), and so on. Do we want to represent the distribution of the instances only, or also the
density? Long story short: what is the least-biased way to reduce a given repository, and to
which extent can we define the faithful (?) subset selection problem. Bonus problem: how
to deal with holes in the spaces? Obviously, there is some existing work on very concrete
aspects out there... how for up in generality can we go? What would generic algorithmic
approaches be?

Among other, this talk gave rise to concepts like instance portfolios, marginal contribution
of instances to a portfolio, and to a cycle of algorithm configuration (on instances) and
instance generation (for algorithms).
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3.32 Accelerating Algorithm Development
Simon Wessing (TU Dortmund, DE)
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Main reference S. Wessing, “Towards a Systematic Development Process of Optimization Methods”,
arXiv:1603.00001v2 [math.OC], 2016.

URL https://arxiv.org/abs/1603.00001v2

Many pitfalls are lurking in algorithm engineering, and it seems that more often than not,
they are not related to the solution of the mathematical problem, but to formulating the
problem, implementing the algorithm, experimenting with it, and applying it to the real
world. These issues typically do not get the attention of scientific research, but may severely
bias its outcomes. I give examples where this has happened and try to give recommendations
on how to avoid such problems in the development process, with a main focus on the planning
of experiments with pre-design experiment guide sheets.

4 Breakout Sessions and Working Groups

4.1 All you ever wanted to know/ask a theoretician and All you ever
wanted to know/ask a practitioner

Anne Auger (INRIA Saclay – Orsay, FR) and Carola Doerr (CNRS and University Pierre
& Marie Curie – Paris, FR)

License Creative Commons BY 3.0 Unported license
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The objective of this breakout session was to gather theoreticians and practitioners to (1)
better appraise the relevant questions that can or should be addressed by theoreticians for
helping practitioners getting insights into the working principles of algorithm selection and
configuration and (2) for practitioners to learn where already existing theoretical results
could be beneficial in their research activities. The practitioners who were present are
mainly working on algorithm configuration and selection while the theoreticians had mostly
experience on evolutionary computation methods (including online adaptive methods). Given
this difference of background, a substantial amount of time was spend on understanding the
problematic on algorithm selection. More precisely, we have mostly discussed how empirical
work could influence theory in algorithm configuration and selection. It has been suggested
that, for example, in algorithm configuration quite often features that are seen to have a
substantial impact on the performance of an algorithm are not very well understood. It
could be beneficial for both theoreticians and practitioners to shed light on these effects. To
this end, we have discussed potential problems. It is commonly agreed on that analyzing
feature-based performance is probably out of reach for NP-hard problems like MAX-SAT
and others. On the other hand, even results for much easier problems and algorithms are
currently missing.

It is mentioned that not very often statistical models are used as a starting point for
theoretical investigations. We discuss why this is the case (typically regarded problems
are very difficult to analyze rigorously while the more easily analyzed problems are less
interesting for researchers in the more empirical domains) and that theory for simple models
could already be quite insightful.
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During the discussion Tim Roughgarden’s work on “A PAC approach to application-
specific algorithm selection” is mentioned as a theory-based study of algorithm selection
problems. Furthermore, it is mentioned that in the SAT community the exchange of ideas
between empirically and theoretically oriented researchers works quite well. A possible reason
for this is the fact that the people agree on the problems that are analyzed and that they
agree on common terminology. This is unfortunately not the case in algorithm selection and
configuration where even the terminology needs to be agreed upon.

An idea emerging from this breakout session is to try algorithm selection and configuration
with components that are “hand-picked” from theoreticians, e.g., by selecting only those
which have been analyzed with mathematical rigor and to compare the results that one can
achieve with such an approach with those being obtained without any restriction. The gap
between such figures could serve as an interesting starting point for further discussions and
investigations.

Acknowledgement. Besides the session chairs, the session was attended by Thomas Bäck,
Benjamin Doerr, Marcus Gallagher, Wanru Gao, Holger Hoos, Frank Hutter, Lars Kot-
thoff, Kevin Leyton-Brown, Andres Munoz Acosta, Nysret Muliu, Frank Neumann, Marc
Schoenauer and Hao Wang; we are very thankful for their valuable contributions to the
discussion.

4.2 Controlled Problem Instance Generation
Marcus Gallagher (The University of Queensland – Brisbane, AU)
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In this flex-time session, we discussed current work, open problems and future directions in
controlled (aka targeted or strategic) problem instance generation, as a key component in the
evaluation of algorithm selection and configuration techniques. A photo of the whiteboard
after the session is attached.

Conceptually, for combinatorial. discrete, continuous (or mixed?) black-box optimization
problems, we are interested in the performance of algorithm instances (e.g. from an algorithm
selection or configuration technique) over some set of problems. The set of all problems
may not be interesting (as implied by the No Free Lunch Theorems), since performance (for
many definitions) is equal, on average. However many of these problems are uninteresting
(e.g. “white noise”): we are really interested in the subspace of problems with some sort of
exploitable structure, and/or those with relevance to real-world problems. It is currently
unclear to what extent commonly used benchmark problem sets (e.g. BBOB for continuous
problems) represent the set of “interesting” problems.

For algorithm evaluation, it is desirable to have good coverage of the set of “interesting”
problems when performing experiments. If different algorithms perform well/poorly on
different types of problems, good coverage is important to get a clear picture of this. However
this raises the question of what is meant by “types of problems”. A good part of our
discussion was consequently about problem features – since we need ways of measuring the
characteristics of problems to identify or measure “problem type”. Good features should help
us gain a better understand of algorithm performance. It might also be possible to perform
better experiments if test problems can be generated which vary smoothly with respect to
problem features.
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Several different possibilities were discussed regarding controlled problem instance gener-
ation:

Evolving problems using Genetic Programming. Here we have a symbolic representation
for the problems – representation is clearly a general, important issue.
Use of a heuristic search algorithm (e.g. 1+1-EA) to generate problems with some
desirable property in feature space.
Finding real-world representative problems.
Using surrogate or generative models.
Blending known functions.

Issues around “feature selection” were also discussed. How many features are needed and
how to select them is a issue from Machine Learning. When features are based on sampling
the fitness landscape, the sampling technique and size becomes important. The curse of
dimensionality suggests that more features require a much larger sample size to support
effective estimation.

The session identified many interesting and important issues that would make fruitful
research directions.

Acknowledgement. Besides the session chairs, the session was attended by Wanru Gao,
Pascal Kerschke, Lars Kotthoff, Andres Munoz Acosta, Samadhi Nethmini Nallaperuma,
Mike Preuß, and Heike Trautmann; we are very thankful for their valuable contributions to
the discussion.

4.3 Describing / Characterizing Landscapes of multiobjective
Optimization Problems

Pascal Kerschke (Universität Münster, DE)

License Creative Commons BY 3.0 Unported license
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This is a summary of the breakout session on Describing / Characterizing Landscapes of
multiobjective Optimization Problems, which was held at the Dagstuhl Seminar 16412 on
Automated Algorithm Selection and Configuration on October 13, 2016.

Initiated by recent research results, which started to characterize multiobjective optimiz-
ation problems, this breakout session was originally intended to discuss the following four
issues:
1. What are characteristics / landmarks / properties of a multiobjective landscape?
2. How can we measure the interaction of the objectives (in addition to simply using

indicators)?
3. What could be (cheaply computable) features of a multiobjective landscape?
4. Are there differences across the different domains (continuous, discrete, TSP, etc.)?

However, during the roughly 60-70 minutes of brainstorming, the approx. 10 participants
of this session actually re-defined this session. So, we started with some points of the list
from above and then the discussion took off...
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Measuring the Similarity Between the Objectives

In a first topic, the participants discussed ways to measure the interaction of the objectives (i.e.,
issue 2 from the original questions). The initial idea was to measure the covariances and/or
correlations between the objectives and to somehow estimate the underlying multivariate
distribution. In the single-objective scenario, there seem to exist related approaches, called
density of states. But what would such a similarity information tell us?

Another idea was to have a look at the contour lines of the points in the objective space
and somehow use that information to differ between local and global optima.

Detection of Disconnected Pareto Fronts

Based on the idea of analyzing the Pareto fronts, we came to a discussion on whether it is
possible to detect disconnected Pareto fronts. One possible solution was to have a look at
the objective-wise gradients and see whether they point in opposite directions. Another idea
was to apply a clustering approach to the points of the objective space and use the number
of found (non-dominated) clusters as representatives of disconnected (global) fronts.

Aggregating the Objectives

In a next approach, Carlos Fonseca introduced us to the basic idea of his PhD-thesis, in
which he represented the multiobjective landscape by a single-objective one.

Inspired by the idea of reducing the multiobjective problem to a single-objective one, we
came up with the idea of computing the landscape features objective-wise and aggregating
them afterwards. But then the question would be how to aggregate that information in a
meaningful way and what does it tell us?

Also, is it really useful to spend the same amount of function evaluations for each of the
objectives? Maybe some of the objectives are rather easy and thus cheap to compute, whereas
others are more complex. Therefore, one could also compute surrogate models for each of
the objectives and then use these models to compute numerous (hopefully representative)
landscape features of the original landscape.

Approaching the Problem From Different Angles

For some reason, we mainly focussed on the objective space and tried to think of approaches
on how to characterize the information that’s hidden in there. One idea was to make use
of features from the TSP domain. So for instance, one could have a look at the points (=
cities) in the objective space and compute features based on their distance matrix, MST or
convex hull.

There was also the idea to analyze the path of the (TSP) features across the iterations
of the optimization algorithms. That is, we run the optimization algorithm and for each
generation, we use the current population to compute the (TSP) features and then analyze
how they change over the course of time.

Inspired by the cat-like shapes of the objective space (sketched on the whiteboard), there
were also two more ideas coming up:
1. There should be new benchmark functions; problems with specific shapes such as the

cat-like shape that was sketched on the board.
2. We could (at least for now) skip the landscape features and see how other (promising)

approaches perform. So, one idea was to consider the shape of the sampled objective
space as image and then use a deep-learning neural network for performing algorithm
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selection on the multiobjective problems. This might not give us direct insights into
understanding the characteristics of the problems themselves, but they would at least
provide a solid base line for feature-based algorithm selection models. And we could
afterwards use these results to find problems for which the algorithms behaved differently
and then use that information to develop features which could be more promising for
describing these differences.

Acknowledgement. Besides the session chairs, the session was attended by Michael Em-
merich, Carlos M. Fonseca, Marcus Gallagher, Carlos Ignacio Hernández Castellanos, Frank
Hutter, Manuel López-Ibánez, Andres Munoz Acosta, Heike Trautmann, Markus Wagner,
Hao Wang and Simon Wessing; we are very thankful for their valuable contributions to the
discussion.

4.4 Portfolio-based Methods for Algorithm Selection
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We had a breakout session on portfolio based methods for algorithm selection. The topics we
considered were divided into best practices and hurdles. In the former category, here are
questions the group considered:

Which methods do you prefer and why?
Have you been involved in successful applications
What do you consider the role of features?
Describe your experiences with aslib
Best approaches for deciding what to put in the portfolio
Good ideas you think others don’t know about
How to detect incorrect algorithm behavior
What statistical methods are necessary to ensure validity of results?
How do things change when selecting parallel solvers?

Here are the questions we considered regarding hurdles:
What doesn’t work?
Do we still need selection in an increasingly parallel world?
What interesting findings have you not published?
How important is fancy machine learning? (And, if it’s important, what fancy methods
do you like?)
How is selection connected to PIAC (they are the same; selection is subsumed; . . . ?)

Finally, we discussed the big questions the field should grapple with next. Here is a list
of topics identified by the group.

Parallelism. What if you run everything in parallel?
Tradeoff between restarts and parallel runs
How to find many, truly complementary algorithms?
Is there a sense in which two algorithms can be said to be complementary “always”?
What can we learn from ML literature on ensemble methods?
Methods for regularizing portfolios
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Tradeoff in black-box continuous optimization between gathering data for use in features
and using the same data in the optimization itself
PIAC: predicting parameter values from continuous space

4.5 What can we learn from algorithm selection data?
Marius Lindauer (Universität Freiburg, DE) and Lars Kotthoff (University of British Columbia
– Vancouver, CA)
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Selecting a well-performing algorithm for a given problem instance (e.g., a combinatorial
problem or machine learning data set) often substantially improves the performance compared
to always using the same algorithm. The automation of this process is called automatic
algorithm selection [4] which is often implemented by using machine learning models requiring
a lot of training data to get decent predictions. This training data mainly consist of two
required matrices, i.e., the performance of each algorithm on each instance, and the instance
features for each instance. To reduce the burden on algorithm selection developers to collect
these data and to provide standardized data for comparison of algorithm selectors[3], the
algorithm selection library ASlib [1] was created.

Besides doing algorithm selection experiments on the data in ASlib, the question of the
breakout session was what can we further do with these data to get more insights into the
algorithm selection problem to solve, and to get insights why and on which instances an
algorithm selector performs well.

A first step in this direction is already done in the exploratory data analysis (EDA)
provided on the ASlib website2. A user gets insights in the performance distributions of
each algorithm, performance correlation of pairs of algorithms and distributions of instance
features. To extend this data-driven overview, we discussed further plots to show portfolio
contributions of algorithms [2], statistical significance tests, feature importance and cost of
computing instance features.

Up to now, papers on algorithm selectors often only report how well they perform on
all instances but we lack some detailed analyses which instances they perform well on and
where they fail to select a well-performing algorithm. To this end, we discussed that it
would be nice to have interactive scatter plots showing the performance of the single best
algorithm and an algorithm selector on each instance. Furthermore, a new idea is to train an
easy-to-interpret decision tree to classify on which instances the algorithm selector performs
well. Such plots could be in principle also automatically generated, if ASlib would allow to
upload results from algorithm selection experiments (similar to OpenML [5]).

An further open question is how to automatically pass information extracted by the EDA
to an algorithm selector. For example, if the EDA already figured out that some algorithms
are dominated and not needed for an algorithm portfolio, or which instance features are

2 http://www.aslib.net
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important, the information could be directly exploited for training an algorithm selector.
Right now, this process is still mainly manual.

Currently, ASlib provides 17 algorithm selection benchmarks, all from hard combinatorial
problems. Whether these benchmarks can be called real-world benchmarks is unknown.
However, a mid-term goal of ASib is include even more diverse benchmarks, for example from
the continuous optimization community and from the meta-learning community in machine
learning.

In summary, ASlib was well-received and provides a lot of untouched potential to learn
more about algorithm selection data and the behavior of algorithm selectors on them.

Acknowledgement. Besides the session chairs, the session was attended by Wanru Gao,
Holger Hoos, Nysret Musliu, Samadhi Nethmini Nallaperuma, Marc Schoenauer and Markus
Wagner; we are very thankful for their valuable contributions to the discussion.
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This session was intended for brainstorming on possible new Exploratory Landscape Analysis
(ELA) features that are especially well suited for extracting knowledge from multimodal
optimization problems. However, the discussion centered much more on what the basic
properties of multimodal problems are, or even more general, how multimodal optimization
itself is defined. As the term is relatively young, there are several opinions on the basic ideas
and the need for better definitions was expressed. One example is the optimum definition for
ridge functions: is it a set of points, or an areal structure? This even holds true for plateaus,
which may be considered as a large set of optima or a single optimum (however, this would
be far from a mathematically rigid definition). Detection of a plateau seems to be easy for a
human, and more difficult (but probably possible) automatically, even in high dimensions.
It is also unclear how common such optimum types are for real world problems, but it is
expected that they are of some importance.

16412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1605.07110v3
https://arxiv.org/abs/1605.07110v3


66 16412 – Automated Algorithm Selection and Configuration

Generally, we agreed that we need to rigidly define multimodality, funnel, the whole
vocabulary used for this kind of optimization, and that based on that, we need some generally
accepted measures. For example, how can we express the multimodality of a problem as
compared to another in a value? And how the robustness of peaks?

Another general question that was discussed to some extent was the one for the type of
peaks we actually want to detect. Are we satisfied with good local optima? How many? The
currently employed benchmarks concentrate on multi-global optimization, but the group
considers this rather a special case then of general interest. Additionally, taking into account
the recent developments in deep learning, it may be even satisfactory to find good saddle
points (good in this context means some that are optima in most dimensions but saddle
points in few)? Can we derive benchmark functions with saddle points? The positivity of
the Hessian would be a good indicator. We expect interesting results from optimization
experiments on such problems as saddle points are difficult to escape. At least, an evolutionary
algorithm would probably be slowed down and it could happen that this prematurely triggers
termination criteria, making the problem even the more difficult.

The saddle points discussion was based on this work: Deep Learning without Poor Local
Minima by Kenji Kawaguchi: https://arxiv.org/abs/1605.07110

Acknowledgement. Besides the session chairs, the session was attended by Carlos M.
Fonseca, Marcus Gallagher, Pascal Kerschke, Andres Munoz Acosta, Heike Trautmann and
Simon Wessing; we are very thankful for their valuable contributions to the discussion.

4.7 Online and Adaptive Methods
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Preliminary

This document is the main outcome of the breakout session about Online and Adaptive
Methods that took place during Dagstuhl Seminar Algorithm Selection and Configuration –
October 10-15.

4.7.1 Monday Flex group meeting

The whole discussion started when Thomas Stützle heavily criticized the long-known diagram,
originally proposed by Eiben et al. in their 1999 paper in IEEE TEC [1]. Figure 1 is an
adaptation of the initial diagram, taken from [2].

Some mathematical framework was proposed to the discussion by Anne Auger, quickly
supported by Carlos Fonseca . . . as this was very close to his own proposal, that he presented
on the following Tuesday morning during his short talk about dynamical systems [3]. The
discussion then tried to instantiate known instances of parameter setting withing this model,
modifying the model itself when necessary – and partly continued during the following days.

At the end of the Dagstuhl seminar, all participants had agreed on the following proposal,
that is now offered to the whole community in the hope it can be adopted and improved in
order to somehow represent all know instances of parameter setting.
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Figure 1 Doerr & Doerr’s version [2] of Eiben et al.’s classification diagram [1].

4.7.2 The proposal

xt is the population at large (points of the search space). Thus here, xt ∈ Π, space of
populations of search points. Note that this includes algorithms with archives, but not
algorithms that make use of all population from the very beginning at all steps, as pointed
out by Michael).
σt is a set of parameters that are used to update the population, and are themselves
updated (or not).
ut (and vt) are uniformly and independently generated random numbers

4.7.2.1 Static parameter setting{
xt+1 = F (xt, σt, ut)
σt+1 = σ0

(1)

Some people (lead by Anne Auger and Benjamin Dörr) suggested to replace ut with ut+1 in
this equation. Opponents (Carlos Fonseca, Marc Schoenauer . . . ) agreed in the end that it
is a minor and formal detail.

4.7.2.2 Non-adaptive / feedback-free parameter setting{
xt+1 = F (xt, σt, ut)
σt+1 = G(σt, t, vt)

(2)

4.7.2.3 Adaptive parameter setting{
xt+1 = F (xt, σt, ut)
σt+1 = G(xt, σt, ut)

(3)

with 2 subsets:
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4.7.2.4 Functionally dependent{
xt+1 = F (xt, σt, ut)
σt+1 = G(F (xt, σt, ut))

(4)

Note: the second equation could be written as σt+1 = G(xt+1) but is kept that way to be
consistent with the usual form of dynamical system definition.

4.7.2.5 Self-adjusting

This is the part (name and equations) that was most heavily discussed – and no real consensus
was reached.{

xt+1 = F (xt, σt, ut)
σt+1 = G(xt, ut)

(5)

4.7.3 Self-adaptive

The formal definitions above lead to unforeseen difficulties when it came to address self-
adaptive properties. Two proposals were made:

Hide the mutation parameters in the definition of the state space, championed by Marc
Schoenauer;
Create some intermediate step to reflect self- property, proposed by Carlos Fonseca.

4.7.3.1 Changing the State Space

The dynamical system formulation is cool – it allows mathematical proofs depending on
properties of F and G (see previous work from Anne Auger, and [3] in this document). It
should be preserved/extended by relaxing the definition of the first part of the state space
where xt ’lives’ (thus meeting the more general formulation that Anne had initially proposed
:-)

If you allow the xt in the above dynamical systems definitions to be something else than
a population of search points, this could cover both issues of EDAs and self-adaptive:

For EDAs, it should be the distribution dt that evolves. Then function F describes
how the distribution is updated (including sampling), and σ the parameters of this
sampling/adaptation.
For self-adaptive algorithms, it should be S⊗×, i.e. representing points of the search space
to which are attached some parameters (e.g., the mutation parameters in self-adaptive
ES, the crossover bit for Spear’s GA, etc).

4.7.3.2 Adding Intermediate Stages

For self-adaptation:
σt+ 1

2
= f1(σt, ut)

xt+ 1
2

= f2(xt, σt+ 1
2
, ut)

xt+1 = f3(xt+ 1
2
)

σt+1 = f4(xt+ 1
2
, σt+ 1

2
)

(6)
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and for self-adjusting:


xt+ 1

2
= f1(xt, σt, ut)

xt+1 = f2(xt+ 1
2
)

σt+ 1
2

= f3(xt+ 1
2
, σt)

σt+1 = f4(xt, xt+ 1
2
, σt+ 1

2
)

(7)

4.7.3.3 Other issues with self-adaptive setting

Does self-adaptation really work? The nomenclature is unclear, there are differences in
opinions about what’s adaptive and what’s not (see Section 4.7.2).
The performances of self-adaptation need to be compared to properly-tuned algorithms.
In particular

Ultimate test: Can self-adaptive method recover the theoretically-best schedule?
Two mandatory baselines for all comparisons: random choice, and oracle.

References
1 A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary al-

gorithms. IEEE Transactions on Evolutionary Computation 3(2): 124–141, 1999.
2 B. Doerr and C. Doerr. Optimal Parameter Choices Through Self-Adjustment: Applying

the 1/5-th Rule in Discrete Settings. In S. Silva and A.I. Esparcia-Alcázar, editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2015, pages
1335–1342, 2015.

3 C. Fonseca. Optimisation Algorithm Design: A Control Engineering Perspective. Dagstuhl
Seminar on Automated Algorithm Selection and Configuration, 2016.
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We discussed industrial and non-profit applications of meta-algorithmics that can be roughly
grouped in three different categories:

4.8.1 Automated Model Lifecycle Management

The First and biggest application area we see is the automatic creation, adaptation, and risk
management of data science model. This increasingly becomes a need as the availability
of more data allows for individualization of predictive and prescriptive models which are
deployed and dynamically changing environments. Real-world examples for this technology
are, e.g.
1. In Education, the individualization of learning, motivation, content selection, and exercise

selection.
2. In Heavy Industries, the management of physical assets.
3. In Medicine, the personalization of healthcare.
4. In Transportation, the provisioning of detailed forecasting models of transportation times

in different regions, cities and for different modes of transportation.
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In all these domains, the assurance of data science technology will be key to promote
wide-spread adoption.

4.8.2 One-of strategic decision support

The second area of application are data science problems that are singular and strategic
rather than operational and tactical. Meta-algorithmics can help here to bridge the gap
between predictive and prescriptive modeling by automatically providing the ability to
phenomenologically study uncertainties in the prediction of predictive models that provide
the input for down-stream prescriptive analytics. Moreover, off-line preparation can help
learn adaptive control strategies that help guide the decision process as a strategic decision
making event unfolds. One example where such a technology could be deployed is in the
management of disasters.

4.8.3 Combinatorial Design

Finally, we discussed the problem of assembling given parts to a whole that can be expected
to match up will with a given set of requirements. For example, think of a team of experts
that needs to be assembled to work on a particular project. Both experts can project are
described with certain features, and we need to decide which team configuration will have the
best outlook to handle the project well. For such a scenario, portfolio selection techniques are
applicable, Moreover, there is a research demand here regarding the design and automatic
generation of predictive models that predict team performance.

4.9 Pitfalls and Best Practices for Algorithm Configuration
Marius Lindauer and Frank Hutter (Universität Freiburg, DE)
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Automatic algorithm configuration [4] helps developers and users of all types of algorithms
to tune their parameters (e.g., options of search heuristics or hyperparameters of machine
learning algorithms). This can often substantially improve performance (e.g., running time
or prediction error). Applying and comparing automatic algorithm configuration tools (such
as ParamILS [4], irace [8], SMAC [3] and GGA [1]) is related to empirical benchmarking
and can include many subtle pitfalls, even if reliable benchmark libraries such as AClib [6]
are used. In the following, we summarize the discussion on this topic in a breakout session
at the Dagstuhl seminar “Automated Algorithm Selection and Configuration”.

A common mistake in tuning parameters (also in manual tuning and development of
algorithms) is to optimize parameters on the same instances that are used later to evaluate
their performance. This can lead to overoptimistic performance estimates and over-tuning
effects [5]. To avoid this problem, we recommend to first split the available instances into
a training and test set, using the training instances for tuning and the test instances to
report the performance on. Using an outer cross-validation would estimate the individual
performances with lower variance, but it is typically infeasible in algorithm configuration since
each single algorithm configuration run is already very expensive. Also, if the computational
budget allows for more than one algorithm configuration experiment, we recommend to rather
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run experiments on k algorithm configuration benchmarks than a k-fold cross-validation on
a single one; this helps to also capture differences across benchmarks.

Related to performance assessment in general, measuring running time can have subtle
problems; e.g., it can be influenced by noise induced by other processes running on the same
machine. An alternative to measuring running time could be measuring MEMS [7], i.e., the
number of memory accesses. MEMS can be measured with a very fine-grained resolution and
therefore allow to precisely measure the performance of fast algorithms. To report running
time in a publication, an initial study would be necessary to find a mapping from MEMS to
running time (which should be a simple linear model).

A wide variety of pitfalls is related to the target algorithm being optimized and the
wrapper around it (a communication layer between the algorithm configuration procedure
and the target algorithm to be optimized). For example, some target algorithms can measure
their own running time, but we have experienced that some can also return negative running
time. Another example is that some users/configurators blindly optimize for running time
without checking that the target algorithm has properly returned; since many algorithms
have some bugs, this would often lead to optimizing the running time to crash. Therefore,
we recommend to use a uniform and robust wrapper which also handles the running time
measurement and resource limitations (e.g., running time or memory limits); our own
solution to this is a generic Python wrapper that is easy to instantiate for a given algorithm:
https://github.com/mlindauer/GenericWrapper4AC.

Further pitfalls are related to the parameter configuration space defined by value bounds
for all parameters of a target algorithm. In order to open up the greatest performance
potential, our general recommendation is to include as many meaningful parameters as
possible to explore within a fixed computational budget, and to also choose their ranges large
enough to prevent most of human bias. However, adding very large bounds (e.g., full 32bit
integer ranges) can make it very hard for configurators to find a well-performing parameter
configuration. Another pitfall is to add parameters to the configuration space that change the
semantics of the algorithm or performance metric; e.g., optimizing the solution quality gap
of the mixed-integer programming (MIP) solver CPLEX will drastically reduce the running
time, but the resulting CPLEX configuration may only return poor solutions of the given
MIP problems.

Many other issues were touched on in the session that would go beyond the scope of this
short summary. Overall, when working with algorithms, many things can go wrong. As we
use automated methods, even more things tend to go wrong. Therefore, it is important to
be aware of common pitfalls and best practices to avoid them. In the upcoming book on
“Empirical Algorithmics”, Holger Hoos [2] lists many useful best practices related to empirical
benchmarking. Katharina Eggensperger, Marius Lindauer, and Frank Hutter are currently
working on an article that describes best practices and pitfalls in algorithm configuration in
more detail.
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Wanru Gao, Holger Hoos, Laetitia Jourdan, Lars Kotthoff, Manuel López-Ibánez, Nysret
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4.10 Multiobjective Optimisation Algorithm Selection and
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This breakout session, which was held on October 11, 2016, aimed at discussing Algorithm
Selection and Configuration in Multiobjective Optimisation (MO) contexts. In particular,
the following topics were proposed:
1. Selection and configuration of multiobjective optimisation algorithms
2. Algorithm selection and configuration under multiple performance criteria

Automated configuration of multiobjective optimisation algorithms was considered first.
It was noted that the outcome of a MO optimisation run is often a set of non-dominated
solutions, which makes it difficult to compare such outcomes directly. In the literature,
two approaches have been proposed to assess the performance of MO algorithms: quality
indicators and the attainment function. Quality indicators map non-dominated point sets onto
real values, and make it easy to tune MO algorithms with existing automated configuration
tools. However, the choice of quality indicator may influence the tuning process considerably,
since different quality indicators may disagree about which of two outcomes is best. It was
pointed out that this is particularly noticeable as the number of objectives increases. In
contrast, the attainment function approach deals with the distribution of non-dominated
point sets directly, and allows the performance of two different algorithms to be compared
(to an extent) by means of hypothesis tests, although their power is perceived to be low.
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Additionally, it is still not clear how attainment-function based comparisons can be performed
when several benchmark problems are used for tuning.

The availability of multiple quality indicators lead to the discussion of the second topic.
Unless there is a clear preference for a given indicator, configuring algorithms to perform well
with respect to several indicators follows naturally. Questions then arise on how to aggregate
information from different indicators, especially when they are conflicting. Using quality
indicators at a higher level to aggregate different quality-indicator values was suggested.
Another instance of multiple configuration criteria are the runtime and solution-quality views
of performance. It was argued that, by including the time at which individual solutions are
found in a run as an additional objective, the resulting augmented sets of non-dominated
solutions characterise the anytime behaviour of the corresponding algorithms. Tuning for
anytime performance would then be implemented by applying quality indicators, as before.
The issue of how to measure runtime (computing time versus number of function evaluations,
for example) was also considered an important issue, with practical effects on configuration
results.

Finally, it was felt that the number of established multiobjective benchmark problems is
still very limited, despite on-going efforts to address that issue, and that there is insufficient
understanding of what multiobjective problem features are relevant, and how their presence
may affect algorithm performance. This discussion was continued in another breakout session
on the characterisation of the landscapes of multiobjective optimisation problems. Other
topics that were identified, but could not be discussed for lack of time, include the tuning
of interactive multiobjective optimisation algorithms and the interplay between preference
articulation and algorithm selection and configuration.
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