Report from Dagstuhl Seminar 16421

Universality of Proofs

Edited by

Gilles Dowek!, Catherine Dubois?, Brigitte Pientka3, and
Florian Rabe*

INRIA & ENS Cachan, FR, gilles.dowek@ens-cachan.fr
ENSIIE — Evry, FR, catherine.dubois@ensiie.fr

McGill University — Montreal, CA, bpientka@cs.mcgill.ca
Jacobs University Bremen, DE, f.rabe@jacobs-university.de

W N =

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 16421 Universality
of Proofs which took place October 16-21, 2016.

The seminar was motivated by the fact that it is nowadays difficult to exchange proofs from
one proof assistant to another one. Thus a formal proof cannot be considered as a universal
proof, reusable in different contexts. The seminar aims at providing a comprehensive overview of
the existing techniques for interoperability and going further into the development of a common

objective and framework for proof developments that support the communication, reuse and
interoperability of proofs.

The seminar included participants coming from different fields of computer science such as
logic, proof engineering, program verification, formal mathematics. It included overview talks,
technical talks and breakout sessions. This report collects the abstracts of talks and summarizes
the outcomes of the breakout sessions.

Seminar October 16-21, 2016 — http://www.dagstuhl.de/16421

1998 ACM Subject Classification Semantics / Formal Methods, Verification / Logic

Keywords and phrases Formal proofs, Interoperability, Logical frameworks, Logics, Proof formats,
Provers, Reusability

Digital Object Identifier 10.4230/DagRep.6.10.75

1 Executive Summary

Gilles Dowek
Catherine Dubois
Brigitte Pientka
Florian Rabe

License) Creative Commons BY 3.0 Unported license
© Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

Proof systems are software systems that allow us to build formal proofs, either interactively
or automatically, and to check the correctness of such proofs. Building such a formal proof is
always a difficult task — for instance the Feit-Thompson odd order theorem, the CompCert
verified C compiler, the selL4 verified operating system micro-kernel, and the proof of the
Kepler conjecture required several years with a medium to large team of developers to be
completed. Moreover, the fact that each of these proofs is formalized in a specific logic and
the language of a specific proof tool is a severe limitation to its dissemination within the
community of mathematicians and computer scientists. Compared to many other branches of

Except where otherwise noted, content of this report is licensed
37 under a Creative Commons BY 3.0 Unported license

Universality of Proofs, Dagstuhl Reports, Vol. 6, Issue 10, pp. 75-98

Editors: Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16421
http://dx.doi.org/10.4230/DagRep.6.10.75
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

76

16421 — Universality of Proofs

computer science, for instance software engineering, we are still very far from having off-the-
shelf and ready-to-use components, “proving in the large” techniques, and interoperability of
theory and systems. However, several teams around the world are working on this issue and
partial solutions have been proposed including point-to-point translations, proof standards,
and logical frameworks. Yet, a lot still remains to be done as there is currently no overarching
general foundation and methodology.

This seminar has been organized to bring together researchers from different communities,
such as automated proving, interactive proving and SAT/SMT solving as well as from logic,
proof engineering, program verification and formal mathematics. An essential goal has been
to form a community around these issues in order to learn about and reconcile these different
approaches. This will allow us to develop a common objective and framework for proof
developments that support the communication, reuse, and interoperability of proofs.

The program of the seminar included introductions to different methods and techniques,
the definition of precise objectives, and the description of recent achievements and current
trends. It consisted of 30 contributed talks from experts on the above topics and six breakout
sessions on major problems: theory graph — based reasoning, benchmarks, conflicting logics
and system designs, proof certificates, design of a universal library of elementary mathematics,
and a standard for system integration and proof interchange. The contributed talks took place
in the morning, and two parallel breakout sessions each took place on Monday, Tuesday and
Thursday afternoon, followed by plenary discussions organized by each session’s moderator.

The organizers would like to thank the Dagstuhl team and all the participants for making
this first seminar a success and, hopefully, an event to be repeated.

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

2 Table of Contents

Executive Summary
Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

Overview of Talks

Translating between Agda and Dedukti
Andreas Martin Abel e

Transferring Lemmas and Proofs in Isabelle/HOL: a Survey
Jesis Maria Aransay Azofrao e

Uniform Proofs via Shallow Semantic Embeddings?
Christoph Benzmdiller e e e

Are Translations between Proof Assistants Possible or Even Desirable at All?
Jasmin Christian Blanchette e

Using External Provers in Proof Assistants
Frédéric Blanqui e e e e e e e

The Continuity of Monadic Stream Functions
Venanzio Capretta e

Reengineering Proofs in Dedukti: an Example
Gilles Dowek e

FoCalLiZe and Dedukti to the Rescue for Proof Interoperability
Catherine Dubois e

We Need a Better Style of Proof
William M. Farmer o e

Comparing Systems for Reasoning with Higher-Order Abstract Syntax Representa-
tions
Amy Felty 0 e

Aligning Concepts across Proof Assistant Libraries
Thibault Gauthier e

Extending Higher-order Logic with Predicate Subtyping
Frédéric Gilbert e

Inference Systems for Satisfiability Problems
Stéphane Graham-Lengrand

Not Incompatible Logics
Olivier Hermant o et e

Lazy Proofs for DPLL(T)-Based SMT Solvers
Guy Katz

The Triumvirate of Automation, Expressivity, and Safety
Chantal Keller o e

Reproducibility, Trust, and Proof Checkings
Dale Miller o e e

Benchmarks for Mechanized Meta-theory: a very Personal and Partial View
Alberto Momigliano

77

16421

78

16421 — Universality of Proofs

Mechanizing Meta-Theory in Beluga
Brigitte Pientka e

On Universality of Proof Systems
Elaine Pimentel e

MMT: A UniFormal Approach to Knowledge Representation
Florian Rabe

Higher Order Constraint Logic Programming for Interactive Theorem Proving
Claudio Sacerdoti Coen e

LLFP: a Framework for Interconnecting Logical Frameworks
Tvan Scagnetto L e

External termination proofs for Isabelle with IsaFoR and CeTA
René Thiemann 0 o 0 e e e e

Parsing Mathematics by Learning from Aligned Corpora and Theorem Proving
Josef Urban e

Plugging External Provers into the Rodin Platform
Laurent Voisin

Computation in Proofs
Freek Wiedigk o e

Ancient History of the Quest for Universality of Proofs
Bruno Woltzenlogel Paleo e

First-Order Conflict-Driven Clause Learning from a Proof-Theoretical Perspective
Bruno Woltzenlogel Paleo e

Working groups

Breakout Session on Theory Graph Based Reasoning
William M. Farmer 0 i e e

Breakout Session on Conflicting Logics and System Designs
Olivier Hermant and Chantal Keller

Breakout Session on a Universal Library
Michael Kohlhase and Catherine Dubois

Breakout session on A standard for system integration and proof interchange
Ramana Kumar and Florian Rabe

Breakout Session on Proof Certificates
Dale Miller e

Breakout Session on Benchmarks
Alberto Momigliano and Amy Felty

Participants

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

3 Overview of Talks

3.1 Translating between Agda and Dedukti
Andreas Martin Abel (Chalmers UT — Géteborg, SE)

License) Creative Commons BY 3.0 Unported license
© Andreas Martin Abel

Boespflug and Burel have designed CoqInE, a translation of Coq’s Calculus of Inductive
Constructions into Dedukti, the logical framework with rewriting. We conjecture a similar
translation could be possible from Agda to Dedukti. The reverse translation is possible since
Agda recently got extended with rewrite tools. In this talk, we propose an implementation
of translations between Agda and Dedukti.

3.2 Transferring Lemmas and Proofs in Isabelle/HOL: a Survey
Jesis Maria Aransay Azofra (University of La Rioja — Logrono, ES)

License @@ Creative Commons BY 3.0 Unported license
© Jesis Marfa Aransay Azofra

Data types admit different representations. The reasons to prioritise one or another range
from efficiency to simplicity. Interactive theorem provers allow users to work with these
representations and offer tools that ease their communication. These tools are required to
preserve the formalism among the representations. In this talk we present some use cases in
the proof assistant Isabelle/HOL, defining the scope of each of these tools and their possible
scenarios.

3.3 Uniform Proofs via Shallow Semantic Embeddings?
Christoph Benzmiiller (FU Berlin, DE)

License) Creative Commons BY 3.0 Unported license
© Christoph Benzmiiller
Main reference C. Benzmiiller, B. Woltzenlogel Paleo, “The Inconsistency in Gédel’s Ontological Argument: A
Success Story for Al in Metaphysics”, IJCAI 2016, pp. 936-942, 2016.
URL http://www.ijcai.org/Abstract/16/137

Many classical and non-classical logics can be elegantly mechanised and automated by
exploiting shallow semantical embeddings in classical higher-order logic. In recent research
this approach has been successfully applied in various disciplines, including metaphysics,
mathematics and artifical intelligence. Moreover, it has recently been utilised as the core
framework in my (awarded) lecture course on Computational Metaphysics at Freie Universitét
Berlin. In this talk I demonstrate the approach and discuss its potential for achieving uniform
proofs across various logics.

References
1 Christoph Benzmiiller and Dana Scott, Axiomatizing Category Theory in Free Logic. arXiv,
http://arxiv.org/abs/1609.01493, 2016.

79

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ijcai.org/Abstract/16/137
http://www.ijcai.org/Abstract/16/137
http://www.ijcai.org/Abstract/16/137

80

16421 — Universality of Proofs

2 Christoph Benzmiiller and Dana Scott, Automating Free Logic in Isabelle/HOL. In Math-
ematical Software — ICMS 2016, 5th International Congress, Proceedings (G.-M. Greuel, T.
Koch, P. Paule, A. Sommese, eds.), Springer, LNCS, volume 9725, pp. 43-50, 2016.

3 Christoph Benzmiiller, Max Wisniewski and Alexander Steen, Computational Metaphysics
— Bewerbung zum zentralen Lehrpreis der Freien Universitét Berlin, FU Berlin, 2015.

4 Christoph Benzmiiller and Bruno Woltzenlogel Paleo, The Inconsistency in Gédel’s On-
tological Argument: A Success Story for AI in Metaphysics. In IJCAI 2016 (Subbarao
Kambhampati, ed.), AAATI Press, volume 1-3, pp. 936-942, 2016.

5 Christoph Benzmiiller and Bruno Woltzenlogel Paleo, Automating Gédel’s Ontological
Proof of God’s Existence with Higher-order Automated Theorem Provers. In ECAT 2014
(Torsten Schaub, Gerhard Friedrich, Barry O’Sullivan, eds.), IOS Press, Frontiers in Arti-
ficial Intelligence and Applications, volume 263, pp. 93 — 98, 2014.

3.4 Are Translations between Proof Assistants Possible or Even
Desirable at All?

Jasmin Christian Blanchette (MPI fiir Informatik — Saarbricken, DE)

License @ Creative Commons BY 3.0 Unported license
© Jasmin Christian Blanchette
Joint work of Jasmin Christian Blanchette, Sascha Bohme, Mathias Fleury, Steffen Juilf Smolka, Albert
Steckermeier
Main reference J. C. Blanchette, S. Bohme, M. Fleury, S.J. Smolka, A. Steckermeier,“Semi-intelligible Isar proofs
from machine-generated proofs”, J. Autom. Reasoning, Vol. 56(2), pp. 155-200, Springer, 2016.
URL https://dx.doi.org/10.1007/510817-015-9335-3

Combining proofs developed using different proof assistants would seem to be highly desirable.
After all, a lot of effort goes into formalizing a result in one assistant, and it makes sense to
reuse it as much as possible. However, there are lots of obstacles before we have tools that
can be widely deployed. When Isabelle/HOL users port analysis results from HOL Light,
in practice they cannot rely on automatic bridges such as OpenTheory, even though both
systems are based on simple type theory. I will review different approaches to prove exchange
and emphasize their shortcomings from the viewpoint of end users. I will also briefly describe
my work on translation of proofs between automatic theorem provers and Isabelle/HOL.

3.5 Using External Provers in Proof Assistants
Frédéric Blanqui (ENS - Cachan, FR)

License) Creative Commons BY 3.0 Unported license
© Frédéric Blanqui
URL http://cl-informatik.uibk.ac.at/software/cpf/

Using external provers in proof assistants is an example of small scale inter-operability. It
relieves proof assistant users and proof assistant developers. The main obstacle is to be
able to certify the results of the external prover. It is now well established for proving
propositional or first-order subgoals, except perhaps in proof assistants using dependent
types. But it is also possible to use external provers for termination and confluence problems.
Indeed, since 2009, there is a common format called CPF for termination certificates and
certified tools to check their correctness.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://dx.doi.org/10.1007/s10817-015-9335-3
https://dx.doi.org/10.1007/s10817-015-9335-3
https://dx.doi.org/10.1007/s10817-015-9335-3
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://cl-informatik.uibk.ac.at/software/cpf/

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

3.6 The Continuity of Monadic Stream Functions
Venanzio Capretta (University of Nottingham, GB)

License) Creative Commons BY 3.0 Unported license
© Venanzio Capretta

Streams are infinite sequences of values. They inhabit a frontier region of constructive
mathematics and computer science: they cannot be represented fully inside human minds and
computer memories, but they are omnipresent as input, output and interactive behaviour.

Brouwer formulated the notion of “choice sequence”, a progression of values that is not
generated by an effective rule, but rather by a creative subject. Alternatively, they may model
repeated measurement of physical phenomena or interactive input from a non-predictable
user.

If the streams themselves are not computable, functions on them, realized as programs,
must be effective. From this requirement, Brouwer concluded that a Continuity Principle
must hold: all functions on streams of natural numbers are continuous. This means that the
value of a function on a specific stream only depends on a finite initial segment.

The principle seems to be justifiable in a computational view and is certainly true from
the meta-theoretical standpoint. We may be tempted to add it in a formulation of the
foundations of constructive mathematics. However, recently Martin Escardé discovered that
if we add the Continuity Principle to Constructive Type Theory, we obtain a contradiction.
I will discuss the paradox and the possible avenues of repair. One way is to weaken the
principle, using an existential quantifier that does not provide a witness.

I suggest a different solution. In the original formulation, we consider functions on the
internal type of streams, encoded as functions from natural numbers to natural numbers.
But this type does not capture the idea of an unpredictable sequence not subject to rule and
possibly coming from an outside source. I propose that “monadic streams” are a better model:
these are sequences in which a monadic action must be executed to obtain the next element
and the continuation. A monadic action is any of a wide class of enriched structures and
modes of value presentation. Monadic programming has been very successful in modelling
interaction and side effects in functional programming.

I propose a version of the Continuity Principle for monadic streams. This has great po-
tential not only as a foundational theory but in practical applications. Monadic streams have
already been successfully used in functional reactive programming and game implementation.
The principle applies to functions on monadic streams that are polymorphic in the monad
and natural on it. They are a reasonable description of mappings on sequences that do
not depend on how the sequence is generated. I will prove that these functions are always
continuous.

I think these issues are extremely important for the future of computer-assisted math-
ematics. Monadic streams are a very promising data structure, needed to model reactive
continuous processes. This work shows that they are also relevant in the design of the logical
principles underlying formalized mathematics.

81

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

82

16421 — Universality of Proofs

3.7 Reengineering Proofs in Dedukti: an Example

Gilles Dowek (INRIA & ENS Cachan, FR)

License @ Creative Commons BY 3.0 Unported license
© Gilles Dowek

The system Dedukti is a logical framework. We illustrate how it can be used to reengineer
proofs with the example of the translation to Simple type theory of proofs expressed in the
Calculus of constructions.

3.8 FoCaliZe and Dedukti to the Rescue for Proof Interoperability
Catherine Dubois (ENSIIE — Evry, FR)

License) Creative Commons BY 3.0 Unported license
© Catherine Dubois
Joint work of Raphaél Cauderlier, Catherine Dubois

We propose a methodology to combine proofs coming from different provers relying on
Dedukti as a common formalism in which proofs can be translated and combined. To relate
the independently developed mathematical libraries used in proof assistants, we rely on the
structuring features offered by FoCaLiZe. We illustrate this methodology on the Sieve of
Eratosthenes, which we prove correct using HOL and Coq in combination.

3.9 We Need a Better Style of Proof
William M. Farmer (McMaster University — Hamilton, CA)

License () Creative Commons BY 3.0 Unported license
© William M. Farmer

Proofs serve several diverse purposes in mathematics. They are used to communicate
mathematical ideas, certify that mathematical results are correct, discover new mathematical
facts, learn mathematics, establish the interconnections between mathematical ideas, show
the universality of mathematical results, and create mathematical beauty. Traditional proofs
and (computer-supported) formal proofs do not fulfill these purposes equally well. In fact,
traditional proofs serve some purposes much better than formal proofs, and vice versa. For
example, traditional proofs are usually better for communication, while formal proofs are
usually better for certification. We compare both traditional and formal proofs with respect
to these seven purposes and show that both styles of proof have serious shortcomings. We
offer a new style of proof in which (1) informal and formal proof components are combined
(in accordance with Michael Kohlhase’s notion of flexiformality), (2) results are proved
at the optimal level of abstraction (in accordance with the little theories method), and
(3) cross-checks are employed systematically. We argue that this style of proof fulfills the
purposes of mathematical proofs much better than both traditional and formal proofs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

3.10 Comparing Systems for Reasoning with Higher-Order Abstract
Syntax Representations

Amy Felty (University of Ottawa, CA)

License @@ Creative Commons BY 3.0 Unported license
© Amy Felty
Joint work of Amy Felty, Alberto Momigliano, Brigitte Pientka

Over the past three decades, a variety of meta-reasoning systems which support reasoning
about higher-order abstract specifications have been designed and developed. We summarize
our work on surveying and comparing four meta-reasoning systems, Twelf, Beluga, Abella and
Hybrid, using several benchmarks from the open repository ORBI that describes challenge
problems for reasoning with higher-order abstract syntax representations. In particular,
we investigate how these systems mechanize and support reasoning using a context of
assumptions. This highlights commonalities and differences in these systems and is a first
step towards translating between them.

3.11 Aligning Concepts across Proof Assistant Libraries

Thibault Gauthier (Universitit Innsbruck, AT)

License) Creative Commons BY 3.0 Unported license
© Thibault Gauthier
Joint work of Thibault Gauthier, Cezary Kaliszyk

As the knowledge available in the computer understandable proof corpora grows, recognizing
repeating patterns becomes a necessary requirement in order to organize, synthesize, share,
and transmit ideas. In this work, we automatically discover patterns in the libraries of
interactive the- orem provers and thus provide the basis for such applications for proof
assistants. This involves detecting close properties, inducing the presence of matching
concepts, as well as dynamically evaluating the quality of matches from the similarity
of the environment of each concept. We further propose a classification process, which
involves a disambiguation mechanism to decide which concepts actually represent the same
mathematical ideas. We evaluate the approach on the libraries of six proof assistants based
on different logical foundations: HOL4, HOL Light, and Isabelle/HOL for higher-order logic,
Coq and Matita for intuitionistic type theory, and the Mizar Mathematical Library for set
theory. Comparing the structures available in these libraries our algorithm automatically
discovers hundreds of isomor- phic concepts and thousands of highly similar ones.

3.12 Extending Higher-order Logic with Predicate Subtyping
Frédéric Gilbert (ENS — Cachan, FR)

License) Creative Commons BY 3.0 Unported license
© Frédéric Gilbert

Predicate subtyping is an extension of higher-order logic where the grammar of types is
enriched with a construction for restricted comprehension allowing to define, for any type
A and any predicate P on A, a new type {A | P}. The inhabitants of such a type are the
inhabitants t of A for which P(t) is provable. As a consequence, type-checking becomes

83

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

84

16421 — Universality of Proofs

undecidable. We present a possible formalization of predicate subtyping, which can be the
base of a formalization of the proof assistant PVS. We also present a similar system using
explicit proofs and coercions. This system is used as a lightweight language for predicate
subtyping. It is also a first step towards the expression of predicate subtyping in a universal
system.

3.13 Inference Systems for Satisfiability Problems
Stéphane Graham-Lengrand (Ecole Polytechnique — Palaiseau, FR)

License @ Creative Commons BY 3.0 Unported license
© Stéphane Graham-Lengrand
Joint work of Maria Paola Bonacina, Stéphane Graham-Lengrand, Natarajan Shankar

One of the most popular approaches for solving propositional SAT problems is CDCL (Conflict-
Driven Clause Learning), a variant of DPLL where model construction steps alternate with
conflict analysis steps. In terms of proof theory, this is an alternation between bottom-up
and top-down applications of rules from an inference system.

MCSat is a methodology for generalising CDCL to other theories than propositional
logic. It thereby addresses (quantifier-free) SAT-Modulo-Theories problems, but in a way
that seems rather different from the widely used architecture where DPLL interacts with the
combination, by the Nelson-Oppen method, of theory-specific decision procedures.

We identify the notion of an MCSat-friendly inference system, and define a generic
MCSat calculus that is sound and complete for satisfiability in the union of n arbitrary
theories (including for instance propositional logic), as long as each of them comes with an
MCSat-friendly inference system.

We show how the Nelson-Oppen method is a particular case of our MCSat-combination
method, reconciling the widely-implemented technique with the new MCSat ideas.

References

1 M. P. Bonacina, S. Graham-Lengrand, and N. Shankar. A model-constructing framework
for theory combination. Research report, Universita degli Studi di Verona — SRI Interna-
tional — CNRS — INRIA, 2016. Available at http://hal.archives-ouvertes.fr/hal-01425305

2 Leonardo de Moura and Dejan Jovanovié. A model-constructing satisfiability calculus. In
Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Proc. of the 14th Int.
Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI), volume 7737
of LNCS, pages 1-12. Springer, 2013.

3 Dejan Jovanovié¢, Clark Barrett, and Leonardo de Moura. The design and implementation
of the model-constructing satisfiability calculus. In Barbara Jobstman and Sandip Ray,
editors, Proc. of the 13th Conf. on Formal Methods in Computer Aided Design (FMCAD).
ACM and IEEE, 2013.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://hal.archives-ouvertes.fr/hal-01425305

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

3.14 Not Incompatible Logics
Olivier Hermant (Ecole des Mines de Paris, FR)

License) Creative Commons BY 3.0 Unported license
© Olivier Hermant

The formalisms used to express proofs are most of the time incompatible, either in a strong
form, inconsistent with each other, or in a weaker form, leading to different properties of the
logic.

In this talk, I introduce the story of overcoming this difficulty on the example of classical
and intuitionistic logic.

3.15 Lazy Proofs for DPLL(T)-Based SMT Solvers
Guy Katz (Stanford University, US)

License) Creative Commons BY 3.0 Unported license
© Guy Katz
Joint work of Guy Katz, Clark Barrett, Cesare Tinelli, Andrew Reynolds, Liana Hadarean
Main reference G. Katz, C. Barrett, C. Tinelli, A. Reynolds, L. Hadarean, “Lazy Proofs for DPLL(T)-Based SMT
Solvers”, in Proc. of the 16th Int’l Conf. on Formal Methods in Computer-Aided Design
(FMCAD), pp. 93-100, 2016.
URL https://stanford.edu/~guyk/pub/FMCAD2016.pdf

With the integration of SMT solvers into analysis frameworks aimed at ensuring a system’s
end-to-end correctness, having a high level of confidence in these solvers’ results has become
crucial. For unsatisfiable queries, a reasonable approach is to have the solver return an
independently checkable proof of unsatisfiability. We propose a lazy, extensible and robust
method for enhancing DPLL(T)-style SMT solvers with proof-generation capabilities. Our
method maintains separate Boolean-level and theory-level proofs, and weaves them together
into one coherent artifact. Each theory-specific solver is called upon lazily, a posteriori, to
prove precisely those solution steps it is responsible for and that are needed for the final
proof. We present an implementation of our technique in the CVC4 SMT solver, capable of
producing unsatisfiability proofs for quantifier-free queries involving uninterpreted functions,
arrays, bitvectors and combinations thereof. We discuss an evaluation of our tool using
industrial benchmarks and benchmarks from the SMTLIB library, which shows promising
results.

3.16 The Triumvirate of Automation, Expressivity, and Safety
Chantal Keller (University of Paris Sud — Orsay, FR)

License @@ Creative Commons BY 3.0 Unported license
© Chantal Keller

In this survey, I will analyze various approaches to interoperability between proof systems:
what effort does this interoperability requires? Can two systems be really agnostic of each
other to communicate? How deep can we go into automation, expressivity and safety?

In particular, I will present:

85

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://stanford.edu/~guyk/pub/FMCAD2016.pdf
https://stanford.edu/~guyk/pub/FMCAD2016.pdf
https://stanford.edu/~guyk/pub/FMCAD2016.pdf
https://stanford.edu/~guyk/pub/FMCAD2016.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

86

16421 — Universality of Proofs

the interoperability a posteriori between already established interactive and automatic
theorem provers, such as SMTCoq or Ergo for the Coq proof assistant or sledgehammer
for the Isabelle/HOL proof assistant;

the interoperability a priori inside proof systems that are designed to be automatic,
expressive and safe in a more tightened way, such as lean, F* or Why3.

3.17 Reproducibility, Trust, and Proof Checkings
Dale Miller (INRIA Saclay — Ile-de-France, FR)

License @ Creative Commons BY 3.0 Unported license
© Dale Miller

Formal proofs are produced and checked by machines. Machines are physical devices, of
course, and their software and their execution are subject to errors. As in other scientific
domains, reproducibility is key to establishing trust, whether it is a claim in physics or a
claim that a given file contains a valid proof. A high degree of trust in a formal proof comes
from executing a trusted proof checker on a claimed proof, thereby, reproducing the claim.
In order to trust a proof checker, it should be possible to implement new proof checkers or to
exam the source of existing provers and to be convinced that they are sound implementations
of logic. Providing a formal semantics for proof languages is an important step in allowing
for this kind of independent and trustworthy proof checking to be achieved.

3.18 Benchmarks for Mechanized Meta-theory: a very Personal and
Partial View

Alberto Momigliano (University of Milan, IT)

License) Creative Commons BY 3.0 Unported license
© Alberto Momigliano
Joint work of Amy Felty, Alberto Momigliano, Brigitte Pientka

Benchmarks in theorem proving have been very useful, made the state of the art progress
or at least take stock, as the bright example of TPTP testifies, whose influence on the
development, testing and evaluation of automated theorem provers cannot be underestimated.
The situation is less satisfactory for proof assistants, where each system comes with its
own set of examples/libraries, some of them gigantic. This is not surprising, since we are
potentially addressing the whole realm of mathematics.

In this talk I try to evaluate the impact, if any, that benchmarks have had on the sub-field
of the meta-theory of deductive systems, such as the ones studied in Programming Language
Theory, and its feedback, again if any, on the development of logical frameworks.

References

1 Amy P. Felty, Alberto Momigliano, Brigitte Pientka: The Next 700 Challenge Problems
for Reasoning with Higher-Order Abstract Syntax Representations — Part 2 — A Survey. J.
Autom. Reasoning 55(4): 307-372 (2015)

2 Amy P. Felty, Alberto Momigliano, Brigitte Pientka: An Open Challenge Problem Repos-
itory for Systems Supporting Binders. LFMTP 2015: 18-32

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

3.19 Mechanizing Meta-Theory in Beluga
Brigitte Pientka (McGill University — Montreal, CA)

License) Creative Commons BY 3.0 Unported license
© Brigitte Pientka
Joint work of Andrew Cave, Brigitte Pientka

Mechanizing formal systems, given via axioms and inference rules, together with proofs about
them plays an important role in establishing trust in formal developments. In this talk, I will
survey the proof environment Beluga. To specify formal systems and represent derivations
within them, Beluga provides a sophisticated infrastructure based on the logical framework
LF; to reason about formal systems, Beluga provides a dependently typed functional language
for implementing inductive proofs about derivation trees as recursive functions following the
Curry-Howard isomorphism. Key to this approach is the ability to model derivation trees
that depend on a context of assumptions using a generalization of the logical framework LF,
i.e. contextual LF which supports first-class contexts and simultaneous substitutions.

Our experience has demonstrated that Beluga enables direct and compact mechanizations
of the meta-theory of formal systems, in particular programming languages and logics. To
demonstrate Beluga’s strength in this talk, we develop a weak normalization proof using
logical relations.

References

1 A. Cave and B. Pientka. Programming with binders and indexed data-types. In POPL’12,
pages 413-424. ACM, 2012.

2 A. Cave and B. Pientka. A case study on logical relations using contextual types. In
LFMTP’15, pages 18-33. Electr. Proc. in Theoretical Computer Science (EPTCS), 2015.

3 B. Pientka. A type-theoretic foundation for programming with higher-order abstract syntax
and first-class substitutions. In POPL’08, pages 371-382. ACM, 2008.

4 B. Pientka and A. Cave. Inductive Beluga: Programming proofs (system description). In
CADE-25, LNCS 9195, pages 272—-281. Springer, 2015.

3.20 On Universality of Proof Systems
Elaine Pimentel (Federal University of Rio Grande do Norte, BR)

License) Creative Commons BY 3.0 Unported license
© Elaine Pimentel
Joint work of Bjorn Lellmann, Carlos Olarte, Elaine Pimentel

We propose a notion of modular linear nested sequent calculi (LNS) for different modalities

which brings down the complexity of proof search to that of the corresponding sequent calculi.

Examples include normal and non-normal classical modal logics as well as multiplicative
additive linear logic (MALL) plus simply dependent multimodalities. Since LNS systems
can be adequately encoded into (plain) linear logic, LL can be seen, in fact, as an “universal
framework” for the specification of logical systems. While the modularity of the systems
lead to a generic way of building theorem provers for different logics (all of them based on
the same grounds), universality of LL allows for the use of the same logical framework for
reasoning about all such logical systems.

87

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

88

16421 — Universality of Proofs

3.21 MMT: A UniFormal Approach to Knowledge Representation
Florian Rabe (Jacobs University Bremen, DE)

License) Creative Commons BY 3.0 Unported license
© Florian Rabe
URL http://uniformal.github.io/

UniFormal is the idea of representing all aspects of knowledge uniformly, including narratione,
deduction, computation, and databases. Moreover, it means to abstract from the multitude
of individual systems, which not only often focus on just one aspect but are doing so in
mutually incompatible ways, thus creating a universal framework of formal knowledge.

MMT is a concrete representation language to that end. It systematically abstracts
from assumptions typically inherent in the syntax and semantics of concrete systems, and
focuses on language-independence, modularity, and system interoperability. While constantly
evolving in order to converge towards UniFormal, its design and implementation have become
very mature. It is now a readily usable high-level platform for the design, analysis, and
implementation of formal systems.

This talk gives an overview of the current state of MMT, its existing successes and its
future challenges.

3.22 Higher Order Constraint Logic Programming for Interactive
Theorem Proving

Claudio Sacerdoti Coen (University of Bologna, IT)

License) Creative Commons BY 3.0 Unported license
© Claudio Sacerdoti Coen

Some interactive theorem provers, like Coq, Matita and Agda are implemented around
the Curry-Howard isomorphism. Proof checking is type checking, and it can be compactly
represented in an Higher Order Logic Programming (HOLP) language / logical framework.
Interactive proof construction, however, requires the manipulation of terms containing metav-
ariables, and a significant amount of logic independent code to accomodate metavariables
(and narrowing) in “type checking” (aka elaboration, refinement). We propose to delegate
such work to the metalanguage by extending HOLP with Constraint Programming features
induced by a delay mechanism for “too flexible” goals.

3.23 LLFP: a Framework for Interconnecting Logical Frameworks
Tvan Scagnetto (University of Udine, IT)

License @@ Creative Commons BY 3.0 Unported license
© Ivan Scagnetto
Joint work of F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, V. Michielini, Ivan Scagnetto
Main reference F. Honsell, L. Liquori, P. Maksimovic, I. Scagnetto, “LLFP: A Logical Framework for Modeling
External Evidence, Side Conditions, and Proof Irrelevance using Monads”, 2016.
URL https://users.dimi.uniud.it/~ivan.scagnetto/LLFP_ LMCS.pdf

LLFP (Lax LF with Predicates) is an extension of Edinburgh Logical Framework (LF) with
locking type constructors and with a family of monads indexed by predicates over typed terms.
Locks are a sort of modality constructors, releasing their argument under the condition that

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://uniformal.github.io/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://users.dimi.uniud.it/~ivan.scagnetto/LLFP_LMCS.pdf
https://users.dimi.uniud.it/~ivan.scagnetto/LLFP_LMCS.pdf
https://users.dimi.uniud.it/~ivan.scagnetto/LLFP_LMCS.pdf

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

a predicate, possibly external to the system, is satisfied on an appropriate typed judgement.
This mechanism paves the way for a proof assistant allowing the user to make calls to external
oracles (e.g., other proof assistants) during the proof development activity. Such calls are
usually made to factor out the complexity of encoding specific features of logical systems
which would otherwise be awkwardly encoded in LF, e.g. side-conditions in the application
of rules in Modal Logics, and sub-structural rules, as in noncommutative Linear Logic. Using
LLFP, these conditions need only to be specified, while their verification can be delegated
to an external proof engine, according to the Poincaré Principle. Moreover, monads also
express the effect of postponing verifications. This fact allows the user to focus on the main
proof, leaving the possibly external verification of details at the end. A first prototype of a
type checker for LLFP has been recently written in OCaml by V. Michielini (ENS Lyon):
the software currently supports the Coq System as an external proof assistant.

3.24 External termination proofs for Isabelle with IsaFoR and CeTA

René Thiemann (Universitat Innsbruck, AT)

License) Creative Commons BY 3.0 Unported license
© René Thiemann
Joint work of Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, Jirgen Giesl
Main reference A. Krauss, C. Sternagel, R. Thiemann, C. Fuhs, J. Giesl, “Termination of Isabelle Functions via
Termination of Rewriting”, in Proc. of the 2nd Int’l Conf. on Interactive Theorem Proving
(ITP’11), LNCS Vol. 6898, pp. 152-167, Springer, 2011.
URL http://dx.doi.org/10.1007/978-3-642-22863-6_ 13

CeTA is a certifier for automatically generated termination proofs, which supports a wide
variety of termination techniques. Its soundness is proven is IsaFoR, the Isabelle formalization
of rewriting.

We will present an overview of the capabilities of CeTA, and also discuss to which
extent CeTA can be used to discharge termination proof obligations that arise from function
definitions in Isabelle itself.

3.25 Parsing Mathematics by Learning from Aligned Corpora and
Theorem Proving

Josef Urban (Czech Technical University — Prague, CZ)

License) Creative Commons BY 3.0 Unported license
© Josef Urban
Joint work of Cezary Kaliszyk, Josef Urban, Jiri Vyskocil
Main reference C. Kaliszyk, J. Urban, J. Vyskocil, “Learning to Parse on Aligned Corpora (Rough Diamond)”, in
Proc. of the Int’l Conf. on Interactive Theorem Proving (ITP 2015), LNCS, Vol. 9236, pp. 227-233,
Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-319-22102-1_ 15

One of the biggest hurdles that mathematicians encounter when working with formal proof
assistants is the necessity to get acquainted with the formal terminology and the parsing
mechanisms used in formal proof. While overloading and syntactic ambiguity are ubiquitous
in regular mathematics,theorem proving requires full formality. This makes computer
verification of mathematical proofs a laborious and so far rare enterprise. In this work we
start to address this problem by developing probabilistic Al methods that autonomously

train disambiguation on large aligned corpora of informal and formal mathematical formulas.

89

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-22102-1_15
http://dx.doi.org/10.1007/978-3-319-22102-1_15
http://dx.doi.org/10.1007/978-3-319-22102-1_15
http://dx.doi.org/10.1007/978-3-319-22102-1_15

90

16421 — Universality of Proofs

The resulting parse trees are then filtered by strong semantic AI methods such as large-theory
automated theorem proving. We describe the general motivation and our first experiments,
and show an online system for parsing ambiguous formulas over the Flyspeck library.

References

1 Blanchette, J. C.; Kaliszyk, C.; Paulson, L. C.; and Urban, J. Hammering towards QED.
J. Formalized Reasoning. 9(1):101-148. 2016.

2 Kaliszyk, C., and Urban, J. Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2):173-213. 2014.

3 Kaliszyk, C.; Urban, J.; and Vyskocil, J. Learning to parse on aligned corpora (rough dia-
mond). In Urban, C., and Zhang, X., eds., Interactive Theorem Proving - 6th International
Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings, volume 9236 of
Lecture Notes in Computer Science, 227-233. Springer.

4 Tankink, C.; Kaliszyk, C.; Urban, J.; and Geuvers, H. Formal mathematics on display: A
wiki for Flyspeck. In Carette, J.; Aspinall, D.; Lange, C.; Sojka, P.; and Windsteiger, W.,
eds., MKM/Calculemus/DML, volume 7961 of LNCS, 152-167. Springer. 2013.

5 Zinn, C. Understanding informal mathematical discourse. Ph.D. Dissertation, University
of Erlangen-Nuremberg. 2004.

3.26 Plugging External Provers into the Rodin Platform
Laurent Voisin (SYSTEREL Aiz-en-Provence, FR)

License) Creative Commons BY 3.0 Unported license
© Laurent Voisin
Main reference D. Déharbe, P. Fontaine, Y. Guyot, L. Voisin, “Integrating SMT solvers in Rodin”, Science of
Computer Programming, Vol. 94, pp. 130-143, Elsevier, 2014.
URL http://dx.doi.org/10.1016/j.scico.2014.04.012

The Rodin platform allows to model reactive systems and prove them correct using the Event-
B formal notation. The mathematical logic used in classical first-order predicate calculus
with equality, set theory and integer arithmetic. The proof are expressed in the sequent
calculus, where the inference rules are computed by external reasoners. Some reasoners are
implemented by connecting external provers, which provides terminating inference rules.
These external provers allow to reduce drastically the need to perform manual proofs, by
providing the automation to discharge all trivial facts.

3.27 Computation in Proofs
Freek Wiedijk (Radboud University Nijmegen, NL)

License) Creative Commons BY 3.0 Unported license
© Freek Wiedijk

I discuss the Poincare Principle: the notion that calculations do not need to be proved. As
part of this I show a small experiment to add a Poincare Principle to HOL Light.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.scico.2014.04.012
http://dx.doi.org/10.1016/j.scico.2014.04.012
http://dx.doi.org/10.1016/j.scico.2014.04.012
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

3.28 Ancient History of the Quest for Universality of Proofs
Bruno Woltzenlogel Paleo (Australian National University — Canberra, AU)

License) Creative Commons BY 3.0 Unported license
© Bruno Woltzenlogel Paleo

This was the second last talk in a seminar where much had already been said about the
present and future of universality of proofs. To complement that, I decided to talk briefly
about the distant past, sharing interesting facts about Leibniz, which I learned during a
historical research triggered by the 300th anniversary of his death. The talk was based on
an analysis of selected quotations from Leibniz, which give insight into what Leibniz would
have thought if he could see today’s state of the art.

Leibniz was a pioneer in the topics of the seminar. Three and a half centuries ago he
already dreamt of a universal logical language (characteristica universalis) and a reasoning
calculus. But his contribution was not only a dream. He also took concrete initial steps to
fulfil his dream, by defining his own language for an algebra of concepts and even describing
how to encode its logical sentences into arithmetical expressions that automated calculating
machines of his time could handle. While Leibniz desired a universal logical language because
he had none, today we seek universality because of we have too many logics and proof
languages competing for acceptance. This is a clear, sign of the astonishing success achieved
by our community so far. Although somewhat ironic, the plurality of alternatives is a good
problem to have.

The potential of a universal logic for solving concrete controversies among people was a
major motivation for Leibniz, who also explicitly aimed at all fields of inquiry capable of
certainty. When he compares mathematics and metaphysics, for instance, Leibniz shows that
he considered mathematics neither controversial enough nor in particular need of extremely
precise formal reasoning. In contrast, today’s applications of automated reasoning are still
heavily biased towards mathematics. Despite a few exceptions, the mainstream attitude is
currently not yet as universal with respect to application domains as it could be.

Leibniz was also overly optimistic about how easy it would be to learn a universal logical
language. He wanted it to be so simple that anyone could learn it in a week or two. But
the most sophisticated expressive universal languages that we have today may still require
semester-long advanced courses for gifted students who already have a strong background in
logic. Nevertheless, user interfaces for theorem provers have been progressing rapidly and
maybe it will not take long for our technology to become universally accessible to all after
only a short period of training.

3.29 First-Order Conflict-Driven Clause Learning from a
Proof-Theoretical Perspective

Bruno Woltzenlogel Paleo (Australian National University — Canberra, AU)

License) Creative Commons BY 3.0 Unported license
© Bruno Woltzenlogel Paleo

In this talk I present the new (first-order) conflict resolution calculus: an extension of the
resolution calculus inspired by techniques used in modern SAT-solvers. The resolution
inference rule is restricted to (first-order) unit propagation and the calculus is extended
with a mechanism for assuming decision literals and with a new inference rule for clause

91

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

92

16421 — Universality of Proofs

learning, which is a first-order generalization of the propositional conflict-driven clause
learning (CDCL) procedure. The calculus is sound (because it can be simulated by natural
deduction) and refutationally complete (because it can simulate resolution).

4 Working groups

4.1 Breakout Session on Theory Graph Based Reasoning
William M. Farmer (McMaster University — Hamilton, CA)

License @ Creative Commons BY 3.0 Unported license
© William M. Farmer

A theory graph is a network of axiomatic theories linked by meaning-preserving mappings.
The theories serve as abstract mathematical models and the mappings serve as information
conduits that enable definitions and theorems to be passed from an abstract setting to many
other usually more concrete settings. The theories may have different underlying logics and
foundations.

In the first part of the session, we discussed how theory graphs can be used to represent
mathematical knowledge and facilitate reasoning in a proof assistant. In the second part, we
discussed the following questions:

1. What are examples of contemporary proof assistants and formal software specification
systems that implement theory graph techniques?

2. What kind of objects and information (such as decision procedures and parsing/printing
rules) can be attached to the theories in a theory graph?

3. What kind of reasoning is needed to build and exploit theory graphs?

4. How can theory graph technology be added to contemporary proof assistants in which all
mathematical knowledge resides in a single theory?

5. Would the development of a logic-independent theorem prover for a system supporting
theory graphs like MMT be a worthwhile project?

We were not able to achieve a consensus on what should be the answers to these questions.
However, we did agree on the following action item: Select a set of theory graph techniques
and compare how these techniques are implemented (if at all) in the leading proof assistants
and formal software specification systems.

4.2 Breakout Session on Conflicting Logics and System Designs

Olivier Hermant (Ecole des Mines de Paris, FR) and Chantal Keller (University of Paris
Sud — Orsay, FR)

License (@ Creative Commons BY 3.0 Unported license
© Olivier Hermant and Chantal Keller

We can observe many conflicts between logics, formal systems and even libraries inside
the same tools. This session discussed in particular the following questions: how to take
advantage in one system of the work in another system, the essence of conflicts in logic,
and the ability to switch logics during a formalization process. A wide range of issues was
tackled, forming a continuum between the research topics identified above. Some conflicts,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

like set representation, can be resolved by defining morphisms, and coupling these with
an abstraction step may ease the reuse of libraries across systems. This has led to several
inter-platform developments, and stressed the need for a language that allows us to navigate
between various levels of abstraction. Stronger conflicts, that lead to inconsistencies, might
still be solved by a reverse analysis of proofs, so as to import only compatible, yet sufficient,
slices of the frameworks, emphasizing the advantage to reason within little theories.

4.3 Breakout Session on a Universal Library

Michael Kohlhase (Universitit Erlangen-Nirnberg, DE) and Catherine Dubois (ENSIIE —
Evry, FR)

License) Creative Commons BY 3.0 Unported license
© Michael Kohlhase and Catherine Dubois

When formalizing mathematics, we usually need to rely on some knowledge which may or
may not be formalized in proof assistants. Furthermore these theories may reside in many
places and many forms. So the inventory of such formalized mathematical theories is not
easy. The question raised in this breakout session concerns the requirements and design of a
universal mathematical library. The discussion was organized following the Five W’s method
(When, What, Where, Who, Why?).

The first point discussed is the content of the universal library: participants agreed
on limits, at least high school mathematics and wikipedia as the upper limit. Such a
library should contain, for a notion or concept, definitions (multiple definitions if any), some
examples and instances, its relations and dependencies, its main properties, a set of theorems
characteristic to the properties and links to formal proofs. The next question is related to the
organization of such data. Two directions were proposed: a glossary/dictionary or a theory
graph. A first step would focus on the definitions of the concepts including their relations; a
second step would be to collaborate on the data and develop some services. In this first step
we can see many issues: how do we relate concepts? how do we take into account for parallel
concepts? how can commutations be represented? what about the detection of problems? A
possible solution is to rely on a graph of concepts where each node has a unique definition.
Synonyms for similar concepts are attached to the node, giving different views. Examples
could also be considered as views. A mechanism of composition is required. A quality control
consisting in checking if concepts are similar is required.

Developing such a library is huge work. For example, wikipedia, PlanetMath, MathWorld
count 100 000 concepts whereas a traditional mathematics dictionary has 35 000 words. Help
should come from retired mathematicians, students, etc.

After having established these requirements, participants discussed the design of such
a system. The conclusion was to build a prototype first, exploring existing systems, e.g.
MathHub (https://mathhub.info)/).

93

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

94

16421 — Universality of Proofs

4.4 Breakout session on A standard for system integration and proof
interchange

Ramana Kumar (Data61 / NICTA — Sydney, AU) and Florian Rabe (Jacobs University
Bremen, DE)

License @ Creative Commons BY 3.0 Unported license
© Ramana Kumar and Florian Rabe

Several requirements were put forward. Jasmin Blanchette suggested a standard similar
to TSTP but with more structure, possibly a standardized subset of Isar. Freek Wiedijk
suggested that the original source file of the proof should be recoverable and that the high-
level structure of the proof should be apparent. Gilles Dowek pointed out that there are three
categories of approach to this language: A-terms, low-level proof steps (like LCF inference
rules), or the statements of intermediate results (plus hints and other structure).

Other issues that were discussed were low level versus high level proofs, forwards versus
backwards proofs and complete versus partial proofs, as well as the use of metadata to
indicate the specific logic or its general features (e.g., being constructive).

The session then split into groups to gain more insight from considering concrete examples.

Finally the session discussed the following sketch by Florian Rabe for the core grammar
of a possible proof standard:

S u= GisCrL {E} by {P} theorem statement
P = F proof term
| G(C, {E}*, {P}") operator/tactic applied to arguments
| let Cin {P} local definition
| hence C by P;{P} forward step
| goal C by P;{P} backward step
| use E* partial proof
E == G| X | ... expressions, terms, types, formulas, etc.
C == (X[E][=E])* contexts
L == logic identifier
T = theory identifier
G == global id from logic, theories, theorems
X local id introduced in proof

Here curly brackets indicate the scope of the local identifiers introduced in the corresponding
context, and C £, E expresses the theorem “in logic L after importing the theories T
we have for all C that E”. A more refined version should include metadata to attach, e.g.,
original sources. It is straightforward to adapt the concrete syntax of existing standards such
as TSTP or OMDoc to subsume (and possibly converge to) this abstract syntax.

To move forward, the session concluded that the community should collect standard
prototypes and proof examples to better understand if this grammar suffices. Ramana Kumar
and Florian Rabe volunteered to host this process using the repository https://github.com/
UniFormal/Proofs which is open to and solicits community distributions.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://github.com/UniFormal/Proofs
https://github.com/UniFormal/Proofs

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

4.5 Breakout Session on Proof Certificates
Dale Miller (INRIA Saclay — Ile-de-France, FR)

License) Creative Commons BY 3.0 Unported license
© Dale Miller

Diversity

There is range of settings in which proofs and proof certificates are used. There are the
familiar axis: classical vs intuitionistic and logic vs arithmetic!. If we view formal proofs as
a means to communicate between software systems, then such communication takes place
across both time and space. If we examine short-distance and long-distance communication
in these two dimensions, we have the following grid.

Time | Space | Example of proof

Short Short | A section in an interactive proof assistant can be dumped to disk
in order to resume another day in the same proof assistant.
Long Short | Completed proofs can be stored in a library associated with a
particular proof assistant.

Short Long | Cooperating but different provers may use specific certificates
for their particular and immediate needs.

Long Long | Proofs given high-level, declarative definitions may allow anyone
to recheck them at anytime in the future.

Another aspect of diversity occurs along the specific vs general spectrum. The current
most significant use of proof certificates can be found in the areas where the role of logic
is significantly constrained. For example, the following areas make use of well established
proof formats: SAT solving (e.g., RUP, DRUP, DRAT), SMT (e.g. VeriT), and resolution
refutation (e.g., IVY). Proof formats are also established for more encompassing logics: these
include LF (AIT), LFSC, and TPTP. In the field of arithmetic, there are the OpenTheory
project (for the HOL family of provers) and Dedukti (for the A-cube). The Foundational
Proof Certificate project is also attempting to find high-level definitions for a wide variety of
proof certificates.

Insist on communication of proofs

There was a universal agreement in this breakout session that proof systems should provide
options for outputting (exporting) proofs that they find. The following time-line was proposed
in order to push the community towards the development of a standard format for proofs.

1. Provers need to be able to output some kind of useful information about their proofs.

While the spirit of this proposal is meant to be informal, the intention is for developers
of provers to make an effort to output documents that can be useful to others who want
to consume proofs (whether to replay them in other systems, to extract information from
them, etc). The goal is to insist on a commitment to an act of communication.

1 We assumed that both induction and co-induction are treated within “arithmetic”.

95

16421

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

96

16421 — Universality of Proofs

2. The output from provers should be certified by proof checkers that are independent of
the prover. Of course, there may be many different proof checkers which check proofs in
a range of formats. The existence of independent proof checkers should start a move to
the standardization of proof formats.

3. A single framework for certificates should be developed, tested, and analyzed. This effort
builds on the previous two steps and is likely to contain both theoretical and engineering
effort.

4. Develop a standard within some official standardization organization, such as ISO.

It is worth noting the role that competitions have played in helping to promote standards
within the field. They provide a means for establishing an authority that is able to insist on
standards.

What next?

While establishing a single standard for proof certificates seems to be at least several years
away, it is worth noting that several hard problems remain even after we are able to make
proofs and proof checking into a commodity. Since this breakout session was limited to the
certification of proof, the following topics seem to be independent and not directly addressed.

1. Proofs generally are used for both certification and didactics. The problem of being able
to read, browse, and interact with proofs and proof certificates was not addressed.

2. The existence of different theories for the same concepts (e.g., groups, real numbers, etc)
was also not addressed. Generally theories are taken as axioms about various non-logical
symbols and often there is no canonical selection of such non-logical symbols and their
axiomization.

4.6 Breakout Session on Benchmarks
Alberto Momigliano (University of Milan, IT) and Amy Felty (University of Ottawa, CA)

License () Creative Commons BY 3.0 Unported license
© Alberto Momigliano and Amy Felty

This breakout session addressed the problem of designing benchmarks and challenge problems
for interative theorem proving systems. The discussion centered around four central questions,
and resulted in partial answers and future directions of study. 1) The first question addressed
why there is a need for benchmarks. One reason is to understand the differences between
systems and highlight their strengths and limitaitons. Another reason is to use them as
a starting point for the translation of theorem statements between systems. Furthermore,
they can help to stimulate new development in the systems under study. 2) The group also
addressed the question of whether we want universal benchmarks or different benchmarks in
different areas. There was a general consensus for the latter. 3) The question of how formal
benchmark descriptions should be is another important question. On one end of the spectrum,
they could be informal natural language descriptions, and on the other end they could be
formal parseable specifications. The informal text is always an important component, and
there were varying degrees of support for more formal specifications. On the one hand, they
provide a precise description, and on the other hand, formulating the theorem statement

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe

precisely could be part of the challenge. 4) The last question addressed was the social
process of developing benchmarks. We could appoint one or two people in the community
to develop and collect benchmarks, and/or we could work on specific benchmarks in a few
specific areas during the rest of the week. Two areas chosen for further discussion during the
seminar were benchmarks involving binders (well-suited to systems supporting higher-order
abstract syntax and related approaches) and benchmarks that involve induction/coinduction,
fixpoints, corecursion, etc. (to test and better understand these capabilities in existing widely
used proof assistants such as Coq, Isabelle, and Agda).

97

16421

98

16421 — Universality of Proofs

Participants

= Andreas Martin Abel
Chalmers UT — Géteborg, SE

= Jesis Maria Aransay Azofra
University of La Rioja —
Logrofio, ES

= Christoph Benzmiiller

FU Berlin, DE

= Jasmin Christian Blanchette
MPI fir Informatik —
Saarbriicken, DE

= Frédéric Blanqui

ENS — Cachan, FR

= Peter Brottveit Bock

IT University of

Copenhagen, DK

= Venanzio Capretta
University of Nottingham, GB
= Benjamin Delaware

Purdue University —

West Lafayette, US

= Gilles Dowek

INRIA & ENS Cachan, FR

= Catherine Dubois

ENSIIE — Evry, FR

= William M. Farmer
McMaster University —
Hamilton, CA

= Amy Felty

University of Ottawa, CA

= Thibault Gauthier
Universitdt Innsbruck, AT

= Frédéric Gilbert
ENS — Cachan, FR

= Georges Gonthier

INRIA Saclay —

Ile-de-France, FR

= Stéphane Graham-Lengrand
Ecole Polytechnique —
Palaiseau, FR

- Hugo Herbelin

University Paris-Diderot, FR
= Olivier Hermant

Ecole des Mines de Paris, FR
= Guy Katz

Stanford University, US

= Chantal Keller

University of Paris Sud —
Orsay, FR

= Michael Kohlhase
Universitdt Erlangen-
Niirnberg, DE

= Ramana Kumar

Data61 / NICTA — Sydney, AU
= Dale Miller

INRIA Saclay —

Ile-de-France, FR

= Alberto Momigliano
University of Milan, IT

= César A. Munoz

NASA Langley — Hampton, US

= Adam Naumowicz
University of Bialystok, PL

= DBrigitte Pientka
McGill University —
Montreal, CA

= Elaine Pimentel
Federal University of
Rio Grande do Norte, BR

= Florian Rabe
Jacobs University Bremen, DE

= Claudio Sacerdoti Coen
University of Bologna, IT

- Ivan Scagnetto
University of Udine, IT

= Gert Smolka
Universitiat des Saarlandes, DE

= René Thiemann
Universitdt Innsbruck, AT

= Josef Urban
Czech Technical University —
Prague, CZ

= Laurent Voisin
SYSTEREL
Aix-en-Provence, FR

= Freek Wiedijk
Radboud University
Nijmegen, NL

= Bruno Woltzenlogel Paleo
Australian National University —
Canberra, AU

	Executive Summary Gilles Dowek, Catherine Dubois, Brigitte Pientka, and Florian Rabe
	Table of Contents
	Overview of Talks
	Translating between Agda and Dedukti Andreas Martin Abel
	Transferring Lemmas and Proofs in Isabelle/HOL: a Survey Jesús María Aransay Azofra
	Uniform Proofs via Shallow Semantic Embeddings? Christoph Benzmüller
	Are Translations between Proof Assistants Possible or Even Desirable at All? Jasmin Christian Blanchette
	Using External Provers in Proof Assistants Frédéric Blanqui
	The Continuity of Monadic Stream Functions Venanzio Capretta
	Reengineering Proofs in Dedukti: an Example Gilles Dowek
	FoCaLiZe and Dedukti to the Rescue for Proof Interoperability Catherine Dubois
	We Need a Better Style of Proof William M. Farmer
	Comparing Systems for Reasoning with Higher-Order Abstract Syntax Representations Amy Felty
	Aligning Concepts across Proof Assistant Libraries Thibault Gauthier
	Extending Higher-order Logic with Predicate Subtyping Frédéric Gilbert
	Inference Systems for Satisfiability Problems Stéphane Graham-Lengrand
	Not Incompatible Logics Olivier Hermant
	Lazy Proofs for DPLL(T)-Based SMT Solvers Guy Katz
	The Triumvirate of Automation, Expressivity, and Safety Chantal Keller
	Reproducibility, Trust, and Proof Checkings Dale Miller
	Benchmarks for Mechanized Meta-theory: a very Personal and Partial View Alberto Momigliano
	Mechanizing Meta-Theory in Beluga Brigitte Pientka
	On Universality of Proof Systems Elaine Pimentel
	MMT: A UniFormal Approach to Knowledge Representation Florian Rabe
	Higher Order Constraint Logic Programming for Interactive Theorem Proving Claudio Sacerdoti Coen
	LLFP: a Framework for Interconnecting Logical Frameworks Ivan Scagnetto
	External termination proofs for Isabelle with IsaFoR and CeTA René Thiemann
	Parsing Mathematics by Learning from Aligned Corpora and Theorem Proving Josef Urban
	Plugging External Provers into the Rodin Platform Laurent Voisin
	Computation in Proofs Freek Wiedijk
	Ancient History of the Quest for Universality of Proofs Bruno Woltzenlogel Paleo
	First-Order Conflict-Driven Clause Learning from a Proof-Theoretical Perspective Bruno Woltzenlogel Paleo

	Working groups
	Breakout Session on Theory Graph Based Reasoning William M. Farmer
	Breakout Session on Conflicting Logics and System Designs Olivier Hermant and Chantal Keller
	Breakout Session on a Universal Library Michael Kohlhase and Catherine Dubois
	Breakout session on A standard for system integration and proof interchange Ramana Kumar and Florian Rabe
	Breakout Session on Proof Certificates Dale Miller
	Breakout Session on Benchmarks Alberto Momigliano and Amy Felty

	Participants

