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The Dagstuhl Seminar “Computation over Compressed Structured Data” took place from
October 23rd to 28th, 2016. The aim was to bring together researchers from various research
directions in data compression, indexing for compressed data, and algorithms for compressed
data. Compression, and the ability to index and compute directly over compressed data,
is a topic that is gaining importance as digitally stored data volumes are increasing at
unprecedented speeds. In particular, the seminar focused on techniques for compressed
structured data, i.e., string, trees, and graphs, where compression schemes can exploit
complex structural properties to achieve strong compression ratios.

The seminar was meant to inspire the exchange of theoretical results and practical require-
ments related to compression of structured data, indexing, and algorithms for compressed
structured data. The following specific points were addressed.

Encoding Data Structures. The goal is to encode data structures with the minimal number
of bits needed to support only the desired operations, which is also called the effective
entropy. The best known example of such an encoding is the 2n-bit structure that answers
range minimum queries on a permutation of [1, n], whose ordinary entropy is n log(n)
bits. Determining the effective entropy and designing encodings that reach the effective
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entropy leads to challenging research problems in enumerative combinatorics, information
theory, and data structures.

Computation-Friendly Compression. Existing state-of-the-art compression schemes encode
data by extensive and convoluted references between pieces of information. This leads
to strong compression guarantees, but often makes it difficult to efficiently perform
compressed computation. Recent developments have moved towards designing more
computation-friendly compression schemes that achieve both strong compression and
allow for efficient computation. Precise bounds on the worst-case compression of these
schemes are mostly missing so far.

Repetitive Text Collections. Many of the largest sequence collections that are arising are
formed by many documents that are very similar to each other. Typical examples arise
from version control systems, collaborative editing systems (wiki), or sequencing of
genomes from the same species. Statistical-compression does not exploit this redundancy.
Recently, compressed indexes based on grammar-based compressors have been developed
for repetitive text collections. They achieve a considerable compression, but on the
downside operations are much slower.

Recompression. Recompression is a new technique that was successfully applied for the
approximation of smallest string grammars and to solve several algorithmic problems on
grammar-compressed strings. Recently, recompression has been extended from strings
to trees. The long list of problems that were solved in a relatively short period using
recompression indicates that there exist more applications of recompression.

Graph Compression. A lot of recent work deals with succinct data structures for graphs
and with graph compression, in particular for web and network graphs. At the same
time, simple queries such as in- and out-neighbors can be executed efficiently on these
structures. There is a wide range of important open problems and future work. For
instance, there is a strong need to support more complex graph queries, like for instance
regular path queries, on compressed graphs.

The seminar fully satisfied our expectations. The 41 participants from 16 countries
(Algiers, Canada, Chile, Denmark, Finland, France, Germany, Great Britain, Ireland, Italy,
Israel, Japan, Korea, Poland, Spain, and US) had been invited by the organizers to give
survey talks about their recent research related to the topic of the seminar. The talks
covered topics related to compression (e.g., grammar-based compression of string, trees,
and graphs, Lempel-Ziv compression), indexing of compressed data (e.g., set-intersection,
longest common extensions, labeling schemes), algorithms on compressed data (e.g., stream-
ing, regular expression matching, parameterized matching) and covered a wide range of
applications including databases, WWW, and bioinformatics. Most talks were followed by
lively discussions. Smaller groups formed naturally which continued these discussions later.

We thank Schloss Dagstuhl for the professional and inspiring atmosphere. Such an intense
research seminar is possible because Dagstuhl so perfectly meets all researchers’ needs. For
instance, elaborate research discussions in the evening were followed by local wine tasting or
by heated sauna sessions.



Philip Bille, Markus Lohrey, Sebastian Maneth, and Gonzalo Navarro 101

2 Table of Contents

Executive Summary
Philip Bille, Markus Lohrey, Sebastian Maneth, and Gonzalo Navarro . . . . . . . 99

Overview of Talks
Composite repetition-aware text indexing
Djamal Belazzougui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Edit Distance: Sketching, Streaming and Document Exchange
Djamal Belazzougui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Finger Search in Grammar-Compressed Strings
Philip Bille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Towards Graph Re-compression
Stefan Böttcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatena-
tion
Patrick Hagge Cording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Compressed Affix Tree Representations
Rodrigo Cánovas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Computing and Approximating the Lempel-Ziv-77 Factorization in Small Space
Johannes Fischer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

GLOUDS: Representing tree-like graphs
Johannes Fischer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Queries on LZ-Bounded Encodings
Travis Gagie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Distance and NCA labeling schemes for trees
Pawel Gawrychowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Querying regular languages over sliding-windows
Danny Hucke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

The smallest grammar problem revisited
Danny Hucke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Space-Optimal Grammar Compression
Tomohiro I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Recompression
Artur Jez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Linear Time String Indexing and Analysis in Small Space
Juha Kärkkäinen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Dynamic Rank and Select Structures on Compressed Sequences
Yakov Nekrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Efficient Set Intersection Counting Algorithm for Text Similarity Measures
Patrick K. Nicholson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Grammar-based Graph Compression
Fabian Peternek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

16431



102 16431 – Computation over Compressed Structured Data

In-place longest common extensions
Nicola Prezza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Indexing in repetition-aware space
Nicola Prezza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Encoding Data Structures
Rajeev Raman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Linear Time Algorithm for Seeds Computation
Wojciech Rytter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Space-efficient graph algorithms
Srinivasa Rao Satti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

On the Complexity of Grammar-Based Compression over Fixed Alphabets
Markus Schmid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Compressed parameterized pattern matching
Rahul Shah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Streaming Pattern Matching
Tatiana Starikovskaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Quickscorer: a fast algorithm to rank documents with additive ensembles of regres-
sion trees
Rossano Venturini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Working groups
LZ78 Construction in Little Main Memory Space
Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Rajeev Raman . . . . . 117

Smaller Structures for Top-k Document Retrieval
Simon Gog, Julian Labeit, and Gonzalo Navarro . . . . . . . . . . . . . . . . . . . 118

More Efficient Representation of Web and Social Graphs by Combining GLOUDS
with DSM
Cecilia Hernández Rivas, Johannes Fischer, Gonzalo Navarro, and Daniel Peters . 118

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Philip Bille, Markus Lohrey, Sebastian Maneth, and Gonzalo Navarro 103

3 Overview of Talks

3.1 Composite repetition-aware text indexing
Djamal Belazzougui (CERIST – Algiers, DZ)

License Creative Commons BY 3.0 Unported license
© Djamal Belazzougui

Joint work of Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, Mathieu Raffinot
Main reference D. Belazzougui, F. Cunial, T. Gagie, N. Prezza, M. Raffinot, “Composite Repetition-Aware Data

Structures”, in Proc. of the Annual Symposium on Combinatorial Pattern Matching (CPM 2015),
LNCS, Vol. 9133, pp. 26–39, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-19929-0_3

In highly repetitive strings, like collections of genomes from the same species, distinct
measures of repetition all grow sublinearly in the length of the text, and indexes targeted
to such strings typically depend only on one of these measures. We describe two data
structures whose size depends on multiple measures of repetition at once, and that provide
competitive tradeoffs between the time for counting and reporting all the exact occurrences
of a pattern, and the space taken by the structure. The key component of our constructions
is the run-length encoded BWT (RLBWT), which takes space proportional to the number of
BWT runs: rather than augmenting RLBWT with suffix array samples, we combine it with
data structures from LZ77 indexes, which take space proportional to the number of LZ77
factors, and with the compact directed acyclic word graph (CDAWG), which takes space
proportional to the number of extensions of maximal repeats. The combination of CDAWG
and RLBWT enables also a new representation of the suffix tree, whose size depends again
on the number of extensions of maximal repeats, and that is powerful enough to support
matching statistics and constant-space traversal.

3.2 Edit Distance: Sketching, Streaming and Document Exchange
Djamal Belazzougui (CERIST – Algiers, DZ)

License Creative Commons BY 3.0 Unported license
© Djamal Belazzougui

Joint work of Djamal Belazzougui, Qin Zhang
Main reference D. Belazzougui, Q. Zhang, “Edit Distance: Sketching, Streaming and Document Exchange”, in

Proc. of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016),
pp. 51–60, IEEE, 2016.

URL http://dx.doi.org/10.1109/FOCS.2016.15

We show that in the document exchange problem, where Alice holds a binary string x of
length n and Bob holds another binary string y of length n, Alice can send Bob a message of
size O(K(log2 K+ logn)) bits such that Bob can recover x using the message and his input y
if the edit distance between x and y is no more than K, and output “error” otherwise. Both
the encoding and decoding can be done in time O (n+ poly(K)). This result significantly
improves the previous communication bounds under polynomial encoding/decoding time.
We also show that in the referee model, where Alice and Bob hold x and y respectively,
they can compute sketches of x and y of sizes poly(K logn) bits (the encoding), and send to
the referee, who can then compute the edit distance between x and y together with all the
edit operations if the edit distance is no more than K, and output “error” otherwise (the
decoding). To the best of our knowledge, this is the first result for sketching edit distance
using poly(K logn) bits. Moreover, the encoding phase of our sketching algorithm can be
performed by scanning the input string in one pass. Thus our sketching algorithm also
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implies the “first” streaming algorithm for computing edit distance and all the edits exactly
using poly(K logn) bits of space.

3.3 Finger Search in Grammar-Compressed Strings
Philip Bille (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Philip Bille

Joint work of Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, Inge Li Gørtz
Main reference P. Bille, A.R. Christiansen, P.H. Cording, I. L. Gørtz, “Finger Search in Grammar-Compressed

Strings”, in Proc. of the 36th Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2016), LIPIcs, Vol. 65, pp. 36:1–36:16, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.36

Grammar-based compression, where one replaces a long string by a small context-free
grammar that generates the string, is a simple and powerful paradigm that captures many
popular compression schemes. Given a grammar, the random access problem is to compactly
represent the grammar while supporting random access, that is, given a position in the
original uncompressed string report the character at that position. In this paper we study
the random access problem with the finger search property, that is, the time for a random
access query should depend on the distance between a specified index f , called the finger,
and the query index i. We consider both a static variant, where we first place a finger and
subsequently access indices near the finger efficiently, and a dynamic variant where also
moving the finger such that the time depends on the distance moved is supported. Let n be
the size the grammar, and let N be the size of the string. For the static variant we give a
linear space representation that supports placing the finger in O(logN) time and subsequently
accessing in O(logD) time, where D is the distance between the finger and the accessed
index. For the dynamic variant we give a linear space representation that supports placing
the finger in O(logN) time and accessing and moving the finger in O(logD+ log logN) time.
Compared to the best linear space solution to random access, we improve a O(logN) query
bound to O(logD) for the static variant and to O(logD+ log logN) for the dynamic variant,
while maintaining linear space. As an application of our results we obtain an improved
solution to the longest common extension problem in grammar compressed strings. To obtain
our results, we introduce several new techniques of independent interest, including a novel
van Emde Boas style decomposition of grammars.

3.4 Towards Graph Re-compression
Stefan Böttcher (Universität Paderborn, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Böttcher

Re-compression of a compressed graph has the goal to find a stronger compression of the
graph without full decompression of the graph. Having a tool for graph re-compression allows
us to compress sub-graphs of a larger graph in parallel and to integrate several compressed
sub-graphs afterwards by using the re-compression tool. While re-compression has been
investigated for straight-line (SL) string-grammars and for SL binary tree-grammars, we
present new ideas for the re-compression of SL tree-grammars with commutative terminal
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nodes, i.e. SL tree-grammars representing partially unordered trees, and we extend these
ideas to the re-compression of SL graph grammars representing graphs with labeled nodes
and labeled edges. All our re-compression algorithms repetitively search a most frequent
digram D and isolate and replace each digram occurrence of D by a new nonterminal ND

which is thereafter treated as a terminal. However, the re-compression approaches for strings,
for ordered binary trees, for partially unordered trees, and for graphs differ in the following:
what they consider a digram and how they define the key re-compression steps, i.e. counting
(non-overlapping) digram occurrences and isolating digram occurrences.

3.5 Dynamic Relative Compression, Dynamic Partial Sums, and
Substring Concatenation

Patrick Hagge Cording (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Patrick Hagge Cording

Joint work of Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel
Vildhøj, Søren Vind

Main reference P. Bille, P.H. Cording, I. L. Gørtz, F.R. Skjoldjensen, H.W. Vildhøj, S. Vind, “Dynamic Relative
Compression, Dynamic Partial Sums, and Substring Concatenation”, in Proc. of the 27th Int’l
Symposium on Algorithms and Computation (ISAAC 2016), LIPIcs, Vol. 64, pp. 18:1–18:13,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.18

Given a static reference string R and a source string S, a relative compression of S with
respect to R is an encoding of S as a sequence of references to substrings of R. Relative
compression schemes are a classic model of compression and have recently proved very
successful for compressing highly-repetitive massive data sets such as genomes and web-data.
We initiate the study of relative compression in a dynamic setting where the compressed
source string S is subject to edit operations. The goal is to maintain the compressed
representation compactly, while supporting edits and allowing efficient random access to the
(uncompressed) source string. We present new data structures that achieve optimal time for
updates and queries while using space linear in the size of the optimal relative compression,
for nearly all combinations of parameters. We also present solutions for restricted and
extended sets of updates. To achieve these results, we revisit the dynamic partial sums
problem and the substring concatenation problem. We present new optimal or near optimal
bounds for these problems. Plugging in our new results we also immediately obtain new
bounds for the string indexing for patterns with wildcards problem and the dynamic text
and static pattern matching problem.

3.6 Compressed Affix Tree Representations
Rodrigo Cánovas (University of Montpellier 2, FR)

License Creative Commons BY 3.0 Unported license
© Rodrigo Cánovas

Joint work of Rodrigo Canovas, Eric Rivals

The Suffix Tree, a crucial and versatile data structure for string analysis of large texts, is
often used in pattern matching and in bioinformatics applications. The Affix Tree generalizes
the Suffix Tree in that it supports full tree functionalities in both search directions. The
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bottleneck of Affix Trees is their space requirement for storing the data structure. Here,
we discuss existing representations and classify them into two categories: Synchronous and
Asynchronous. We design Compressed Affix Tree indexes in both categories and explored how
to support all tree operations bidirectionally. This work compares alternative approaches for
compressing the Affix Tree, measuring their space and time trade-offs for different operations.
Moreover, to our knowledge, this is the first work that compares all Compressed Affix Tree
implementations offering a practical benchmark for this structure.

3.7 Computing and Approximating the Lempel-Ziv-77 Factorization in
Small Space

Johannes Fischer (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Johannes Fischer

The Lempel-Ziv-77 algorithm greedily factorizes a text of length n into z maximal substrings
that have previous occurrences, which is particularly useful for text compression. We review
two recent algorithms for this task:

1. A linear-time algorithm using essentially only one integer array of length n in addition
to the text. (Joint work with Tomohiro I and Dominik Köppl.) 2. An even more space-
conscious algorithm using O(z) space, computing a 2-approximation of the LZ77 parse in
O(n lg n) time w.h.p. (Joint work with Travis Gagie, Pawel Gawrychowski and Tomasz
Kociumaka.)

3.8 GLOUDS: Representing tree-like graphs
Johannes Fischer (TU Dortmund, DE)

License Creative Commons BY 3.0 Unported license
© Johannes Fischer

Joint work of Johannes Fischer, Daniel Peters
Main reference J. Fischer, D. Peters, “GLOUDS: Representing tree-like graphs”, Journal of Discrete Algorithms,

Vol. 36, pp. 39–49, Elsevier, 2016.
URL http://dx.doi.org/10.1016/j.jda.2015.10.004

The Graph Level Order Unary Degree Sequence (GLOUDS) is a new succinct data structure
for directed graphs that are “tree-like,” in the sense that the number of “additional” edges
(w.r.t. a spanning tree) is not too high. The algorithmic idea is to represent a BFS-spanning
tree of the graph (consisting of n nodes) with a well known succinct data structure for trees,
named LOUDS, and enhance it with additional information that accounts for the non-tree
edges. In practical tests, our data structure performs well for graphs containing up to m = 5n
edges, while still having competitive running times for listing adjacent nodes.
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3.9 Queries on LZ-Bounded Encodings
Travis Gagie (Universidad Diego Portales, CL)

License Creative Commons BY 3.0 Unported license
© Travis Gagie

Joint work of Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Alberto Ordóñez,
Simon J. Puglisi, Yasuo Tabei

Main reference D. Belazzougui, T. Gagie, P. Gawrychowski, J. Kärkkäinen, A. Ordóñez, S. J. Puglisi, Y. Tabei,
“Queries on LZ-Bounded Encodings”, Data Compression Conference (DCC 2015), pp. 83–92, IEEE,
2015.

URL http://dx.doi.org/10.1109/DCC.2015.69

We describe a data structure that stores a strings in space similar to that of its Lempel-
Ziv encoding and efficiently supports access, rank and select queries. These queries are
fundamental for implementing succinct and compressed data structures, such as compressed
trees and graphs. We show that our data structure can be built in a scalable manner and is
both small and fast in practice compared to other data structures supporting such queries.

3.10 Distance and NCA labeling schemes for trees
Pawel Gawrychowski (University of Wroclaw, PL)

License Creative Commons BY 3.0 Unported license
© Pawel Gawrychowski

Joint work of Ofer Freedman, Paweł Gawrychowski, Jakub Łopuszański, Patrick K. Nicholson, Oren Weimann
Main reference O. Freedman, P. Gawrychowski, P.K. Nicholson, O. Weimann, “Optimal Distance Labeling

Schemes for Trees”, arXiv:1608.00212v1 [cs.DS], 2016.
URL https://arxiv.org/abs/1608.00212v1

Labeling schemes seek to assign a short label to each vertex in a graph, so that a function on
two nodes (such as distance or adjacency) can be computed by examining their labels alone.
This is particularly desirable in distributed settings, where nodes are often processed using
only some locally stored data. Recently, with the rise in popularity of distributed computing
platforms such as Spark and Hadoop, labeling schemes have found renewed interest. For the
particular case of trees, the most natural functions are distance, ancestry, adjacency, and
nearest common ancestor. We design improved labeling schemes for distance and nearest
common ancestor.

For arbitrary distances, we show how to assign labels of 1/4 log2 n + o(log2 n) bits to
every node so that we can determine the distance between any two nodes given only their
two labels. This closes the line of research initiated by Gavoille et al. [SODA ’01] who gave
an O(log2 n) bits upper bound and a 1/8 log2 n−O(logn) bits lower bound, and followed
by Alstrup et al. [ICALP ’16] who gave a 1/2 log2 n + O(logn) bits upper bound and a
1/4 log2 n−O(logn) bits lower bound.

Next, for distances bounded by k, we show how to construct labels whose length is
the minimum between logn + O(k log(logn/k)) and O(logn · log(k/ logn)). The query
time in both cases is constant. We complement our upper bounds with almost tight lower
bounds of logn+ Ω(k log(logn/(k log k))) and Ω(logn · log(k/ logn)). Finally, we consider
(1 + ε)-approximate distances. We prove an O(log(1/ε) · logn) upper bound and a matching
Ω(log(1/ε) · logn) lower bound. This improves the recent O(1/ε · logn) upper bound of
Alstrup et al. [ICALP ’16].

For nearest common ancestor, the known upper bounds are in the O(logn) regime. We
significantly improve the constant factor, and in particular go below 2 for the case of binary
trees.
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3.11 Querying regular languages over sliding-windows
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We study the space complexity of querying regular languages over data streams in the sliding
window model. The algorithm has to answer at any point of time whether the content of the
sliding window belongs to a fixed regular language. A trichotomy is shown: For every regular
language the optimal space requirement is either in Θ(n), Θ(logn), or constant, where n is
the size of the sliding window.
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In a seminal paper of Charikar et al. on the smallest grammar problem, the authors derive
upper and lower bounds on the approximation ratios for several grammar-based compressors,
but in all cases there is a gap between the lower and upper bound. Here we close the gaps for
LZ78 and BISECTION by showing that the approximation ratio of LZ78 is Θ((n/ logn)2/3),
whereas the approximation ratio of BISECTION is Θ((n/ logn)1/2).
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3.13 A Space-Optimal Grammar Compression
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A grammar compression is a context-free grammar (CFG) deriving a single string determ-
inistically. For a CFG G in Chomsky normal form of n-symbol, it is known that an
information-theoretic lower bound to represent G is lgn! + n+ o(n) bits. Although a fully-
online algorithm for constructing a succinct G of at most n lg(n+ σ) + o(n lg(n+ σ)) bits
was proposed for the number σ of alphabets and the number n of variables, the optimization
of the working space has remained open. We achieve the smallest n lg(n+ σ) + o(n lg(n+ σ))
bits of working space while preserving O(N lg n

lg lg n ) amortized compression time for the length
N of the input string received so far.

3.14 Recompression
Artur Jez (University of Wroclaw, PL)
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In this talk I will survey the recompression technique. It is based on applying simple
compression operations (replacement of pairs of two different letters by a new letter and
replacement of maximal repetition of a letter by a new symbol) applied to strings. The
strings in question are given in a compressed way: each is represented as a context free
grammar generating exactly one string, called SLP in the following. The operations are
conceptually applied on the strings but they are actually performed directly on the compressed
representation. For instance, when we want to replace ab in the string and the grammar
have a production X → aY and the string generated by Y is bw, then we alter the rule of Y
so that it generates w and replace Y with bY in all rules. In this way the rule is X → abY

and so ab can be replaced. In this way we are interested mostly in the way the string is
compressed rather than the string and its combinatorial properties.

The proposed method turned out to be surprisingly efficient and applicable in various
scenarios: it can be used to test the equality of SLPs in time O(n logN), where n is the size
of the SLP and N the length of the generated string. It can be also used to approximate
the smallest SLP for a given string, with the approximation ratio O(log(n/g)(, where n is
the length of the string and g the size of the smallest SLP for this string. Furthermore, it
works also when the strings are given by more implicit representations: as solutions to word
equations. This approach can be also generalized to trees and most of the results extend
from the string to tree setting.
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3.15 Linear Time String Indexing and Analysis in Small Space
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The field of succinct data structures has flourished over the last 16 years. Starting from the
compressed suffix array (CSA) by Grossi and Vitter (STOC 2000) and the FM-index by
Ferragina and Manzini (FOCS 2000), a number of generalizations and applications of string
indexes based on the Burrows-Wheeler transform (BWT) have been developed, all taking an
amount of space that is close to the input size in bits. In many large-scale applications, the
construction of the index and its usage need to be considered as one unit of computation.
Efficient string indexing and analysis in small space lies also at the core of a number of
primitives in the data-intensive field of high-throughput DNA sequencing. We report the
following advances in string indexing and analysis. We show that the BWT of a string
T ∈ {1, . . . , σ}n can be built in deterministic O(n) time using just O(n log σ) bits of space,
where σ ≤ n. Within the same time and space budget, we can build an index based on
the BWT that allows one to enumerate all the internal nodes of the suffix tree of T . Many
fundamental string analysis problems can be mapped to such enumeration, and can thus
be solved in deterministic O(n) time and in O(n log σ) bits of space from the input string.
We also show how to build many of the existing indexes based on the BWT, such as the
CSA, the compressed suffix tree (CST), and the bidirectional BWT index, in randomized
O(n) time and in O(n log σ) bits of space. The previously fastest construction algorithms
for BWT, CSA and CST, which used O(n log σ) bits of space, took O(n log log σ) time for
the first two structures, and O(n logε n) time for the third, where ε is any positive constant.
Contrary to the state of the art, our bidirectional BWT index supports every operation in
constant time per element in its output.

3.16 Dynamic Rank and Select Structures on Compressed Sequences
Yakov Nekrich (University of Waterloo, CA)
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We consider the problem of storing a fully-dynamic string S in compressed form. Our
representation supports insertions and deletions of symbols and answers three fundamental
queries: access(i, S) returns the i-th symbol in S, ranka(i, S) counts how many times a
symbol a occurs among the first i positions in S, and selecta(i, S) finds the position where a
symbol a occurs for the i-th time. Data structures supporting rank, select, and access queries
are used in many compressed data structures and algorithms that work on string data.

We give an overview of previous results and describe two state-of-the-art solutions for
this problem.
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3.17 Efficient Set Intersection Counting Algorithm for Text Similarity
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Set intersection counting appears as a subroutine in many techniques used in natural language
processing, in which similarity is often measured as a function of document cooccurence
counts between pairs of noun phrases or entities. Such techniques include clustering of text
phrases and named entities, topic labeling, entity disambiguation, sentiment analysis, and
search for synonyms.

These techniques can have real-time constraints that require very fast computation of
thousands of set intersection counting queries with little space overhead and minimal error.
On one hand, while sketching techniques for approximate intersection counting exist and have
very fast query time, many have issues with accuracy, especially for pairs of lists that have
low Jaccard similarity. On the other hand, space-efficient computation of exact intersection
sizes is particularly challenging in real-time.

In this paper, we show how an efficient space-time trade-off can be achieved for exact set
intersection counting, by combining state-of-the-art algorithms with precomputation and
judicious use of compression. In addition, we show that the performance can be further
improved by combining the best aspects of these algorithms. We present experimental
evidence that real-time computation of exact intersection sizes is feasible with low memory
overhead: we improve the mean query time of baseline approaches by over a factor of 100
using a data structure that takes merely twice the size of an inverted index. Overall, in our
experiments, we achieve running times within the same order of magnitude as well-known
approximation techniques.

3.18 Grammar-based Graph Compression
Fabian Peternek (University of Edinburgh, GB)
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This talk considers a method for compressing graphs into a smaller graph grammar based on
the RePair compression scheme. We start by defining the necessary notion of context-free
hyperedge replacement grammars. We then extend RePair to graphs using this grammar
formalism and discuss how the problem of finding non-overlapping occurrences appears more
difficult on graphs than on strings and trees.

We also give some intuition on graphs that are difficult to compress with HR grammars
and present some experimental results based on a proof-of-concept implementation.

Finally a short overview on two linear time speed-up algorithms for such compressed
graph grammars is presented, namely reachability and regular path queries.
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A Longest Common Extension (LCE) query returns the length of the longest common
prefix between any two text suffixes. In this talk I present a deterministic data structure
having the exact same size of the text (i.e. without additional low-order terms in its space
occupancy) and supporting LCE queries in logarithmic time and text extraction in optimal
time. Importantly, the structure can be built in-place: we can replace the text with the
structure while using only O(1) memory words of additional space during construction. This
results has interesting implications: I show the first sub-quadratic in-place algorithms to
compute the LCP array and to solve the sparse suffix sorting problem, and a new in-place
suffix array construction algorithm.

3.20 Indexing in repetition-aware space
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Full-text indexes based on the Lempel-Ziv factorization (LZ77) and on the run-length
compressed Burrows-Wheeler transform (RLBWT) achieve strong compression rates, but
their construction in small (compressed) space is still an open problem. In this talk, I present
an algorithm to compute LZ77 in space proportional to the number of equal-letter runs
in the Burrows-Wheeler transform. This result implies an asymptotically optimal-space
construction algorithm for the lz-rlbwt index: an index combining LZ77 with RLBWT
able to achieve exponential compression while supporting sub-quadratic time count and
locate operations. I moreover present DYNAMIC: a C++ library implementing dynamic
compressed data structures. This library has been used in conjunction with SDSL to
implement all the discussed algorithms and indexes. I will conclude discussing different
practical implementations of the lz-rlbwt index and presenting experimental results comparing
our LZ77 factorization algorithm and the lz-rlbwt index with the state of the art.
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Driven by the increasing need to analyze and search for complex patterns in very large data
sets, the area of compressed and succinct data structures has grown rapidly in the last 10–15
years. Such data structures have very low memory requirements, allowing them to fit into
the main memory of a computer, which in turn avoids expensive computation on hard disks.

This talk will focus on a topic that has become popular recently: encoding “the data
structure” itself. Some data structuring problems involve supporting queries on data, but
the queries that need to be supported do not allow the original data to be deduced from
the queries. This presents opportunities to obtain space savings even when the data is
incompressible, by extracting only the information needed to answer the queries when pre-
processing the data, and then deleting the data. The minimum information needed to answer
the queries is called the effective entropy of the problem: precisely determining the effective
entropy leads to interesting combinatorial problems.

This survey talk is a slightly longer version of a a talk given in Dagstuhl seminar 16101
(Data Structures and and Advanced Models of Computation on Big Data) and was given at
the request of the organizers.

3.22 A Linear Time Algorithm for Seeds Computation
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A seed in a word is a relaxed version of a period. We show a linear-time algorithm computing
a compact representation of linear size of all the seeds of a word (though the set of distinct
seeds could be quadratic). In particular, the algorithm computes the shortest seed and the
number of seeds. Our approach is based on combinatorial relations between seeds and a
variant of the LZ-factorization (used here for the first time in context of seeds). In the previous
papers the compact representation of seeds consisted of two independent representations
based on the suffix tree of the word and the suffix tree of the reverse of the word. Our
another contribution is a new compact representation of all seeds which avoids dealing with
reversals of the word.
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3.23 Space-efficient graph algorithms
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We reconsider various graph algorithms in the settings where there is only a limited amount
of memory available, apart from the input representation. These settings are motivated by
the need to run such algorithms on limited-memory devices, as well as to capture the essential
features of some of the latest memory technologies. The talk presents a brief overview of
some of the recent developments in this area, and gives pointers to some future directions.

3.24 On the Complexity of Grammar-Based Compression over Fixed
Alphabets
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It is shown that the shortest-grammar problem remains NP-complete if the alphabet is
fixed and has a size of at least 24 (which settles an open question). On the other hand,
this problem can be solved in polynomial-time, if the number of nonterminals is bounded,
which is shown by encoding the problem as a problem on graphs with interval structure.
Furthermore, we present an O(3n) exact exponential-time algorithm, based on dynamic
programming. Similar results are also given for 1-level grammars, i.e., grammars for which
only the start rule contains nonterminals on the right side (thus, investigating the impact of
the “hierarchical depth” on the complexity of the shortest-grammar problem).

3.25 Compressed parameterized pattern matching
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The fields of succinct data structures and compressed text indexing have seen quite a bit of
progress over the last two decades. An important achievement, primarily using techniques
based on the Burrows-Wheeler Transform (BWT), was obtaining the full functionality of
the suffix tree in the optimal number of bits. A crucial property that allows the use of
BWT for designing compressed indexes is order-preserving suffix links. Specifically, the
relative order between two suffixes in the subtree of an internal node is same as that of
the suffixes obtained by truncating the first character of the two suffixes. Unfortunately,
in many variants of the text-indexing problem, for e.g., parameterized pattern matching,
2D pattern matching, and order-isomorphic pattern matching, this property does not hold.

16431

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1603.07457v2
https://arxiv.org/abs/1603.07457v2
https://arxiv.org/abs/1603.07457v2


116 16431 – Computation over Compressed Structured Data

Consequently, the compressed indexes based on BWT do not directly apply. Furthermore, a
compressed index for any of these variants has been elusive throughout the advancement
of the field of succinct data structures. We achieve a positive breakthrough on one such
problem, namely the Parameterized Pattern Matching problem.

Let T be a text that contains n characters from an alphabet Σ, which is the union of two
disjoint sets: Σs containing static characters (s-characters) and Σp containing parameterized
characters (p-characters). A pattern P (also over Σ) matches an equal-length substring S of
T iff the s-characters match exactly, and there exists a one-to-one function that renames the
p-characters in S to that in P . The task is to find the starting positions (occurrences) of all
such substrings S. Previous index [Baker, STOC 1993], known as Parameterized Suffix Tree,
requires Θ(n logn) bits of space, and can find all occ occurrences in time O(|P | log σ + occ),
where σ = |Σ|. We introduce an n log σ +O(n)-bit index with O(|P | log σ + occ · logn log σ)
query time. At the core, lies a new BWT-like transform, which we call the Parameterized
Burrows-Wheeler Transform (pBWT). The techniques are extended to obtain a succinct
index for the Parameterized Dictionary Matching problem of Idury and Schäffer [CPM, 1994].

3.26 Streaming Pattern Matching
Tatiana Starikovskaya (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
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Joint work of Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, Tatiana Starikovskaya

In the streaming model of computation we assume that the data arrives sequentially, one
data item at a time. The goal is to develop algorithms that process the data on the fly while
using as little space as possible. We give a survey of recent results for the pattern matching
problem in this model. We first review the main ideas behind the algorithm for exact pattern
matching problem given by Porat and Porat and show how to extend them to the case
of several patterns (dictionary matching). We then proceed to the approximate pattern
matching problem under Hamming distance. In this problem we must compute the Hamming
distance for all alignments of the given pattern and the text. We first consider the famous
variant of this problem called the k-mismatch problem, where we are only interested in small
Hamming distances (smaller than a given threshold k). Finally, we consider a problem of
computing all Hamming distances and present an approximate algorithm for it.
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3.27 Quickscorer: a fast algorithm to rank documents with additive
ensembles of regression trees

Rossano Venturini (University of Pisa, IT)
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Main reference C. Lucchese, F.M. Nardini, S. Orlando, R. Perego, N. Tonellotto, R. Venturini, “QuickScorer: a
Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees”, in Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’15), pp. 73–82, ACM, 2015.

URL http://dx.doi.org/10.1145/2766462.2767733

Learning-to-Rank models based on additive ensembles of regression trees have proven to be
very effective for ranking query results returned by Web search engines, a scenario where
quality and efficiency requirements are very demanding. Unfortunately, the computational
cost of these ranking models is high. Thus, several works already proposed solutions aiming
at improving the efficiency of the scoring process by dealing with features and peculiarities
of modern CPUs and memory hierarchies. In this paper, we present QuickScorer, a new
algorithm that adopts a novel bitvector representation of the tree-based ranking model,
and performs an interleaved traversal of the ensemble by means of simple logical bitwise
operations. The performance of the proposed algorithm are unprecedented, due to its
cacheaware approach, both in terms of data layout and access patterns, and to a control flow
that entails very low branch mis-prediction rates. The experiments on real Learning-to-Rank
datasets show that QuickScorer is able to achieve speedups over the best state-of-the-art
baseline ranging from 2x to 6.5x.

4 Working groups

4.1 LZ78 Construction in Little Main Memory Space
Diego Arroyuelo (TU Federico Santa María – Valparaíso, CL), Rodrigo Cánovas (University
of Montpellier 2, FR), Gonzalo Navarro (University of Chile – Santiago de Chile, CL), and
Rajeev Raman (University of Leicester, GB)
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Joint work of Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, Andreas Poyias, Rajeev Raman
Main reference A. Poyias, R. Raman, “Improved Practical Compact Dynamic Tries”, in Proc. of the 22nd Int’l

Symposium on String Processing and Information Retrieval (SPIRE 2015), LNCS, Vol. 9309,
pp. 324–336, Springer, 2015.

URL http://dx.doi.org/10.1007/978-3-319-23826-5_31

We report on ongoing work aiming to do the LZ78 parsing of a text T [1..n] over alphabet
[1..σ] in linear randomized time, using only O(z log σ) bits of main memory, while reading
the input text from disk and writing the compressed text to disk. The text can also be
decompressed within the same main memory usage.
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4.2 Smaller Structures for Top-k Document Retrieval
Simon Gog (KIT – Karlsruher Institut für Technologie, DE), Julian Labeit, and Gonzalo
Navarro (University of Chile – Santiago de Chile, CL)
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Main reference J. Labeit, S. Gog, “Elias-Fano meets Single-Term Top-k Document Retrieval”,in Proc. of the 19th
Workshop on Algorithm Engineering & Experiments (ALENEX 2017), pp. 135–145, SIAM, 2017.

URL http://dx.doi.org/10.1137/1.9781611974768.11

In a recent paper (main reference) Labeit and Gog improve upon the space of a previous fast
top-k document retrieval index by Gog and Navarro [Improved Single-Term Top-k Document
Retrieval. Proc. ALENEX’15, pages 24-32], by sharply reducing the information stored
about document identifiers. We now plan to further reduce the space, without hopefully
affect the time too much, by removing the information on frequencies, which is the largest
remaining component of the index. We plan to replace this information with a small index
per document, using a previously developed (and unpublished) technique by Navarro to store
many small document indexes within little space overhead.

4.3 More Efficient Representation of Web and Social Graphs by
Combining GLOUDS with DSM

Cecilia Hernández Rivas (University of Concepción, CL), Johannes Fischer (TU Dortmund,
DE), Gonzalo Navarro (University of Chile – Santiago de Chile, CL), and Daniel Peters

License Creative Commons BY 3.0 Unported license
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Main reference J. Fischer, D. Peters, “GLOUDS: Representing tree-like graphs”, Journal of Discrete Algorithms,
Vol. 36, pp. 39–49, Elsevier, 2016.

URL http://dx.doi.org/10.1016/j.jda.2015.10.004

We plan to combine the recently proposed GLOUDS representation [1] with DSM, a technique
used to compress Web and social graphs by exploiting the presence of bicliques and dense
subgraphs [2]. Since GLOUDS benefits from a representation with fewer edges per node and
DSM reduces the number of edges from m ∗ n to m+ n when representing an (m,n)-biclique,
we believe the combination can lead to better compression performance than the one obtained
with DSM alone, and can offer reasonable edge extraction time.

References
1 J. Fischer and D. Peters. GLOUDS: Representing tree-like graphs. J. Discrete Algorithms

36:39–49 (2016).
2 C. Hernández, G. Navarro. Compressed representations for web and social graphs. Knowl.

Inf. Syst. 40(2):279–313 (2014)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974768.11
http://dx.doi.org/10.1137/1.9781611974768.11
http://dx.doi.org/10.1137/1.9781611974768.11
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.jda.2015.10.004
http://dx.doi.org/10.1016/j.jda.2015.10.004
http://dx.doi.org/10.1016/j.jda.2015.10.004


Philip Bille, Markus Lohrey, Sebastian Maneth, and Gonzalo Navarro 119

Participants

Diego Arroyuelo
TU Federico Santa María –
Valparaíso, CL

Hideo Bannai
Kyushu University –
Fukuoka, JP

Djamal Belazzougui
CERIST – Algiers, DZ

Philip Bille
Technical University of Denmark
– Lyngby, DK

Stefan Böttcher
Universität Paderborn, DE

Rodrigo Cánovas
University of Montpellier 2, FR

Patrick Hagge Cording
Technical University of Denmark
– Lyngby, DK

Héctor Ferrada
University of Helsinki, FI

Johannes Fischer
TU Dortmund, DE

Travis Gagie
Universidad Diego Portales, CL

Adrià Gascón
University of Edinburgh, GB

Pawel Gawrychowski
University of Wroclaw, PL

Simon Gog
KIT – Karlsruher Institut für
Technologie, DE

Inge Li Gørtz
Technical University of Denmark
– Lyngby, DK

Cecilia Hernández Rivas
University of Concepción, CL

Danny Hucke
Universität Siegen, DE

Tomohiro I
Kyushu Institute of
Technology, JP

Shunsuke Inenaga
Kyushu University –
Fukuoka, JP

Artur Jez
University of Wroclaw, PL

Juha Kärkkäinen
University of Helsinki, FI

Susana Ladra González
University of A Coruña, ES

Markus Lohrey
Universität Siegen, DE

Sebastian Maneth
University of Edinburgh, GB

Ian Munro
University of Waterloo, CA

Gonzalo Navarro
University of Chile –
Santiago de Chile, CL

Yakov Nekrich
University of Waterloo, CA

Patrick K. Nicholson
Bell Labs – Dublin, IE

Alberto Ordóñez
University of A Coruña, ES

Fabian Peternek
University of Edinburgh, GB

Nicola Prezza
University of Udine, IT

Rajeev Raman
University of Leicester, GB

Wojciech Rytter
University of Warsaw, PL

Hiroshi Sakamoto
Kyushu Institute of Technology –
Fukuoka, JP

Srinivasa Rao Satti
Seoul National University, KR

Markus Schmid
Universität Trier, DE

Manfred Schmidt-Schauss
Goethe-Universität –
Frankfurt a.M., DE

Rahul Shah
Louisiana State University –
Baton Rouge, US

Ayumi Shinohara
Tohoku University – Sendai, JP

Tatiana Starikovskaya
University Paris-Diderot, FR

Alexander Tiskin
University of Warwick –
Coventry, GB

Rossano Venturini
University of Pisa, IT

16431


	Executive Summary Philip Bille, Markus Lohrey, Sebastian Maneth, and Gonzalo Navarro
	Table of Contents
	Overview of Talks
	Composite repetition-aware text indexing Djamal Belazzougui
	Edit Distance: Sketching, Streaming and Document Exchange Djamal Belazzougui
	Finger Search in Grammar-Compressed Strings Philip Bille
	Towards Graph Re-compression Stefan Böttcher
	Dynamic Relative Compression, Dynamic Partial Sums, and Substring Concatenation Patrick Hagge Cording
	Compressed Affix Tree Representations Rodrigo Cánovas
	Computing and Approximating the Lempel-Ziv-77 Factorization in Small Space Johannes Fischer
	GLOUDS: Representing tree-like graphs Johannes Fischer
	Queries on LZ-Bounded Encodings Travis Gagie
	Distance and NCA labeling schemes for trees Pawel Gawrychowski
	Querying regular languages over sliding-windows Danny Hucke
	The smallest grammar problem revisited Danny Hucke
	A Space-Optimal Grammar Compression Tomohiro I
	Recompression Artur Jez
	Linear Time String Indexing and Analysis in Small Space Juha Kärkkäinen
	Dynamic Rank and Select Structures on Compressed Sequences Yakov Nekrich
	Efficient Set Intersection Counting Algorithm for Text Similarity Measures Patrick K. Nicholson
	Grammar-based Graph Compression Fabian Peternek
	In-place longest common extensions Nicola Prezza
	Indexing in repetition-aware space Nicola Prezza
	Encoding Data Structures Rajeev Raman
	A Linear Time Algorithm for Seeds Computation Wojciech Rytter
	Space-efficient graph algorithms Srinivasa Rao Satti
	On the Complexity of Grammar-Based Compression over Fixed Alphabets Markus Schmid
	Compressed parameterized pattern matching Rahul Shah
	Streaming Pattern Matching Tatiana Starikovskaya
	Quickscorer: a fast algorithm to rank documents with additive ensembles of regression trees Rossano Venturini

	Working groups
	LZ78 Construction in Little Main Memory Space Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Rajeev Raman
	Smaller Structures for Top-k Document Retrieval Simon Gog, Julian Labeit, and Gonzalo Navarro
	More Efficient Representation of Web and Social Graphs by Combining GLOUDS with DSM Cecilia Hernández Rivas, Johannes Fischer, Gonzalo Navarro, and Daniel Peters

	Participants

