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Abstract
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The complexity class P (polynomial time) contains a vast variety of problems of practical
interest and yet relatively little is known about the structure of P, or of the complexity of
many individual problems in P. It is known that there exist contrived problems requiring
W(n1.5) time or W(n2) time, and yet to date no unconditional nonlinear lower bounds have
been proved for any problem of practical interest. However, the last few years have seen a
new resurgence in conditional lower bounds, whose validity rests on the conjectured hardness
of some archetypal computational problem. This work has imbued the class P with new
structure and has valuable explanatory power.

To cite a small fraction of recent discoveries, it is now known that classic dynamic
programming problems such as Edit Distance, LCS, and Fréchet distance require quadratic
time (based on the conjectured hardness of k-CNF-SAT), that the best known triangle
enumeration algorithms are optimal (based on the hardness of 3-SUM), that Valiant’s
context-free grammar parser is optimal (based on the hardness of k-CLIQUE), and that the
best known approximate Nash equilibrium algorithm is optimal (based on the hardness of
3-SAT).
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This Dagstuhl Seminar will bring together top researchers in diverse areas of theoretical
computer science and include a mixture of both experts and non-experts in conditional lower
bounds. Some specific goals of this seminar are listed below.

Numerous important problems (such as Linear Programming) seem insoluble in linear
time, and yet no conditional lower bounds are known to explain this fact. A goal is to
discover conditional lower bounds for key problems for which little is currently known.
Recent work has been based on both traditional hardness assumptions (such as the
ETH, SETH, 3SUM, and APSP conjectures) and a variety of newly considered hardness
assumptions (such as the OMv conjecture, the k-CLIQUE conjecture, and the Hitting Set
conjecture). Almost nothing is known about the relative plausibility of these conjectures,
or if multiple conjectures are, in fact, equivalent. A goal is to discover formal relationships
between the traditional and newer hardness assumptions.
A key goal of the seminar is to disseminate the techniques used to prove conditional lower
bounds, particularly to researchers from areas of theoretical computer science that have
yet to benefit from this theory. To this end the seminar will include a number of tutorials
from top experts in the field.
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3 Overview of Talks

3.1 Hardness for Graph Problems
Amir Abboud (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Amir Abboud

This is a survey of the landscape of Hardness in P results that we have for graph problems.

3.2 Optimal Hashing for High-Dimensional Spaces
Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten

License Creative Commons BY 3.0 Unported license
© Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten

Main reference A. Andoni, T. Laarhoven, I. Razenshteyn, E. Waingarten, “Optimal Hashing-based Time-Space
Trade-offs for Approximate Near Neighbors”, arXiv:1608.03580v1 [cs.DS], 2016.

URL https://arxiv.org/abs/1608.03580v1

We survey recent advances in the approximate nearest neighbor search problem in high-
dimensional Euclidean/Hamming spaces, which go beyond the classic Locality Sensitive
Hashing technique for the problem. The culmination of these advances is a new optimal
hashing algorithm that achieves the full trade-off between space vs query time. For example,
we obtain the first algorithm with near-linear space and sub-linear query time for any
approximation factor greater than 1, which is perhaps the most important regime in practice.

Our algorithm also unifies, simplifies, and improves upon the previous data structures for
the problem, combining elements of data-dependent hashing and Locality Sensitive Filtering.

Finally, we discuss matching lower bounds for hashing algorithms, as well as for 1- and
2-cell probe algorithms. In particular, the 2-cell probe lower bound exploits a connection
to locally-decodable codes, and yields the first space lower bound that is not polynomially
smaller than the 1-probe bound (for any static data structure).

3.3 Permanents as hardness for problems in P?
Andreas Björklund (Lund University, SE)

License Creative Commons BY 3.0 Unported license
© Andreas Björklund

Joint work of Andreas Björklund, Virginia Vassilevska Williams, Ryan Williams

We know that solving the orthogonal vectors problem with two sets of n vectors of dimension
d, for d superlogarithmic in n in less than quadratic time in n would violate SETH, even if
the vectors are from {0, 1}d. This is used in many of the SETH hardness results for problems
in P.

However, SETH is a hypothesis about one specific problem, that there are no significantly
faster algorithms to solve CNF Sat on n variables than testing all assignments. Unfortunately
there are very few fine-grained reductions between hard exponential time problems. Until we
find them, there are several other hard problems we could make similar hypotheses about.

In this talk we take a look at the matrix permanent. We give a proof sketch that shows
that you cannot count the pairs of orthogonal vectors in two sets of n vectors each from

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1608.03580v1
https://arxiv.org/abs/1608.03580v1
https://arxiv.org/abs/1608.03580v1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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{−1, 0, 1}d, for d polylogarithmic in n, in truly subquadratic time in n, unless you can
compute the permanent of a 0/1 matrix with bounded number of ones faster than the best
algorithms we know of to date.

3.4 Hardness for Polytime String Problems
Karl Bringmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Karl Bringmann

Joint work of Karl Bringmann, Marvin Künnemann, Allan Grønlund, Kasper Green Larsen

In this tutorial we surveyed recent conditional lower bounds for polynomial time problems
on strings. We focused on hardness based on the Strong Exponential Time Hypothesis,
specifically we discussed hardness of longest common subsequence [1, 2] as well as for pattern
matching of regular expressions [3, 4].

References
1 Karl Bringmann and Marvin Künnemann. “Quadratic conditional lower bounds for string

problems and dynamic time warping.” FOCS 2015.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. “Tight hardness results

for LCS and other sequence similarity measures.” FOCS 2015.
3 Arturs Backurs and Piotr Indyk. “Which Regular Expression Patterns are Hard to Match?”

FOCS 2016.
4 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. “A Dichotomy for Regular

Expression Membership Testing.” arXiv:1611.00918

3.5 Hardness of string problems with small alphabet size
Yi-Jun Chang (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Yi-Jun Chang

Main reference Y.-J. Chang, “Hardness of RNA folding problem with four symbols”, in Proc. of the 27th Annual
Symposium on Combinatorial Pattern Matching (CPM 2016), LIPIcs, Vol. 54, pp. 13:1–13:12,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.CPM.2016.13

In FOCS 2015, Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams demon-
strated conditional lower bounds for fundamental string problems such as RNA folding, Dyck
edit distance, and k − LCS.

However, all these lower bound proofs require the alphabet size to be large enough to
work. For RNA folding, the required alphabet size is 36, making the result biologically
irrelevant. For k-LCS, the alphabet size needed is O(k), and it is an open problem whether
the same lower bound holds when the alphabet size is a constant independent of k.

In this talk, we show how we can lower the alphabet size requirement for the hardness
proofs of RNA folding (from 36 to 4) and Dyck Edit distance (from 48 to 10). We will also
discuss some open problems and future work directions.

16451
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3.6 Recent insights into counting small patterns
Radu Curticapean (Hungarian Academy of Sciences – Budapest, HU), Holger Dell (Universität
des Saarlandes, DE), and Dániel Marx

License Creative Commons BY 3.0 Unported license
© Radu Curticapean, Holger Dell, and Dániel Marx

We consider the problem of counting subgraphs. More specifically, we look at the following
problems ]Sub(C) for fixed graph classes C: Given as input a graph H from C (the pattern)
and another graph G (the host), the task is to count the occurrences of H as a subgraph
in G. Our goal is to understand which properties of the pattern class C make the problem
]Sub(C) easy/hard. For instance, for the class of stars, we can solve this problem in linear
time. For the class of paths however, it subsumes counting Hamiltonian paths and is hence ]
P-hard.

As it turns out, the notion of ] P-hardness fails to give a sweeping dichotomy for the
problems ]Sub(C), since there exist classes C of intermediate complexity. However, adopting
the framework of fixed-parameter tractability, and parameterizing by the size of the pattern,
it was shown in 2014 how to classify the problems ]Sub(C) as either polynomial-time solvable
or ] W[1]-hard: A class C lies on the polynomial-time side of this dichotomy iff the graphs
appearing in C have vertex-covers of constant size.

In this talk, we introduce a new technique that allows us to view the subgraph counting
problem from a new perspective. In particular, it allows for the following applications:
1. A greatly simplified proof of the 2014 dichotomy result, together with almost-tight lower

bounds under ETH, which were not achievable before.
2. Faster algorithms for counting k-edge subgraphs, such as k-matchings, with running time

nck for constants c < 1.

3.7 Tight Bounds for Subgraph Isomorphism and Graph
Homomorphism

Marek Cygan (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Marek Cygan

Joint work of Marek Cygan, Fedor Fomin, Alexander Kulikov, Ivan Mihajlin, Alexander Golovnev, Jakub
Pachocki, Arkadiusz Socała

Main reference M. Cygan, F.V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. Pachocki, A. Socala, “Tight
Bounds for Graph Homomorphism and Subgraph Isomorphism”, in Proc. of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1643–1649, 2016.

URL http://dx.doi.org/10.1137/1.9781611974331.ch112

This tutorial will consists of two parts. First, we will show simple reductions that allow
obtaining (slightly) sublinear reductions from CNF-SAT, leading to (slightly) superexponential
lower bounds under the Exponential Time Hypothesis. The goal is to expose main ideas
used in such reductions.

Second part will be about tight lower bounds for graph homomorphism and subgraph
isomorphism (under the ETH), which is a joint work with Fedor Fomin, Alexander Kulikov,
Ivan Mihajlin, Alexander Golovnev, Jakub Pachocki, Arkadiusz Socała.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1137/1.9781611974331.ch112
http://dx.doi.org/10.1137/1.9781611974331.ch112
http://dx.doi.org/10.1137/1.9781611974331.ch112
http://dx.doi.org/10.1137/1.9781611974331.ch112
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3.8 Popular Conjectures as a Barrier for Dynamic Planar Graph
Algorithms

Søren Dahlgaard (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Søren Dahlgaard

Joint work of Amir Abboud
Main reference A. Abboud, S. Dahlgaard, “Popular Conjectures as a Barrier for Dynamic Planar Graph

Algorithms”, in Proc. of the 57th Annual Symposium on Foundations of Computer Science
(FOCS’16), pp. 477–486, IEEE, 2016.

URL http://dx.doi.org/10.1109/FOCS.2016.58

We consider dynamic problems in planar graphs and present hardness results for dynamic
shortest paths and related problems. This result is the first of its kind for planar graphs, and
we believe that our techniques might be helpful in proving hardness for other problems in
planar graphs. In particular we show that, based on the APSP-conjecture, no algorithm can
perform dynamic shortest paths in planar graphs faster than O(

√
(n)) query and update

time.

3.9 New upper bounds for some basic problems in P
Omer Gold (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Omer Gold

Joint work of Omer Gold, Micha Sharir

I will provide an overview on our recent upper bounds for some basic (geometric) problems
in P. Particularly, improved subquadratic bounds for 3-SUM, the first subquadratic-time
algorithms for Dynamic Time Warping and Geometric Edit Distance, near-linear decision tree
bounds for the discrete Fréchet distance under polyhedral metrics, and reduction relations
between Dominance Products and high-dimensional Closest Pair problems. This overview is
based on results that appear in [2, 1, 3, 4].

References
1 Omer Gold and Micha Sharir. Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy.

CoRR, abs/1512.05279, 2015
2 Omer Gold and Micha Sharir. On the Complexity of the Discrete Fréchet Distance under

L1 and L∞. The 31st European Workshop on Computational Geometry (EuroCG), 2015
3 Omer Gold and Micha Sharir. Dominance Products and Faster Algorithms for High-

Dimensional Closest Pair under L∞. CoRR, abs/1605.08107, 2016
4 Omer Gold and Micha Sharir. Dynamic Time Warping and Geometric Edit Distance:

Breaking the Quadratic Barrier. CoRR, abs/1607.05994, 2016
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3.10 How Hard is it to Find (Honest) Witnesses?
Isaac Goldstein (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 3.0 Unported license
© Isaac Goldstein

Joint work of Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, Ely Porat
Main reference I. Goldstein, T. Kopelowitz, M. Lewenstein, E. Porat: “How Hard is it to Find (Honest)

Witnesses?”, in Proc. of the 24th Annual European Symposium on Algorithms (ESA 2016), LIPIcs,
Vol. 57, pp. 45:1–45:16, chloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2016.45

In recent years much effort was put into developing polynomial-time conditional lower bounds
for algorithms and data structures in both static and dynamic settings. Along these lines we
suggest a framework for proving conditional lower bounds based on the well-known 3-SUM
conjecture. Our framework creates a compact representation of an instance of the 3-SUM
problem using hashing and domain specific encoding. This compact representation admits
false solutions to the original 3-SUM problem instance which we reveal and eliminate until
we find a true solution. In other words, from all witnesses (candidate solutions) we figure
out if an honest one (a true solution) exists. This enumeration of witnesses is used to prove
conditional lower bound on reporting problems that generate all witnesses. In turn, these
reporting problems are reduced to various decision problems. These help to enumerate the
witnesses by constructing appropriate search data structures. Hence, 3SUM-hardness of the
decision problems is deduced.

We utilize this framework to show conditional lower bounds for several variants of
convolutions, matrix multiplication and string problems. Our framework uses a strong
connection between all of these problems and the ability to find witnesses.

Specifically, we prove conditional lower bounds for computing partial outputs of con-
volutions and matrix multiplication for sparse inputs. These problems are inspired by the
open question raised by Muthukrishnan 20 years ago. The lower bounds we show rule out
the possibility (unless the 3-SUM conjecture is false) that almost linear time solutions to
sparse input-output convolutions or matrix multiplications exist. This is in contrast to
standard convolutions and matrix multiplications that have, or assumed to have, almost
linear solutions.

Moreover, we improve upon the conditional lower bounds of Amir et al. for histogram
indexing, a problem that has been of much interest recently. The conditional lower bounds we
show apply for both reporting and decision variants. For the well-studied decision variant, we
show a full tradeoff between preprocessing and query time for every alphabet size > 2. At an
extreme, this implies that no solution to this problem exists with subquadratic preprocessing
time and O(1) query time for every alphabet size > 2, unless the 3-SUM conjecture is false.
This is in contrast to a recent result by Chan and Lewenstein for a binary alphabet. While
these specific applications are used to demonstrate the techniques of our framework, we
believe that this novel framework is useful for many other problems as well.
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3.11 Parameterised graph distance problems
Thore Husfeldt (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Thore Husfeldt

Main reference T. Husfeldt, “Computing Graph Distances Parameterized by Treewidth and Diameter”, 11th Int’l
Symposium on Parameterized and Exact Computation (IPEC 2016), LIPIcs, Vol. 63,
pp. 16:1–16:11, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.16

We study the complexity of computing the diameter and other distance measures in an
unweighted, undirected graph. We sketch the ideas behind a tree decomposition-based
repeated traversal that computes the diameter in time n exp(t log d), where t is the treewidth
and d is the diameter ([Husfeldt, IPEC 2016]), which matches a lower bound under the
Strong Exponential Time Hypothesis of Abboud, Vassilevska Williams, and Wang [SODA
2016] for constant diameter. We observe that simple arguments establish tight bounds under
the same hypothesis when the problem is paraemterised by vertex cover number and (with
some help from the audience) domination number.

3.12 Finding Even Cycles
Mathias Bæk Tejs Knudsen (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Mathias Bæk Tejs Knudsen

Joint work of Mathias Bæk Tejs Knudsen, Søren Dahlgaard, Morten Stöckel.

We study the problem of finding a 2k-cycle in a graph, for constant values of k. Previous
results showed that it is possible to do this in time O(n2), and we have improved this to
O(m(2k/(k + 1))), where n and m is the number nodes and edges in the graph. Since any
graph with m� n(1 + 1/k) edges contains a 2k-cycle, this bound is at least as good as the
O(n2) bound.

I will tell a little bit about the result and then focus on why it seems difficult to show a
conditional lower bound of n2−o(1), since it implies solving a problem related to the Erdos
Girth Conjecture. However, this does not rule out the possibility, that it is easy (for whatever
definition of “easy”) to show a lower bound of m2k/(k+1)−o(1).

3.13 Birthday Repetition: Tool for proving quasi-poly hardness
Young Kun Ko (Princeton University, US)

License Creative Commons BY 3.0 Unported license
© Young Kun Ko

In this talk we give a broad introduction to Birthday Repetition, a technique introduced to
prove quasi-polynomial hardness of “Free” game assuming the Exponential Time Hypothesis.
The main observation of the technique is Birthday Paradox, in particular that aggregating
the variables in 2-CSPs to a tuple of size Õ(

√
n) then choosing two tuples at random will

have a challenge from original 2-CSP with high probability. No prior material is assumed.
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3.14 Tight Bounds for Gomory-Hu-like Cut Counting
Robert Krauthgamer (Weizmann Institute – Rehovot, IL)

License Creative Commons BY 3.0 Unported license
© Robert Krauthgamer

Joint work of Rajesh Chitnis, Lior Kamma, and Robert Krauthgamer.
Main reference R. Chitnis, L. Kamma, R. Krauthgamer, “Tight Bounds for Gomory-Hu-like Cut Counting”, in

Proc. of the 42nd Int’l Workshop on Graph-Theoretic Concepts in Computer Science (WG’16),
LNCS, Vol. 9941, pp. 133–144, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-662-53536-3_12

A classical result of Gomory and Hu from 1961 shows that in every edge-weighted undirected
graph G = (V,E,w), the minimum st-cut values, when ranging over all s, t ∈ V , take at most
|V | − 1 distinct values. That is, these

(|V |
2
)
instances exhibit “redundancy” by factor Ω(|V |).

They further showed how to construct a tree on V that stores all minimum st-cut values.
Motivated by this result, we obtain tight bounds for the redundancy factor of several

generalizations of minimum st-cut, namely, Multiway-Cut, Multicut, and Group-Cut. A
natural application of these bounds is to construct small data structures that store all the
cut values for these problems, a la the Gomory-Hu tree. We initiate this direction by giving
some upper and lower bounds.

3.15 Advances in fully dynamic algorithms with worst-case update time
Sebastian Krinninger (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Krinninger

Joint work of Sebastian Krinninger, Ittai Abraham, Shiri Chechik

A major goal in dynamic graph algorithms is to strengthen amortized update time guarantees
to to hard worst-case guarantees. As we have learned from recent conditional lower bounds,
this unfortunately might not always be possible in many cases. In other cases, it is on open
problem how much better the worst-case update time guarantees can get. I will give a short
overview and then present my recent contributions in this area.

3.16 Deterministic Time-Space Tradeoffs for k-SUM
Andrea Lincoln (Stanford University, US), Joshua R. Wang, Ryan Williams, and Virginia
Vassilevska Williams (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Andrea Lincoln, Joshua R. Wang, Ryan Williams, and Virginia Vassilevska Williams

Main reference A. Lincoln, V. Vassilevska Williams, J. R. Wang, R.R. Williams, “Deterministic Time-Space
Tradeoffs for k-SUM”, arXiv:1605.07285v1 [cs.DS], 2016.

URL https://arxiv.org/abs/1605.07285v1

Given a set of numbers, the k-SUM problem asks for a subset of k numbers that sums to
zero. When the numbers are integers, the time and space complexity of k-SUM is generally
studied in the word-RAM model; when the numbers are reals, the complexity is studied in
the real-RAM model, and space is measured by the number of reals held in memory at any
point.
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We present a time and space efficient deterministic self-reduction for the k-SUM problem
which holds for both models, and has many interesting consequences. To illustrate:

3-SUM is in deterministic time O(n2 lg lg(n)/ lg(n)) and space O
(√

n lg(n)
lg lg(n)

)
. In general,

any polylogarithmic-time improvement over quadratic time for 3-SUM can be converted
into an algorithm with an identical time improvement but low space complexity as well.
3-SUM is in deterministic time O(n2) and space O(

√
n), derandomizing an algorithm of

Wang.
A popular conjecture states that 3-SUM requires n2−o(1) time on the word-RAM. We show
that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that
every O(n.51)-space algorithm for 3-SUM requires at least n2−o(1) time on the word-RAM.
For k ≥ 4, k-SUM is in deterministic O(nk−2+2/k) time and O(

√
n) space.

3.17 Continuous Optimization Based Maximum Flow Algorithms Make
Sense

Aleksander Madry (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Aleksander Madry

I will explain how to compute the maximum flow in a graph by iteratively routing electrical
flows in the residual graph. The resulting algorithm provides the state of the art running
time bounds for the unit capacity maximum flow problem.

3.18 Shortest cycle approximation
Liam Roditty (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 3.0 Unported license
© Liam Roditty

Joint work of Liam Roditty, Virginia Vassilevska Williams

We study the problem of determining the girth of an unweighted undirected graph.
In this talk I will survey efficient approximation algorithms with additive and multiplicative

approximations from the paper [1].

References
1 Liam Roditty, Virginia Vassilevska Williams. Subquadratic time approximation algorithms

for the girth. Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics, 2012.
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3.19 Towards Conditional Lower Bounds for Tree Edit Distance
Oren Weimann (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Oren Weimann

Joint work of Karl Bringmann, Paweł Gawrychowski, Shay Mozes, Oren Weimann

The tree edit distance (TED) between two labeled trees T and T ′ is the minimum cost of
transforming one tree into the other by a sequence of elementary operations consisting of
deleting and relabeling existing nodes, as well as inserting new nodes. The current fastest
algorithm for TED requires O(n3) time. In terms of conditional lower bounds, the problem
has a string edit distance (hence SETH) flavor, yet a cubic (hence APSP) complexity. In
my talk, I presented a joint work with Paweł Gawrychowski and Shay Mozes showing a
possible first step towards APSP-hardness. Namely, a reduction from APSP to TED under
the assumption that in TED we seek the edit distance between every subtree of T and every
subtree of T ′. All existing TED algorithms actually compute this all subtree-to-subtree
information.

Right after the talk, Karl Bringmann who was in the audience came up with a way to
remove the subtree-to-subtree assumption in the APSP to TED reduction, thus achieving
APSP-hardness for TED. The reduction still required Ω(n) different labels. In the following
few days at Dagstuhl, together with Karl we extended the reduction to a reduction from
Max-weighted k-Clique to TED that requires only O(1) different labels.

We are currently writing-up these results and plan to submit them soon to a conference.
We are grateful for Dagstuhl and feel that such outcome as the above can only happen in
meetings like Dagstuhl.

3.20 Fine-Grained Complexity and Conditional Hardness for Sparse
Graphs

Vijaya Ramachandran (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
© Vijaya Ramachandran

Joint work of Udit Agarwal, Vijaya Ramachandran
Main reference U. Agarwal, V. Ramachandran, “Fine-Grained Complexity and Conditional Hardness for Sparse

Graphs”, arXiv:1611.07008v1 [cs.DS], 2016.
URL https://arxiv.org/abs/1611.07008v1

There is a large class of path and cycle problems on graphs that currently have Õ(n3)1
time algorithms. Graphs encountered in practice are typically sparse, with the number of
edges m being close to linear in n, the number of vertices, or at least with m << n2. When
considering sparsity, the current time complexities of these problems split into two classes:
the Θ̃(mn) class, which includes APSP, Betweenness Centrality, and Minimum-Weight-Cycle,
among several other problems, and the Θ(m3/2) class, which includes all problems relating
to enumerating and detecting triangles. Here n and m are the number of vertices and edges
in the graph. We investigate the fine-grained complexity of these problems on sparse graphs,
and our main results are the following:

1 Õ hides polylog factors. For APSP on dense graphs, we use it to also hide a larger, but sub-polynomial
factor
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1. Reductions and Algorithms. We define the notion of a sparse reduction that preserves
graph sparsity, and we present several such reductions for graph problems in the Õ(mn)
class. This gives rise to a rich partial order on graph problems with Õ(mn) time
algorithms, with the Minimum-Weight-Cycle problem as a major source in this partial
order, and APSP a major sink. Surprisingly, very few of the known subcubic results
are sparse reductions (outside of a few reductions that place Centrality problems in the
sub-cubic equivalence class). We develop new techniques in order to preserve sparsity in
our reductions, many of which are nontrivial and intricate. Some of our reductions also
lead to improved algorithms for various problems on finding simple cycles in undirected
graphs.

2. Conditional Hardness. We establish a surprising conditional hardness result for sparse
graphs: We show that if the Strong Exponential Time Hypothesis (SETH) holds, then
several problems in the Õ(mn) class, including certain problems that are also in the
sub-cubic equivalence class such as Betweenness Centrality and Eccentricities, cannot
have ‘sub-mn’ time algorithms, i.e., algorithms that run in O(mα · n2−α−ε) time, for
constants α ≥ 0, ε > 0. In particular, this result means that under SETH, the sub-cubic
equivalence class is split into at least two classes when sparsity is taken into account, with
triangle finding problems having faster algorithms than Eccentricities or Betweenness
Centrality. This hardness result for the Õ(mn) class is also surprising because a similar
hardness result for the sub-cubic class is considered unlikely since this would falsify
NSETH (Nondeterministic SETH).

3.21 Computing Min-Cut with truly subquadratic cut queries
Aviad Rubinstein (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
© Aviad Rubinstein

Joint work of Aviad Rubinstein, Tselil Schramm, Matt Weinberg

I describe preliminary progress on the problem of computing an exact minimum cut of an
unknown graph, when the graph is accessed via queries to a cut-value oracle.

3.22 On the oblivious adversary assumption in dynamic problems
Thatchaphol Saranurak (KTH Royal Institute of Technology – Stockholm, SE) and Danupon
Nanongkai (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Thatchaphol Saranurak and Danupon Nanongkai

Main reference D. Nanongkai, T. Saranurak, “Dynamic Spanning Forest with Worst-Case Update Time: Adaptive,
Las Vegas, and O(n1/2−ε)-Time”, arXiv:1611.03745v1 [cs.DS], 2016.

URL https://arxiv.org/abs/1611.03745v1

Many dynamic randomized algorithms make the “oblivious adversary assumption” i.e. they
assume that the adversary fixed all the updates before it sees any output of the dynamic
algorithm. This is in contrast to an “adaptive adversary” that see all previous algorithm’s
outputs before it generates a new update. It is a fundamental question whether the true
source of power of randomized dynamic algorithms is the randomness itself or in fact the
oblivious adversary assumption.
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For example, in dynamic spanning forest problem which plays a central role in the
development of dynamic graph algorithms, there is a randomized algorithm with polylog
worst-case update time against oblivious adversaries but the best-known algorithms against
adaptive adversaries have O(

√
n) update time.

In this talk, I will try to motivate an approach for understanding the power of adaptive
adversaries in dynamic spanning forest problem via a problem called “dynamic cut oracle”.
This problem is interesting for two reasons. First, if it is “hard”, this would separate the two
models of oblivious vs. adaptive adversaries. That is, it implies that there is no algorithm
with polylog worst-case update time against adaptive adversaries for dynamic spanning
forest. Second, the technique we used for studying dynamic cut oracle leads to a new exciting
algorithm for dynamic spanning forest itself, which indicates that this problem might capture
the hardness of dynamic spanning forest problem.

3.23 Subquadratic Algorithms for Succinct Stable Matching
Stefan Schneider (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Stefan Schneider

Joint work of Marvin Künnemann, Daniel Moeller, Ramamohan Paturi, Stefan Schneider
Main reference M. Künnemann, D. Moeller, R. Paturi, S. Schneider, “Subquadratic Algorithms for Succinct Stable

Matching”, arXiv:1510.06452v5 [cs.DS], 2016.
URL https://arxiv.org/abs/1510.06452v5

We consider the stable matching problem when the preference lists are not given explicitly
but are represented in a succinct way and ask whether the problem becomes computationally
easier and investigate other implications. We give subquadratic algorithms for finding a
stable matching in special cases of natural succinct representations of the problem, the
d-attribute, d-list, geometric, and single-peaked models. We also present algorithms for
verifying a stable matching in the same models. We further show that for d = ω(logn)
both finding and verifying a stable matching in the d-attribute and d-dimensional geometric
models requires quadratic time assuming the Strong Exponential Time Hypothesis. This
suggests that these succinct models are not significantly simpler computationally than the
general case for sufficiently large d.

3.24 RNA-Folding: From Hardness to Algorithms
Virginia Vassilevska Williams (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Virginia Vassilevska Williams

Joint work of Karl Bringmann, Fabrizio Grandoni, Barna Saha, Virginia Vassilevska Williams
Main reference V. Vassilevska Williams, “RNA-Folding - From Hardness to Algorithms”, in Proc. of the 41st Int’l

Symposium on Mathematical Foundations of Computer Science (MFCS 2016), LIPIcs, Vol. 58,
pp. 5:1–5:1, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.5

A fundamental problem in computational biology is predicting the base-pairing of an RNA
secondary structure. Most algorithms for this rely on an algorithm for a simplified version
of this problem, RNA-folding, defined as follows: given a sequence S of letters over the
alphabet {A,U,C,G} where A can only be paired with U and C can only be paired with
G, determine the best “folding” of S, i.e. a maximum size *nested* pairing of the symbols
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of S. For instance, in the sequence ACUG the best pairing is either matching A with U, or
matching C with G, but not both as that pairing wouldn’t be nested.

A dynamic programming algorithm from 1980 by Nussinov and Jacobson solves the
RNA-folding problem on an n letter sequence in O(n3) time. Despite many efforts, until
recently, the best algorithms for RNA-folding only shaved small logarithmic factors over this
cubic running time.

Recent work [1] explained why it has been so difficult to obtain faster algorithms: if
one can solve RNA-folding on n length strings faster than one can currently multiply n by
n matrices, then the Clique problem would have surprisingly fast algorithms.The current
fastest algorithm to multiply n by n matrices runs in O(n2.373) time and the fastest known
Clique algorithms use this result. Obtaining an O(n2.36) time algorithm for RNA-folding
would thus be potentially difficult as it would imply a breakthrough for Clique algorithms
and potentially also for matrix multiplication.

While this hardness result is appealing, it does not explain the seeming n3 barrier. No
better hardness seemed possible to us, and thus it became increasingly more plausible that
RNA-folding should have a faster algorithm and in fact one using fast matrix multiplication.
Indeed, this turned out to be true. In this talk I will strive to give some insight into the first
truly subcubic time algorithm for the problem.

References
1 Abboud, Amir, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on. IEEE, 2015.

3.25 Amortized Dynamic Cell-Probe Lower Bounds from Four-Party
Communication

Huacheng Yu (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Huacheng Yu

Joint work of Omri Weinstein, Huacheng Yu
Main reference O. Weinstein, H. Yu, “Amortized Dynamic Cell-Probe Lower Bounds from Four-Party

Communication”, in Proc. of the 57th Annual Symposium on Foundations of Computer Science
(FOCS’16), pp. 305–314, IEEE, 2016.

URL http://dx.doi.org/10.1109/FOCS.2016.41

This paper develops a new technique for proving amortized, randomized cell-probe lower
bounds on dynamic data structure problems. We introduce a new randomized nondetermin-
istic four-party communication model that enables “accelerated”, error-preserving simulations
of dynamic data structures.

We use this technique to prove an Ω(n(logn/ log logn)2) cell-probe lower bound for
the dynamic 2D weighted orthogonal range counting problem (2D-ORC) with n/poly logn
updates and n queries, that holds even for data structures with exp(−Ω̃(n)) success probability.
This result not only proves the highest amortized lower bound to date, but is also tight in
the strongest possible sense, as a matching upper bound can be obtained by a deterministic
data structure with worst-case operational time. This is the first demonstration of a “sharp
threshold” phenomenon for dynamic data structures.

Our broader motivation is that cell-probe lower bounds for exponentially small success
facilitate reductions from dynamic to static data structures. As a proof-of-concept, we show
that a slightly strengthened version of our lower bound would imply an Ω((logn/ log logn)2)
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lower bound for the static 3D-ORC problem with O(n logO(1) n) space. Such result would
give a near quadratic improvement over the highest known static cell-probe lower bound,
and break the long standing Ω(logn) barrier for static data structures.

4 Open problems

The following open problems were contributed by the seminar attendees, and compiled and
edited by the organizers.

4.1 Parameterizing problems in P by treewidth
Fedor V. Fomin (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Fedor V. Fomin

Background. Let t be the treewidth of an input graph. Many NP-hard problems, partic-
ularly those expressible in MSOL, are solvable in f(t)n time and there are lower bounds
on the (exponential) function f conditioned on the Strong Exponential Time Hypothesis
(SETH) [26]. For problems in P the picture is less clear. Consider your favorite problem Π
in P solvable in TΠ(n) time on a graph wtih n vertices. Some problems Π admit algorithms
running in poly(t) · o(TΠ(n)) time whereas others do not. For example, Abboud et al. [5]
proved that Diameter can be solved in 2O(t log t)n1+o(1) time, yet a 2o(t)n2−ε time algorithm
would refute SETH. On the other hand, maximum cardinality matching can be solved in
randomized O(t3 · n logn)-time [31].

Question. Classify graph problems in P according to their dependence on treewidth.
Which problems admit f(t) · n1+o(1)-time algorithms with polynomial f , and which require
exponential f? A specific goal is the determine whether maximum weight perfect matching
has an Õ(poly(t)n) algorithm, for integer weights from a polynomial range.

Main paper reference: Abboud et al. [5], Fomin et al. [31].

4.2 Approximate all-pairs shortest paths
Amir Abboud (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Amir Abboud

Background. In unweighted, undirected graphs, we can compute All Pairs Shortest Paths
(APSP) in O(n3) time with a fast “combinatorial" algorithm, or in O(nω) time, where
ω < 2.373 is the matrix multiplication exponent. It is conjectured that a truly subcubic
combinatorial algorithm does not exist, which is equivalent to the combinatorial Boolean
matrix multiplication conjecture.

What about approximation algorithms? The best kind of approximation is an additive
+2, so that for all pairs u, v we return a value that is between d(u, v) and d(u, v) + 2. Dor,
Halperin, and Zwick [30] presented a combinatorial algorithm with runtime Õ(n7/3). Note
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that this runtime is currently even better that O(nω), and has the advantage of being
practical.

Questions. Is there a conditional lower bound for +2-APSP? Can we show that a combin-
atorial algorithm must spend n7/3−o(1) time? Would a faster non-combinatorial algorithm
require improvements to ω? Alternatively, is there an Õ(n2) time algorithm for +2-APSP?

Main paper reference: Dor, Halperin, and Zwick [30].

4.3 Approximate diameter
Amir Abboud (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Amir Abboud

Background. Computing the diameter of a sparse graph in truly subquadratic time refutes
SETH: Roditty and Vassilevska Williams [62] showed that a (3/2− ε)-approximation to the
diameter requires n2−o(1) time, even on a sparse unweighted undirected graph under SETH.
On the other hand, there are algorithms [62, 22] that give a (roughly) 3/2 approximation
in Õ(m

√
n) time on unweighted graphs, or Õ(min{m3/2,mn2/3}) time on weighted graphs.

Extending these algorithms further, Cairo et al. [19] showed that for all integers k ≥ 1,
there is an Õ(mn1/(k+1)) time algorithm that approximates the diameter of an undirected
unweighted graph within a factor of (roughly) 2− 1/2k.

Question. If we insist on near-linear runtime, what is the best approximation factor we
can get? It is easy to see that a 2-approximation can be achieved in linear time, but what
about an α-approximation, where 3/2 ≤ α < 2?

Main paper reference: Roditty and Vassilevska W. [62].

4.4 Finding cycles and approximating the girth
Mathias Bæk Tejs Knudsen (University of Copenhagen, DK) and Liam Roditty (Bar-Ilan
University – Ramat Gan, IL)

License Creative Commons BY 3.0 Unported license
© Mathias Bæk Tejs Knudsen and Liam Roditty

Background. Consider an unweighted undirected graph G = (V,E). The girth of G is the
length of the shortest cycle. The problem of detecting 3-cycles (and odd cycles of any length)
is reducible to matrix multiplication and there are reductions in the reverse direction; see [66].
Yuster and Zwick [67] showed that detecting 2k-cycles can be computed in O(f(k)n2) time,
where f is exponential.

Question. For any fixed constant k, give a conditional lower bound, showing that there
does not exist an algorithm deciding whether G contains a 2k-cycle in time O(f(k)n2−ε) for
any ε > 0, or one running in O(f(k)m2k/(k+1)−ε) time, where m is the number of edges.

Main paper reference: Yuster and Zwick [67].
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Question. Prove or disprove the following conjecture: There exists a truly subquadratic
algorithm for finding a 4-cycle in a graph if and only if there exists a truly subquadratic
algorithm for finding a multiplicative (2− ε)-approximation of the girth.

Question. Prove or disprove the following conjecture from [63]: the problem of detecting a
3-cycle in a graph G without 4- and 5-cycles requires n2−o(1) time. Note that if there exists a
subquadratic (2− ε)-approximation for the girth, it must be able to detect 3-cycles in graphs
without 4- and 5-cycles. See [63] for more details.

Main paper reference: Roditty and Vassilevska W. [63].

4.5 Minimum cycle problem in directed graphs
Virginia Vassilevska Williams (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Virginia Vassilevska Williams

Background. Given an unweighted directed graph G = (V,E) on n vertices, the problem is
to find a shortest cycle in G. The potentially simpler Girth problem asks to compute just
the length of the shortest cycle.

The girth and the minimum cycle can be computed in O(nω) time exactly, as shown by
Itai and Rodeh [49], where ω < 2.373. It is easy to see that the minimum cycle problem is at
least as hard as finding a triangle in a graph. In fact, even obtaining a (2− δ)-approximation
for the girth for any constant δ > 0 is at least as hard as triangle detection. The fastest
algorithm for the Triangle problem in n node graphs runs in O(nω) time.

Question. Is there any O(1)-approximation algorithm for the girth that runs faster than
O(nω) time? In recent work, Pachocki, Roditty, Sidford, Tov, and Vassilevska Williams [59]
showed that for any integer k, there is an Õ(mn1/k) time O(k logn) approximation algorithm
for the Minimum Cycle problem. Thus, in nearly linear time, one can obtain an O(log2 n)-
approximation. Can one improve the approximation factor further? Can one even obtain a
constant factor approximation in linear time?

Main paper reference: Pachocki et al. [59].

4.6 Linear Programming
Aleksander Madry (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Aleksander Madry

Background. Consider a linear program of the following form: minimize cTx subject to
Ax ≥ b, where A is an d-by-n constraint matrix. Suppose that we could solve any such LP
in time

Õ
((
nnz(A) + d2) dδ logL

)
,

where nnz(A) is the number of non-zero entries of A, L is the bound on the bit complexity
of the input entries, and δ is a positive constant.
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Question. Is there some value of δ for which the above (hypothetical) running time bound
would disprove any of the popular hardness conjectures?

In [57], it is shown that one can achieve the above running time bound for δ = 1
2 .

Main paper reference: Lee and Sidford [57].

4.7 Fully dynamic APSP
Sebastian Krinninger (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Sebastian Krinninger

Background. In the fully dynamic all-pairs shortest paths (APSP) problem we are interested
in maintaining the distance matrix of a graph under insertions and deletions of nodes.
Demetrescu and Italiano [28] showed that the distance matrix can be updated in amortized
time Õ(n2) after each node update. The current fastest worst case algorithms have update
times of Õ(n2+2/3) (randomized Monte Carlo [7]) and Õ(n2+3/4) (deterministic [65]).

Questions. Can the worst case update time Õ(n2) be achieved? A barrier for current
algorithmic approaches is n2.5. Is there a conditional lower bound showing this to be a true
barrier?

Main paper reference: Abraham et al. [7].

4.8 Dynamic reachability in planar graphs
Søren Dahlgaard (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Søren Dahlgaard

Background. Dynamic reachability in a planar graph G is the problem of maintaining a
data structure supporting the following operations: (i) Insert a directed edge (u, v) into G,
(ii) delete an edge from G, and (iii) query whether v is reachable from u in G.

An algorithm with update and query time Õ(
√
n) is known (Diks and Sankowski [29])

for dynamic plane graphs—that is, the graph is dynamic but the plane embedding is fixed.

Question. Does an n1/2−Ω(1) algorithm exist or is there a conditional n1/2−o(1) hardness
result? Any polynomial hardness result would be interesting. A good place to start for the
latter part would be the recent paper by Abboud and Dahlgaard [3] about hardness for
dynamic problems in planar graphs.

Main paper reference: Abboud and Dahlgaard [3].
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4.9 Static hardness for planar graphs
Søren Dahlgaard (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Søren Dahlgaard

Background. An important direction is to show conditional hardness for important prob-
lems, even on restricted (easier) classes of graphs, e.g., planar graphs. Abboud and Dahl-
gaard [3] recently showed hardness for several dynamic problems in planar graphs, but
nothing is known for static problems.

Question. On planar graphs, many problems (such as shortest paths, multi-source multi-
sink max-flow, etc.) run in near-linear time. Can we show that some problem does not? No
hardness results are known for any static problem in P on planar graphs. Two candidate
problems to consider are diameter and sum of distances. Both require subquadratic time
(Cabello [18]), but it may still be possible to show a hardness result, e.g., n3/2−o(1) hardness.

Main paper reference: Cabello [18].

4.10 Sparse reductions for graph problems
Vijaya Ramachandran (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
© Vijaya Ramachandran

Background. Many graph problems are known to be as hard as APSP on dense graphs [66,
4, 64], in the sense that a subcubic algorithm for any of them implies a subcubic algorithm
for all of them. When the graph sparsity is taken into account, these problems currently
are no longer in a single class: many have Õ(mn)-time algorithms whereas finding minimum
weight triangle and related problems have Õ(m3/2)-time algorithms. Most known fine-grained
reductions between graph problems do not preserve the graph sparsity. Until recently, the
only examples of sparseness-preserving truly subcubic reductions appeared in [4]. Agarwal
and Ramachandran [8] presented several more such reductions, strengthening the connections
between problems with Õ(mn)-time algorithms. A reduction from CNF-SAT to Diameter
was presented in [62] to give SETH-hardness results for Diameter and Eccentricities. The
notion of a sub-mn time bound was formalized later, in [8], where it was observed that the
reduction in [62] gives SETH-hardness for any sub-mn time bound for these problems.

Questions. Is there a sparseness-preserving, Õ(n2) time reduction from undirected weighted
All Nodes Shortest Cycles (ANSC) to APSP? Is there a sparseness-preserving, Õ(m+n) time
reduction from undirected Min-Wt-Cycle to either Radius or Eccentricities? Is it SETH-hard
to find a sub-mn bound for Min-Wt-Cycle or an O(n2+ sub-mn) bound on APSP?

Main paper reference: Agarwal and Ramachandran [8].
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4.11 Hardness for partially dynamic graph problems
Søren Dahlgaard (University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Søren Dahlgaard

Background. Many results show hardness for fully-dynamic problems in graphs, but the
techniques do not seem to extend well to amortized lower bounds in the incremental and
decremental cases. (See Abboud and Vassilevska Williams [2], Henzinger, Krinninger,
Nanongkai, and Saranurak [46], Kopelowitz, Pettie and Porat [55], and Dahlgaard [27] for
some initial results on incremental/decremental problems.)

Question. Develop general techniques for showing amortized hardness of partially dynamic
problems in graphs. One candidate problem is decremental single-source reachability. A
result of Chechik, Hansen, Italiano, Lacki, and Parotsidis [23] shows that Õ(m

√
n) total time

is sufficient. Is it necessary?

4.12 Hardness of vertex connectivity
Veronika Loitzenbauer (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Veronika Loitzenbauer

Background. A connected undirected graph is k-vertex (resp. edge) connected if it remains
connected after any set of at most k−1 vertices (edges) is removed from the graph. A strongly
connected directed graph is k-vertex (edge) connected if it remains strongly connected after
any set of at most k − 1 vertices (edges) is removed from the graph. The vertex (edge)
connectivity of a graph is the maximum value of k such that the graph is k-vertex (edge)
connected.

The edge-connectivity λ of an undirected graph can be determined in timeO(m log2 n log2 logn)
[47, 54], and for directed graphs in time O(λm log(n2/m)) [37]. In contrast, the vertex-
connectivity κ can only be computed in time O((n + min{κ5/2, κn3/4})m) [38], where for
undirected graphs m can be replaced by kn.

Question. To check k-vertex connectivity means to either confirm that κ ≥ k or to find a
set of k − 1 vertices that disconnects the graph. Even when k is constant, no o(n2) time (or
o(mn) time for directed graphs) algorithms are known for checking k-connectivity. Is there a
conditional superlinear lower bound?

Main paper reference: Gabow [38].

4.13 Parity and mean-payoff games
Veronika Loitzenbauer (Universität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Veronika Loitzenbauer

Background. Parity games, and their generalization mean-payoff games, are among the rare
“natural” problems in NP ∩ co-NP (and in UP ∩ co-UP [52]) for which no polynomial-time
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algorithm is known. Both parity games and mean-payoff games are 2-player games played
by taking an infinite walk on a directed graph; one of the vertices is designated the start
vertex. In parity games each vertex is labeled by an integer in [0, c]; in mean payoff games
each edge is labeled by an integer in [−W,W ]. (See [53] for a description of the game.) The
algorithmic question is to decide, for each start vertex, which of the two players wins the
game and to construct a corresponding winning strategy. Parity games can be reduced to
mean-payoff games with W = nc. Very recently, quasi-polynomial O(nlog c) time algorithms
for parity games were discovered [20, 51]. The best known algorithms for mean-payoff
games run in pseudo-polynomial time O(mnW ) [16] and randomized sub-exponential time
O(2
√
n logn logW ) [15].

Questions. Is there a polynomial-time algorithm for parity or mean-payoff games? Are
there conditional superlinear lower bounds on these problems?

4.14 Unknotting
Seth Pettie (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Seth Pettie

Background. A knot is a closed, non-self-intersecting polygonal chain in R3. Two knots are
equivalent if one can be continuously deformed into the other without self-intersection. The
unknot problem is to decide if a knot is equivalent to one that is embeddable in the plane.

Knots can be represented combinatorially, by projecting the polygonal chain onto R2,
placing a vertex wherever two edges intersect. The result is a 4-regular planar graph (possibly
with loops and parallel edges) where each vertex carries a bit indicating which pair of edges is
“over” and which pair is “under.” Reidemeister moves (a small set of transformations on the
knot diagram) suffice to transform any knot diagram to one of its equivalent representations.

The complexity of unknot and related problems (e.g., are two knots equivalent?, can
two knots simultaneously embedded in R3 be untangled?) are known to be in NP [45] and
solvable in 2O(n) time [45, 50].

Questions. Given a plane knot diagram with n intersections, can unknot or knot-equivalence
be solved in time near-linear in n? If not, are there conditional lower bounds that show even
some polynomial hardness?

4.15 3-Collinearity (general position testing)
Omer Gold (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Omer Gold

Background. A set S of n points in R2 is said to be in general position if there do not
exist three points in S that lie on a line. The 3-Collinearity problem is to test whether S is
in general position. The 3-Collinearity problem is known to be as hard as 3SUM, and an
algorithm that runs in O(n2) time is known.
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Questions. The question is whether the O(n2) algorithm is optimal or whether it can be
solved in o(n2) time. Recent subquadratic algorithms for 3SUM [12, 44, 34, 41] indicate that
polylogarithmic improvements should be possible. A related question is whether there is an
O(n2−ε)-depth decision tree for 3-Collinearity; see [44, 13].

Main paper reference: Gajentaan and Overmars [39].

4.16 Element uniqueness in X + Y

Omer Gold (Tel Aviv University, IL)

License Creative Commons BY 3.0 Unported license
© Omer Gold

Background. Given two sets X and Y , each of n real numbers, determine whether all the
elements of X + Y = {x+ y | x ∈ X, y ∈ Y } are distinct. A somewhat stronger variant of
this problem is to sort X + Y .

The decision tree complexity of sorting X + Y and Element Uniqueness in X + Y was
shown to be O(n2) by Fredman [33].

Question. Can these problems can be solved in o(n2 logn) time, even for the special case
X = Y ?

4.17 Histogram indexing
Isaac Goldstein (Bar-Ilan University – Ramat Gan, IL)

License Creative Commons BY 3.0 Unported license
© Isaac Goldstein

Background. The histogram ψ(T ) of a string T ∈ Σ∗ is a |Σ|-length vector containing the
number of occurrences of each letter in T . The histogram indexing problem (aka jumbled
indexing) is to preprocess a string T to support the following query: given a histogram vector
ψ, decide whether there is a substring T ′ of T such that ψ(T ′) = ψ.

The state-of-the-art algorithm for histogram indexing [21] preprocesses a binary text T in
O(n1.859) time and answers queries in O(1) time. Over a d-letter alphabet the preprocessing
and query times are Õ(n2−δ) and Õ(n2/3+δ(d+13)/6), for any δ ≥ 0. On the lower bound
side [10, 42], the 3SUM conjecture implies that it is impossible to simultaneously improve
n2−δ preprocessing and nδ(d/2−1) query time by polynomial factors, where δ ≤ 2/(d− 1) and
d ≥ 3.

Question. Are there any non-trivial lower bounds on histogram indexing when d = 2? Is
it possible to close the gap between the lower and upper bounds in general, or to base the
hardness off of a different conjecture than 3SUM?

Main paper reference: Chan and Lewenstein [21].
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4.18 Integer programming
Fedor V. Fomin (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Fedor V. Fomin

Background. The objective of Integer Programming (IP) is to decide, for a given m× n
matrix A and an m-vector b = (b1, . . . , bm), whether there is a non-negative integer n-vector
x such that Ax = b. In 1981, Papadimitriou [61] showed that (IP) is solvable in pseudo-
polynomial time on instances for which the number of constraints m is constant. The rough
estimation of the running time of Papadimitriou’s algorithm is nO(m) ·dO(m2), where d bounds
the magnitude of any entry in A and b. The best known lower bound is no(

m
logm )do(m) [32],

assuming the Exponential Time Hypothesis (ETH).

Question. Is it possible to narrow the gap between algorithms for IP and the ETH-hardness
of IP?

Main paper reference: Fomin et al. [32].

4.19 All-pairs min-cut and generalizations
Robert Krauthgamer (Weizmann Institute – Rehovot, IL)

License Creative Commons BY 3.0 Unported license
© Robert Krauthgamer

Background. The all-pairs min-cut problem is, given an edge-capacitated undirected graph
G = (V,E, c), to compute the minimum s-t cut over all pairs s, t ∈ V . Gomory and Hu [43]
showed the problem is reducible to n−1 s-t min-cut instances, and moreover, all

(
n
2
)
min-cuts

can be represented by a capacitated tree T on the vertex set V . On unweighted graphs, the
construction of T takes time Õ(mn) [14, 60].

Generalizations of this problem include finding the min-cut separating every triple
(r, s, t) ∈ V 3, which is NP-hard, and finding the min-cuts separating all pairs of k-sets
{s1, . . . , sk} from {t1, . . . , tk}. See [24].

Questions. Are there superlinear conditional lower bounds for all-pairs min-cut/Gomory-Hu
tree construction? (Refer to [6] for conditional lower bounds for variants of the problem on
directed graphs.) Are there non-trivial conditional lower bounds for all-triplets approximate
min-cut, or all-k-sets min-cut?

4.20 Parameterizing string algorithms by compressibility
Oren Weimann (University of Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Oren Weimann

Background. The broad idea can be illustrated with a lower bound for string edit distance:
Given two strings of length N whose compressed length (say, using Lempel-Ziv compression)
is n, it is known that their edit distance can be computed in O(nN) time. Is it possible to
prove an Ω(nN) conditional lower bound? The known conditional lower bound [11, 1, 17]
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reduces CNF-SAT (with n variables) to string edit distance by creating two strings each
consisting of O(2n/2) blocks. To make such a reduction suitable for proving Ω(nN) lower
bound, one needs to generate instead two strings whose length is much more than 2n/2 but
that compress to much less than 2n/2.

4.21 Reductions from low complexity to high complexity
Amir Abboud (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Amir Abboud

Background. We know that improving the runtime of our 10-Clique algorithms improves
the runtime of our 100-Clique algorithms. E.g., if 10-Clique can be solved in O(n5), then
100-Clique can be solved in O(n50). In general, we have many examples of reductions
showing that a faster algorithm for a problem with best known runtime O(na), implies a
faster algorithm for a problem with runtime O(nb), where a ≤ b.

However, we have no interesting reductions in the other way, showing that improvements
over nb imply improvements over na, where a < b. In particular, we do not know how to use
an algorithm that solved 100-Clique in O(n50) or even O(n11) time, to speed up the known
algorithms for 10-Clique.

Could it be that such reductions, from low complexity to high complexity, do not exist?
It is not hard to construct artificial problems where this can be done, but what about the
natural problems we typically study: Clique, Orthogonal Vectors, k-SUM, APSP, LCS, etc.
Can we show that a fine-grained reduction from 10-Clique to 100-Clique is unlikely due to
some surprising consequences? Another candidate is 3SUM (for which the complexity is
n2) vs. APSP (for which the complexity is N1.5, where N is the input size). We repeatedly
ask if faster 3SUM implies faster APSP, but maybe proving such a result (via fine-grained
reductions) has unexpected consequences?

On the other hand, it would be of great interest to find examples of such reductions
between interesting and natural problems.

4.22 Stable matching in the two-list model
Stefan Schneider (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Stefan Schneider

Background. Gale and Shapley’s stable matching [40] algorithm runs in O(n2) time (linear
in the input size) and it is known that Ω(n2) is optimal if the preference lists are arbitrary.
Künnemann, Moeller, Paturi, and Schneider [56] studied the complexity of stable matching
when the preference lists are constrained, and encoded in some succinct manner. Many
succinct input models nonetheless require n2−o(1) time, conditioned on SETH.

Question. A problem left open by [56] is two-list stable matching. A matching market in
the two-list model consists of two sets M and W , both of size n, and permutations π1, π2
on M and σ1, σ2 on W . The preference list of each agent m ∈M is either σ1 or σ2 and the
preference list of each agent w ∈W is either π1 or π2. The input size is O(n). The goal is
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to find a stable matching in the resulting matching market. Can this problem be solved in
linear time, or is there a superlinear conditional lower bound?

Main paper reference: Kuennemann et al. [56]

4.23 Boolean vs. real maximum inner product
Stefan Schneider (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© Stefan Schneider

Background. In the maximum inner product problem we are given two sets of d-dimensional
vectors U and V of size n as well as a threshold l. The problem is to decide if there is a pair
u ∈ U, v ∈ V such that their inner product u · v is at least l. If the vectors are Boolean, then
a randomized algorithm by Alman and Williams [9] solves the problem in time n2−1/Θ(c log2 c)

where d = c logn. In contrast, if the vectors are real or integer, then using ray-shooting
techniques [58] we can solve the problem in time n2−1/Θ(d). This leaves a large gap between
the two problems. In particular, the Boolean case is strongly subquadratic if d = O(logn),
while the real case is only strongly subquadratic for constant d. The conditional lower bounds
of [9] show that any n2−ε algorithm when d = ω(logn) refutes SETH.

Questions. Can the gap between the boolean and integer/real case be closed, with a better
maximum inner product algorithm? If the gap is natural, can it be explained with a stronger
conditional lower bound on (real or integer) maximum inner product?

4.24 Hardness of Approximating NP-hard Problems
Seth Pettie (University of Michigan – Ann Arbor, US)

License Creative Commons BY 3.0 Unported license
© Seth Pettie

Background. Many approximation algorithms for NP-hard problems run in polynomial
time, but not linear time. This is often due to the use of general LP or SDP solvers, but
not always. To take two examples, the chromatic index (edge coloring) and minimum degree
spanning tree problems are NP-hard, but can both be approximated to within 1 of optimal
in Õ(m

√
n) time [36] and Õ(mn) time [35], respectively.

Question. Prove superlinear conditional lower bounds on the time complexity of any
approximation problem, whose exact version is NP-hard.
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4.25 Chromatic index/edge coloring
Marek Cygan (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Marek Cygan

Background. The chromatic index of a graph is the least number of colors needed for a
proper edge-coloring. Vizing’s theorem implies that the chromatic index is either ∆ or ∆ + 1
(where ∆ is the maximum degree), but determining which one is NP-hard. The NP-hardness
reduction of Holyer [48] reduces 3SAT to a 3-regular graph on O(n) vertices, so the ETH
implies a 2Ω(n) lower bound. There is an O∗(2m) algorithm for chromatic index, by reduction
to vertex coloring, so the hardness is well understood when m = O(n).

Questions. Does the ETH rule out a 2o(m) algorithm for chromatic index on dense graphs?
Is there, for example, an nO(n) or 2n2−ε-time algorithm?

4.26 Communication Complexity of Approximate Hamming Distance
Raphaël Clifford (University of Bristol, GB)

License Creative Commons BY 3.0 Unported license
© Raphaël Clifford

Background. Consider strings P of length n and T of length 2n. Alice has the whole of
P and the first half of T . That is she has P and T [0, . . . , n− 1]. Bob has the second half
of T , that is T [n, . . . , 2n − 1]. Alice sends one message to Bob and Bob has to output a
(1 + ε) multiplicative approximation of HD(P, T [i, . . . , i+ n]) for all i ∈ [n] where HD is the
Hamming Distance.

In [25] a O(
√
n logn/ε2) bit communication protocol was given.

Question. Is there a matching lower bound for the randomized one-way communication
complexity of this problem?
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Õ(m

√
n) total update time. In Proceedings 57th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pages 315–324, 2016. doi:10.1109/FOCS.2016.42.
24 Rajesh Chitnis, Lior Kamma, and Robert Krauthgamer. Tight bounds for gomory-hu-like

cut counting. In Proceedings 42nd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), pages 133–144, 2016. doi:10.1007/978-3-662-53536-3_12.

25 Raphaël Clifford and Tatiana A. Starikovskaya. Approximate hamming distance in a stream.
In 43rd International Colloquium on Automata, Languages, and Programming, ICALP
2016, July 11-15, 2016, Rome, Italy, pages 20:1–20:14, 2016.

26 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

27 Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections
to diameter. In Proceedings 43rd International Colloquium on Automata, Languages, and
Programming (ICALP), pages 48:1–48:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.48.

28 C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths.
Journal of the ACM, 51(6):968–992, 2004.

29 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Proceedings
of 15th Annual European Symposium on Algorithms (ESA), pages 594–604, 2007. doi:
10.1007/978-3-540-75520-3_53.

30 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000.

31 Fedor V. Fomin, Daniel Lokshtanov, Michal Pilipczuk, Saket Saurabh, and Marcin
Wrochna. Fully polynomial-time parameterized computations for graphs and matrices of
low treewidth. In Proceedings 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1419–1432, 2017. doi:10.1137/1.9781611974782.92.

32 Fedor V. Fomin, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. On integer pro-
gramming and the path-width of the constraint matrix. CoRR, abs/1607.05342v2, 2016.

33 M. L. Fredman. How good is the information theory bound in sorting? Theoretical
Computer Science, 1(4):355–361, 1976.

34 A. Freund. Improved subquadratic 3SUM. Algorithmica, pages 1–19, 2015. doi:10.1007/
s00453-015-0079-6.

35 M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within
one of optimal. J. Algorithms, 17(3):409–423, 1994. doi:10.1006/jagm.1994.1042.

36 H. Gabow, T. Nishizeki, O. Kariv, D. Leven, and O. Terada. Algorithms for edge-coloring
graphs. Technical Report 41/85, Tohoku University, 1985.

37 Harold N. Gabow. A matroid approach to finding edge connectivity and packing ar-
borescences. Journal of Computer and System Sciences, 50(2):259–273, 1995. doi:
10.1006/jcss.1995.1022.

38 Harold N. Gabow. Using expander graphs to find vertex connectivity. J. ACM, 53(5):800–
844, 2006. doi:10.1145/1183907.1183912.

39 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 45(4):140–152, 2012.

16451

http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1007/978-3-662-53536-3_12
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.48
http://dx.doi.org/10.1007/978-3-540-75520-3_53
http://dx.doi.org/10.1007/978-3-540-75520-3_53
http://dx.doi.org/10.1137/1.9781611974782.92
http://dx.doi.org/10.1007/s00453-015-0079-6
http://dx.doi.org/10.1007/s00453-015-0079-6
http://dx.doi.org/10.1006/jagm.1994.1042
http://dx.doi.org/10.1006/jcss.1995.1022
http://dx.doi.org/10.1006/jcss.1995.1022
http://dx.doi.org/10.1145/1183907.1183912


32 16451 – Structure and Hardness in P

40 David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

41 O. Gold and M. Sharir. Improved bounds for 3SUM,K-SUM, and linear degeneracy. CoRR,
abs/1512.05279, 2015.

42 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How hard is it to
find (honest) witnesses? In Proceedings 24th Annual European Symposium on Algorithms
(ESA), pages 45:1–45:16, 2016.

43 R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, 9, 1961.

44 A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proceedings
55th IEEE Symposium on Foundations of Computer Science (FOCS), pages 621–630, 2014.

45 Joel Hass, J. C. Lagarias, and Nicholas Pippenger. The computational complexity of knot
and link problems. J. ACM, 46(2):185–211, 1999. doi:10.1145/301970.301971.

46 M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening
hardness for dynamic problems via the online matrix-vector multiplication conjecture. In
Proceedings 47th Annual ACM Symposium on Theory of Computing (STOC), pages 21–30,
2015.

47 Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. In Proceedings 28th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1919–1938, 2017.

48 Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
doi:10.1137/0210055.

49 A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413–
423, 1978.

50 W. Jaco and J. L. Tollefson. Algorithms for the complete decomposition of a closed 3-
manifold. Ill. J. Math., 39:358–406, 1995.

51 M. Jurdziński and R. Lazić. Succinct progress measures for solving parity games. CoRR,
abs/1702.05051, 2017.

52 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information
Processing Letters, 68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

53 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A Deterministic Subexponential Al-
gorithm for Solving Parity Games. SIAM Journal on Computing, 38(4):1519–1532, 2008.
doi:10.1137/070686652.

54 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic global minimum cut of a simple
graph in near-linear time. In Proceedings 47th ACM Symposium on Theory of Computing
(STOC), pages 665–674, 2015. doi:10.1145/2746539.2746588.

55 T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In
Proceedings 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1272–1287, 2016. doi:10.1137/1.9781611974331.ch89.

56 Marvin Künnemann, Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquad-
ratic algorithms for succinct stable matching. CoRR, abs/1510.06452, 2015.

57 Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for
linear programming. In Proceedings 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 230–249, 2015. doi:10.1109/FOCS.2015.23.

58 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(1):315–334,
1992.

59 Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams.
Approximating cycles in directed graphs: Fast algorithms for girth and roundtrip spanners.
CoRR, abs/1611.00721, 2016. URL: http://arxiv.org/abs/1611.00721.

http://dx.doi.org/10.1145/301970.301971
http://dx.doi.org/10.1137/0210055
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1137/070686652
http://dx.doi.org/10.1145/2746539.2746588
http://dx.doi.org/10.1137/1.9781611974331.ch89
http://dx.doi.org/10.1109/FOCS.2015.23
http://arxiv.org/abs/1611.00721


Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams 33

60 Debmalya Panigrahi. Gomory-Hu trees. In Ming-Yang Kao, editor, Encyclopedia of Al-
gorithms, pages 858–861. Springer New York, 2016. doi:10.1007/978-1-4939-2864-4_
168.

61 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–
768, 1981. doi:10.1145/322276.322287.

62 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings 45th ACM Symposium on Theory of Computing
(STOC), pages 515–524, 2013.

63 Liam Roditty and Virginia Vassilevska Williams. Subquadratic time approximation al-
gorithms for the girth. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 833–845, 2012.

64 Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-
mars: Faster algorithms and connection to fundamental graph problems. In Proceedings
56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 118–
135, 2015. doi:10.1109/FOCS.2015.17.

65 M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In Proceed-
ings 37th ACM Symposium on Theory of Computing (STOC), pages 112–119, 2005.

66 V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix
and triangle problems. In Proceedings 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 645–654, 2010.

67 R. Yuster and U. Zwick. Finding even cycles even faster. SIAM J. Discrete Mathematics,
10(2):209–222, 1997.

16451

http://dx.doi.org/10.1007/978-1-4939-2864-4_168
http://dx.doi.org/10.1007/978-1-4939-2864-4_168
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1109/FOCS.2015.17


34 16451 – Structure and Hardness in P

Participants
Amir Abboud

Stanford University, US
Alexandr Andoni

Columbia University –
New York, US

Arturs Backurs
MIT – Cambridge, US

Andreas Björklund
Lund University, SE

Karl Bringmann
MPI für Informatik –
Saarbrücken, DE

Maike Buchin
Ruhr-Universität Bochum, DE

Yi-Jun Chang
University of Michigan –
Ann Arbor, US

Raphaël Clifford
University of Bristol, GB

Radu Curticapean
Hungarian Academy of Sciences –
Budapest, HU

Marek Cygan
University of Warsaw, PL

Søren Dahlgaard
University of Copenhagen, DK

Holger Dell
Universität des Saarlandes, DE

Fedor V. Fomin
University of Bergen, NO

Omer Gold
Tel Aviv University, IL

Isaac Goldstein
Bar-Ilan University –
Ramat Gan, IL

Thore Husfeldt
IT University of
Copenhagen, DK

Mathias Bæk Tejs Knudsen
University of Copenhagen, DK

Young Kun Ko
Princeton University, US

Tsvi Kopelowitz
University of Michigan –
Ann Arbor, US

Robert Krauthgamer
Weizmann Institute –
Rehovot, IL

Sebastian Krinninger
MPI für Informatik –
Saarbrücken, DE

Marvin Künnemann
University of California –
San Diego, US

Moshe Lewenstein
Bar-Ilan University –
Ramat Gan, IL

Andrea Lincoln
Stanford University, US

Veronika Loitzenbauer
Universität Wien, AT

Aleksander Madry
MIT – Cambridge, US

Kurt Mehlhorn
MPI für Informatik –
Saarbrücken, DE

Ivan Mikhailin
University of California –
San Diego, US

Danupon Nanongkai
KTH Royal Institute of
Technology – Stockholm, SE

Ramamohan Paturi
University of California –
San Diego, US

Seth Pettie
University of Michigan –
Ann Arbor, US

Ely Porat
Bar-Ilan University –
Ramat Gan, IL

Vijaya Ramachandran
University of Texas – Austin, US

Liam Roditty
Bar-Ilan University –
Ramat Gan, IL

Aviad Rubinstein
University of California –
Berkeley, US

Thatchaphol Saranurak
KTH Royal Institute of
Technology – Stockholm, SE

Stefan Schneider
University of California –
San Diego, US

Arkadiusz Socala
University of Warsaw, PL

Virginia Vassilevska Williams
Stanford University, US

Joshua R. Wang
Stanford University, US

Oren Weimann
University of Haifa, IL

Philip Wellnitz
MPI für Informatik –
Saarbrücken, DE

Huacheng Yu
Stanford University, US


	Executive Summary Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams
	Table of Contents
	Overview of Talks
	Hardness for Graph Problems Amir Abboud
	Optimal Hashing for High-Dimensional Spaces Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten
	Permanents as hardness for problems in P? Andreas Björklund
	Hardness for Polytime String Problems Karl Bringmann
	Hardness of string problems with small alphabet size Yi-Jun Chang
	Recent insights into counting small patterns Radu Curticapean, Holger Dell, and Dániel Marx
	Tight Bounds for Subgraph Isomorphism and Graph Homomorphism Marek Cygan
	Popular Conjectures as a Barrier for Dynamic Planar Graph Algorithms Søren Dahlgaard
	New upper bounds for some basic problems in P Omer Gold
	How Hard is it to Find (Honest) Witnesses? Isaac Goldstein
	Parameterised graph distance problems Thore Husfeldt
	Finding Even Cycles Mathias Bæk Tejs Knudsen
	Birthday Repetition: Tool for proving quasi-poly hardness Young Kun Ko
	Tight Bounds for Gomory-Hu-like Cut Counting Robert Krauthgamer
	Advances in fully dynamic algorithms with worst-case update time Sebastian Krinninger
	Deterministic Time-Space Tradeoffs for k-SUM Andrea Lincoln, Joshua R. Wang, Ryan Williams, and Virginia Vassilevska Williams
	Continuous Optimization Based Maximum Flow Algorithms Make Sense Aleksander Madry
	Shortest cycle approximation  Liam Roditty
	Towards Conditional Lower Bounds for Tree Edit Distance Oren Weimann
	Fine-Grained Complexity and Conditional Hardness for Sparse Graphs Vijaya Ramachandran
	Computing Min-Cut with truly subquadratic cut queries Aviad Rubinstein
	On the oblivious adversary assumption in dynamic problems Thatchaphol Saranurak and Danupon Nanongkai
	Subquadratic Algorithms for Succinct Stable Matching Stefan Schneider
	RNA-Folding: From Hardness to Algorithms Virginia Vassilevska Williams
	Amortized Dynamic Cell-Probe Lower Bounds from Four-Party Communication Huacheng Yu

	Open problems
	Parameterizing problems in P by treewidth Fedor V. Fomin
	Approximate all-pairs shortest paths Amir Abboud
	Approximate diameter Amir Abboud
	Finding cycles and approximating the girth Mathias Bæk Tejs Knudsen and Liam Roditty
	Minimum cycle problem in directed graphs Virginia Vassilevska Williams
	Linear Programming Aleksander Madry
	Fully dynamic APSP Sebastian Krinninger
	Dynamic reachability in planar graphs Søren Dahlgaard
	Static hardness for planar graphs Søren Dahlgaard
	Sparse reductions for graph problems Vijaya Ramachandran
	Hardness for partially dynamic graph problems Søren Dahlgaard
	Hardness of vertex connectivity Veronika Loitzenbauer
	Parity and mean-payoff games Veronika Loitzenbauer
	Unknotting Seth Pettie
	3-Collinearity (general position testing) Omer Gold
	Element uniqueness in X+Y Omer Gold
	Histogram indexing Isaac Goldstein
	Integer programming Fedor V. Fomin
	All-pairs min-cut and generalizations Robert Krauthgamer
	Parameterizing string algorithms by compressibility Oren Weimann
	Reductions from low complexity to high complexity Amir Abboud
	Stable matching in the two-list model Stefan Schneider
	Boolean vs. real maximum inner product Stefan Schneider
	Hardness of Approximating NP-hard Problems Seth Pettie
	Chromatic index/edge coloring Marek Cygan
	Communication Complexity of Approximate Hamming Distance Raphaël Clifford

	Participants

