Report from Dagstuhl Seminar 17022
Automated Program Repair

Edited by

Sunghun Kim?!, Claire Le Goues?, Michael Pradel®, and
Abhik Roychoudhury*

HKUST — Kowloon, HK, hunkim@cse.ust.hk

Carnegie Mellon University — Pittsburgh, US, clegoues@cs.cmnu.edu
TU Darmstadt, DE, michael@binaervarianz.de

National University of Singapore, SG, abhik@comp.nus.edu.sg

W N =

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 17022 “Automated
Program Repair”. The seminar participants presented and discussed their research through formal
and informal presentations. In particular, the seminar covered work related to search-based
program repair, semantic program repair, and repair of non-functional properties. As a result of
the seminar, several participants plan to launch various follow-up activities, such as a program
repair competition, which would help to further establish and guide this young field of research.

Seminar January 8-13, 2017 — http://www.dagstuhl.de/17022

1998 ACM Subject Classification D.2 Software Engineering, D.2.5 [Software Engineering] Test-
ing and Debugging

Keywords and phrases Program repair, program analysis, software engineering

Digital Object ldentifier 10.4230/DagRep.7.1.19

1 Executive Summary

Sunghun Kim

Claire Le Goues
Michael Pradel
Abhik Roychoudhury

License) Creative Commons BY 3.0 Unported license
© Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

Software engineering targets the creation of software for myriad platforms, deployed over
the internet, the cloud, mobile devices and conventional desktops. Software now controls
cyber-physical systems, industrial control systems, and “Internet of Things” devices, and is
directly responsible for humanity’s economic well-being and safety in numerous contexts. It
is therefore especially important that engineers are able to easily write error-free software,
and to quickly find and correct errors that do appear. Future generation programming
environments must not only employ sophisticated strategies for localizing software errors,
but also strategies for automatically patching them.

Recent years have seen an explosive growth in research on automated program repair,
with proposed techniques ranging from pure stochastic search to pure semantic analysis. The
Dagstuhl Seminar in January 2017 studies the problem of automated repair in a holistic
fashion. This will involve a review of foundational techniques supporting program repair,
perspectives on current challenges and future techniques, and emerging applications. The aim

Except where otherwise noted, content of this report is licensed
37 under a Creative Commons BY 3.0 Unported license
Automated Program Repair, Dagstuhl Reports, Vol. 7, Issue 1, pp. 19-31
Editors: Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17022
http://dx.doi.org/10.4230/DagRep.7.1.19
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

20

17022 — Automated Program Repair

is to broadly discuss and revisit underlying assumptions and methods towards the integration
of automated patch synthesis into futuristic programming environments.

Conceptually, applications of program repair step far beyond the general goal of ensuring
software quality, and the subject is relevant to a broad range of research areas. It is of
obvious importance in software testing and analysis, because repair goes hand in hand with
traditional testing and debugging activities. It is relevant to researchers in programming
languages and systems, e.g., to study language and system-level techniques that integrate
patch suggestions during development. The topic is relevant to researchers in systems security,
as repair approaches may be customizable to patching vulnerabilities in both application and
systems software. Researchers in formal methods may provide insight for provably correct
repair, given appropriate correctness specifications. Finally, the topic is connected to human
computer interaction in software engineering, since the repair process, if not fully automated,
may involve eliciting appropriate developer feedback and acting on it accordingly.

At a technical level, one of the key discussion topics has been the correctness specifications
driving the repair process. Most previous work in this domain has relied on test suites as
partial correctness specifications. While often available, test suites are typically inadequate
for fully assessing patch correctness. Alternative quality specifications, such as “minimality”,
could be explored. In addition, heavier-weight specifications, such as assertions, may provide
stronger functional guarantees, leaving open the research challenge both in how to use them
and how they may be derived to guide a repair process. Given the appropriate correctness
specification, the task of repair usually involves three steps: localizing an error to a small
set of potentially-faulty locations, deriving values/constraints for the computation desired
at the faulty locations, and constructing “fix” expressions/statements that satisfy these
values/constraints. Each of the three steps can be accomplished by a variety of methods,
including heuristic search, symbolic analysis and/or constraint solving techniques. This
allows for an interesting interplay for an entire design space of repair techniques involving
ingenuous combinations of search-based techniques and semantic analysis being employed at
the different steps of the repair process.

The Dagstuhl Seminar has attracted researchers and practitioners from all over the
world, comprising participants active in the fields of software engineering, programming
languages, machine learning, formal methods, and security. As a result of the seminar, several
participants plan to launch various follow-up activities, such as a program repair competition,
which would help to further establish and guide this young field of research, and a journal
article that summarizes the state of the art in automated program repair.

Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

2 Table of Contents

Executive Summary
Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

Overview of Talks

Quality and applicability of automated repair
Yuriy Brun o e e e

Automatic Tradeoffs: Accuracy and Energy
Jonathan Dorn

Deep Learning for Program Repair
Aditya Kanade e e

Prex: Finding Guidance for Forward and Backward Porting of Linux Device Drivers
Julia Lawall 0.0 o e

Automated Inference of Code Transforms and Search Spaces for Patch Generation
Fan Long« e e

Learning-based Program Repair
Fan Long e e e

ASTOR: A Program Repair Library for Java
Matias Sebastian Martinez e

Combining syntactic and semantic repair
Sergey Mechtaev e

Antifragile Software and Correctness Attraction
Martin Monperrus e e e e e e e e e

Detecting and repairing performance bugs that have non-intrusive fixes
Adrian Nistor e e e

Automated Software Transplantation
Justyna Petke

Understanding and Automatically Preventing Injection Attacks on Node.js
Michael Pradel e

Anti-patterns in Search-Based Program Repair
Mukul Prasad

Semantic Techniques for Program Repair
Abhik Roychoudhury

Automated techniques for fixing performance issues in JavaScript applications
Marija Selakovic e

I Get by With a Little Help From My Friends: Crowdsourcing Program Repair
Kathryn T. Stolee e

Towards Trustworthy Program Repair
Yingfei Xiong

How Developers Diagnose and Repair Software Bugs (and what we can do about it)
Andreas Zeller e

21

17022

22

17022 — Automated Program Repair

Automated Test Reuse via Code Transplantation
Tianys Zhang o o e e e e e e

Participants

Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

3 Overview of Talks

3.1 Quality and applicability of automated repair
Yuriy Brun (University of Massachusetts — Amherst, US)

License) Creative Commons BY 3.0 Unported license
© Yuriy Brun

Program repair offers great promise for reducing manual effort involved in software engineering,
but only if it can produce high-quality patches for defects that are important and hard for
humans to fix manually. This talk presents an objective measure of repair quality, identifies
shortcomings in existing automated repair techniques in terms of the quality of the patches
they produce, and tackles the problem of identifying if program repair techniques can repair
important and hard defects.

3.2 Automatic Tradeoffs: Accuracy and Energy
Jonathan Dorn (University of Virginia — Charlottesville, US)

License @@ Creative Commons BY 3.0 Unported license
© Jonathan Dorn

Tradeoffs between competing objectives are an important part of software development
and usability. However, the development effort to implement different tradeoffs is time
consuming and potentially error-prone. In this work, we balance competing functional and
non-functional properties via automatic program transformations. We apply multi-objective
search to simultaneously optimize energy consumption and output accuracy of assembly
programs. We find that relaxing the accuracy requirements enables greater energy reductions
within the constraint of human-acceptability. We also find that our search-based approach
identifies better tradeoff opportunities than less general techniques like loop perforation.

3.3 Deep Learning for Program Repair
Aditya Kanade (Indian Institute of Science — Bangalore, IN)

License) Creative Commons BY 3.0 Unported license
© Aditya Kanade

The problem of automatically fixing programming errors is a very active research topic in
software engineering. This is a challenging problem as fixing even a single error may require
analysis of the entire program. In practice, a number of errors arise due to programmer’s
inexperience with the programming language or lack of attention to detail. We call these
common programming errors. These are analogous to grammatical errors in natural languages.

Compilers detect such errors, but their error messages are usually inaccurate. In this
work, we present an end-to-end solution, called DeepFix, that can fix multiple such errors in
a program without relying on any external tool to locate or fix them. At the heart of DeepFix
is a multi-layered sequence-to-sequence neural network with attention which is trained to
predict erroneous program locations along with the required correct statements. On a set of
6971 erroneous C programs written by students for 93 programming tasks, DeepFix could fix
1881 (27%) programs completely and 1338 (19%) programs partially.

23

17022

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

24

17022 — Automated Program Repair

3.4 Prex: Finding Guidance for Forward and Backward Porting of
Linux Device Drivers

Julia Lawall (INRIA — Paris, FR)

License @@ Creative Commons BY 3.0 Unported license
© Julia Lawall

A device driver forms the glue between a device and an operating system kernel. When
the operating system kernel changes, the device driver has to change as well. Our goal is
to automate this kind of forward porting, and analogously backwards porting, focusing on
drivers for the Linux kernel. We propose a three step approach, based on 1) compilation of
the driver with the target kernel to identify incompatibilities, 2) collection of examples of
how to fix these incompatibilities from the commits stored in the revision control system, and
3) generalization of the identified examples to produce change rules appropriate for porting
the driver to the target kernel. In this talk, we present the tools gce-reduce that have been
designed to carry out the first two steps. The third step remains future work. Our approach
effectively exploits the specific nature of the driver porting problem: the device is fixed and
so the required changes are in the interface with the kernel, limiting the kinds of changes
required, and many drivers supporting devices with a similar functionality interact with the
kernel in a similar way, implying that porting examples are available.

3.5 Automated Inference of Code Transforms and Search Spaces for
Patch Generation

Fan Long (MIT — Cambridge, US)

License () Creative Commons BY 3.0 Unported license
© Fan Long

We present a new system, Genesis, that processes sets of human patches to automatically infer
code transforms and search spaces for automatic patch generation. We present results that
characterize the effectiveness of the Genesis inference algorithms and the resulting complete
Genesis patch generation system working with real-world patches and errors collected from
top 1000 github Java software development projects. To the best of our knowledge, Genesis
is the first system to automatically infer patch generation transforms or candidate patch
search spaces from successful patches.

3.6 Learning-based Program Repair
Fan Long (MIT - Cambridge, US)

License) Creative Commons BY 3.0 Unported license
© Fan Long

Code learning and transfer techniques have been recently adopted by many successful
automatic patch generation systems to improve patch generation results. This talk presents
an overview of these two kinds of techniques. A code learning technique learns useful human
knowledge from a training set of past human patches. The technique then applies the learned
knowledge either to prioritize correct patches ahead in a patch generation search space or to

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

infer productive mutation transforms to form the search space. A code transfer technique
extracts useful program logic from existing code of a donor program or examples of Q&A
websites. It then converts the extracted logic to a patch for a recipient program.

3.7 ASTOR: A Program Repair Library for Java

Matias Sebastian Martinez (University of Valenciennes, FR)

License) Creative Commons BY 3.0 Unported license
© Matias Sebastian Martinez

During the last years, the software engineering research community has proposed approaches
for automatically repairing software bugs. Unfortunately, many software artifacts born from
this research are not available for repairing Java programs. To reimplement those approaches
from scratch is costly. To facilitate experimental replications and comparative evaluations, we
present Astor, a publicly available program repair library that includes the implementation
of three notable repair approaches (jGenProg2, jKali and jMutRepair). We envision that the
research community will use Astor for setting up comparative evaluations and explore the
design space of automatic repair for Java. Astor offers researchers ways to implement new
repair approaches or to modify existing ones. Astor repairs in total 33 real bugs from four
large open source projects.

3.8 Combining syntactic and semantic repair
Sergey Mechtaev (National University of Singapore, SG)

License) Creative Commons BY 3.0 Unported license
© Sergey Mechtaev

Test-driven automated program repair approaches traverse huge search spaces to generate
fixes. Several search space prioritization heuristics have been proposed to increase the
probability of finding correct repairs. Although existing systems could generate correct fixes
for large real-world projects, they suffer from limitations of the search space exploration
algorithms. First, current techniques may omit high quality patches during exploration,
which results in generation of suboptimal low quality repairs. Second, current techniques are
able to explore only relatively small search spaces and, therefore, fix only a small number
of defects. We propose a synergy of syntax-based and semantics-based patch generation
methods that explicitly generates a search space and semantically partitions it during test
execution. The proposed algorithm is able to efficiently traverse the search spaces in an
arbitrary order. As a result, our technique is the first that guarantees to the most reliable
patch (global maximum) in the search space according to a given static prioritization strategy
and yet scales to large search spaces. Evaluation on large real-world subjects revealed that
the proposed algorithm generates more repairs, more repairs equivalent to human patches,
and find repairs faster compared to previous techniques. Apart from that, the algorithm and
the design of the search space enable our system to traverse the search space faster than
existing systems with explicit search space representation.

25

17022

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

26

17022 — Automated Program Repair

3.9 Antifragile Software and Correctness Attraction
Martin Monperrus (University of Lille & INRIA, FR)

License) Creative Commons BY 3.0 Unported license
© Martin Monperrus

Can the execution of a software be perturbed without breaking the correctness of the output?
We present a novel protocol to answer this rarely investigated question. In an experimental
study, we observe that many perturbations do not break the correctness in ten subject
programs. We call this phenomenon “correctness attraction”. The uniqueness of this protocol
is that it considers a systematic exploration of the perturbation space as well as perfect
oracles to determine the correctness of the output. To this extent, our findings on the
stability of software under execution perturbations have a level of validity that has never
been reported before in the scarce related work. A qualitative manual analysis enables us to
set up the first taxonomy ever of the reasons behind correctness attraction.

3.10 Detecting and repairing performance bugs that have non-intrusive
fixes

Adrian Nistor (Florida State University — Tallahassee, US)

License) Creative Commons BY 3.0 Unported license
© Adrian Nistor

Performance bugs are programming errors that slow down program execution. Unfortunately,
many performance bugs cannot be automatically detected or repaired by existing techniques.
In this talk I will present Caramel, a novel static analysis technique that detects and then
automatically repairs performance bugs that have non-intrusive fixes likely to be adopted by
developers. 116 of the bugs found and repaired by Caramel in 15 popular applications (e.g.,
Chrome, Mozilla, Tomcat, Lucene, Groovy, GCC, MySQL, etc) have already been fixed by
developers based on our bug reports.

3.11 Automated Software Transplantation
Justyna Petke (University College London, GB)

License) Creative Commons BY 3.0 Unported license
© Justyna Petke

Genetic Improvement is the application of evolutionary and search-based optimisation
methods to the improvement of existing software. For example, it may be used to automate
the process of bug-fixing or execution time optimisation. In this talk I present another
application of genetic improvement, namely automated software transplantation. While we
do not claim automated transplantation is now a solved problem, our results are encouraging:
we report that in 12 of 15 experiments, involving 5 donors and 3 hosts (all popular real-world
systems), we successfully autotransplanted new functionality from the donor program to the
host and passed all regression tests. Autotransplantation is also already useful: in 26 hours
computation time we successfully autotransplanted the H.264 video encoding functionality
from the x264 system to the VLC media player; compare this to upgrading x264 within VLC,
a task that we estimate, from VLC’s version history, took human programmers an average of
20 days of elapsed, as opposed to dedicated, time.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

3.12 Understanding and Automatically Preventing Injection Attacks on
Node.js

Michael Pradel (TU Darmstadt, DE)

License @ Creative Commons BY 3.0 Unported license
© Michael Pradel

The Node.js ecosystem has lead to the creation of many modern applications, such as
server-side web applications and desktop applications. Unlike client-side JavaScript code,
Node.js applications can interact freely with the operating system without the benefits of a
security sandbox. The complex interplay between Node.js modules leads to subtle injection
vulnerabilities being introduced across module boundaries. This talk presents a large-scale
study across 235,850 Node.js modules to explore such vulnerabilities. We show that injection
vulnerabilities are prevalent in practice, both due to eval , which was previously studied for
browser code, and due to the powerful exec API introduced in Node.js . Our study shows
that thousands of modules may be vulnerable to command injection attacks and that even
for popular projects it takes long time to fix the problem. Motivated by these findings,
we present Synode , an automatic mitigation technique that combines static analysis and
runtime enforcement of security policies for allowing vulnerable modules to be used in a safe
way. The key idea is to statically compute a template of values passed to APIs that are prone
to injections, and to synthesize a grammar-based runtime policy from these templates. Our
mechanism does not require the modification of the Node.js platform, is fast (sub-millisecond
runtime overhead), and protects against attacks of vulnerable modules while inducing very
few false positives (less than 10%).

3.13 Anti-patterns in Search-Based Program Repair
Mukul Prasad (Fujitsu Labs of America Inc. — Sunnyvale, US)

License @ Creative Commons BY 3.0 Unported license
© Mukul Prasad

Search-based program repair automatically searches for a program fix within a given repair
space. This may be accomplished by retrofitting a generic search algorithm for program
repair as evidenced by the GenProg tool, or by building a customized search algorithm
for program repair as in SPR. Unfortunately, automated program repair approaches may
produce patches that may be rejected by programmers, because of which past works have
suggested using human-written patches to produce templates to guide program repair. In
this work, we take the position that we will not provide templates to guide the repair search
because that may unduly restrict the repair space and attempt to overfit the repairs into
one of the provided templates. Instead, we suggest the use of a set of anti-patterns — a
set of generic forbidden transformations that can be enforced on top of any search-based
repair tool. We show that by enforcing our anti-patterns, we obtain repairs that localize
the correct lines or functions, involve less deletion of program functionality, and are mostly
obtained more efficiently. Since our set of anti-patterns are generic, we have integrated them
into existing search based repair tools, including GenProg and SPR, thereby allowing us to
obtain higher quality program patches with minimal effort.

27

17022

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

28

17022 — Automated Program Repair

3.14 Semantic Techniques for Program Repair
Abhik Roychoudhury (National University of Singapore, SG)

License) Creative Commons BY 3.0 Unported license
© Abhik Roychoudhury

In this talk, I will first recapitulate briefly the challenges in automated program repair. I
will then move to discuss semantic analysis techniques for program repair, and position them
with respect generate and validate approaches to program repair. I will conclude the talk by
discussing how semantic approaches can be combined with generate and validate approaches.

3.15 Automated techniques for fixing performance issues in JavaScript
applications

Marija Selakovic (TU Darmstadt, DE)

License) Creative Commons BY 3.0 Unported license
© Marija Selakovic

Many programs suffer from performance problems, but unfortunately, finding and fixing such
problems is a cumbersome and time-consuming process. My work focuses on JavaScript,
for which little is known about performance issues and how developers address them. To
address these questions, I present the empirical study of 98 reproduced performance-related
issues from 16 popular JavaScript projects. The findings illustrate that developers optimize
their code with relatively simple code changes and that the most common root cause of
JavaScript performance issues is the inefficient usage of native and third-party APIs. To help
developers find and fix performance problems related to API usages, I present an approach
for finding conditionally equivalent APIs and detecting the usages of an API that can be
replaced by an equivalent and more efficient alternative for a given input. The approach is
based on two-phases dynamic analysis of API usages in web applications. In the first phase,
the analysis detects potentially equivalent methods based on their type signatures and name
equivalence. In the second phase, the analysis executes these methods with all observed
inputs, approximates their execution times and derives an equivalence condition. Finally,
the analysis points to all code locations that can be optimized by using more efficient API
and suggests a refactoring to the developers.

3.16 | Get by With a Little Help From My Friends: Crowdsourcing
Program Repair

Kathryn T. Stolee (North Carolina State University — Raleigh, US)

License) Creative Commons BY 3.0 Unported license
© Kathryn T. Stolee

Regular expressions are commonly used in source code, yet developers find them hard to
read, hard to write, and hard to compose. Motivated by the prevalence of regular expression
usage in practice and the number of bug reports related to regular expressions, I propose
several future directions for studying regular expressions, including error classification, test
coverage, test input generation, reuse, and automated program repair. The repair strategies

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

can work in the presence or absence of fault localization, and with or without test cases. I
conclude by discussing the potential impact of integrating regex support into automated
program repair approaches.

3.17 Towards Trustworthy Program Repair
Yingfei Xiong (Peking University, CN)

License) Creative Commons BY 3.0 Unported license
© Yingfei Xiong

Many different approaches have been proposed for automatic program repair, but the
precision and recall of current techniques are not satisfactory. This talk will introduce our
work exploring the possibilities of improving precision and recall. First, we did a study
of manual program repair, and the results show that human developer indeed can achieve
high precision and recall under the same setting of automatic program repair. Second, we
proposed two techniques, mining QA site and statistical condition synthesis, mainly for
improving precision. Both techniques achieve a precision of around 80%.

3.18 How Developers Diagnose and Repair Software Bugs (and what
we can do about it)

Andreas Zeller (Universitat des Saarlandes, DE)

License) Creative Commons BY 3.0 Unported license
© Andreas Zeller

How do practitioners debug computer programs? In a retrospective study with 180 respond-
ents and an observational study with 12 practitioners, we collect and discuss data on how
developers spend their time on diagnosis and fixing bugs, with key findings on tools and
strategies used, as well as highlighting the need for automated assistance. To facilitate
and guide future research, we provide DBGBENCH, a highly usable debugging benchmark
providing fault locations, patches and explanations for common bugs as provided by the
practitioners.

3.19 Automated Test Reuse via Code Transplantation
Tianyi Zhang (UCLA, US)

License @@ Creative Commons BY 3.0 Unported license
© Tianyi Zhang

Code clones are common in software. When applying similar edits to clones, developers often
find it difficult to examine the runtime behavior of clones. The problem is exacerbated when
some clones are tested, while their counterparts are not. To reuse tests for similar but not
identical clones, Grafter transplants one clone to its counterpart by (1) identifying variations
in identifier names, types, and method call targets, (2) resolving compilation errors caused
by such variations through code transformation, and (3) inserting stub code to transfer
input data and intermediate output values for examination. To help developers cross-check

29

17022

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

30

17022 — Automated Program Repair

behavioral consistency between clones, Grafter supports fine-grained differential testing at
both the test outcome level and the intermediate program state level.

In our evaluation on three open source projects, Grafter successfully reuses tests in 94% of
clone pairs without inducing build errors, demonstrating its automated test transplantation
capability. To examine the robustness of Grafter, we automatically insert faults using a
mutation testing tool, Major, and check for behavioral consistency using Grafter. Compared
with a static cloning bug finder, Grafter detects 31% more mutants using the test-level
comparison and almost 2X more using the state-level comparison.This result indicates that
GRAFTER should effectively complement static cloning bug finders.

Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury

Participants

= Yuriy Brun
University of Massachusetts —
Ambherst, US

= Celso G. Camilo-Junior
Federal University of Goids, BR

= Jonathan Dorn

University of Virginia —
Charlottesville, US

= Lars Grunske

HU Berlin, DE

- Ciera Jaspan

Google Inc. —

Mountain View, US

= Aditya Kanade

Indian Institute of Science —
Bangalore, IN

= Sarfraz Khurshid

University of Texas — Austin, US
= Dongsun Kim

University of Luxembourg, LU

= Sunghun Kim
HKUST - Kowloon, HK

= Julia Lawall
INRIA - Paris, FR

= Claire Le Goues
Carnegie Mellon University —
Pittsburgh, US

= Fan Long

MIT — Cambridge, US

- Matias Sebastian Martinez
University of Valenciennes, FR

= Sergey Mechtaev

National University of
Singapore, SG

= Martin Monperrus

University of Lille & INRIA, FR
= Adrian Nistor

Florida State University —
Tallahassee, US

= Alessandro Orso
Georgia Institute of Technology —
Atlanta, US

= Justyna Petke
University College London, GB

31

= Michael Pradel
TU Darmstadt, DE

= Mukul Prasad
Fujitsu Labs of America Inc. —
Sunnyvale, US

= Abhik Roychoudhury
National University of
Singapore, SG

= Marija Selakovic

TU Darmstadt, DE

= Kathryn T. Stolee
North Carolina State University —
Raleigh, US

= David R. White

University College London, GB
= Yingfei Xiong

Peking University, CN

- Andreas Zeller

Universitiat des Saarlandes, DE
= Tianyi Zhang

UCLA, US

17022

	Executive Summary Sunghun Kim, Claire Le Goues, Michael Pradel, and Abhik Roychoudhury
	Table of Contents
	Overview of Talks
	Quality and applicability of automated repair Yuriy Brun
	Automatic Tradeoffs: Accuracy and Energy Jonathan Dorn
	Deep Learning for Program Repair Aditya Kanade
	Prex: Finding Guidance for Forward and Backward Porting of Linux Device Drivers Julia Lawall
	Automated Inference of Code Transforms and Search Spaces for Patch Generation Fan Long
	Learning-based Program Repair Fan Long
	ASTOR: A Program Repair Library for Java Matías Sebastían Martínez
	Combining syntactic and semantic repair Sergey Mechtaev
	Antifragile Software and Correctness Attraction Martin Monperrus
	Detecting and repairing performance bugs that have non-intrusive fixes Adrian Nistor
	Automated Software Transplantation Justyna Petke
	Understanding and Automatically Preventing Injection Attacks on Node.js Michael Pradel
	Anti-patterns in Search-Based Program Repair Mukul Prasad
	Semantic Techniques for Program Repair Abhik Roychoudhury
	Automated techniques for fixing performance issues in JavaScript applications Marija Selakovic
	I Get by With a Little Help From My Friends: Crowdsourcing Program Repair Kathryn T. Stolee
	Towards Trustworthy Program Repair Yingfei Xiong
	How Developers Diagnose and Repair Software Bugs (and what we can do about it) Andreas Zeller
	Automated Test Reuse via Code Transplantation Tianyi Zhang

	Participants

