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Abstract
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Randomization plays a prominent role in many subfields of theoretical computer science.
Typically, this role is twofold: On the one hand, randomized methods can be used to solve
essentially classical problems easier or more efficiently. In many cases, this allows for simpler,
faster, and more appealing solutions for problems that have rather elaborate deterministic
algorithms; in other cases, randomization provides the only known way to cope with the
problem (e.g. polynomial identity testing, or deciding whether there exists a perfect matching
with exactly b red edges in an edge-colored bipartite graph). On the other hand, there are
also cases where randomness is intrinsic to the question being asked, such as the study of
properties of random objects, and the search for algorithms which are efficient on average for
various input distributions.

Parameterized complexity is an approach of handling computational intractability, where
the main idea is to analyze the complexity of problems in finer detail by considering additional
problem parameters beyond the input size. This area has enjoyed much success in recent
years, and has yielded several new algorithmic approaches that help us tackle computationally
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challenging problems. While randomization already has an important role in parameterized
complexity, for instance in techniques such as color-coding or randomized contractions, there
is a common opinion within researchers of the field that the full potential of randomization
has yet to be fully tapped.

The goal of this seminar was to help bridge this gap, by bringing together experts in the
areas of randomized algorithms and parameterized complexity. In doing so, we hope to:

Establish domains for simpler and/or more efficient FPT algorithms via randomization.
Identify problems which intrinsically need randomization.
Study parameterized problems whose instances are generated by some underlying distri-
bution.
Stimulate the development of a broadened role of randomness within parameterized
complexity.
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3 Overview of Talks

3.1 Hardness in P
Amir Abboud (Stanford University, US)

License Creative Commons BY 3.0 Unported license
© Amir Abboud

The class P attempts to capture the efficiently solvable computational tasks. It is full of
practically relevant problems, with varied and fascinating combinatorial structure.

In this talk, I will give an overview of a rapidly growing body of work that seeks a better
understanding of the structure within P. Inspired by NP-hardness, the main tool in this
approach are combinatorial reductions. Combining these reductions with a small set of
plausible conjectures, we obtain tight lower bounds on the time complexity of many of the
most important problems in P.

3.2 Towards Hardness of Approximation for Polynomial Time Problems
Arturs Backurs (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Arturs Backurs

Proving hardness of approximation is a major challenge in the field of fine-grained complexity
and conditional lower bounds in P. How well can the Longest Common Subsequence (LCS)
or the Edit Distance be approximated by an algorithm that runs in near-linear time? In
this paper, we make progress towards answering these questions. We introduce a framework
that exhibits barriers for truly subquadratic and deterministic algorithms with good approx-
imation guarantees. Our framework highlights a novel connection between deterministic
approximation algorithms for natural problems in P and circuit lower bounds.

In particular, we discover a curious connection of the following form: if there exists a
δ > 0 such that for all ε > 0 there is a deterministic (1 + ε)-approximation algorithm for LCS
on two sequences of length n over an alphabet of size no(1) that runs in O(n2−δ) time, then
a certain plausible hypothesis is refuted, and the class ENP does not have non-uniform linear
size Valiant Series-Parallel circuits. Thus, designing a “truly subquadratic PTAS” for LCS is
as hard as resolving an old open question in complexity theory.

3.3 Directed Hamiltonicity parameterized by the largest independent
set

Andreas Björklund (Lund University, SE)

License Creative Commons BY 3.0 Unported license
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Joint work of Andreas Björklund, Petteri Kaski, Ioannis Koutis

We present a Monte Carlo algorithm deciding Hamiltonicity in n-vertex directed graphs in
O∗(3n−mis(G)) time and polynomial space, where mis(G) is the size of the largest independent
set in the graph. In particular, in bipartite graphs we get a O∗(1.733n) time and polynomial
space algorithm improving over the O∗(1.888n) time and exponential space algorithm by
Cygan et al. from STOC 2013.
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3.4 Fine-grained dichotomies for the Tutte plane and Boolean #CSP
Cornelius Brand (Universität des Saarlandes, DE)
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Joint work of Cornelius Brand, Holger Dell, Marc Roth

Jaeger, Vertigan, and Welsh proved a dichotomy for the complexity of evaluating the Tutte
polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining
points admit polynomial-time algorithms. Dell, Husfeldt, and Wahlén and Husfeldt and
Taslaman, in combination with Curticapean, extended the #P-hardness results to tight lower
bounds under the counting exponential time hypothesis #ETH, with the exception of the line
y = 1, which was left open. We complete the dichotomy theorem for the Tutte polynomial
under #ETH by proving that the number of all acyclic subgraphs of a given n-vertex graph
cannot be determined in time exp(o(n)) unless #ETH fails. Another dichotomy theorem
we strengthen is the one of Creignou and Hermann for counting the number of satisfying
assignments to a constraint satisfaction problem instance over the Boolean domain. We prove
that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the
number of independent sets in bipartite graphs with n vertices cannot be computed in time
exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation
idea by Curticapean and transfer it to systems of linear equations that might not directly
correspond to interpolation.

3.5 A Near-Linear Pseudopolynomial Time Algorithm for Subset Sum
Karl Bringmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
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Main reference K. Bringmann, “A Near-Linear Pseudopolynomial Time Algorithm for Subset Sum”, in Proc. of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1073–1084,
SIAM, 2017.

URL http://dx.doi.org/10.1137/1.9781611974782.69

Given a set Z of n positive integers and a target value t, the SubsetSum problem asks
whether any subset of Z sums to t. A textbook pseudopolynomial time algorithm by Bellman
from 1957 solves SubsetSum in time O(nt). Here we present a simple randomized algorithm
running in time Õ(n+ t). This improves upon a classic result and is likely to be near-optimal,
since it matches conditional lower bounds from SetCover and k-Clique. One of our main
tools originated in the field of parameterized algorithms. We also present a new algorithm
with pseudopolynomial time and polynomial space.
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3.6 Relatively recent insights into counting small patterns
Radu Curticapean (Hungarian Academy of Sciences – Budapest, HU)
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Joint work of Radu Curticapean, Holger Dell, Dániel Marx

We consider the problem of counting subgraphs. More specifically, we look at the following
problems #Sub(C) for fixed graph classes C: Given as input a graph H from C (the pattern)
and another graph G (the host), the task is to count the occurrences of H as a subgraph
in G. Our goal is to understand which properties of the pattern class C make the problem
#Sub(C) easy/hard. For instance, for the class of stars, we can solve this problem in linear
time. For the class of paths however, it subsumes counting Hamiltonian paths and is hence
#P-hard.

As it turns out, the notion of #P-hardness fails to give a sweeping dichotomy for the
problems #Sub(C), since there exist classes C of intermediate complexity. However, adopting
the framework of fixed-parameter tractability, and parameterizing by the size of the pattern,
it was shown in 2014 how to classify the problems #Sub(C) as either polynomial-time solvable
or #W[1]-hard: A class C lies on the polynomial-time side of this dichotomy iff the graphs
appearing in C have vertex-covers of constant size.

In this talk, we introduce a new technique that allows us to view the subgraph counting
problem from a new perspective. In particular, it allows for the following applications:
1. A greatly simplified proof of the 2014 dichotomy result, together with almost-tight lower

bounds under ETH, which were not achievable before.
2. Faster algorithms for counting k-edge subgraphs, such as k-matchings, with running time

nck for constants c < 1.

3.7 Finding Detours is Fixed-parameter Tractable
Holger Dell (Universität des Saarlandes, DE)

License Creative Commons BY 3.0 Unported license
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URL https://arxiv.org/abs/1607.07737
Joint work of Ivona Bezáková, Radu Curticapean, Holger Dell, Fedor V. Fomin

We consider the following natural “above guarantee” parameterization of the classical Longest
Path problem: For given vertices s and t of a graph G, and an integer k, the problem
Longest Detour asks for an (s, t)-path in G that is at least k longer than a shortest (s, t)-path.
Using insights into structural graph theory, we prove that Longest Detour is fixed-parameter
tractable (FPT) on undirected graphs and actually even admits a single-exponential algorithm,
that is, one of running time exp(O(k)) · poly(n). This matches (up to the base of the
exponential) the best algorithms for finding a path of length at least k.

Furthermore, we study the related problem Exact Detour that asks whether a graph G
contains an (s, t)-path that is exactly k longer than a shortest (s, t)-path. For this problem,
we obtain a randomized algorithm with running time about 2.746k, and a deterministic
algorithm with running time about 6.745k, showing that this problem is FPT as well. Our
algorithms for Exact Detour apply to both undirected and directed graphs.
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3.8 Average-Case Analysis of Parameterized Problems
Tobias Friedrich (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Karl Bringmann, Tobias Friedrich, Danny Hermelin, Christian Hercher, Nikolaos Fountoulakis

Many computational problems are NP-hard and are therefore generally believed not to be
solvable in polynomial time. Additional assumptions on the inputs are necessary to solve
such problems efficiently. Two typical approaches are (i) parameterized complexity where we
assume that a certain parameter of the instances is small, and (ii) average-case complexity
where we assume a certain probability distribution on the inputs. There is a vast literature on
both approaches, but very little about their intersection. Nevertheless, combining these two
approaches seems natural and potentially useful in practice. The talk presents the following
line of results:

A hierarchy of parameterized average-case complexity classes [2].
The W[1]-complete problem k-clique drops to an average-case analog of FPT for homo-
geneous Erdős-Rényi random graphs of all densities [2] and for inhomogeneous Chung-Lu
random graphs with power-law exponent γ > 2 [4, 5].
The bounded search tree paradigm allows analyzing average-case run times for a very
relaxed graph model that only assumes stochastic independence of the edges. This is
demonstrated for the parameterized problems k-Clique, Vertex Cover, and Hitting Set
[unpublished].
The Edge Cover Problem has no kernel of subexponential size in the worst-case (unless
P = NP). We study a well-known set of reduction rules and prove that random intersection
graphs are reduced completely by these rules [3].
The geometric problem of computing the hypervolume indicator is W[1]-hard in the
worst-case, but can be solved in expected FPT-time if the input is distributed at random
on a d-dimensional simplex [1].

References
1 Karl Bringmann and Tobias Friedrich. Parameterized average-case complexity of the hyper-

volume indicator. In Genetic and Evolutionary Computation Conference (GECCO), pages
575–582. ACM, 2013.

2 Nikolaos Fountoulakis, Tobias Friedrich, and Danny Hermelin. On the average-case com-
plexity of parameterized clique. Theoretical Computer Science, 576:18–29, 2015.

3 Tobias Friedrich and Christian Hercher. On the kernel size of clique cover reductions for
random intersection graphs. Journal of Discrete Algorithms, 34:128–136, 2015.

4 Tobias Friedrich and Anton Krohmer. Parameterized clique on scale-free networks. In
International Symposium on Algorithms and Computation (ISAAC), volume 7676 of Lecture
Notes in Computer Science, pages 659–668. Springer, 2012.

5 Tobias Friedrich and Anton Krohmer. Parameterized clique on inhomogeneous random
graphs. Discrete Applied Mathematics, 184:130–138, 2015.
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3.9 Spanning Circuits in Regular Matroids
Petr A. Golovach (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
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Joint work of Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh
Main reference F.V. Fomin, P.A. Golovach, D. Lokshtanov, S. Saurabh, “Spanning Circuits in Regular Matroids”,

in Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pp. 1433–1441, SIAM, 2017.

URL http://dx.doi.org/10.1137/1.9781611974782.93

We consider the fundamental Matroid Theory problem of finding a circuit in a matroid
spanning a set T of given terminal elements. For graphic matroids this corresponds to the
problem of finding a simple cycle passing through a set of given terminal edges in a graph.
The algorithmic study of the problem on regular matroids, a superclass of graphic matroids,
was initiated by Gavenčiak, Král’, and Oum [ICALP’12], who proved that the case of the
problem with |T | = 2 is fixed-parameter tractable (FPT) when parameterized by the length
of the circuit. We extend the result of Gavenčiak, Král’, and Oum by showing that for
regular matroids

the Minimum Spanning Circuit problem, deciding whether there is a circuit with at
most ` elements containing T , is FPT parameterized by k = `− |T |;
the Spanning Circuit problem, deciding whether there is a circuit containing T , is FPT
parameterized by |T |.

We note that extending our algorithmic findings to binary matroids, a superclass of regular
matroids, is highly unlikely: Minimum Spanning Circuit parameterized by ` is W[1]-hard
on binary matroids even when |T | = 1. We also show a limit to how far our results can be
strengthened by considering a smaller parameter. More precisely, we prove that Minimum
Spanning Circuit parameterized by |T | is W[1]-hard even on cographic matroids, a proper
subclass of regular matroids.

3.10 Parameterized Traveling Salesman Problem: Beating the Average
Gregory Z. Gutin (Royal Holloway University of London, GB)

License Creative Commons BY 3.0 Unported license
© Gregory Z. Gutin

Joint work of Gregory Z. Gutin, Viresh Patel
Main reference G. Gutin, V. Patel, “Parameterized Traveling Salesman Problem: Beating the Average”, SIAM J.

Discrete Math., 30(1):220–238, SIAM, 2016.
URL http://dx.doi.org/10.1137/140980946

In the traveling salesman problem (TSP), we are given a complete graph Kn together with
an integer weighting w on the edges of Kn, and we are asked to find a Hamilton cycle of Kn

of minimum weight. Let h(w) denote the average weight of a Hamilton cycle of Kn for the
weighting w. Vizing in 1973 asked whether there is a polynomial-time algorithm which always
finds a Hamilton cycle of weight at most h(w). He answered this question in the affirmative
and subsequently Rublineckii, also in 1973, and others described several other TSP heuristics
satisfying this property. We prove a considerable generalization of Vizing’s result: for each
fixed k, we give an algorithm that decides whether, for any input edge weighting w of Kn,
there is a Hamilton cycle of Kn of weight at most h(w)− k (and constructs such a cycle if it
exists). For k fixed, the running time of the algorithm is polynomial in n, where the degree of
the polynomial does not depend on k (i.e., the generalized Vizing problem is fixed-parameter
tractable with respect to the parameter k).
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3.11 How proofs are prepared at Camelot
Petteri Kaski (Aalto University, FI)

License Creative Commons BY 3.0 Unported license
© Petteri Kaski

Joint work of Andreas Björklund, Petteri Kaski
Main reference A. Björklund, P. Kaski, “How Proofs are Prepared at Camelot: Extended Abstract”, in Proc. of

the 2016 ACM Symposium on Principles of Distributed Computing (PODC 2016), pp. 391–400,
ACM, 2016.

URL http://dx.doi.org/10.1145/2933057.2933101

We study a design framework for robust, independently verifiable, and workload-balanced
distributed algorithms working on a common input. The framework builds on recent
noninteractive Merlin–Arthur proofs of batch evaluation of Williams [31st IEEE Colloquium
on Computational Complexity (CCC’16, May 29-June 1, 2016, Tokyo), 2:117] with the basic
observation that Merlin’s magic is not needed for batch evaluation: mere Knights can prepare
the independently verifiable proof, in parallel, and with intrinsic error-correction.

As our main technical result, we show that the k-cliques in an n-vertex graph can be
counted and verified in per-node O(n(ω + ε)k6 ) time and space on O(n(ω + ε)k6 ) compute
nodes, for any constant ε > 0 and positive integer k divisible by 6, where 2 ≤ ω < 2.3728639
is the exponent of square matrix multiplication over the integers. This matches in total
running time the best known sequential algorithm, due to Nešetřil and Poljak [Comment.
Math. Univ. Carolin. 26 (1985) 415–419], and considerably improves its space usage and
parallelizability. Further results include novel algorithms for counting triangles in sparse
graphs, computing the chromatic polynomial of a graph, and computing the Tutte polynomial
of a graph.

3.12 Improved algebraic algorithms for out-branchings problems
Yiannis Koutis (University of Puerto Rico – Rio Piedras, PR)

License Creative Commons BY 3.0 Unported license
© Yiannis Koutis

We present an O∗(2k) algorithm for deciding if a directed graph contains an out-branching
with at least k internal nodes. We also present an algorithm for detecting out-branchings
with at least k leaves and at most s internal nodes with out-degree greater than 1. The
algorithm runs in time O∗(2k+s), and for certain values of s it improves upon the previous
upper bounds for the k-leaf problem. The algorithms are algebraic and work via reductions
to two non-standard problems concerning monomial detection in multivariate polynomials.
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3.13 Improving TSP tours using dynamic programming over tree
decomposition

Łukasz Kowalik (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Łukasz Kowalik

Joint work of Marek Cygan, Łukasz Kowalik, Arkadiusz Socała

Given a traveling salesman problem (TSP) tour H in graph G a k-move is an operation
which removes k edges from H, and adds k edges of G so that a new tour H ′ is formed. The
popular k-OPT heuristics for TSP finds a local optimum by starting from an arbitrary tour
H and then improving it by a sequence of k-moves.

Until 2016, the only known algorithm to find an improving k-move for a given tour was
the naive solution in time O(nk). At ICALP’16 de Berg, Buchin, Jansen and Woeginger
showed an O(nb 2

3k c+1)-time algorithm.
We show an algorithm which runs in O(n( 1

4 +εk)k) time, where lim εk = 0. We are able
to show that it improves over the state of the art for every k = 5, . . . , 10. For the most
practically relevant case k = 5 we provide a slightly refined algorithm running in O(n3.4)
time. We also show that for the k = 4 case, improving over the O(n3)-time algorithm of
de Berg et al. would be a major breakthrough: an O(n3−ε)-time algorithm for any ε > 0
would imply an O(n3−δ)-time algorithm for the APSP problem, for some δ > 0.

3.14 A Randomized Polynomial Kernelization for Vertex Cover with a
Smaller Parameter

Stefan Kratsch (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Stefan Kratsch

Main reference S. Kratsch, “A Randomized Polynomial Kernelization for Vertex Cover with a Smaller Parameter”,
in Proc. of the 24th Annual European Symposium on Algorithms (ESA 2016), LIPIcs, Vol. 57,
pp. 59:1-59:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2016.59

In the Vertex Cover problem we are given a graph G = (V,E) and an integer k and have
to determine whether there is a set X ⊆ V of size at most k such that each edge in E

has at least one endpoint in X. The problem can be easily solved in time O∗(2k), making
it fixed-parameter tractable (FPT) with respect to k. While the fastest known algorithm
takes only time O∗(1.2738k), much stronger improvements have been obtained by studying
parameters that are smaller than k. Apart from treewidth-related results, the arguably best
algorithm for Vertex Cover runs in time O∗(2.3146p), where p = k−LP (G) is only the excess
of the solution size k over the best fractional vertex cover (Lokshtanov et al. TALG 2014).
Since p ≤ k but k cannot be bounded in terms of p alone, this strictly increases the range of
tractable instances.

Recently, Garg and Philip (SODA 2016) greatly contributed to understanding the para-
meterized complexity of the Vertex Cover problem. They prove that 2LP (G)−MM(G) is a
lower bound for the vertex cover size of G, where MM(G) is the size of a largest matching
of G, and proceed to study parameter ` = k− (2LP (G)−MM(G)). They give an algorithm
of running time O∗(3`), proving that Vertex Cover is FPT in `. It can be easily observed
that ` ≤ p whereas p cannot be bounded in terms of ` alone. We complement the work of
Garg and Philip by proving that Vertex Cover admits a randomized polynomial kernelization
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in terms of `, i.e., an efficient preprocessing to size polynomial in `. This improves over
parameter p = k − LP (G) for which this was previously known (Kratsch and Wahlström
FOCS 2012).

3.15 Gap Amplification using Bipartite Random Graphs
Bingkai Lin (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Bingkai Lin

Gap amplification transformation plays an important role in proving hardness of approx-
imation results. This talk presents a new method to construct gap amplification reduction
for parameterized optimization problems. First, I will review the threshold phenomenon
of random graphs G(n, p) containing a bipartite complete subgraph . Then I will show its
application on ruling out super-polynomial time algorithms for approximating Maximum
k-Set Intersection and Minimum Set Cover to some ratios.

3.16 Lossy Kernelization I
M.S. Ramanujan (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© M.S. Ramanujan

Joint work of Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, Saket Saurabh
Main reference D. Lokshtanov, F. Panolan, M. S. Ramanujan, S. Saurabh, “Lossy Kernelization”,

arXiv:1604.04111v2 [cs.DS], 2016.
URL https://arxiv.org/abs/1604.04111v2

Introductory talk on a new framework for analyzing the performance of preprocessing
algorithms. This framework builds on the notion of kernelization from parameterized
complexity. However, as opposed to the original notion of kernelization, this framework
combines very well with approximation algorithms and heuristics.

3.17 Lossy Kernelization II: Cycle Packing
Fahad Panolan (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Fahad Panolan

Joint work of Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, Saket Saurabh
Main reference D. Lokshtanov, F. Panolan, M. S. Ramanujan, S. Saurabh, “Lossy Kernelization”,

arXiv:1604.04111v2 [cs.DS], 2016.
URL https://arxiv.org/abs/1604.04111v2

In this talk we see an example of Lossy Kernelization – Disjoint Factors. Disjoint Factors
problem is closely related to Cycle Packing. We prove that Disjoint Factors admits a
Polynomial Sized Approximate Kernelization Scheme (PSAKS).
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3.18 Lossy Kernelization, III: Lower Bounds
Daniel Lokshtanov (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Daniel Lokshtanov

Joint work of Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, Saket Saurabh
Main reference D. Lokshtanov, F. Panolan, M. S. Ramanujan, S. Saurabh, “Lossy Kernelization”,

arXiv:1604.04111v2 [cs.DS], 2016.
URL https://arxiv.org/abs/1604.04111v2

We show how to combine the tecniques for showing kernelization lower bounds with the
methods for showing hardness of approximation to rule out approximate kernels of polynomial
size for concrete problems. We outline proofs that the longest path problem parameterized
by solution size, and the set cover problem parameterized by the size of the universe do not
admit constant factor approximate kernels of polynomial size.

3.19 Exponential Time Paradigms Through the Polynomial Time Lens
Jesper Nederlof (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Jesper Nederlof

Joint work of Andy Drucker, Jesper Nederlof, Rahul Santhanam
Main reference A. Drucker, J. Nederlof, R. Santhanam, “Exponential Time Paradigms Through the Polynomial

Time Lens”, in Proc. of the 24th Annual European Symposium on Algorithms (ESA 2016), LIPIcs,
Vol. 57, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ESA.2016.36

We propose a general approach to modelling algorithmic paradigms for the exact solution of
NP-hard problems. Our approach is based on polynomial time reductions to succinct versions
of problems solvable in polynomial time. We use this viewpoint to explore and compare the
power of paradigms such as branching and dynamic programming, and to shed light on the
true complexity of various problems.

In this talk I will mainly talk about lower bounds for OPP algorithms. For example, if there
is a polynomial time algorithm that, given a planar graph, outputs a maximum independent
set of n vertices with probability exp(−n1−ε) for some ε > 0, then NP ⊆ coNP/poly. I will
also outline connections with “AND-compositions” from kernelization theory.

3.20 Faster Space-Efficient Algorithms for Subset Sum, k-Sum and
Related Problems

Jesper Nederlof (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Jesper Nederlof

Joint work of Nikhil Bansal, Shashwat Garg, Jesper Nederlof, Nikhil Vyas
Main reference N. Bansal, S. Garg, J. Nederlof, N. Vyas, “Faster Space-Efficient Algorithms for Subset Sum,

k-Sum and Related Problems”, arXiv:1612.02788v1 [cs.DS], 2016.
URL https://arxiv.org/abs/1612.02788v1

We present a randomized Monte Carlo algorithm that solves a given instance of Subset
Sum on n integers using O∗(20.86n) time and O∗(1) space, where O∗() suppresses factors
polynomial in the input size. The algorithm assumes random access to the random bits used.
The same result can be obtained for Knapsack on n items, and the same methods also have
consequences for the k-Sum problem.
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3.21 Subexponential Parameterized Algorithms for Planar Graphs,
Apex-Minor-Free Graphs and Graphs of Polynomial Growth via
Low Treewidth Pattern Covering

Marcin Pilipczuk (University of Warsaw, PL) and Dániel Marx (Hungarian Academy of
Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
© Marcin Pilipczuk and Dániel Marx

Joint work of Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk,
Saket Saurabh

Main reference F.V. Fomin, D. Lokshtanov, D. Marx, Ma. Pilipczuk, Mi. Pilipczuk, S. Saurabh, “Subexponential
Parameterized Algorithms for Planar and Apex-Minor-Free Graphs via Low Treewidth Pattern
Covering”, in Proc. of the 57th Annual Symposium on Foundations of Computer Science (FOCS
2016), pp. 515–524, IEEE, 2016.

URL http://dx.doi.org/10.1109/FOCS.2016.62

We prove the following theorem. Given a planar graph G and an integer k, it is possible in
polynomial time to randomly sample a subset A of vertices of G with the following properties:

A induces a subgraph of G of treewidth O(
√
k log k), and

for every connected subgraph H of G on at most k vertices, the probability that A covers
the whole vertex set of H is at least (2O(

√
k log2 k) · nO(1))−1, where n is the number of

vertices of G.
Together with standard dynamic programming techniques for graphs of bounded treewidth,
this result gives a versatile technique for obtaining (randomized) subexponential parameterized
algorithms for problems on planar graphs, usually with running time bound 2O(

√
k log2 k)nO(1).

The technique can be applied to problems expressible as searching for a small, connected
pattern with a prescribed property in a large host graph; examples of such problems include
Directed k-Path, Weighted k-Path, Vertex Cover Local Search, and Subgraph
Isomorphism, among others. Up to this point, it was open whether these problems can
be solved in subexponential parameterized time on planar graphs, because they are not
amenable to the classic technique of bidimensionality. Furthermore, all our results hold in
fact on any class of graphs that exclude a fixed apex graph as a minor, in particular on
graphs embeddable in any fixed surface. We also provide a similar statement for graph classes
of polynomial growth.

3.22 Exact Algorithms via Monotone Local Search
Saket Saurabh (The Institute of Mathematical Sciences, India, IN)

License Creative Commons BY 3.0 Unported license
© Saket Saurabh

Joint work of Daniel Lokshtanov, Serge Gaspers, Fedor Fomin, Saket Saurabh

In a vertex subset problem we are given as input a universe U of size n, and a family F of
subsets of the universe defined implicitly from the input. The task is to find a subset S in F
of smallest possible size. For an example the Vertex Cover problem is a subset problem where
input is a graph G, the universe is the vertex set of G, and the family F is the family of all
vertex covers of G. Here a vertex set S is a vertex cover of G if every edge of G has at least
one endpoint in S. Many problems, such as Vertex Cover, Feedback Vertex Set, Hitting Set
and Minimum Weight Satisfiability can be formalized as vertex subset problems. The trivial
algorithm for such problems runs in time 2n. We show that (essentially) any vertex subset
problem that admits an FPT algorithm with running time cknO(1) , where c is a constant and
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k is the size of the optimal solution, also admits an algorithm with running time (2− 1
c )n.

In one stroke this theorem improves the best known exact exponential time algorithms
for a number of problems, and gives tighter combinatorial bounds for several well-studied
objects. The most natural variant of our algorithm is randomized, we also show how to get a
deterministic algorithm with the same running time bounds, up to a sub-exponential factor
in the running time. Our de-randomization relies on a new pseudo-random construction that
may be of independent interest.

3.23 Backdoors for Constraint Satisfaction
Stefan Szeider (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Stefan Szeider

Joint work of Robert Ganian, Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, M. S Ramanujan, Stefan
Szeider, Stanislav Živný

Main reference S. Gaspers, S. Ordyniak, S. Szeider, “Backdoor Sets for CSP”, in The Constraint Satisfaction
Problem: Complexity and Approximability, Dagstuhl Follow-Ups, Vol. 7, pp. 137–157, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

URL http://dx.doi.org/10.4230/DFU.Vol7.15301.137

We will review some recent parameterised complexity results for the Constraint Satisfaction
Problem (CSP), considering parameters that arise from strong backdoor sets into CSP classes
defined by tractable constraint languages. The language restrictions have recently stepped
into the spotlight because of the recently claimed solution of the long-standing Dichotmy
Conjecture. One of the results we will present is based on a novel combination of backdoor
sets and treewidth.

3.24 Parameterized Algorithms for Matrix Factorization Problems
David P. Woodruff (IBM Almaden Center – San Jose, US)

License Creative Commons BY 3.0 Unported license
© David P. Woodruff

I will give a survey on parameterized algorithms for matrix factorization problems, focusing
on non-negative matrix factorization, `1 low rank factorization, tensor factorization, and
weighted low rank approximation.

3.25 k-Path of Algorithms
Meirav Zehavi (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Meirav Zehavi

An overview of several algorithms for the k-Path problem and the tools employed to de-
randomize them, including a presentation of a simple algorithm for the Longest Cycle
problem.
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4 Open problems

4.1 FPT-approximation of bandwidth
Daniel Lokshtanov (University of Bergen, NO)

License Creative Commons BY 3.0 Unported license
© Daniel Lokshtanov

Bandwidth
Input: An undirected graph G = (V,E), integer k.
Question: Is there an ordering (injective function) π : V → {1, . . . , |V |}, such that
maxuv∈E |π(u)− π(v)| ≤ k.

I Open Problem 1. Is there an FPT-approximation on general graphs parameterized by k?
In particular none of the following is known:

Is there (1 + ε)-approximation in FPT time?
Is there constant approximation in FPT time?
Is there f(k)-approximation in FPT time?

Relevant reference: In [11] a polynomial time kO(k)-approximation is shown for trees and
graphs of bounded treelength.

4.2 Time and space complexity of k-LCS
Michał Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Michał Pilipczuk

k-Longest Common Subsequence (k-LCS)
Input: alphabet Σ, strings s1, . . . , sk ∈ Σ∗.
Question: what is the longest common subsequence of all the strings si.

The standard dynamic programming has running time and space complexity O(nk). By
Savitch’s theorem we can reduce the space complexity to poly(k, n) at the cost of increasing
the running time to nO(k logn).

I Open Problem 2. Is k-LCS solvable in nf(k) time and FPT space?

Relevant reference: in [21] a connection is proved between this open problem and the question
of space efficient algorithms for bounded treewidth graphs. Other relevant reference: [12].
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4.3 Fine-grained complexity of k-LCS
Karl Bringmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Karl Bringmann

We can solve k-LCS (defined above) in time O(nk), but under SETH there is no O(nk−ε)
time algorithm |Σ| = Ω(k) [1]. On the other hand we know for |Σ| = O(1) the problem is
W[1]-hard and there is no no(k) time algorithm [19].

I Open Problem 3. Is there an O(n(1−εΣ)k) time algorithm?

4.4 Fine-grained complexity of Hitting Set w.r.t. VC dimension
Karl Bringmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Karl Bringmann

Hitting Set
Input: a set family F ⊆ 2U , integer k.
Question: Is there a set X ⊆ U of size at most k, such that X interesects each set in F .

We know that Hitting Set can be solved in time nk+o(1) (for k ≥ 7), and under the Strong
Exponential Time Hypothesis (SETH) no O(nk−ε) time algorithm exists [18].

I Definition 1. We say that a set X ⊆ U is shattered by a set family F ⊆ 2U if the family
{X ∩ S : S ∈ F} contains all the subsets of X. The VC dimension of F is the largest
cardinality of a set X, such that X is shattered by F .

It is known that for VC = 1 the Hitting Set problem is polynomial time solvable, while
for VC = 2 the problem becomes W[1]-hard and does not admit no(

k
log k ) time algorithm [6].

I Open Problem 4. Is there O(n(1−εV C)k) time algorithm for the Hitting Set problem?

4.5 FPT-approximation of VC dimension
Bingkai Lin (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Bingkai Lin

I Open Problem 5. Is there a constant-factor FPT-time approximation algorithm for VC
dimension (defined above)?
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4.6 Better approximation of Dominating Set
Bingkai Lin (National Institute of Informatics – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Bingkai Lin

Dominating Set
Input: an undirected graph G, an integer k.
Question: is there a set X ⊆ V (G) of size at most k, such that each vertex of G is in X
or has a neighbour in X?

It is well known that Dominating Set admits polynomial time ln(n)-approximation algorithm
as well as nO(k) time exact algorithm.

I Open Problem 6. Is there an o(lnn)-approximation algorithm for the Dominating Set
problem running in time nk−ε?

4.7 Orthogonal Vectors for Subset Sum
Jesper Nederlof (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Jesper Nederlof

Orthogonal Vectors for Subset Sum (OVSS)
Input: A,B ⊆

( [d]
d/4
)
.

Question: is there A ∈ A, B ∈ B such that A ∩B = ∅?

We are satisfied with any algorithm with constant error probability. For an integer d, denote
[d] = {1, . . . , d} and

( [d]
d/4
)
for the set of all subsets of [d] of size d/4. Let h(·) denote the

binary entropy function and Õ omit factors polynomial in d.

I Open Problem 7. Solve OVSS in time Õ
(

(|A|+ B|) · 2(1−ε)d

( d
d/4)

)
for ε > 0.

Observations: Let α = 1− h(1/4) ≈ 0.1888. Note that 2αd = 2d/
(
d
d/4
)
.

There is an Õ((|A|+ |B|)2αd) time algorithm based on representative sets (see [16] for an
extended version of this open problem statement outlining the algorithm).
If |A| ≤ 2α′d or |B| ≤ 2α′d for α′ < α, then trivial enumeration works. Moreover, by
directly using the improvements over this trivial enumeration from [2, 7, 13], we may in
fact assume |A|, |B| ≥ 2(α+δ)d for some δ > 0.
If |A| > 2βd, where β > h(1/4) − (1 − h(1/4)) ≈ 0.6223, an algorithm of Björklund et
al. [5] works: it runs in time Õ((| ↓ A|+ | ↓ B|)) ≤ Õ(2h(1/4)d), where for a set family F ,
↓ F denotes the sets of subsets of elements of F .
In fact, | ↓ A| can be upper bounded by Õ(maxλ min{|A|

(
d/4
λd

)
,
(
d
λd

)
}). After a small

calculation, this gives that the algorithm from [5] is fast enough whenever β > 0.525.

I Open Problem 8. Does there exist for some constant c > 0 an algorithm that, given z = 2cd
instances (A1,B1), . . . , (Az,Bz) of OVSS, detects whether any instance is a YES-instance in
time (

∑z
i=1(|Ai|+ |Bi|))2(α−ε)d, for ε > 0?
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Note Open Problem 8 relaxes Open Problem 7 as it asks whether exponentially many
instances of OVSS can be solved fast in an amortized sense.

Motivation: Following the approach of [4], a positive answer would imply an Õ(2(.5−ε)n)
time algorithm for n-integer subset sum for some ε > 0.

4.8 Fixed parameter tractability of Weighted Low Rank Approximation
David P. Woodruff (IBM Almaden Center – San Jose, US)

License Creative Commons BY 3.0 Unported license
© David P. Woodruff

Weighted Low Rank Approximation
Input: n× n matrix A over reals, rank bound r = O(1), weight matrix W ∈ Rn×n
Goal: find a rank r matrix B such that the weighted Frobenius norm of the difference
|W ◦ (A−B)|F =

∑
(Wi,j · (Ai,j −Bi,j)2) is small, i.e., at most 1.01 ·OPT

We assume the entries of A and W are integers in the range {−M,−M + 1, . . . ,M} for an
integer M ≤ 2poly(n), i.e., that the entries of A and W can be specified using poly(n) bits.

I Open Problem 9. Is there an FPT algorithm for this problem when parameterized by the
rank of the weight matrix W?

It is known [22] that there is an nO(k) upper bound and conditional 2Ω(k) lower bound.

4.9 Short resolution refutations for SAT when parameterized by
treewidth

Stefan Szeider (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Stefan Szeider

We consider propositional formulas in conjunctive normal form (CNF), given as a set of
clauses, where each clause is a set of literals, e.g., F = {{x, y}, {x, ȳ, z}, {x̄, y}, {x̄, ȳ}, {z̄}}.

I Definition 1. A clause C is the resolvent of clauses C1 and C2 if there is exactly one
variable x such that x ∈ C1, x̄ ∈ C2, and C = (C1 \ {x}) ∪ (C2 \ {x̄}).

A resolution refutation of a formula F is a vertex-labeled dag with exactly one sink where
each vertex has in-degree 0 or 2. Each node is labeled with a clause as follows: (i) each
source is labeled with a clause from F , (ii) each non-source is labeled with the resolvent of
the clauses labeling its predecessors, and (iii) the clause which labels the sink is empty.

The size of a resulution refutation is the number of its vertices.

It is known that a formula is unsatisfiable if and only if it has a resolution refutation.

I Definition 2. The primal graph P (F ) of a formula F is the graph whose vertices are the
variables of F , where two vertices are connected by an edge iff the corresponding variables
appear together (negated or unnegated) in some clause.
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The incidence graph I(F ) is the bipartite graph between variables and clauses where
two vertices are connected by an edge iff the corresponding variable appears (negated or
unnegated) in the corresponding clause.

It is known that for any formula F the treewidth of its incidence graph is at most the
treewidth of its primal graph plus one:

tw(I(F )) ≤ tw(P (F )) + 1 .

Also, it is known that #SAT is FPT when parameterized by tw(I(F )) and tw(P (F )). Further,
it is known that every unsatisfiable formula F has a resolution refutation of FPT size when
parameterized by tw(P (F )).

I Open Problem 10. Is there always a resolution refutation of FPT size when parameterized
by tw(I(F ))?

4.10 Small universal Steiner tree covers
Marcin Pilipczuk (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
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Let G be a graph embedded on the plane in such a manner that the outerface of G, denoted
henceforth ∂G, is a simple cycle of length k. For a set T ⊆ V (∂G) and A ⊆ V (G), we say
that A covers an optimal Steiner tree for T if there exists an optimum Steiner tree in G with
terminals T , such that every vertex of degree at least three in this tree lies in A. A set A is
a universal Steiner tree cover in G if A covers an optimal Steiner tree for every T ⊆ V (∂G).

In [20] we have shown an existence of a universal Steiner tree cover of size bounded
polynomially in k, but the degree of the bound is above 100. On the other hand, we do not
know any example that is significantly worse than a grid of perimeter k.

I Open Problem 11. Prove or disprove the following statement: for every such G, there
exists a universal Steiner tree cover of size Õ(k2).

4.11 Even Set
Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Marx

Even Set
Input: Set system S over a universe U , integer k.
Find: A nonempty set X ⊆ U of size at most k such that |X ∩ S| is even for every S ∈ S.

Essentially equivalent formulations:
With graphs and neighborhoods.
Minimum circuit in a binary matroid.
Minimum distance in a linear code over a binary alphabet.

I Open Problem 12. What is the parameterized complexity of Even Set? Is it fixed parameter
tractable?
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4.12 FPT-approximation of Maximum Clique and Minimum
Dominating Set

Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)
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I Open Problem 13. Can Maximum Clique (Minimum Dominating Set) be approximated
in FPT time? I.e., is there an algorithm running in time f(k) · nO(1) that, given a graph
G and an integer k, finds a g(k)-clique (dominating set of size g(k)) for some unbounded
nondecreasing function g or correctly states that there is no k-clique (dominating set of size
k) in G?

4.13 Polynomial (Turing) Kernels
Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)
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I Open Problem 14. Do the following problems have polynomial kernels?
Directed Feedback Vertex Set
Multiway Cut (with arbitrary number t of terminals)
Planar Vertex Deletion

Does k-Path have a polynomial Turing kernel?

4.14 Directed Odd Cycle Traversal
Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)
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Directed Odd Cycle Traversal
Input: Directed graph G, integer k.
Find: A set X ⊆ U of at most k vertices such that G−X has no directed cycle of odd
length.

This problem generalizes
Directed Feedback Vertex Set [9]
Odd Cycle Transversal [23]
Directed S-Cycle Transversal [10]

I Open Problem 15. What is the parameterized complexity of Directed Odd Cycle Traversal?
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4.15 Square root phenomenon
Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
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I Open Problem 16. Are there 2O(
√
k·polylog(k))nO(1) time FPT algorithms for planar prob-

lems?

Natural targets are
Steiner Tree
Directed Steiner Tree
Directed Subset TSP

What about counting problems?
k-path
k-mathching
k disjoint triangles
k independent set

4.16 Disjoint paths / minor testing
Dániel Marx (Hungarian Academy of Sciences – Budapest, HU)

License Creative Commons BY 3.0 Unported license
© Dániel Marx

The best known parameter dependence for the k-disjoint paths problem and H-minor testing
seems to be triple exponential [15] using [8]. For planar graphs [3] gave an 22poly(k)

nO(1)

algorithm.

I Open Problem 17. Are there 2poly(k)nO(1) time algorithms for planar or general graphs?
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