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—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 17071 “Computer-
Assisted Engineering for Robotics and Autonomous Systems”. This seminar brought together
researchers from three distinct communities — Robotics, Model-driven Software Engineering, and
Formal Methods — to discuss the path towards creating safe and verifiable autonomous systems.
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This seminar focused on autonomous systems, and more specifically robots, that operate
without, or with little, external supervision. For these systems to be integrated into society,
it is highly important to make sure that they are functionally safe. Formal Methods are
techniques adopted in engineering for the verification of software and hardware systems. As
models are a basic requirement for the formal analysis of systems, Model-driven Software
Engineering plays an important role to enable the application of Formal Methods. Though
autonomous systems are increasingly involved in our everyday life, both exact formalizations
of safe functionality (standards, what we want to be confident in) and methods to achieve
confidence (methodologies, how we get confident in the properties we want to assure) are
still scarce.

This seminar brought together experts in Artificial Intelligence and Robotics, Model-driven
Software Engineering, and Formal Methods. It included researchers from academia as well
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as from industry. The following list summarizes high-level themes that emerged from the
seminar:
Dealing with highly complex systems, it is difficult to verify or even model all aspects of
the system, therefore focusing effort on efficient falsification rather than costly verification
can be highly impactful for industrial applications.
The community can and should leverage results and systems built for different robotic
competitions to reason about possible requirements and techniques to verify/falsify them.
These competitions include the DARPA robotics challenge, the Amazon picking challenge,
different leagues in Robocup, etc. Creating benchmarks based on these competitions will
enable progress in verification of autonomous systems.
Creating small interdisciplinary teams that include people from formal methods, robotics
and model based design that tackle small yet realistic problems, possibly inspired by
industrial applications, will help formalize the language of requirements, models and
verification techniques that will have an impact on autonomous systems.
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3 Overview of Talks

3.1 The Power of Satisfiability Checking
Erika Abraham (RWTH Aachen, DE)
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pp. 9-23, Springer International Publishing, 2016.
URL http://dx.doi.org/10.1007/978-3-319-41591-8 2

Satisfiability checking aims to develop algorithms and tools for checking the satisfiability of
existentially quantified logical formulas. For propositional logic, in the late '90s impressive
progress was made towards practically applicable solutions, resulting in powerful SAT solvers.
Driven by this success, a new line of research started to enrich propositional SAT solving
with solver modules for different theories. Nowadays, sophisticated SAT-modulo-theories
(SMT) solvers are available for, e.g., equality logic with uninterpreted functions, bit-vector
arithmetic, array theory, floating point arithmetic, and real and integer arithmetic. SAT
and SMT solvers are now at the heart of many techniques for the analysis of programs and
probabilistic, timed, hybrid and cyber-physical systems, for test-case generation, for solving
large combinatorial problems and complex scheduling tasks, for product design optimisation,
planning and controller synthesis, just to mention a few well-known areas.

In this talk we gave a short introduction to the theoretical foundations of satisfiability
checking, mentioned some of the most popular tools, and discussed the successful embedding
of SMT solvers in different technologies.

3.2 Model-Driven Control Software / System Design for Robotic
Systems

Jan Broenink (University of Twente, NL)

License ) Creative Commons BY 3.0 Unported license
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In dealing with system architectures for robotic and automation systems, it is crucial to
consider the total system (machine, control, software and I1/0), because the dynamics of the
machine influences the robot software. Therefore, we use appropriate Models of Computation
and tools, namely bond graphs for the machine part, dataflow diagrams for the algorithm /
software parts. Via meta-models, these formalisms are related. This allows for a structured
approach for designing the architecture of the robotic system. The design work is done as a
stepwise refinement process, whereby each step is verified via simulation, yielding shorter
design time, and a better quality product. The tools use templates and pass model-specific
information between each other via parameterised tokens in the generated, high-level code,
to get a better separation of design steps. This allows for better quality of the models and
more reuse, thus enhancing the efficiency of model-driven design for the (industrial) end
user. This approach is illustrated with two case studies: the control stack for a mobile robot,
manipulating blocks, and on incorporating safety layers in the embedded control system
architecture.

51

17071


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-41591-8_2
http://dx.doi.org/10.1007/978-3-319-41591-8_2
http://dx.doi.org/10.1007/978-3-319-41591-8_2
http://dx.doi.org/10.1007/978-3-319-41591-8_2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

52

17071 — Computer-Assisted Engineering for Robotics and Autonomous Systems

3.3 Safety Cases. Arguing the Safety of Autonomous Systems
Simon Burton (Robert Bosch GmbH — Stuttgart, DE)
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This talk introduced the topic of safety cases for arguing the safety of autonomous systems.
Examples are given for where existing standards do not provide sufficient guidance to
demonstrate certain properties of autonomous systems and therefore require a justification
from “first principles”. The Goal Structuring Notation is described as a means of formulating
and communication such argumentation structures. A roadmap for how to extend these
concepts in combination with model-based Systems Engineering and formal methods is
presented to motivate future research and encourage collaboration between these domains.

3.4 Computer-Assisted Engineering for Robotics and Autonomous
Systems: Verification Techniques That (May) Work in Practice

Kerstin I. Eder (University of Bristol, GB)

License ) Creative Commons BY 3.0 Unported license
© Kerstin I. Eder
Joint work of Dejanira Araiza-Illan, David Western, Pjotr Trojanek, Anthony G. Pipe, Arthur Richards,
Kerstin I. Eder

This presentation is focused on practical techniques for the verification of autonomous systems.
Because no single technique is adequate to cover a whole system in practice, the use of a
variety of techniques is proposed, including formal and state-of-the-art simulation-based, to
address verification needs in autonomous system design.

At the code level, re-implementing three well-known robot navigation algorithms in
SPARK enables formal verification to establish freedom from run-time errors without per-
formance penalties when compared to implementations in C/C++ [1]. This shows that
selecting a programming language designed for software-reliability leads to significant ad-
vantages when it comes to establishing code correctness.

At the design level, an assertion-based approach is proposed to verify control system
designs with respect to high-level requirements, such as stability, combining simulation-
based techniques with automatic theorem proving [2]. Requirements are first formalized as
properties over the signals in the Simulink model using Simulink blocks that then become
part of the Simulink model. The so extended Simulink model is then automatically translated
into Why3 theories and proof goals for formal verification using SMT-based theorem provers.
A case study that illustrates how stability can be decomposed from a single high-level
requirement into a set of sub-requirements to be implemented as assertions in Simulink is
discussed [3], together with the advantages of combining assertion-checks performed during
simulation with automatic theorem proving performed at system design time.

Coverage-Driven Verification (CDV) is as a systematic, goal directed simulation-based
verification method that is capable of exploring systems of realistic detail under a broad
range of environment conditions, providing a high degree of automation. I will illustrate
the benefits of CDV, functional and situation coverage [4] together with model-based [5] as
well as intelligent, agent-based test generation techniques [6] on the example of code used in
robots that directly interact with humans.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Erika Abraham, Hadas Kress-Gazit, Lorenzo Natale, and Armando Tacchella

I conclude my presentation with a brief discussion of the challenges in this area: specific-
ation, automation, combination of techniques and using AT for verification and validation.

Acknowledgement. The research presented is based on collaborations within the EPSRC
funded projects “Robust Integrated Verification of Autonomous Systems” (EP/J01205X/1)
and “Trustworthy Robotic Assistants” (EP/K006320/1).
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3.5 Towards Best-Effort Autonomy
Riidiger Ehlers (Universitit Bremen, DE)
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Highly autonomous systems degrade in performance over time, need to work correctly in
off-nominal conditions, and need to adapt without the help of a human operator. We do
not always know in advance of the system’s deployment how they are degrading in the
long run, and not all possible degradation scenarios can be covered in a systematic system
engineering process. To counter this problem, we could synthesize adapted control strategies
at runtime, using action failure probabilities inferred from observed data. However, classical
policy synthesis techniques for w-regular specifications yield no policy in case of inevitable
eventual violation of the specification. We present an approach to mitigate this problem
for omega-regular specifications and environments that can be modelled as Markov decision
processes.
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3.6 Provably Safe Collision Avoidance in Dynamic Environments
Christian Heinzemann (Robert Bosch GmbH — Stuttgart, DE)
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For many applications of autonomous robots in intralogistics and mobile service robotics,
it is an absolute must to guarantee that the robot will not cause harm to its environment.
This particularly includes that the robot must not cause collisions with moving obstacles
such as humans or animals. Guaranteeing collion-free motion of autonomous systems is
increasingly hardened by the fact that these systems increasingly operate in shared, open-
context environments. In such environments, the robot operates in the same space as the
humans and we as the developers do not know all contexts in which the system will have
to operate during its runtime. In particular, we will often not know how the environment
looks like and which kinds of obstacles the system will face. To this end, an approach for
guaranteeing provably safe motion of mobile robots is necessary. The main safety concept
being adopted therefore is passive safety [1], requiring that the robot is not moving when
a collision with an obstacle happens. The existing approaches either make the optimistic
assumption of knowing the future behavior of any obstable [2, 3], which is unrealistic for
humans, or they make rather conservative assumptions about obstacles [4, 5, 6, 7] that
significantly decrease the robot’s performance. The latter is true particularly in cases where
many obstacles are in the robot’s environment and where these obstacles are relatively near
to the robot, for example, when moving through an area populated by humans in a city
center, airport, or train station. Probabilistic approaches to collision avoidance [8, 9] improve
the performance but cannot give the necessary safety guarantees that we need for heavy
robots used, for example, in intralogistics.

In this talk, I give briefly characterize the problem of collision avoidance to be solved for
mobile robots and discuss in more detail why the problem is not solved sufficiently by existing
approaches. A possible trail for future works could be online verification approaches based
on reachability analysis [10] that use models to overapproximate the space that an obstacle
will occupy at the end of a planning period of the reactive obstacle avoidance algorithms. I
conclude by summarizing the key challenges that need to be solved for the approaches.
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3.7 Heteronomous Systems They are, Let’s Face it.
Holger Hermanns (Universitit des Saarlandes, DE)
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Heteronomy refers to actions that are influenced by forces outside the individual. Autonomy is
the opposite. For good reason, cars were originally called automobiles (and in some languages
they still are). They give autonomy to people. So, what is an autonomous automobile?

In this talk I will argue that the currently acclaimed vision of fully autonomous systems
is nothing but a trend towards heteronomy. This puts computer-assistance for heteronomous
system design into a different perspective. I will elaborate on this perspective, and will
discuss research challenges directly resulting from this.

3.8 GenoM3 Templates: from Middleware Independence to Formal
Models Synthesis

Feliz Ingrand (LAAS - Toulouse, FR)
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GenoM is an approach to develop robotic software components, which can be controlled, and
assembled to build complex applications. Its latest version, GenoM3, provides a template
mechanism which is versatile enough to deploy components for different middleware without
any change in the specification and user code. But this same template mechanism also
enables us to automatically synthesize formal models (for two Validation and Verification
frameworks) of the final components. We present and illustrate our approach on a real
deployed example of a drone flight controller for which we prove offline real-time properties,
and an outdoor robot for which we synthesize a controller to perform runtime verification.

This work was supported in part by the EU CPSE Labs project funded by the H2020
program under grant agreement No. 644400.
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3.9 Synthesis of Shared Control Protocols with Provable Safety and
Performance Guarantees

Nils Jansen (Univ. of Texas at Austin, US)
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We formalize synthesis of shared control protocols with correctness guarantees for temporal
logic specifications. More specifically, we introduce a modeling formalism in which both a
human and an autonomy protocol can issue commands to a robot towards performing a
certain task. These commands are blended into a joint input to the robot. The autonomy
protocol is synthesized using an abstraction of possible human commands accounting for
randomness in decisions caused by factors such as fatigue or incomprehensibility of the
problem at hand. The synthesis is designed to ensure that the resulting robot behavior
satisfies given safety and performance specifications, e.g., in temporal logic. Our solution is
based on nonlinear programming and we address the inherent scalability issue by presenting
alternative methods. We assess the feasibility and the scalability of the approach by an
experimental evaluation.

3.10 A storm is Coming: A Modern Probabilistic Model Checker
Joost-Pieter Katoen (RWTH Aachen, DE)
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In the last five years, we have developed our in-house probabilistic model checker with the
aim to have an easy-to-use platform for experimenting with new verification algorithms,
richer probabilistic models, algorithmic improvements, different modeling formalism, various
new features, and so forth. Although open-source probabilistic model checkers do exist, most
are not flexible and modular enough to easily support this. Our efforts have led to a toolkit
with mature building bricks with simple interfaces for possible extensions, and a modular
set-up. It comprises about 100,000 lines of C++ code. The time has come to make this toolkit
available to a wider audience: this paper presents storm.

Like its main competitors PRISM, MRMC, and iscasMC, storm relies on numerical and
symbolic computations. It does not support discrete-event simulation, known as statistical
model checking. The main characteristic features of storm are:

it supports various native input formats: the PRISM input format, generalized stochastic

Petri nets, dynamic fault trees, and conditioned probabilistic programs. This is not just

providing another parser; state-space reduction and generation techniques as well as

analysis algorithms are partly tailored to these modeling formalisms;
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Although many functionalities of PRISM are covered by storm, there are significant differences.

in addition to Markov chains and MDPs, it supports Markov automata, a model containing
probabilistic branching, non-determinism, and exponentially distributed delays;

it can do explicit state and fully symbolic (BDD-based) model checking as well as a
mizture of these modes;

it has a modular set-up, enabling the easy exchange of different solvers and distinct
decision diagram packages; its current release supports about 15 solvers, and the BDD
packages CUDD [1] and multi-threaded Sylvan [2];

it provides a Python API facilitating easy and rapid prototyping of other tools using the
engines and algorithms in storm;

it provides the following functionalities under one roof: the synthesis of counterexamples
and permissive schedulers (both MILP- and SMT-based), game-based abstraction of
infinite-state MDPs, efficient algorithms for conditional probabilities and rewards, and
long-run averages on MDPs;

its performance in terms of verification speed and memory footprint on the PRISM
benchmark suite is mostly better compared to PRISM

storm does not support LTL model checking and does not support the PRISM features:
probabilistic timed automata, multi-objective model checking, and an equivalent of PRISM’s
“hybrid” engine (a crossover between full MTBDD and storm’s “hybrid” engine), a fully
symbolic engine for continuous-time models, statistical model checking, and the analysis of
stochastic games as in PRISM-GAMES.
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3.11 High-Level Verifiable Robotics
Hadas Kress-Gazit (Cornell University — Ithaca, US)
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In this talk I gave a quick overview of different projects in my lab in which we have used
LTL synthesis and verification techniques to automatically create provably-correct robot
controllers. I finished the talk with a provocative question on what is the role of formal
verification and synthesis in the era of learning-based robotics.
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3.12 (Learning to) Learn to Control
Jan Kretinsky (TU Minchen, DE)
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On the one hand, formal verification methods provide hard guarantees on analysis results,
but do not scale well and are often hard to use. On the other hand, machine learning comes
with weak or no guarantees, but scales well and can provide more understandable solutions.
In this talk, we show several examples how these approaches can be combined and the best
of the two worlds achieved. We demonstrate this on controller synthesis [1,2] and controller
representation [3] in the setting of Markov decision processes and comment on extensions to
games [4].
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3.13 Optimizing the Performance of Robots in Production Logistics
Scenarios

Gerhard Lakemeyer (RWTH Aachen, DE)
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We consider the problem of optimizing the decision making of mobile robots managing
the supply chain in a semi-structured factory setting. To keep things manageable and
comprehensible we focus on a game-like environment provided by the Robocup Logistics
League (RCLL). While the RCLL has been around for a number of years, there has been
little progress in optimizing the performance of the robots. In order to make progress in a
more principled way we recently joined forces with Erika Abraham’s group with the aim of
applying SMT techniques to this problem. In this talk I will mainly focus on describing the
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problems and challenges the RCLL raises and advertise the simulation-based variant of the
RCLL as a possible benchmark to develop and test formal methods in robotics. I will also
briefly outline our approach and the first steps we have taken to address the problem using
SMT.

3.14 Artificial Intelligence Planning and Robotics and Autonomous
Systems

Daniele Magazzeni (King’s College London, GB)
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AT Planning is about determining actions before doing them, anticipating the things that
will need to be done and preparing for them. Planners use domain-independent heuristics to
guide the search in huge state spaces, in order to find a plan that achieves the goal while
satisfying numerical and temporal constraints and optimising a given metric. Planning for
Robotics and Autonomous Systems requires rich models to capture complex dynamics as
well as the uncertain and evolving environment, scalable planning techniques and robust
methods of execution. PDDL+ is the formalism used in planning to describe hybrid systems,
and allows the modelling of the differential equations governing the continuous behaviour
of systems. This talk provides an overview of how PDDL~+ can be used to model complex
domains; presents a new PDDL+ planner based on SMT and the ROSPlan framework for
planning with ROS; highlights some open challenges on the integration between task and
motion planning.

3.15 Human-Robot Collaboration — Industrial Applications and Open
Challenges

Bjorn Matthias (ABB AG Forschungszentrum — Ladenburg, DE)
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This contribution seeks to identify some important gaps in present methodology in the
deployment of industrial robots in applications of human-robot collaboration (HRC). The
drivers and enablers for deployment of industrial robots and of HRC in industrial practice
are summarized. Safety of machinery, as called out for example in the European Machinery
Directive, is introduced as a necessary boundary condition to fulfill in applications of industrial
robots. A brief overview of the relevant standards to be followed is given. The basic types of
collaborative operation of industrial robots are summarized, describing the specific protection
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schemes for each. The challenges in planning and commissioning collaborative applications
in industrial production are considered in more detail. This allows the identification of the
present lack of methodology and tools to support the economical and safety-rated deployment
of applications using HRC. The resulting research questions address these and other issues
associated with the future of industrial robots and their applications.

3.16 A Competition on Formal Methods for Robotics
Vasumathi Raman (Zoox Inc., US)
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Formal methods refers broadly to techniques for the verification and automatic synthesis
of transition systems that satisfy desirable properties exactly or within some statistical
tolerance. Though historically developed for concurrent software, recent work has brought
these methods to bear on motion planning in robotics. Challenges specific to robotics, such
as uncertainty and real-time constraints, have motivated extensions to existing methods,
as well as entirely novel treatments. However, when compared with other areas within
robotics research, demonstrations of formal methods have been surprisingly small-scale. In
this talk, I propose a robotics challenge that seeks to motivate advancement of the state of
the art toward practical realization. The challenge is organized into three problem domains:
arbitrary dimensional chains of integrators, traffic networks with Dubins cars, and factory
cart clearing.

3.17 Specification: the Biggest Bottleneck in Formal Methods and
Autonomy

Kristin Yvonne Rozier (Iowa State University, US)
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Advancement of autonomous systems stands on the shoulders of formal methods, which
make possible the rigorous safety analysis autonomous systems require. An aircraft cannot
operate autonomously unless it has design-time reasoning to ensure correct operation of
the autopilot and runtime reasoning to ensure system health management, or the ability
to detect and respond to off-nominal situations. Formal methods are highly dependent on
the specifications over which they reason; there is no escaping the “garbage in, garbage out”
reality. Specification is difficult, unglamorous, and arguably the biggest bottleneck facing
verification and validation of autonomous systems.

We examine the outlook for formal specification, and highlight the on-going challenges of
specification, from design-time to runtime. We exemplify these challenges for specifications in
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Linear Temporal Logic (LTL) though the focus is not limited to that specification language.
We pose challenge questions for specification that will shape both the future of formal
methods, and our ability to more automatically verify and validate autonomous systems of
greater variety and scale. We call for further research into LTL Genesis.

3.18 Development and Adoption of Model-Based Tools in Robotics
Christian Schlegel (Hochschule Ulm, DE)
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We aim at making the development of better quality robot systems much less an effort by
the means of model-driven tooling. This talk is about how to compose complex robotic
software systems out of software building blocks and we advocate for moving from just
source-code level integration towards model-driven composition with explicated properties.
We consider the full stack from low level control over the task sequencing level up to the
mission level. The challenge is to adhere to the principles of separation of concerns while
at the same time, you need to package different concerns into structures such that these fit
the views of e.g. component developers, system integrators and even the robots at run-time
themselves. This talk underpins these ideas by the example of the matured model-driven
SmartSoft/SmartMDSD approach and tooling. At various levels, there are hooks in the
software engineering tools and in the run-time execution system where (formal) methods
(e.g. for verification) could assist the different players in their different roles including the
robot itself in better doing their jobs.

3.19 How Safe is Your Autonomous Robot? (A Tale of Courage,
Passion, and Perspiration)

Armando Tacchella (University of Genova, IT)

License () Creative Commons BY 3.0 Unported license
© Armando Tacchella

In this work we consider the problem of checking safety in autonomous agents at the
deliberative level. The interaction between the agent and the environment is modelled as a
Markov decision process and it is assumed that control policies are learned using model-free
approximate dynamic programming, best known as reinforcement learning (RL). Models
and policies inferred during RL are combined to obtain discrete time Markov chains which
can then be subject to verification and repair against probabilistic temporal logic properties.
In particular, we consider repair both as an off-line strategy and an on-line technique to
supplement execution monitoring with policy-mending capabilities. The approach is studied
in the context of a standing-up task for a simple but nontrivial humanoid robot.
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