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Abstract
Computability is one of the fundamental notions of mathematics and computer science, trying to
capture the effective content of mathematics and its applications. Computability Theory explores
the frontiers and limits of effectiveness and algorithmic methods. It has its origins in Gödel’s
Incompleteness Theorems and the formalization of computability by Turing and others, which
later led to the emergence of computer science as we know it today. Computability Theory is
strongly connected to other areas of mathematics and theoretical computer science. The core of
this theory is the analysis of relative computability and the induced degrees of unsolvability; its
applications are mainly to Kolmogorov complexity and randomness as well as mathematical logic,
analysis and algebra. Current research in computability theory stresses these applications and
focuses on algorithmic randomness, computable analysis, computable model theory, and reverse
mathematics (proof theory). Recent advances in these research directions have revealed some
deep interactions not only among these areas but also with the core parts of computability theory.
The goal of this Dagstuhl Seminar is to bring together researchers from all parts of computability
theory and related areas in order to discuss advances in the individual areas and the interactions
among those.

Seminar February 19–24, 2017 – http://www.dagstuhl.de/17081
1998 ACM Subject Classification F.1.1 Models of Computation, F.4.1 Mathematical Logic
Keywords and phrases algorithmic randomness, computability theory, computable algebra, com-

putable analysis, generic case complexity, proof mining
Digital Object Identifier 10.4230/DagRep.7.2.89
Edited in cooperation with Rupert Hölzl

1 Executive Summary
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Computability theory grew from work to understand effectiveness in mathematics. Soph-
isticated tools have been developed towards this task. For a while, the area tended to
be concerned with internal considerations such as the structure of the various hierarchies
developed for the tasks of calibrations. More recently, this machinery has seen modern
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applications into areas such as model theory, algorithmic randomness, analysis, ergodic
theory, number theory and the like; and the tools have been used to answer several classical
questions. Seminar 17081 was an opportunity for researchers in several areas of modern
computability theory to get together and interact.

The format was for 2–3 lectures in the morning with at least one being an overview, and
a similar number of 3–4 in the afternoon, with Wednesday afternoon and Friday afternoon
free. The weather being miserable, participants opted to stay at the Schloss Wednesday
afternoon, and quite a bit of work was done in pairs in the time left free, on the Wednesday
afternoon in particular. At least one problem seen as significant in the area was solved (one
concerning the strength of Ramsey’s Theorem for Pairs in reverse mathematics), and the
organizers know of several other papers in preparation resulting from the seminar.

The lectures were from various areas, but the greatest concentration was around
classification tools in computable analysis (the Weihrauch Lattice) and Reverse Mathem-
atics (on what proof-theoretic strength is needed to establish results in mathematics),
and these areas’ relationship with generating algorithms, such as in proof mining;
computable model theory (looking at structures such as groups, rings, or abstract algebraic
structures, endowing them with effectivity and seeing what else is algorithmic). Notable
was the new work on effective uncountable structures such as uncountable free groups,
and on topological groups;
algorithmic randomness: Here one seeks to give meaning to randomness for individual
strings and infinite sequences. Talks given explored the relationship of calibrations of
randomness to computational power, and online notions of randomness.

Of course, these are not separate areas but are inter-related, and the talks reflected these
inter-relationships.

Currently, computability theory is quite vibrant with many new applications being found,
and a number of young and talented researchers entering the field. This was reflected in the
age of the presenters of many of the lectures, as well as the significant number of people we
could have invited in addition.

All in all, the meeting was a great success and should have significant impact on the
development of the area.
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3 Overview of Talks

3.1 Machines running on random tapes and the probabilities of events
George Barmpalias (Victoria University – Wellington, NZ)

License Creative Commons BY 3.0 Unported license
© George Barmpalias

Joint work of Andrew Lewis-Pye, George Barmpalias, Douglas Cenzer, Christopher P. Porter
URL http://barmpalias.net

Probabilistic Turing machines have been studied since the 1940s, when it was shown that
the probability of a machine with a random (as in probability theory) oracle computing
any fixed non-computable real is 0. Chaitin’s halting probability is the probability that
a universal Turing machine halts on a random oracle (with empty numerical input) and
was characterized in terms of algorithmic randomness and computable approximations. In
general, one can ask the same question with respect to any property that a computation of a
universal Turing machine may have when it reads a random oracle:
1. Will it compute a total function?
2. Will it enumerate a co-finite set (say, as the domain of a partial function that it computes)?
3. Will it enumerate a set which computes the halting problem?
4. Will it compute an incomputable function?
5. Will it halt with an output inside a certain set A?

Can we give characterizations of these probabilities in terms of algorithmic randomness
and effectiveness properties? We show that this is possible, but we do not always get the
expected answer.

Moreover we answer one of the last remaining questions from the BSL 2006 list of open
questions in randomness (by Miller and Nies), by showing that the probability that the
universal machine halts and outputs a number in a non-empty Π0

1 set is always left-c.e. and
ML-random. Intuitively, this says that if we code arithmetical sentences into numbers, the
probability that the universal machine outputs an undecidable sentence (in PA) can be
effectively approximated from below!

My talk is mainly based on the following recent work:
The probability of a computable output from a random oracle
George Barmpalias, Douglas Cenzer and Christopher P. Porter
https://arxiv.org/abs/1612.08537
Differences of halting probabilities
George Barmpalias and Andy Lewis-Pye
https://arxiv.org/abs/1604.00216
Random numbers as probabilities of machine behaviour
George Barmpalias, Douglas Cenzer and Christopher P. Porter
https://arxiv.org/abs/1605.05838

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://barmpalias.net
https://arxiv.org/abs/1612.08537
https://arxiv.org/abs/1604.00216
https://arxiv.org/abs/1605.05838
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3.2 Deep Π0
1 classes

Laurent Bienvenu (University of Montpellier & CNRS, FR)
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Joint work of Laurent Bienvenu, Christopher P. Porter
Main reference L. Bienvenu, C. P. Porter, “Deep Π0

1 classes”, Bulletin of Symbolic Logic, 22(2):249–286, 2016.
URL https://arxiv.org/abs/1403.0450v3

We will present the concept of deep Π0
1 classes, which can be thought of as those classes whose

paths are uniformly ‘hard to generate probabilistically’ and discuss the many interesting
properties those classes enjoy. In particular we will see that they behave quite similarly to
the class of PA degrees in their interactions with algorithmic randomness.

3.3 Finding bases of uncountable free abelian groups is hard
Noam Greenberg (Victoria University – Wellington, NZ)

License Creative Commons BY 3.0 Unported license
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Joint work of Noam Greenberg, Dan Turetsky, Linda Brown Westrick

We use admissible computability to discuss effective properties of uncountable free abelian
groups. Assuming V = L, for all regular uncountable κ there is a κ-computable free abelian
group with no κ-computable basis, indeed no κ-arithmetical basis, and usually one can avoid
any lower cone below a ∆1

1(Lκ) degree. On the other hand, not much can be coded into
bases of groups: a forcing construction shows that the most that can be coded is ∅′ or ∅′′,
depending on κ (for example, if it is a successor of a singular cardinal, or inaccessible).
The index-set of κ-computable free abelian groups is Σ1

1(Lκ)-complete, unless κ is weakly
compact.

3.4 Monte Carlo Computability
Rupert Hölzl (Universität der Bundeswehr – München, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Vasco Brattka, Rupert Hölzl, Rutger Kuyper
Main reference V. Brattka, R. Hölzl, R. Kuyper, “Monte Carlo Computability”, Proc. of the 34th Symp. on

Theoretical Aspects of Computer Science (STACS 2017), LIPIcs, Vol. 66, pp. 17:1–17:14, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2017.17

We introduce Monte Carlo computability as a probabilistic concept of computability on infinite
objects and prove that Monte Carlo computable functions are closed under composition. We
then mutually separate the following classes of functions from each other: the class of multi-
valued functions that are non-deterministically computable, that of Las Vegas computable
functions, and that of Monte Carlo computable functions. We give natural examples of
computational problems witnessing these separations. As a specific problem which is Monte
Carlo computable but neither Las Vegas computable nor non-deterministically computable,
we study the problem of sorting infinite sequences.
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3.5 Strong and non-strong degrees of categoricity
Iskander Kalimullin (Kazan Federal University – Kazan, RU)

License Creative Commons BY 3.0 Unported license
© Iskander Kalimullin

Joint work of Nikolay Bazhenov, Iskander Kalimullin, Mars Yamaleev

A computable structure A has a degree of categoricity x if x is the least Turing degree
such that A is x-computably categorical. A degree of categoricity x is strong if there are
two computable copies B ∼= C ∼= A such that x ≤T f for every isomorphism f : B → C.
Answering a question from [1] on the existence of non-strong degrees of categoricity we
introduce the notion of spectral dimension of a computable structure: the spectral dimension
of a computable structure A with a degree of categoricity x is equal to an ordinal n ≤ ω if
n is the least ordinal such that there are computable copies Bi ∼= Ci ∼= A, i < n, such that
x ≤T

⊕
i<n fi for every choice of isomorphisms fi : Bi → Ci, i < n (considering categoricity

spectra the notion of spectral dimension can be easily adapted to the case when a structure
has no degree of categoricity). We show that for every n < ω there is a rigid computable
structure of the degree of categoricity 0′ having spectral dimension n. The original question
from [1] now can be updated to the form: is there a computable structure with a degree of
categoricity having spectral dimension ω? Such a structure, if it exists, can not be rigid.

References
1 E.B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”,

Archive for Mathematical Logic, Vol. 49, pp. 51–67, 2010.

3.6 Topological aspects of enumeration degrees
Takayuki Kihara (University of California – Berkeley, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Takayuki Kihara, Steffen Lempp, Keng Meng Ng, Arno Pauly

Pauly and the speaker introduced a general way of assigning a degree structure to each
admissibly represented space. From this perspective, the enumeration degrees can be thought
of as the degree structure of a universal second-countable T0 space. This idea enable us to
classify enumeration degrees in terms of general topology. For instance, the Turing degrees
(total e-degrees) are the “finite dimensional metrizable e-degrees”, and the continuous degrees
are the “metrizable e-degrees”. We can then talk about the existences of a Hausdorff
(T2) e-degree which is not an Urysohn (T2.5) e-degree, of a Frechet (T1) e-degree which is
Hausdorff-quasimininal, etc.

Note that the admissibly represented spaces form a cartesian closed category, which is far
larger than the category of second-countable T0 spaces. In general, the degree structure of a
non-second-countable space is not a substructure of the enumeration degrees. For instance,
one can show that the de Groot dual of the Baire space (which is not second-countable) has
a point having non-enumeration degree.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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3.7 The Scott Isomorphism Theorem
Julia Knight (University of Notre Dame, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Rachael Alvir, Julia Knight, Charles McCoy

Scott [5] proved that for a countable structureA for a countable language L, there is a sentence
of Lω1ω (a Scott sentence) whose countable models are just the isomorphic copies of A. The
complexity of an optimal Scott sentence measures the internal complexity of the structure.
I will describe some recent results on the complexity of Scott sentences. I had conjectured
that every finitely generated group has a d-Σ2 Scott sentence, and every computable finitely
generated group has a computable d-Σ2 Scott sentence. Recently, Harrison-Trainor and
Ho [2] showed that both conjectures are false. Alvir, McCoy and I [1] applied a result of
Montalbán [4] and one of A. Miller [3] to show that a finitely generated group has a d-Σ2
Scott sentence iff there is a generating tuple whose orbit is defined by a Π1 formula. Using
effective versions of the results of Montalbán and A. Miller, we get the fact that a computable
finitely generated group has a computable d-Σ2 Scott sentence iff there is a generating tuple
whose orbit is defined by a computable Π1 formula.

References
1 R. Alvir, J. F. Knight, C. McCoy, “Complexity of Scott sentences”, Preprint.
2 M. Harrison-Trainor, M-C. Ho, “Finitely generated groups”, Preprint.
3 A. Miller, “The Borel classification of the isomorphism class of a countable model”, Notre

Dame Journal of Formal Logic, Vol. 24, pp. 22–34, 1983.
4 A. Montalbán, “A robuster Scott rank”, Proceedings of the AMS, Vol. 143, pp. 5427-5436,

2015.
5 D. Scott, “Logic with denumerably long formulas and finite strings of quantifiers”, In The

Theory of Models, ed. by J. Addison, L. Henkin, and A. Tarski, pp. 329–341, North-Holland,
1965.

3.8 Computability, Proof Mining and Metric Regularity
Ulrich Kohlenbach (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Ulrich Kohlenbach

Concepts of metric regularity and weak sharp minima which are generalizations of quantitative
notions of strong uniqueness to problems with non-unique solutions play an important
role in convex optimization. We will discuss computability and proof theoretic aspects
of this as well as applications to minimization problems, fixed points of resolvents and
zeros of subdifferentials (partly joint work with Genaro Lopez-Acedo). We also present
recent applications of ‘proof mining’ to convex feasibility problems [2, 3]. In particular, we
give a polynomial rate of asymptotic regularity [4] for Bauschke’s solution of the minimal
displacement conjecture [1], that is, for Picard iterates of compositions of metric projections
in Hilbert space (without the assumption of the existence of a fixed point).

References
1 H. Bauschke, “The composition of projections onto closed sets in Hilbert space is asymp-

totically regular”, Proceedings of the AMS, Vol. 131, pp. 141–146, 2003.
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2 M.A.A. Khan, U. Kohlenbach, “Quantitative image recovery theorems”, Nonlinear Ana-
lysis, Vol. 106, pp. 138–150, 2014.

3 U. Kohlenbach, “On the quantitative asymptotic behavior of strongly nonexpansive map-
pings in Banach and geodesic spaces”, Israel Journal of Mathematics, Vol. 216, pp. 215–246,
2016.

4 U. Kohlenbach, “A polynomial rate of asymptotic regularity for compositions of projections
in Hilbert space”, Submitted.

3.9 A peek at the higher levels of the Weihrauch hierarchy
Alberto Marcone (University of Udine, IT)

License Creative Commons BY 3.0 Unported license
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Joint work of Andrea Cettolo, Alberto Marcone

Weihrauch reducibility and the ensuing Weihrauch hierarchy have been successfully used
to refine reverse mathematics results for statements which are provable in ACA0 and below.
The study the Weihrauch hierarchy for functions arising from statements lying at higher
levels (such as ATR0) of the reverse mathematics spectrum was suggested by the author in
the open problem session of Dagstuhl Seminar 15392 in September 2015.

We start this study, obtaining in some cases the expected finer classification, but in
others observing a collapse of statements that are not equivalent with respect to provability
in subsystems of second order arithmetic. This is in part due to the increased syntactic
complexity of the statements.

Our preliminary results deal with comparability of well-orderings, Σ1
1-separation, and

∆1
1-comprehension.

3.10 Randomness notions in Muchnik and Medvedev degrees
Kenshi Miyabe (Meiji University – Kawasaki, JP)

License Creative Commons BY 3.0 Unported license
© Kenshi Miyabe

The main question of this talk is whether one can construct a more random set from a
random set. This question can be formalized by mass problems, that is, Muchnik and
Medvedev degrees. As an example, computable randomness is strictly below ML-randomness
in Muchnik degrees because there exists a high minimal Turing degree, which contains a
computably random set but no ML-random set is Turing below it. Similar arguments can be
applied for other pairs. There are two interesting pairs of randomness notions that have the
same Muchnik degree. One pair is the one of ML-randomness and difference random. This
is because, for ML-random set X + Y , at least one of X or Y should be difference random.
In contrast, ML-randomness and difference random have different Medvedev degrees. In
other words, one can not compute a difference random from a ML-random uniformly. The
proof uses the Levin-Kautz theorem and no-randomness-from-nothing for ML-randomness.
The other pair is the one of Schnorr randomness and computable randomness. They have
the same Muchnik degree but different Medvedev degrees. The proof extends the method
separating Schnorr randomness and computable randomness using Levy’s zero-one law from
probability theory.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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http://creativecommons.org/licenses/by/3.0/
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3.11 Stopping time complexity
Alexander Shen (University of Montpellier & CNRS, FR)

License Creative Commons BY 3.0 Unported license
© Alexander Shen

Joint work of Mikhail Andreev, Gleb Posobin, Alexander Shen

Consider a bit string x written on the input one-directional tape of some Turing machine. We
want the machine to stop reading the tape exactly when x is read. How much information
should be communicated to this machine? We may call this amount “stopping time complexity”
of x.

This quantity (in the context of prediction theory) was considered by Vovk and Pavlovic
(see https://arxiv.org/abs/1603.04283), and we try to perform a more systematic analysis of
it in the language of Kolmogorov complexity.

One can consider the plain version of stopping time complexity (minimal plain complexity
of a Turing machine that stops at x). It turns out to be equivalent to monotone-conditional
complexity C(x|x∗) where the condition x is considered as a prefix of the string. There is
also a quantitative characterization as a minimal upper semicomputable function such that
on every path there is at most 2n points where the function drops below n.

We show also that one should be careful: for the general case of C(x|y∗) we should
consider monotone (prefix-stable), not prefix-free functions of y.

A similar theory can be constructed for prefix versions of stopping time complexity. We
answer the question asked by Vovk–Pavlovic and show that the minimal prefix complexity of a
program stopping at x, the quantity K(x|x∗) and the logarithm of stopping time semimeasure,
introduced by Vovk and Pavlovic, are all different. Also we show that the stopping time
semimeasure has a natural probabilistic interpretation while for the general case m(x|y∗)
the natural interpretation is no longer valid.

3.12 Genericity, randomness, and differentiable functions
Sebastiaan A. Terwijn (Radboud University Nijmegen, NL)

License Creative Commons BY 3.0 Unported license
© Sebastiaan A. Terwijn

Joint work of Rutger Kuyper, Sebastiaan A. Terwijn
Main reference R. Kuyper, S.A. Terwijn, “Effective genericity and differentiability”, Journal of Logic and Analysis,

6(4):1–14, 2014.
URL http://logicandanalysis.org/index.php/jla/article/view/215/94

We present a theorem characterizing the notion of 1-genericity in terms of differentiable
functions. We compare this to a recent characterization of the notion of 1-randomness,
also in terms of differentiability. We also discuss variations about n-genericity, multiple
differentiability, and polynomial time computability.

References
1 V. Brattka, J. S. Miller, A. Nies, “Randomness and Differentiability”, Transactions of the

American Mathematical Society, Vol. 368, pp. 581–605, 2016.
2 R. Kuyper, S.A. Terwijn, “Effective genericity and differentiability”, Journal of Logic and

Analysis, Vol. 6(4), pp. 1–14, 2014.
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3.13 Stochasticity in Algorithmic Statistics for Polynomial Time
Nikolay K. Vereshchagin (Moscow State University, RU & National Research University
Higher School of Economics – Moscow, RU) and Alexey Milovanov

License Creative Commons BY 3.0 Unported license
© Nikolay K. Vereshchagin and Alexey Milovanov

Main reference A. Milovanov, N. Vereshchagin, “Stochasticity in Algorithmic Statistics for Polynomial Time”,
Report TR17-043, ECCC, 2017.

URL https://eccc.weizmann.ac.il/report/2017/043/download

A fundamental notion in Algorithmic Statistics is that of a stochastic object, that is, an
object having a simple plausible explanation. Informally, a probability distribution is a
plausible explanation for x if it looks likely that x was drawn at random with respect to that
distribution. In this paper, we suggest three definitions of a plausible statistical hypothesis
for Algorithmic Statistics with polynomial time bounds, which are called acceptability,
plausibility and optimality. Roughly speaking, a probability distribution µ is called an
acceptable explanation for x, if x possesses all properties decidable by short programs in
a short time and shared by almost all objects (with respect to µ). Plausibility is a similar
notion, however this time we require x to possess all properties T decidable even by long
programs in a short time and shared by almost all objects. To compensate the increase in
program length, we strengthen the notion of ‘almost all’ – the longer the program recognizing
the property is, the more objects must share the property. Finally, a probability distribution
µ is called an optimal explanation for x if µ(x) is large (close to 2−Cpoly(x)).

Almost all our results hold under some plausible complexity theoretic assumptions.
Our main result states that for acceptability and plausibility there are infinitely many non-
stochastic objects, that is, objects that do not have simple plausible (acceptable) explanations.
We explain why we need assumptions – our main result implies that P 6= PSPACE. In the
proof of that result, we use the notion of an elusive set, which is interesting in its own
right. Using elusive sets, we show that the distinguishing complexity of a string x can be
super-logarithmically less than the conditional complexity of x with condition r for almost
all r (for polynomial time bounded programs). Such a gap was known before, however only
in the case when both complexities are conditional, or both complexities are unconditional.

It follows from the definition that plausibility implies acceptability and optimality. We
show that there are objects that have simple acceptable but implausible and non-optimal
explanations. We prove that for strings whose distinguishing complexity is close to Kolmogorov
complexity (with polynomial time bounds) plausibility is equivalent to optimality for all
simple distributions, a fact that can be considered a justification of the Maximal Likelihood
Estimator.

3.14 Turing-, tt-, and m-reductions for functions in the Baire hierarchy
Linda Brown Westrick (University of Connecticut – Storrs, US)
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Joint work of Adam Day, Rod Downey, Linda Brown Westrick

For arbitrary functions f : [0, 1]→ R, (including in particular highly non-continuous func-
tions), what would be the right notion of Turing reducibility and its variants? We present
a computationally motivated definition of ≤T, ≤tt, and ≤m for such functions, and show
that within the Baire hierarchy, the linearly ordered ≤T-equivalence classes correspond
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precisely to the proper Baire classes. Further, within the Baire 1 functions, the ≤tt and
≤m equivalence classes enjoy a natural correspondence with levels of the α rank on Baire 1
functions considered in Kechris and Louveau (1990).

4 Working groups

4.1 Summary of the open problems session

License Creative Commons BY 3.0 Unported license
© Multiple contributors

Question (Barmpalias) What is the measure of minimal covers in the Turing degrees?
Conjecture (Barmpalias) A K-degree has uncountably many predecessors if and only
if it is not infinitely often K-trivial.

Question (Fouché) The continuous action of a topological group G on a discrete set X
is said to be a Ramsey action if for each finite subset F of X and each finite colouring
of X, there is some g ∈ G such that the colouring is monochromatic on gF . Such an
action is necessarily transitive. A topological group is called Ramsey if all transitive
actions on discrete sets are Ramsey. Let LO be the set of total orders on the natural
numbers, viewed as a closed subspace of NN×N. It is a deep fact that if G is a Ramsey
group, then the logical action of G on LO has a fixed point. It is well-known that the
space LO has a unique S∞-invariant Radon measure µ. This is a computable measure.
The problem proposed is to understand the fixed points of the action of a Ramsey group
on LO from the viewpoint of algorithmic randomness relative to µ.

Question (Kalimullin; see Abstract 3.5) Is there a computable structure with a
degree of categoricity having the spectral dimension ω?
Question (Kalimullin) Is there a computable structure A of computable dimension 2
with 2-element automorphism group such that two isomorphisms between its computable
copies A0 and A1 have incomparable Turing degrees?

Question (Nies) For K-trivial sets A and B we say that A ≤ML B if every ML-random
A computing B computes A. Is ≤ML arithmetical? Note that by the Gandy basis theorem,
if A 6≤ML B then there is a counterexample Z ≤T O.
Question (Nies) A K-trivial set A is called smart if every ML-random Y ≥T A computes
all the K-trivials. Is there a minimal pair of smart K-trivials?
Question (Nies) Suppose A is K-trivial. Is A Turing below each LR-hard ML-random?
Question (Nies) Is weak 2-randomness closed upward under ≤K?

Question (Yu) For any real x and constant c, let Ax,c = {n | Kx(n) ≥ K(n)−c}. Define
x ≥WLK y if for any c, if Ax,c is infinite, then there is some d so that Ax,c ⊆ Ay,d. The
question is whether for any weakly low for K real x, x ≥WLK y implies x ≥LK y?
Question (Yu) Is it true that under the assumption of PD, every uncountable Π1

3 set A
ranges over an upper cone of Q3-degrees?
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5 Impact

5.1 Preliminary results as reported by participants

License Creative Commons BY 3.0 Unported license
© Multiple contributors

During the seminar, numerous groups of researchers took advantage of the free time between
talks to collaborate on their current research projects. While at the time of writing of this
report it is too early to fully appreciate the impact of the seminar on the field of computability,
the following very partial list describes concrete results already reported by participants.

Willem Fouché reports that he and Arno Pauly finalised two papers during the seminar:
“How constructive is constructing measures?” (Journal of Logic and Analysis, 9:c3, 1–30,
2017) and “Weihrauch-completeness for layerwise computability” (together with George
Davie; submitted to Logical Methods in Computer Science). He furthermore reports that
he and André Nies continued their work on the project “Computable profinite groups
and randomness”.
Ulrich Kohlenbach reports that he finished his work on the article “A polynomial rate of
asymptotic regularity for compositions of projections in Hilbert space” (submitted March
2017) during the seminar.
Antonio Montalbán and Richard Shore report that they worked briefly on finishing their
article “Conservativity and ultrafilters over subsystems of second order arithmetic” which
is about to be submitted. They also worked extensively on a follow-up article tentatively
titled “Iterated Hindman’s Theorem, Gower’s Fink Theorem, and the Infinite Hale-Jewett
Theorem all peas in a pod”.
Linda Brown Westrick is reporting that after her presentation on the topic of a continuous
reducibility for Borel functions she had fruitful discussions with Takayuki Kihara, Antonio
Montalbán, and Arno Pauly, who shared with her some connections with their work. She
also took advantage of the workshop to work on an ongoing project about Scott sets with
Mariya Soskova, and on another ongoing project about a lightface version of reducibility
for Borel functions with Rod Downey.
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